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Preface
This book is a compendium of all documents that describe the implementation of the Icon
and Unicon programming languages, an implementation that started with Icon version 3
on a PDP-11 sometime near the year 1980.

Organization of This Book
This book consists of four parts. The first part,  Chapters 1-12, present the core of the
implementation,  focusing on the Icon virtual  machine  interpreter and runtime system.
This material was formerly published as the Implementation of the Icon Programming
Language, by Ralph and Madge T. Griswold; at that time it documented Icon Version 6.
Many of the details in this book became obsolete with the rewriting of the runtime system
for Icon Version 8. After long consideration, I have elected to preserve the authors' style
and intent, while updating it to document Icon Version 9.5 and Unicon Version 12. Blue-
colored  text  indicates  when  necessary  Unicon  issues  and  differences,  so  that  Part  I
remains  useful  to  people  who  prefer  to  use  the  Icon  implementation,  not  just  those
working with Unicon.

Part II, in Chapters 13-19, describes the optimizing compiler, iconc, and the structuring of
the  runtime  system to support  it.  This  work is  the brainchild  of  Ken Walker,  whose
dissertation  is  presented here,  along with his  technical  reports  describing the runtime
language RTL and its translator, rtt. Ken's compiler has been enhanced significantly by
Anthony Jones' B.S. Honors thesis at UTSA on space reduction techniques that reduce
the space cost of type inferencing by 2/3rds, and Mike Wilder's M.S. thesis at NMSU and
follow-on work at Idaho on adapting iconc to support Unicon. These contributions belong
logically to Part II.

Part III describes the implementation of Unicon and the many extensions that transformed
the language from a string-and-list-processing language into a modern object-oriented,
network-savvy,  graphics-rich  applications  language.  Part  IV  consists  of  essential
reference material presented in several Appendixes.

Acknowledgments
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Compendium Introduction
The implementation of the Icon programming language is now old. It inherits ideas from
earlier languages, and introduces many of its own. The implementation documentation
traditionally revolved around the virtual machine and its runtime system; other parts of
the implementation were documented in scattered technical reports or not at all,  other
than the source code. This volume changes all that, by bringing all the implementation
documents together in a single volume.

Icon's public-domain implementation is fairly efficient; for example at one point Keith
Waclena of the University of Chicago documented a factor of 4 or more speed advantage
of Icon versus Python on multiple benchmarks, and that was for the Icon virtual machine
interpreter;  the Icon optimizing compiler  adds another factor of 2-5 or more in faster
execution  speed.  The  design  decisions  that  achieve  Icon's  very-high  level  language
features (such as generators and goal-directed evaluation) with acceptable performance
make  for  an  interesting  study.  This  book  is  intended  for  those  wanting  to  learn  the
implementation in order to add features, improve performance, learn about compilers in
general, or glean ideas for their own independent programming language efforts.

Icon traditionally consisted of a virtual machine translator, a linker, and a virtual machine
interpreter. The translator and linker were merged long ago, but other tools have been
added. The big added components are the optimizing compiler written by Ken Walker,
and the Unicon translator written by Clint Jeffery. These additions are now a large part of
the story. The trends I hope to see in the future are: merger of components, and gradual
replacement of C-based components with ones written in Unicon.

How Many Compilers?
The figure below shows two symmetrically-organized sets of tools.  The tools on the left
are the compilers end-users employ to translate Icon or Unicon into executable machine
code, while the tools on the right show how the underlying run-time system needed in
order to execute those programs is built.  Of the six rectangles, four are compilers that
perform  distinct  tasks  specific  to  this  programming  language  family.  The  front-end
translation tool, named unicon, is a preprocessor that translates Unicon code into Icon
code. Its primary functions are to translate object-orientation (classes, single and multiple
inheritance, and packages) down to underlying imperative constructs. Unicon is written in
Unicon.  Icont  and  iconc  compile  Icon  code  down  to  virtual  machine  and  C  code,
respectively.  They  share  a  few  common  front-end  components,  but  are  largely
independent. Iconx is the name of the Icon (and Unicon) virtual machine, which mostly
consists of a large collection of complex high-level data structure and I/O facilities which
are built-in to these languages. Most of the source code for iconx is also used in rt.a, the
runtime library that is linked to Icon programs compiled with iconc. 

 

     Figure CI-1: three compilers for users (left), one (rtt) for the language implementors

unicon

icont

iconc rt.a

rtt

iconx
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Chapter 1: Introduction
PERSPECTIVE: The implementation of complex software systems is a fascinating subject-
and an important one. Its theoretical and practical aspects occupy the attention and energy
of many persons, and it consumes vast amounts of computational resources. In general
terms, it is a broad subject ranging from operating systems to programming languages to
data-base systems to real-time control systems, and so on.

Past  work  in  these  areas  has  resulted  in  an  increasingly  better  understanding  of
implementation  techniques,  more  sophisticated  and  efficient  systems,  and  tools  for
automating  various  aspects  of  software  production.  Despite  these  advances,  the
implementation  of  complex  software  systems  remains  challenging  and  exciting.  The
problems are difficult,  and every advance in the state of the art brings new and more
difficult problems within reach.

Part  I  of  this  book  addresses  a  very small  portion  of  the  problem of  implementing
complex  software  systems—the  implementation  of  a  very  high-level  programming
language that is oriented toward the manipulation of structures and strings of characters.

In a narrow sense,  this  book describes  an implementation  of a specific  programming
language,  Icon.  In  a  broader  sense,  it  deals  with  a  language-design  philosophy,  an
approach to implementation, and techniques that apply to the implementation of many
programming languages as well as related types of software systems.

The focus of this book is the implementation of programming language features that are
at a high conceptual level—features that are easy for human beings to use as opposed to
features that fit comfortably on conventional computer architectures. The orientation of
the  implementation  is  generality  and  flexibility,  rather  than  maximum  efficiency  of
execution. The problem domain is strings and structures rather than numbers. It is these
aspects that set the implementation of Icon apart from more conventional programming-
language implementations.

1.1 Implementing Programming Languages
In conventional programming languages, most of the operations that are performed when
a  program  is  executed  can  be  determined,  statically,  by  examining  the  text  of  the
program. In addition, the operations of most programming languages have a fairly close
correspondence to the architectural characteristics of the computers on which they are
implemented.  When these  conditions  are  met,  source-code constructs  can be  mapped
directly into machine instructions for the computer on which they are to be executed. The
term  compilation is  used  for  this  translation  process,  and  most  persons  think  of  the
implementation of a programming language in terms of a compiler.

Writing a compiler is a complex and difficult task that requires specialized training, and
the subject of compilation has been studied extensively (Waite and Goos, 1984; Aho,
Lam,  Sethi  and  Ullman  2006).  Most  of  the  issues  of  data  representation  and  code
generation  are  comparatively  well  understood,  and  there  are  now  many  tools  for
automating portions of the compiler-writing task (Lesk 1975, Johnson 1975).

In addition to the compiler proper, an implementation of a programming language usually
includes a run-time component  that  contains subroutines  for performing computations
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that  are  too  complex  to  compile  in-line,  such  as  input,  output,  and  mathematical
functions.

