
Reading programs is a form of problem
solving

I Programs are long

I ∴ read selectively

I Programs have lots of cross-links

I ∴ use tools to follow them

I Programs are complicated

I ∴ read with a friend

Reading is goal-driven

I Remember what your goal is!

I Reading for debugging is not like

I reading for extending is not like

I reading for quality review.

What is reading?

I Navigation—finding stuff

I Comprehension—understanding what you
find

I Integration—into your model of the program

I Make your own notes and diagrams as you go.

Road map analogy

I A single sheet road map of New Zealand would
be unusable

I So we use a hierarchy of maps at different
scales

I In the same way we need a hierarchy of views
of a program

I Architecture
I packages (UML)
I modules
I methods/procedures

I road maps need indices, so do we.

What about Javadoc I
I Extracts semi-formal comments and makes

HTML

I Describes constructors, fields, and methods

I for public & protected & nested classes.

I Encourages you to write “stubs” and
comments first

I Outline should be a useful abstraction

I Now supports “package comment files” for
view of package

I and “overview comment file” for view of
application

I So allows layers-of-maps.

What about Javadoc II

I Application/package/class summary comment
at start good

I Tends to result in bulky low-value comments

I Hypertext links to other files very valuable

I But it doesn’t link to or from the code!

I Has links out of class, but no links to clients

I . . . contrast with Smalltalk and OO-Browser.

I http://www.cs.otago.ac.nz/cosc345/xt/docs/
index.html

I Does not encourage examples.

Look outside the code

I Look for examples

I Look for other documentation

I Look for change logs (from version control)

I Look for other code that uses this code

I Code says “what it does” not “what it means”

Use traces as a guide

I Run a test case with profiling or coverage

I Only code that was executed is relevant!

I Run two cases, one using X and a similar one
not

I Look at code executed in the first case but not
the other.

I The trivial “start; stop” test case is a good foil.

Top-down vs Bottom-Up

I Top-down strategy tries to read like a book
and understand everything in
program/module/. . .

I ∴ Works for 10 kSLOC programs, not for 100
kSLOC ones.

I Bottom-up understands a small piece at a time

I ∴ always applicable

I but top-down leads to better understanding

I ∴ read medium size coherent units completely

I and MAKE NOTES as you go!

Reading is expectation driven

I You cannot understand a statement in isolation

I You need context to tell you what the words
mean

I Context (especially names) tells you what to
expect

I Form hypotheses and test them by searching
the code

I Surprises imply hypotheses wrong/incomplete

I MAKE NOTES as you go!

Self-Documenting Code

I There’s a lot of stuff on the web about
self-documenting code and intention-revealing
names.

I Some code can be very good.

I Some code depends on conventions you don’t
know.

next: numberOfElements
|sequence|
sequence := self collectionClass new.
numberOfElements timesRepeat: [sequence addLast: self next].
↑sequence

Self-Documenting Code II

I You need to know the language syntax, plus

I “self next” reads one item from this stream

I “self collectionClass new” makes a new
ArrayList thingy suitable for this stream

I “n timesRepeat: [stmts]” does stmts n times

I “sequence addLast: x” adds x at the end of a
stretchy sequence

I It’s obvious once you know.

I If you don’t know, you have to find out.

I Projects may have their own conventions!

Test cases (example)

1 to: 12 do: [:month |
1 to: 7 do: [:dow | |n|

n := Date year: 2008 month: month first: dow.
[n year = 2008] assert.
[n month = month] assert.
[n dayOfWeek = dow] assert.
[n dayOfMonth < 8] assert.
...

Test cases (comment)

I It’s a test case, but you see

I one way to construct a Date

I some ways to extract information

I what those methods return

I Every method should have at least one test.

Tool support
I Typographic clues (layout, colouring/typeface)

help
I Colouring (XCode, my m2h, UNIX

vgrind/lgrind, Emacs)
shows where comments really end.

I Some languages (Occam, Haskell, Clean,
Python)

enforce layout, so you can trust it.
I Mostly, layout shows programmer’s idea of

structure,
I not the real structure.
I indent, astyle, etc tell you the real structure.
I These are so-so, but better than most

programmers.

Literate Programming

I Knuth introduced Literate Programming in
1984

I Explain your program in a documentation tool
that can produce beautiful books with tables,
graphs, formulas, etc.

I A “tangler” extracts the code.

I tangle, weave, ctangle, cweave, SpiderWeb,
FunnelWeb, noweb, nuweb.

I Even Word has been used (but never again!).

I nuweb demonstration if time permits.

CASE tools

I Often seen as glorified drawing tools for bubble
diagrams

I If repository is kept up to date,
I Provides layers of maps
I Provides navigation services
I Links code with tests (alias examples)

I If not, at least tells you original ideas.

I Should tell you “X here means . . . ”

I cscope (now at SourceForge) is for C.

Slicing

I Choose a variable,

I throw away everything that doesn’t affect it.

I That’s a slice.

I There are tools; it’s also a manual technique.

I Aim is thorough understanding of one aspect.

	Lecture

