
GPROF(1) GPROF(1)

NAME
gprof display call graph prole data

SYNOPSIS
gprof [options] [a.out [gmon.out ...]]

DESCRIPTION
gprof produces an execution prole of a C, Pascal, or Fortran77 program. The effect of called routines is
incorporated in the prole of each caller. The prole data is taken from the call graph prole le (gmon.out
by default), which is created by programs compiled with the pg option of cc, pc, and f77 . The symbol ta-
ble in the named object le (a.out by default) is read and correlated with the call graph prole le. If more
than one prole le is specied, the gprof output shows the sum of the prole information in the given pro-
le les.
First, a at prole is given. This listing gives the total execution times and call counts for each of the func-
tions in the program, sorted by decreasing time.
Next, these times are propagated along the edges of the call graph. Cycles are discovered, and calls into a
cycle are made to share the time of the cycle. A second listing shows the functions sorted according to the
time they represent including the time of their call graph descendents. Below each function entry is shown
its (direct) call graph children, and how their times are propagated to this function. A similar display above
the function shows how this function�’s time and the time of its descendents is propagated to its (direct) call
graph parents.
Cycles are also shown, with an entry for the cycle as a whole as well as a listing of the members of the
cycle and their contributions to the time and call counts of the cycle.

UNIVERSAL FILE SUPPORT
gprof accepts a �‘�‘universal�’�’ le for the a.out le, using the host architecture from the le. (It is an error if
the �‘�‘universal�’�’ le does not contain the host architecture.)

OPTIONS
The following options are available:

a suppresses the displaying of statically declared functions. If this option is given, all relevant infor-
mation about the static function (such as time samples, calls to other functions, calls from other
functions) belongs to the function loaded just before the static function in the a.out le.

b suppresses the displaying of a description of each eld in the prole.
c the static call graph of the program is discovered by a heuristic which examines the text space of

the object le. Static-only parents or children are indicated with call counts of 0. (The c option
is currently not supported.)

e name
suppresses the displaying of the graph prole entry for routine name and all its descendants
(unless they hav e other ancestors that aren�’t suppressed). More than one e option may be given.
Only one name may be given with each e option.

E name
suppresses the displaying of the graph prole entry for routine name (and its descendants) as e,
above, and also excludes the time spent in name (and its descendants) from the total and percent-
age time computations. (For example, E mcount and all of the other monitor(3) routines are
excluded by default.)

f name
displays the graph prole entry of only the specied routine name and its descendants. More than
one f option may be given. Only one name may be given with each f option.

F name
displays the graph prole entry of only the routine name and its descendants (as f, above) and
also uses only the times of the displayed routines in total time and percentage computations. More
than one F option may be given. Only one name may be given with each F option. The F

Apple Computer, Inc. July 28, 2005 1

GPROF(1) GPROF(1)

option overrides the E option.
s a prole le gmon.sum is produced which represents the sum of the prole information in all the

specied prole les. This summary prole le may be given to subsequent executions of gprof
(probably also with a s) to accumulate prole data across several runs of an a.out le.

S produces four order les suitable as input to ld(1): gmon.order is an ordering based on a closest is
best algorithm, callf.order is based on call frequency, callo.order is based on call order and
time.order is based on time. The order les contain only those functions which were called or
sampled (including spontaneous functions). For library functions to appear correctly in the order
le, a whatsloaded le produced by ld(1) should exist in the working directory. Filenames in the
order le will be missing for: les compiled without the g option, assembly les, and stripped
executables. This option does not work with executables that have already been scattered. The
gmon.order le can take a long time to produce and can be suppressed with the x option.

z displays routines which have zero usage (as indicated by call counts and accumulated time). This
is useful in conjunction with the c option for discovering which routines were never called.

FILES
a.out the namelist and text space.
gmon.out dynamic call graph and prole.
gmon.sum summarized dynamic call graph and prole.
gmon.order ordering based on closest is best algorithm.
callf.order ordering based on call frequency.
callo.order ordering based on call order.
time.order ordering based on time.

SEE ALSO
monitor(3), prol(2), cc(1)
dyld(1) and the DYLD_IMAGE_SUFFIX environment variable
�‘�‘gprof: A Call Graph Execution Proler�’�’, by Graham, S.L., Kessler, P.B., McKusick, M.K.; Proceedings
of the SIGPLAN ’82 Symposium on Compiler Construction, SIGPLAN Notices, Vol. 17, No. 6, pp.
120-126, June 1982.

BUGS
Beware of quantization errors. The granularity of the sampling is shown, but remains statistical at best. We
assume that the time for each execution of a function can be expressed by the total time for the function
divided by the number of times the function is called. Thus the time propagated along the call graph arcs to
parents of that function is directly proportional to the number of times that arc is traversed.
Parents which are not themselves proled will have the time of their proled children propagated to them,
but they will appear to be spontaneously invoked in the call graph listing, and will not have their time prop-
agated further. Similarly, signal catchers, even though proled, will appear to be spontaneous (although for
more obscure reasons). Any proled children of signal catchers should have their times propagated prop-
erly, unless the signal catcher was invoked during the execution of the proling routine, in which case all is
lost.
The proled program must call exit(2) or return normally for the proling information to be saved in the
gmon.out le.

Apple Computer, Inc. July 28, 2005 2