Some  programming  languages  have  features  whose  meanings  cannot  be  determined
statically from the  text  of  a  source-language program,  but  which  may change during
program execution.  Such features include changes in the meaning of functions during
execution, the creation of new data types at run time, and self-modifying programs. Some
programming languages also have features, such as pattern matching, that do not have
correspondences in the architecture of conventional computers. In such cases, a compiler
cannot  translate  the  source  program  directly  into  executable  code.  Very  high-level
operations,  such as pattern matching, and features like automatic  storage management
significantly  increase  the  importance  and  complexity  of  the  run-time  system.  For
languages with these characteristics--languages such as APL, LISP, SNOBOL4, SETL,
Prolog, and Icon-much of the substance of the implementation is in the run-time system
rather than in translation done by a compiler. While compiler writing is relatively well
understood,  run-time systems for most  programming languages with dynamic features
and very high-level operations are not.

Programming languages with dynamic aspects and novel features are likely to become
more  important  rather  than  less  important.  Different  problems  benefit  from different
linguistic mechanisms. New applications place different values on speed of execution,
memory requirements,  quick solutions,  programmer time and talent,  and so forth.  For
these  reasons,  programming  languages  continue  to  proliferate.  New  programming
languages, by their nature, introduce new features.

All  of  this  creates  difficulties  for  the  implementer.  Less  of  the  effort  involved  in
implementations  for  new  languages  lies  in  the  comparatively  familiar  domain  of
compilation and more lies in new and unexplored areas, such as pattern matching and
novel expression-evaluation mechanisms.

The programming languages that are the most challenging to implement are also those
that  differ  most  from  each  other.  Nevertheless,  there  are  underlying  principles  and
techniques that are generally applicable, and existing implementations contain many ideas
that can be used or extended in new implementations.

1.2 The Background for Icon
Before  describing  the  Icon  programming  language  and  its  implementation,  some
historical context is needed, since both the language and its implementation are strongly
influenced by earlier work.

Icon has its roots in a series of programming languages that bear the name SNOBOL. The
first  SNOBOL language was  conceived  and  implemented  in  the  early 1960s  at  Bell
Telephone Laboratories in response to the need for a programming tool for manipulating
strings of characters at a high conceptual level (Farber, Griswold, and Polonsky 1964). It
emphasized  ease  of  programming  at  the  expense  of  efficiency  of  execution;  the
programmer was considered to be a more valuable resource than the computer.

This rather primitive language proved to be popular, and it was followed by successively
more sophisticated languages: SNOBOL2, SNOBOL3 (Farber, Griswold, and Polonsky
1966), and finally SNOBOL4 (Griswold,  Poage, and Polonsky 1971). Throughout the
development of these languages, the design emphasis was on ease of programming rather
than on ease of implementation (Griswold 1981). Potentially valuable features were not
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discarded because they might  be inefficient  or  difficult  to  implement.  The aggressive
pursuit  of  this  philosophy  led  to  unusual  language  features  and  to  challenging
implementation problems.

SNOBOL4 still is in wide use. Considering its early origins, some of its facilities are
remarkably advanced. It features a pattern-matching facility with backtracking control
structures that effectively constitutes a sublanguage. SNOBOL4 also has a variety of  data
structures,  including  tables  with  associative  lookup.  Functions  and  operators  can  be
defined and redefined during program execution. Identifiers can be created at run-time,
and a program can even modify itself by means of run-time compilation.

Needless  to  say,  SNOBOL4  is  a  difficult  language  to  implement,  and  most  of  the
conventional  compilation  techniques  have  little  applicability  to  it.  Its  initial
implementation  was,  nonetheless,  sufficiently  successful  to  make  SNOBOL4  widely
available on machines ranging from large mainframes to personal computers (Griswold
1972). Subsequent implementations introduced a variety of clever techniques and fast,
compact implementations (Santos 1971; Gimpel 1972a; Dewar and McCann 1977). The
lesson here is that the design of programming languages should not be overly inhibited by
perceived implementation problems, since new implementation techniques often can be
devised to solve such problems effectively and efficiently.

It  is  worth  noting  that  the  original  implementation  of  SNOBOL4  was  carried  out
concomitantly with  language design.  The  implementation  was  sufficiently  flexible  to
serve as a research tool in which experimental language features could be incorporated
easily and tested before they were given a permanent place in the language.

Work on the SNOBOL languages continued at the University of Arizona in the early
1970s. In 1975, a new language, called SL5 ("SNOBOL Language 5"), was developed to
allow  experimentation  with  a  wider  variety  of  programming-language  constructs,
especially a sophisticated procedure mechanism (Griswold and Hanson, 1977; Hanson
and Griswold 1978). SL5 extended earlier work in pattern matching, but pattern matching
remained essentially a sublanguage with its own control structures, separate from the rest
of the language.

The inspiration for Icon came in 1976 with a realization that the control structures that
were so useful in pattern matching could be integrated with conventional computational
control structures to yield a more coherent and powerful programming language.

The first implementation of Icon (Griswold and Hanson 1979) was written in Ratfor, a
preprocessor for Fortran that supports structured programming features (Kernighan 1975).
Portability was a central  concern in  this  implementation.  The implementation of Icon
described in this book is a successor to that first implementation. It borrows much from
earlier implementations of SNOBOL4, SL5, and the Ratfor implementation of Icon. As
such,  it  is  a  distillation  and refinement  of  implementation  techniques  that  have been
developed over a period of more than twenty years.
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Chapter 2: Icon Language Overview
PERSPECTIVE: The implementer of a programming language needs a considerably different
understanding of the language from the persons who are going to use it. An implementer
must have a deep understanding of the relationships that exist among various aspects of
the language and a precise knowledge of what each operation means. Special cases and
details often are of particular importance to the implementer. Users of a language, on the
other hand, must know how to use features to accomplish desired results. They often can
get by with a superficial knowledge of the language, and they often can use it effectively
even if some aspects of the language are misunderstood. Users can ignore parts of the
language that they do not need. Idiosyncrasies that plague the implementer may never be
encountered by users. Conversely, a detail the implementer overlooks may bedevil users.
Furthermore, the implementer may also need to anticipate ways in which users may apply
some language features in inefficient and inappropriate ways.

Part I of this book is about the implementation of Version 9 of Icon. The description that
follows  concentrates  on  aspects  of  the  language  that  are  needed  to  understand  its
implementation. Where there are several similar operations or where the operations are
similar  to  those  in  well-known programming  languages,  only representative  cases  or
highlights are given. A complete description of Icon for the user is contained in Griswold
and Griswold (1997).

Icon is an unusual programming language, and its unusual features are what make its
implementation  challenging and interesting.  The interesting features are  semantic,  not
syntactic; they are part of what the language can do, not part of its appearance. Syntactic
matters and the way they are handled in the implementation are of little interest here. The
description that follows indicates syntax mostly by example.

This chapter is divided into two major parts. The first part describes the essential aspects
of Icon. The second part discusses those aspects of Icon that present the most difficult
implementation problems and that affect the nature of the implementation in the most
significant ways.

2.1 The Icon Programming Language
Icon is  conventional  in  many respects.  It  is  an  imperative,  procedural  language with
variables, operations, functions, and conventional data types. Its novel aspects lie in its
emphasis on the manipulation of strings and structures and in its expression-evaluation
mechanism. While much of the execution of an Icon program has an imperative flavor,
there also are aspects of logic programming.

