COSC345 Week 7 Notes

There used to be handouts about the spiral model: a copy of Boehm’s paper,
and the Wikipedia page about it. Now you will have to find them on the Web.
Oh the humanity!

“Prototyping is about risk reduction: if you don’t have a question, you
don’t need a prototype” is the heart of it.

The edition of Pressman I intended is the old one listed in the Bibliography.

The section about “Developers and Users are different” is really quite impor-
tant. It might even deserve to be in a lecture of its own, though not necessarily
in this paper. I once had a student (who became a highly paid consultant in the
UK) who was into Neuro-Linguistic Programming; it seems they not only clas-
sify people’s thinking styles as (Visual/Auditory/Tactile) x (Digital/ Analogue)
but have techniques for determining which someone is. It’s quite interesting to
get someone to describe something abstract and note what kinds of metaphors
they use; the point is that people use different ones. There are the classic Four
Temperaments (Choleric, Melancholic, Phlegmatic, and Sanguine) and the mod-
ern refinement of it, the Enneagram. People always seem to be fascinated to
be told about themselves, so getting the members of the class to do some kind
of quick personality test and then collecting the results anonymously and tab-
ulating them might be a fun way to make the point that people really do think
differently. Here’s one: http://similarminds.com/test.html

Of course, it’s not just developers and users who differ. Users differ from
each other. The point is to remind students that they cannot expect other
people to think exactly like them and to enjoy exactly what they enjoy. (Tastes
in music, for example.) You can’t be sure whether other people will like your
program until they have tried it.

As for prototyping languages, there are the obvious ones like Python and
(ick) Perl. I point to Haskell. For example, I’ve gone through the Personal
Software Process exercises using Haskell and got remarkably short answers in
remarkably short times. (Files available on request.) I also have some Program-
ming Contest problems in C and Haskell, although they were done mainly to
demonstrate Haskell input/output and don’t show off Haskell’s strengths.

I now just mention Groovy and Scala; they should be more prominent but
I don’t know them well enough yet. I would mention Ruby, which has a really
neat test development kit called Cucumber, except that Ruby is a slow com-
promise between Python and a gutted Smalltalk. Actually, for prototyping, it
might be quite a good choice: check out what libraries are available for it!

If you have anyone who knows Smalltalk, Squeak and Pharo are free, and
VisualWorks NonCommercial is free for academic use and much faster than
Squeak. GNU Smalltalk is free. Dolphin Smalltalk is easily the prettiest system
I’ve ever seen for building Windows programs. It’s really nice showing how
you can build a prototype of something quickly in Smalltalk and then measure
it in various ways.

Something should probably be said about prototyping environments. Our
aim in prototyping is rapid development, so a refactoring browser (first devel-
oped in Smalltalk) or a unit testing framework (jUnit is a clone of SUnit, which
is of course for Smalltalk) can save quite a bit of time, as can a body of examples
(like you get in Smalltalk) that you can copy and modify. The lecture does make
the point that a library that provides most of what you need for your prototype

already is one of the most important things.

Something I mention in lectures but isn’t on the slides is that one of the
things that’s often sacrificed in prototyping is security. Prototypes are, after
all, used in-house. Anything we learn from a prototype has to be applied in a
framework that takes security seriously.

I don’t say anything much about Domain Specific Languages, which is a
shame.

There is a CERN paper, “Middleware Trends and Market Leaders 2011”
by A. Dworak, P. Charrue, F. Ehm, W. Sliwinski, M. Sobczak, which ap-
peared in the Proceedings of ICALEPCS2011. You can find it on-line at https:/
/accelconf.web.cern.ch/accelcont/icalepcs2011 /papers/frbhmult05.pdf. It’s a
nice example of what prototyping is about. CERN has oodles of measurement
devices on a network. These things used to be integrated using CORBA. How-
ever, CORBA had some problems, so they were planning to take advance of the
1-year accelerator shutdown from the end of 2012 to rebuild some of this soft-
ware. They put together a list of 10 candidate middleware systems (including
CORBA as one of them). Applying criteria like size, availability, and docu-
mentation they reduced the list to 6 systems, which they built benchmarks for.
That let them reduce the list to just 3 systems. At the end of the paper they
were planning to build protoype programs in all of these 3 in order to evaluate
suitability for their needs, and then switch over. The risk here is “choosing the
wrong middleware system” and the prototyping goes through three stages:

1. “checklist prototype”
2. small scale prototypes evaluating library size and performance
3. medium scale prototypes trying to use the libraries in realistic code

Scripting languages.

You must read the Wikipedia article about scripting languages, http://
en.wikipedia.org/wiki/Scripting language.

When there were handouts, they included a simple web server module writ-
ten in Erlang. You will find a listing at http://www.cs.otago.ac.nz/cosc345/
resources/sws.pdf It ’s just 38 SLOC, with comments and blank lines stretching
it to 66 lines. It can be so short because the Open Telecom Platform that comes
with Erlang already supports so much.