There are no type declarations in Icon. Instead, variables can have any type of value.
Structures  may be  heterogeneous,  with  different  elements  having  values  of  different
types.  Type  checking  is  performed  during  program  execution,  and  automatic  type
conversion  is  provided.  Several  operations  are  polymorphic,  performing  different
operations depending on the types of their arguments.

Strings and structures are created during program execution, instead of being declared
and allocated during compilation. Structures have pointer semantics; a structure value is a
pointer to an object. Storage management is automatic. Memory is allocated as required,
and  garbage  collection  is  performed  when  necessary.  Except  for  the  practical
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considerations of computer architecture and the amount of available memory, there are no
limitations on the sizes of objects.

An Icon program consists of a series of declarations for procedures, records, and global
identifiers. Icon has no block structure. Scoping is static: identifiers either are global or
are local to procedures.

Icon  is  an  expression-based  language  with  reserved-word  syntax.  It  resembles  C  in
appearance, for example (Kernighan and Ritchie 1978).

2.1.1 Data Types
Icon has many types of data--including several that are not found in most programming
languages. In addition to the usual integers and real (floating-point) numbers, there are
strings of characters and sets of characters (csets). There is no character data type, and
strings of characters are data objects in their own right, not arrays of characters.

There are four structure data types that comprise aggregates of values: lists, sets, tables,
and  records.  Lists  provide  positional  access  (like  vectors),  but  they  also  can  be
manipulated like stacks and queues. Sets are unordered collections of values on which the
usual set operations can be performed. Tables can be subscripted with any kind of value
and provide an associative-access mechanism. Records are aggregates of values that can
be referenced by name. Record types also add to the built-in type repertoire of Icon.

The null value serves a special purpose; all variables have the null value initially. The
null  value  is  illegal  in  most  computational  contexts,  but  it  serves  to  indicate  default
values in a number of situations. The keyword &null produces the null value.

A source-language file is a data value that provides an interface between the program and
a data file in the environment in which the program executes.

Procedures also are data values---"first-class data objects" in LISP parlance. Procedures
can be assigned to variables, transmitted to and returned from functions, and so forth.
There is no method for creating procedures during program execution, however.

Finally, there is a co-expression data type. Co-expressions are the expression-level analog
of  coroutines.  The  importance  of  co-expressions  is  derived  from  Icon's  expression-
evaluation mechanism.

Icon has various operations on different types of data. Some operations are polymorphic
and  accept  arguments  of  different  types.  For  example,  type(x)  produces  a  string
corresponding to the type of x. Similarly, copy(x) produces a copy of x, regardless of its
type. Other operations only apply to certain types. An example is:
   *x

which produces the size of x, where the value of x may be a string, a structure, and so on.
Another example is ?x, which produces a randomly selected integer between 1 and x, if x
is an integer, but a randomly selected one-character substring of x if x is a string, and so
on. In other cases, different operations for similar kinds of computations are syntactically
distinguished. For example,
   i = j

compares the numeric values of i and j, while
   s1 == s2
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compares the string values of s1 and s2. There is also a general comparison operation that
determines whether any two objects are the same:

x1 === x2

As mentioned previously, any kind of value can be assigned to any variable. For example,
x might have an integer value at one time and a string value at another:
   x := 3
   ...
   x := "hello"

Type checking is performed during program execution. For example, in
   i := x + 1

the value of x is checked to be sure that it is numeric. If it is not numeric, an attempt is
made to convert it  to a numeric type. If the conversion cannot be performed, program
execution is terminated with an error message.

Various conversions are supported. For example, a number always can be converted to a
string. Thus,
   write(*s)

automatically converts the integer returned by *s to a string for the purpose of output.

There also are explicit type-conversion functions. For example,
   s1 := string(*s2)

assigns to s1 a string corresponding to the size of s2.

A string can be converted to a number if it has the syntax of a number. Thus,
   i := i + "20"

produces the same result as
   i := i + 20

Augmented  assignments  are  provided for  binary operations  such as  the previous  one,
where assignment is made to the same variable that appears as the left argument of the
operation. Therefore, the previous expression can be written more concisely as
   i +:= 20

Icon also has the concept of a numeric type, which can be either an integer or a real
(floating-point) number.

2.1.2 Expression Evaluation
In  most  programming  languages---Algol,  Pascal,  PL/I,  and  C,  for  example---the
evaluation of an expression always produces exactly one result. In Icon, the evaluation of
an expression may produce a single result,  it  may produce no result  at  all,  or it  may
produce a sequence of results.

Success and Failure.  Conventional operations in Icon produce one result, as they do in
most programming languages. For example,
   i + j

produces  a  single  result,  the  sum  of  the  values  of  i  and  j.  However,  a  comparison
operation such as
   i > j
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produces a result (the value of j) if the value of i is greater than the value of j but does not
produce a result if the value of i is not greater than j.

An expression that  does not produce a result  is  said to  fail,  while  an expression that
produces  a  result  is  said  to  succeed.  Success  and failure  are  used  in  several  control
structures to control program flow. For example,
   if i > j then write(i) else write(j)

writes the maximum of i and j. Note that comparison operations do not produce Boolean
values and that Boolean values are not used to drive control structures. Indeed, Icon has
no Boolean type.

Generally speaking, an operation that cannot perform a computation does not produce a
result, and hence it fails. For example, type-conversion functions fail if the conversion
cannot be performed. An example is numeric(x), which converts x to a numeric value if
possible,  but fails  if  the conversion cannot be performed.  Failure of an expression to
produce a result does not indicate an error. Instead, failure indicates that a result does not
exist. An example is provided by the function find(s1, s2), which produces the position of
s1 as a substring of s2 but fails if s1 does not occur in s2. For example,
   find("it", "They sit like bumps on a log.")

produces the value 7 (positions in strings are counted starting at 1). However,
   find("at", "They sit like bumps on a log.")

does not produce a result. Similarly, read(f) produces the next line from the file f but fails
when the end of the file is reached.

Failure provides a natural way to control loops. For example,
   while line := read(f) do
      write(line)

writes the lines from the file f until an end of file causes read to fail, which terminates the
loop.

Another use of success and failure is illustrated by the operation
   \expr

which  fails  if  expr  is  null-valued  but  produces  the  result  of  expr  otherwise.  Since
variables have the null value initially, this operation may be used to determine whether a
value has been assigned to an identifier, as in
   if \x then write(x) else write("x is null")

If an expression that is enclosed in another expression does not produce a result, there is
no  value  for  the  enclosing  expression,  it  cannot  perform a  computation,  and  it  also
produces no result. For example. In
   write(find("at", "They sit like bumps on a log."))

the evaluation of find fails, there is no argument for write, and no value is written.

Similarly, in
   i := find("at", "They sit like bumps on a log.")

the assignment is not performed and the value of i is not changed.

This "inheritance" of failure allows computations to be expressed concisely. For example,
   while write(read(f))
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writes the lines from the file f just as the previous loop (the do clause in while-do is
optional).

The expression
   not expr

inverts success and failure. It fails if  expr  succeeds, but it succeeds, producing the null
value, if expr fails.

Some expressions produce variables, while others only produce values. For example,
   i + j

produces a value, while
   i := 10

produces  its  left-argument  variable.  The term  result  is  used  to  refer  to  a  value  or  a
variable.  The  term  outcome  is  used  to  refer  to  the  consequences  of  evaluating  an
expression---either its result or failure.

Loops.  There are several looping control structures in Icon in addition to while-do. For
example,
   until expr1 do expr2

evaluates expr2 repeatedly until expr1 succeeds. The control structure
   repeat expr

simply evaluates expr repeatedly, regardless of whether it succeeds or fails.

A loop itself produces no result if it completes, and hence it fails if used in a conditional
context. That is, when
   while expr1 do expr2

terminates,  its  outcome is  failure.  This  failure  ordinarily goes  unnoticed,  since  loops
usually are not used as arguments of other expressions.

The control structure
   break expr

causes the immediate termination of the evaluation of the loop in which it appears, and
control is transferred to the point immediately after the loop. The outcome of the loop in
this case is the outcome of expr. If expr is omitted, it defaults to the null value.

An example of the use of break is:
   while line := read(f) do
      if line == "end" then break
      else write(line)

Evaluation of the loop terminates if read fails or if the file f contains a line consisting of
"end".

The expression next causes transfer to the beginning of the loop in which it occurs. For
example,
   while line := read(f) do
      if line == "comment" then next
      else write(line)

does not write the lines of f that consist of "comment".
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The break and next expressions can occur only in loops, and they apply to the innermost
loop in which they appear. The argument of break can be a break or next expression,
however, so that, for example,
   break break next

breaks out of two levels of loops and transfers control to the beginning of the loop in
which they occur.

Case  Expressions.  The  case  expression  provides  a  way of  selecting  one  of  several
expressions to evaluate based on the value of a control expression, rather than its success
or failure. The case expression has the form
   case expr of {
      case clauses
      ...
      }

The value of expr is used to select one of the case clauses. A case clause has the form
   expr1 : expr2

where the value of expr is compared to the value of expr1, and expr2 is evaluated if the
comparison succeeds. There is also a default case clause, which has the form
   default: expr3

If no other case clause is selected, expr3 in the default clause is evaluated. An example is
   case line := read(f) of {
      "end": write("*** end ***")
      "comment": write("*** comment ***")
      default: write(line)
      }

If the evaluation of the control clause fails, as for an end of file in this example, the entire
case expression fails. Otherwise, the outcome of the case expression is the outcome of
evaluating the selected expression.

Generators. As mentioned previously, an expression may produce a sequence of results.
This occurs in situations in which there is more than one possible result of a computation.
An example is
   find("e", "They sit like bumps on a log.")

in which both 3 and 13 are possible results.

While most programming languages produce only the first result in such a situation, in
Icon the two results are produced one after another if the surrounding context requires
both of them. Such expressions are called  generators to emphasize their capability of
producing more than one result.

There are two contexts in which a generator can produce more than one result: iteration
and goal-directed evaluation.

Iteration is designated by the control structure
   every expr1 do expr2

in which expr1 is repeatedly resumed to produce its results. For each such result, expr2 is
evaluated. For example,
   every i := find("e", "They sit like bumps on a log.") do
      write(i)
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writes 3 and 13.

If the argument of an expression is a generator, the results produced by the generator are
provided to the enclosing expression—the sequence of results is inherited. Consequently,
the previous expression can be written more compactly as
   every write(find("e", "They sit like bumps on a log."))

Unlike iteration, which resumes a generator repeatedly to produce all its results, goal-
directed evaluation  resumes  a  generator  only as  necessary,  in  an attempt  to  cause an
enclosing  expression  to  succeed.  While  iteration  is  explicit  and  occurs  only  where
specified,  goal-directed  evaluation  is  implicit  and  is  an  inherent  aspect  of  Icon's
expression-evaluation mechanism.

Goal-directed evaluation is illustrated by
   if find("e", "They sit like bumps on a log") > 10
   then write("found")

The first result produced by find() is 3, and the comparison operation fails. Because of
goal-directed evaluation, find is automatically resumed to produce another value. Since
this value, 13, is greater than 10, the comparison succeeds, and found is written. On the
other hand, in
   if find("e", "They sit like bumps on a log.") > 20
   then write("found")

the comparison fails  for 3  and 13.  When find is  resumed again,  it  does not  produce
another result, the control clause of if-then fails, and nothing is written.

There  are  several  expressions  in  Icon  that  are  generators,  including  string  analysis
functions that are similar in nature to find. Another generator is
   i to j by k

which generates the integers from i to j by increments of k. If the by clause is omitted,
the increment defaults to one.

The operation  !x is polymorphic,  generating the elements of  x for various types. The
meaning of "element" depends on the type of  x. If  x is a string,  !x generates the one-
character substrings of x, so that !"hello" generates "h", "e", "l", "l", and "o". If x
is a file, !x generates the lines of the file, and so on.

Generative  Control  Structures.  There  are  several  control  structures  related  to
generators. The alternation control structure,
   expr1 | expr2

generates the results of expr1 followed by the results of expr2. For example,
   every write("hello" | "howdy")

writes two lines, hello and howdy.

Since alternation succeeds if either of its arguments succeeds, it can be used to produce
the effect of logical disjunction. An example is
   if (i > j) | (j > k) then expr

which evaluates expr if i is greater than j or if j is greater than k.

Logical conjunction follows as a natural consequence of goal-directed evaluation.  The
operation
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   expr1 & expr2

is similar to other binary operations, such as  expr1  + expr2,  except that it performs no
computation. Instead, it produces the result of expr2, provided that both expr1 and expr2
succeed. For example,
   if (i > j) & (j > k) then expr

evaluates expr only if i is greater than j and j is greater than k.

Repeated alternation,
   |expr

generates the results of expr repeatedly and is roughly equivalent to
   expr | expr | expr | ...

However, if expr fails, the repeated alternation control structure stops generating results.
For example,
   |read(f)

generates the lines from the file f (one line for each repetition of the alternation) but stops
when read(f) fails.

Note that a generator may be capable of producing an infinite number of results.  For
example,
   |(1 to 3)

can produce 1, 2, 3, 1, 2, 3, 1, 2, 3, However, only as many results  as are  required by
context are actually produced. Thus,
   i := | (1 to 3)

only assigns the value 1 to i, since there is no context to cause the repeated alternation
control structure to be resumed for a second result.

The limitation control structure
   expr1 \ expr2

limits expr1 to at most expr2 results. Consequently,
   | (1 to 3) \ 5

is only capable of producing 1, 2, 3, 1, 2.

The  Order  of  Evaluation.  With  the  exception  of  the  limitation  control  structure,
argument  evaluation  in  Icon is  strictly left-to-right.  The resumption  of expressions  to
produce  additional  results  is  in  last-in,  first-out  order.  The  result  is  "cross-product"
generation of results in expressions that contain several generators. For example,
   every write((10 to 30 by 10) + (1 to 3))

 writes 11, 12, 13, 21, 22, 23, 31, 32, 33.

Control Backtracking. Goal-directed evaluation results in control backtracking to obtain
additional results from expressions that have previously produced results, as in
   if find("e", "They sit like bumps on a log.") > 10
   then write("found")

Control backtracking is limited by a number of syntactic constructions. For example, in
   if expr1 then expr2 else expr3
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if expr1 succeeds, but expr2 fails, expr1 is not resumed for another result. (If it were, the
semantics of this control structure would not correspond to what "if-then-else" suggests.)
Such an expression is called a bounded expression. The control clauses of loops also are
bounded, as are the expressions within compound expressions:
   { expr1; expr2; expr3; ...; exprn }

These expressions are evaluated in sequence, but once the evaluation of one is complete
(whether it succeeds or fails), and the evaluation of another begins, there is no possibility
of backtracking into the preceding one. The last expression in a compound expression is
not bounded, however.

Except in such specific situations, expressions are not bounded. For example, in
   if expr1 then expr2 else expr3

neither expr2 nor expr3 is bounded. Since Icon control structures are expressions that may
return results, it is possible to write expressions such as
   every write(if i > j then j to i else i to j)

which writes the integers from i to j in ascending sequence.

Data Backtracking.  While  control  backtracking is  a  fundamental  part  of  expression
evaluation in Icon, data backtracking is not performed except in a few specific operations.
For example, in
   (i := 3) & read(f)

the value 3 is assigned to i. Even if read(f) fails, the former value of i is not restored.

There are,  however,  specific  operations  in  which data  backtracking is  performed.  For
example, the reversible assignment operation
   x <- y

assigns the value of y to x, but it restores the former value of x if control backtracking
into this expression occurs. Thus,
   (i <- 3) & read(f)

assigns 3 to i but restores the previous value of i if read(f) fails.

2.1.3 Csets and Strings
Csets are unordered sets of characters, while strings are sequences of characters. There
are 256 different characters, the first 128 of which are interpreted as ASCII. The number
and interpretation  of characters is  independent  of the architecture of the computer  on
which Icon is implemented.

Csets. Csets are represented literally by surrounding their characters by single quotation
marks. For example,
   vowels := 'aeiouAEIOU'

assigns a cset of 10 characters to vowels.

There are several built-in csets that are the values of keywords. These include &lcase,
&ucase, and  &cset, which contain the lowercase letters, the uppercase letters, and all
256 characters, respectively.

Operations on csets include union, intersection, difference, and complement with respect
to &cset. Csets are used in lexical analysis. For example, the function upto(c, s) is
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analogous  to  find(s1, s2),  except  that  it  generates  the  positions  at  which  any
character of c occurs in s. Thus,
   upto(vowels, "They sit like bumps on a log.")

 is capable of producing 3, 7, 11, 13, 16, 21, 24, and 27.

Strings.  Strings  are  represented  literally by surrounding  their  characters  with  double
quotation marks instead of single quotation marks. The empty string, which contains no
characters, is given by "". The size of a string is given by *s. For example, if
   command := "Sit still!"

then the value of *command is 10. The value of *"" is 0. Space for strings is provided
automatically and there is no inherent limit to the size of a string.

There are several operations that construct strings. The principal one is concatenation,
denoted by
   s1 || s2

The function repl(s, i) produces the result of concatenating s i times. Thus,
   write(repl("*!",3))

writes *!*!*!.

Other string construction functions include  reverse(s), which produces a string with
the characters of s in reverse order, and trim(s, c), which produces a string in which
trailing  characters  of  s that  occur  in  c are  omitted.  There  also  are  functions  for
positioning a string in a field of a fixed width. For example, the function left(s1,i,
s2) produces a string of length i with s1 positioned at the left and padded with copies of
s2 as needed.

Substrings are produced by subscripting a string with the beginning and ending positions
of the desired substring.  Positions  in  strings  are between characters,  and the position
before the first character of a string is numbered 1. For example,
   verb := command[1:4]

assigns the string  "Sit" to  verb.  Substrings also can be specified by the beginning
position and a length, as in
   verb := command[1+:3]

If the length of a substring is 1, only the first position need be given, so that the value of
command[2] is "i".

Assignment can be made to a subscripted string to produce a new string. For example,
   command[1:4] := "Remain"

changes the value of command to "Remain still!".

String operations are applicative; no operation on a string in Icon changes the characters
in it. The preceding example may appear to contradict this, but in fact
   command[1:4] := "Remain"

is an abbreviation for
   command := "Remain" || command[5:11]

Thus, a new string is constructed and then assigned to command.
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Nonpositive values can be used to specify a position with respect to the right end of a
string. For example, the value of command[-1] is "!". The value 0 refers to the position
after the last character of a string, so that if the value of command is "Sit still!",
   command[5:0]

is equivalent to
   command[5:11]

The subscript positions can be given in either order. Thus,
   command[11:5]

produces the same result as
   command[5:11]

String-analysis  functions like find and upto have optional third and fourth arguments that
allow their range to be restricted to a particular portion of a string. For example,
   upto(vowels, "They sit like bumps on a log.", 10, 20)

only produces positions of vowels between positions 10 and 20 of its second argument:
11, 13, and 16. If these arguments are omitted, they default to 1 and 0, so that the entire
string is included in the analysis.

Mapping. One of the more interesting string-valued functions in Icon is map(s1, s2,
s3). This function produces a string obtained from a character substitution on s1. Each
character of s1 that occurs in s2 is replaced by the corresponding character in s3. For
example,
   write(map("Remain still!", "aeiou", "*****"))

writes R*m**n St*ll!. Characters in s1 that do not appear in s2 are unchanged, as this
example shows. If a character occurs more than once in s2, its right-most correspondence
in s3 applies. Consequently,
   s2 := &lcase || &ucase || "aeiou"
   s3 := repl("|",26) || repl("u",26) || "*****"
   write(map("Remain still!", s2, s3))

writes u*|**| ||*||!.

2.1.4 String Scanning
String  scanning  is  a  high-level  facility  for  string  analysis  that  suppresses  the
computational  details  associated  with  the  explicit  location  of  positions  and substring
specifications. In string scanning, a subject serves as a focus of attention. A position in
this subject is maintained automatically.

A string-scanning expression has the form
   expr1 ? expr2

in which the evaluation of  expr1  provides the subject. The position in the subject is 1
initially.  The  expression  expr2  is  then  evaluated  in  the  context  of  this  subject  and
position.

Although expr2 can contain any operation, two matching functions are useful in analyzing
the subject:

   tab(i) set the position in the subject to i
   move(i) increment the position in the subject by i
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Both of  these functions  return the  substring of  the subject  between the old and new
positions. If the position is out of the range of the subject, the matching function fails and
the position  is  not  changed. The position can be increased or decreased.  Nonpositive
values can be used to refer to positions relative to the end of the subject. Thus, tab(0)
moves the position to the end of the subject, matching the remainder of the subject.

An example of string scanning is
   line ? while write(move(2))

which writes successive two-character substrings of line, stopping when there are not two
characters remaining.

In string scanning, the trailing arguments of string analysis functions such as find and
upto are omitted; the functions apply to the subject at the current position.  Therefore,
such functions can be used to provide arguments for matching functions. An example is
   line ? write(tab(find("::=")))

which writes the initial portion of line up to an occurrence of the string "::=".

If a matching function is resumed, it restores the position in the subject to the value that it
had before the matching function was evaluated. For example, suppose that line contains
the substring "::=". Then
   line ?
      ((tab(find("::=") + 3)) & write(move(10)) | write(tab(0)))

writes the 10 characters after "::=", provided there are 10 more characters. However, if
there are not 10 characters remaining, move(10) fails and tab(find("::=")) is resumed. It
restores the position to the beginning of the subject, and the alternative, tab(0), matches
the entire subject, which is written.

Data backtracking of the position in the subject is important, since it allows matches to be
performed with the assurance that any previous alternatives that failed to match left the
position where it was before they were evaluated.

The subject and position are directly accessible as the values of the keywords &subject
and &pos, respectively. For example,
   &subject := "Hello"

assigns the string "Hello" to the subject. Whenever a value is assigned to the subject,
&pos is set to 1 automatically.

The  values  of  &subject  and  &pos  are  saved  at  the  beginning  of  a  string-scanning
expression and are restored when it completes. Consequently, scanning expressions can
be nested.

2.1.5 Lists
A list is a linear aggregate of values ("elements"). For example,
   cities := ["Portland", "Toledo", "Tampa"]

assigns a list of three strings to cities. Lists can be heterogeneous, as in
   language := ["Icon", 1978, "The University of Arizona"]

An empty list, containing no elements, is produced by []. The function
   list(i, x)
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produces a list of i elements, each of which has the value of x. The size operation *x also
applies to lists. The value of *cities is 3, for example.

An element of a list is referenced by a subscripting expression that has the same form as
the one for strings. For example,
   cities[3] := "Miami"

changes the value of cities to
   ["Portland", "Toledo", "Miami"]

The function sort (a) produces a sorted copy of a. For example, sort(cities) produces
   ["Miami", "Portland", "Toledo"]

List  operations,  unlike  string  operations,  are  not  applicative.  While  assignment  to  a
substring is an abbreviation for concatenation, assignment to a subscripted list changes
the value of the subscripted element.

A list value is a pointer to a structure that contains the elements of the list. Assignment of
a list value copies this pointer, but it does not copy the structure. Consequently, in
   states := ["Nevada", "Texas", "Maine", "Georgia"]
   slist := states

both states and slist point to the same structure. Because of this,
   states[2] := "Arkansas"

changes the second element of slist as well as the second element of states.

The elements of a list may be of any type, including lists, as in
   tree := ["a", ["b", ["c"], ["d"]]]

which can be depicted as

Structures also can be used to represent loops, as in
   graph := ["a", ""]
   graph[2] := graph

which can be depicted as

Lists are not fixed in size. Elements can be added to them or removed from them at their
ends by queue and stack functions.

The function put(a, x) adds the value of x to the right end of the increasing its size by
one. Similarly, push(a, x) adds the value of x to the left end of a. For example,
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   lines := []
   while put(lines, read(f))

constructs a list of the lines from the file f. Conversely,
   lines := []
   while push(lines, read(f))

constructs a list of lines in reverse order.

The functions pop(a) and get(a) are the same. They both remove an element from the
left end of a and return it as the value of the function call, but they fail if a is empty.
Consequently,
   lines := []
   while push(lines, read(f))
   while write(pop(lines))

writes out the lines of f in reverse order. The function pull(a) is similar, but it removes
an element from the right end of a.

Other operations on lists include concatenation, which is denoted by
   a1 ||| a2

where a1 and a2 are lists. There is no automatic conversion of other types to lists.

List sectioning is denoted by

   a[i:j]

The result is a new list containing values i through j of a.

There is no inherent limit to the size of a list, either when it is originally created or as a
result of adding elements to it.

2.1.6 Sets
A set is an unordered collection of values. Unlike csets, which contain only characters,
sets are collections of Icon values that can be of any type. A set is constructed from a list
by set(a). For example,
   states := set(["Virginia", "Rhode Island", "Kansas", 

  "Illinois"])

assigns a set of four elements to states.

The operation
   member(s, x)

succeeds if the value of x is a member of s but fails otherwise. The operation
   insert(s, x)

adds the value of x to s if it is not already a member of s, while

   delete(s, x)

deletes the value of  x from s. The operations of union, intersection, and difference for
sets also are provided.

Like other structures, sets can be heterogeneous. A set can even be a member of itself, as
in
   insert(s, s)

There is no contradiction here, since a set value is a pointer to the structure for the set.
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2.1.7 Tables
A table is  a set  of pairs  of values.  Tables provide an associative look mechanism as
contrasted with positional references to lists. They can be subscripted with an entry value
to which a value can be assigned to make up a pair called a table element.

A table is created by
   table(x)

Tables are empty initially. The value of x is an assigned default value that is produced if
the table is subscripted with an entry value to which no value has been assigned (that is,
for an element that is not in the table). For example,
   states := table(0)

assigns to states a table with a default value of 0. An element can be added to states by an
assignment such as
   states["Oregon"] := 1

which adds a table element for  "Oregon" with the value  1 to  states. On the other
hand,
   write(states ["Utah"])

writes 0, the default value, if there is no element in the table for "Utah".

Tables can be heterogeneous and have a mixture of types for entry and assigned values.
Tables grow automatically in size as new elements are added and there is no inherent
limit on the size of a table.

2.1.8 Records
A record is an aggregate of values that is referenced by named fields. Each record type
has a separate name. A record type and the names of its fields are given in a declaration.
For example,
   record rational(numerator, denominator)

declares a record of type rational with two fields: numerator and denominator.

An instance of a record is created by calling a record-constructor function corresponding
to the form of the declaration for the record type. Thus,
   r := rational(3,5)

assigns to r a record of type rational with a numerator field of 3 and a denominator field
of 5. Fields are referenced by name, as in
   write(r.numerator)

which  writes  3.  Fields  can  also  be  referred  to  by  position;  r[1] is  equivalent  to
r.numerator.

There is no inherent limit to the number of different record types. The same field names
can be given for different record types, and such fields need not be in the same position
for all such record types.

2.1.9 Input and Output
Input and output in Icon are sequential  and comparatively simple.  The standard input,
standard output, and standard error output files are the values of &input, &output, and
&errout, respectively. The function
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   open(s1,s2)

opens the file whose name is s1 according to options given by s2 and produces a value
of type file. Typical options are  "r" for opening for reading and  "w" for opening for
writing. The default is "r". For example,
   log := open("grade.log", "w")

assigns a value of type file to log,  corresponding to  the data  file  grade.log,  which is
opened  for  writing.  The  function  open  fails  if  the  specified  file  cannot  be  opened
according to the options given. The function close(f) closes the file f.

The  function  read(f) reads  a  line  from  the  file  f but  fails  if  an  end  of  file  is
encountered. The default is standard input if f is omitted.

The result of
   write(x1,x2, ..., xn)

depends on the types of x1, x2, ..., xn. Strings and types convertible to strings are written,
but if one of the arguments is a file, subsequent strings are written to that file. The default
file is standard output. Thus,
   write(s1,s2)

writes the concatenation of s1 and s2 to standard output, but
   write(log,s)

writes  s to  the file  grade.log.  In any event,  write  returns  the string value of the last
argument written.

The function
   stop(x1, x2, ..., xn)

produces the same output as write, but it then terminates program execution.

2.1.10 Procedures

Procedure Declarations.  The executable portions of an Icon program are contained in
procedure declarations. Program execution begins with a call of the procedure main.

An example of a procedure declaration is:
   procedure maxstr(slist)
      local max, value
      max := 0
      every value := *!slist do
         if value> max then max := value
      return max
   end

This procedure computes the longest string in a list of strings. The formal parameter slist
and the identifiers max and value are local to calls of the procedure maxstr(). Storage
for them is allocated when maxstr() is called and deallocated when maxstr() returns.

A procedure call has the same form as a function call. For example,
   lines := []
   while put(lines, read(f))
   write(maxstr(lines))

writes the length of the longest line in the file f.
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A procedure call may fail to produce a result in the same way that a built-in operation can
fail. This is indicated by fail in the procedure body in place of return. For example, the
following procedure returns the length of the longest string in  slist but fails if that
length is less than limit:
   procedure maxstr(slist, limit)
      local max, value
      max := 0
      every value := *!slist do
         if value> max then max := value
      if max < limit then fail else return max
   end

Flowing off the end of a procedure body without an explicit return is equivalent to fail.

A procedure declaration may have static identifiers that are known only to calls of that
procedure  but  whose  values  are  not  destroyed  when  a  call  returns.  A  procedure
declaration also may have an initial clause whose expression is  evaluated only the first
time  the  procedure  is  called.  The  use  of  a  static  identifier  and  an  initial  clause  is
illustrated by the following procedure, which returns the longest of all the strings in the
lists it has processed:
   procedure maxstrall(slist)
      local value
      static max
      initial max := 0
      every value := *!slist do
         if value> max then max := value
      return max
   end

Procedures and Functions.  Procedures and functions are used in the same way. Their
names have global scope. Other identifiers can be declared to have global scope, as in
   global count

Such global declarations are on a par with procedure declarations and cannot occur within
procedure declarations.

A call such as
   write(maxstr(lines))

applies the value of the identifier maxstr to lines and applies the value of the identifier
write to the result. There is nothing fixed about the values of such identifiers. In this
case,  the  initial  value  of  maxstr is  a  procedure,  as  a  consequence  of  the  procedure
declaration for it. Similarly, the initial value of write is a function. These values can be
assigned to other variables, as in
   print := write
           ...
   print(maxstr(lines))

in which the function that is the initial value of write is assigned to print.

Similarly,  nothing  prevents  an  assignment  to  an  identifier  whose  initial  value  is  a
procedure. Consequently,
   write := 3

assigns an integer to write, replacing its initial function value.
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Although it is typical to call a procedure by using an identifier that has the procedure
value, the procedure used in a call can be computed. The general form of a call is

   expr0(expr1, expr2, ..., exprn)

where the value of  expr0 is  applied to the arguments resulting from the evaluation of
expr1 expr2, ..., exprn. For example,

   (proclist[i])(expr1, , expr2, ..., exprn)

applies the procedure that is the ith element of proclist.

Procedures may be called recursively. The recursive nature of a call depends on the fact
that procedure names are global. The "Fibonacci strings" provide an example:
   procedure fibstr(i)
      if i = 1 then return "a"
      else if i = 2 then return "b"
      else return fibstr(i - 1) || fibstr(i - 2)
   end

An identifier that is not declared in a procedure and is not global defaults to local. Thus,
local declarations can be omitted, as in
   procedure maxstr(slist)
      max := 0
      every value := * !slist do
         if value > max then max := value
      return max
   end

Procedures as Generators.  In addition to returning and failing, a procedure can also
suspend. In this case, the values of its arguments and local identifiers  are  not  destroyed,
and the call can be resumed to produce another result in the same way a built-in generator
can be resumed. An example of such a generator is
   procedure intseq(i)
      repeat {
         suspend i
         i +:= 1
         }
   end

A call  intseq(10),  for  example,  is  capable  of  generating  the  infinite  sequence  of
integers 10, 11, 12, ... . For example,
   every f(intseq(10) \ 5)

calls f(10), f(11), f(12), f(13), and f(14).

If the argument  of suspend is  a generator,  the generator is  resumed when the call  is
resumed  and the  call  suspends  again  with  the  result  it  produces.  A generator  of  the
Fibonacci strings provides an example:
   procedure fibstrseq()
      local s1, s2, s3
      s1 := "a"
      s2 := "b"
      suspend (s1 | s2)
      repeat {
         suspend s3 := s1 || s2
         s1 := s2
         s2 := s3
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         }
   end

When this procedure is called, the first suspend expression produces the value of s1, "a".
If  the  call  of  fibstrseq() is  resumed,  the  argument  of  suspend is  resumed  and
produces the value of s2, "b". If the call is resumed again, there is no further result for
the first suspend, and evaluation continues to the repeat loop.

Repeated alternation often is useful in supplying an endless number of alternatives. For
example, the procedure intseq(i) can be rewritten as
   procedure intseq(i)
      suspend i | (i +:= |1)
   end

Note that |1 is used to provide an endless sequence of increments.

Argument Transmission. Omitted arguments in a procedure or function call (including
trailing ones) default to the null value. Extra arguments are evaluated, but their values are
discarded.

Some functions, such as write(), may be called with an arbitrary number of arguments.
All arguments to procedures and functions are passed by value. If the evaluation of an
argument expression fails, the procedure or function is not called. This applies to extra
arguments.  Arguments  are  not  dereferenced  until  all  of  them  have  been  evaluated.
Dereferencing  cannot  fail.  Since  no  argument  is  dereferenced  until  all  argument
expressions are evaluated, expressions with side effects can produce unexpected results.
Thus, in
   write(s, s := "hello")

the value written is hellohello, regardless of the value of s before the evaluation of the
second argument of write().

Dereferencing  in  Return Expressions.  The  result  returned from a  procedure  call  is
dereferenced unless it is a global identifier, a static identifier, a subscripted structure, or a
subscripted string-valued global identifier.

In these exceptional cases, the variable is returned and assignment can be made to the
procedure call. An example is
   procedure maxel(a, i, j)
      if i > j then return a[i]
      else return a[j]
   end

Here a list element, depending on the values of i and j, is returned. An assignment can
be made to it, as in
   maxel(lines, i, j) := "end"

which assigns "end" to lines[i] or lines[j], depending on the values of i and j.

Mutual Evaluation. In a call expression, the value of expr0 can be an integer i as well as
a procedure.  In this  case,  called  mutual  evaluation,  the result  of  the  ith  argument  is
produced. For example,
   i := 1(find(s1, line1), find(s2, line2))

assigns to  i the position of  s1 in  line1,  provided  s1 occurs in  line1 and that  s2
occurs in line2. If either call of find fails, the expression fails and no assignment is made.
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The selection integer in mutual evaluation can be negative, in which case it is interpreted
relative to the end of the argument list. Consequently,
   (-1)(expr1,expr2, ..., exprn)

produces the result of exprn and is equivalent to
   expr1 & expr2 & ... & exprn

The selection integer can be omitted, in which case it defaults to -1.

2.1.11 Co-Expressions
The evaluation of an expression in Icon is limited to the site in the program where it
appears.  Its  results  can be produced only at  that  site  as  a  result  of  iteration  or  goal-
directed  evaluation.  For  example,  the  results  generated  by  intseq(i) described  in
Section 2.1.10 can only be produced where it is called, as in
   every f(intseq(10) \ 5)

It is often useful, however, to be able to produce the results of a generator at various
places in the program as the need for them arises. Co-expressions provide this facility by
giving a context for the evaluation of an expression that is maintained in a data structure.
Co-expressions can be activated to produce the results of a generator on demand, at any
time and place in the program.

A co-expression is constructed by
   create expr

The expression expr is not evaluated at this time. Instead, an object is produced through
which expr can be resumed at a later time. For example,
   label := create ("L" || (1 to 100) || ":")

assigns to label a co-expression for the expression
   "L" || (1 to 100) || ":"

The operation  @label activates this co-expression, which corresponds to resuming its
expression. For example,
   write(@label)
   write("    tstl     count")
   write(@label)

writes
   L1:
        tstl     count
   L2:

If the resumption of the expression in a co-expression does not produce a result, the co-
expression activation fails.  For example,  after  @label has been evaluated 100 times,
subsequent evaluations of @label fail. The number of results that a co-expression e has
produced is given by *e.

The general form of the activation expression is
   expr1 @ expr2

which activates expr2 and transmits the result of expr1 to it. This form of activation can
be used to return a result to the co-expression that activated the current one.
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A co-expression is a value like any other value in Icon and can be passed as an argument
to a procedure, returned from a procedure. and so forth. A co-expression can survive the
call of the procedure in which it is created.

If the argument of a create expression contains identifiers that are local to the procedure
in  which  the  create  occurs,  copies  of  these  local  identifiers  are  included  in  the  co-
expression with the values they have at the time the create expression is evaluated. These
copied identifiers subsequently are independent of the local identifiers in the procedure.
Consider, for example,
   procedure labgen(tag)
      local i, j

 ...
 i := 10
 j := 20
 e := create (tag || (i to j) || ":")
 ...
 i := j
 if i > 15 then return e
 ...

   end

The expression
   labels := labgen("X")

assigns to labels a co-expression that is equivalent to evaluating
   create ("X" || (10 to 20) || ":")

The fact that i is changed after the co-expression was assigned to e, but before e returns,
does not affect the co-expression, since it contains copies of i and j at the time it was
created. Subsequent changes to the values of i or j do not affect the co-expression.

A copy of a co-expression e is produced by the refresh operation, ^e. When a refreshed
copy of a co-expression is made, its expression is reset to its initial state, and the values
of any local identifiers in it are reset to the values they had when the co-expression was
created. For example,
   newlabels := ^labels

assigns to  newlabels a co-expression that is capable of producing the same results as
labels, regardless of whether or not labels has been activated.

The value of the keyword &main is the co-expression for the call of main() that initiates
program execution.

2.1.12 Diagnostic Facilities

String Images. The function  type(x) only produces the string name of the type of  x,
but the function image(x) produces a string that shows the value of x. For strings and
csets, the value is shown with surrounding quotation marks in the fashion of program
literals. For example,
   write(image("Hi there!"))

writes "Hi there!", while
   write(image('aeiou'))

writes 'aeiou'.
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For structures, the type name and size are given. For example,
   write(image([]))

writes list(0).

Various forms are used for other types of data, using type names where necessary so that
different types of values are distinguishable.

Tracing. If the value of the keyword  &trace is nonzero, a trace message is produced
whenever a procedure is called, returns, fails, suspends, or is resumed. Trace messages
are written to standard error output. The value of &trace is decremented for every trace
message. Tracing stops if the value of  &trace becomes zero, which is its initial value.
Suppose that the following program is contained in the file fibstr.icn:
   procedure main()
      &trace := -1
      fibstr(3)
   end

   procedure fibstr(i)
      if i = 1 then return "a"
      else if i = 2 then return "b"
      else return fibstr(i -1) || fibstr(i -2)
   end

The trace output of this program is
   fibstr.icn: 3 | fibstr(3)
   fibstr.icn: 9 | | fibstr(2)
   fibstr.icn: 8 | | fibstr returned "b"
   fibstr .icn: 9 | | fibstr(1)
   fibstr.icn: 7 | | fibstr returned "b"
   fibstr.icn: 9 | fibstr returned "ba"
   fibstr.icn: 4 main failed

In addition to the indentation corresponding to the level of procedure call, the value of the
keyword &level also is the current level of call.

Displaying Identifier Values. The function display(i,f) writes a list of all identifiers
and their  values  for  i levels  of  procedure  calls,  starting  at  the  current  level.  If  i is
omitted, the default is &level, while if f is omitted, the list is written to standard error
output.  The format  of  the  listing  produced by display is  illustrated  by the  following
program:
   procedure main()
      log := open("grade.log", "w")
      while write(log, check(readO))
   end

   procedure check(value)
      static count
      initial count := 0
      if numeric(value) then {
         count +:= 1
         return value
         }
      else {
         display()
         stop("nonnumeric value")
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         }
   end

Suppose that the tenth line of input is the nonnumeric string "3.a". Then the output of
display() is
   check local identifiers:
      value = "3.a"
      count = 9
   main local identifiers:
      log = file(grade.log)
   global identifiers:
      main = procedure main
      check = procedure check
      open = function open
      write = function write
      read = function read
      numeric = function numeric
      display = function display
      stop = function stop

Error Messages. If  an  error  is  encountered  during  program execution,  a  message  is
written to standard error output and execution is terminated. For example, if the tenth line
of a program contained in the file check.icn is
   i +:= "x"

evaluation of this expression produces the error message
   Run-time error 102 at line 10 in check.icn
   numeric expected
   offending value: "x"

2.2 Language Features and the Implementation
Even  a  cursory  consideration  of  Icon  reveals  that  some  of  its  features  present
implementation problems and require approaches that are different from ones used in
more conventional languages. In the case of a language of the size and complexity of
Icon, it is important to place different aspects of the implementation in perspective and to
identify specific problems.

Values  and  Variables.  The  absence  of  type  declarations  in  Icon  has  far-reaching
implications. Since any variable may have a value of any type and the type may change
from time to time during program execution, there must be a way of representing values
uniformly.  This  is  a significant  challenge in  a language with a  wide variety of types
ranging from integers to  co-expressions.  Heterogeneous structures follow as a natural
consequence of the lack of type declarations.

In one sense, the absence of type declarations simplifies the implementation: there is not
much that can be done about types during program translation (compilation), and some of
the  work that  is  normally performed by conventional  compilers  can be avoided.  The
problems do not go away, however--they just move to another part of the implementation,
since run-time type checking is required. Automatic type conversion according to context
goes hand-in-hand with type checking.

Storage Management. Since strings and structures are created during program execution,
rather than being declared, the space for them must be allocated as needed at run time.
This implies, in turn, some mechanism for reclaiming space that has been allocated but
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which is  no longer needed--"garbage collection." These issues are complicated by the
diversity of types and sizes of objects, the lack of any inherent size limitations, and the
possibility of pointer loops in circular structures.

Strings.  Independent  of  storage-management  considerations,  strings  require  special
attention in the implementation. The emphasis of Icon is on string processing, and it is
necessary to be able to process large amounts of string data sufficiently. Strings may be
very long and many operations  produce substrings  of  other  strings.  The repertoire  of
string analysis and string synthesis functions is large. All this adds up to the need for a
well-designed and coherent mechanism for handling strings.

Structures.  Icon's unusual structures, with sophisticated access mechanisms, also pose
problems.  In particular,  structures that can change in size and can grow without limit
require  different  implementation  approaches  than  static  structures  of  fixed  size  and
organization.

The  flexibility  of  positional,  stack,  and  queue  access  mechanisms  for  lists  requires
compromises to balance efficient access for different uses. Sets of values with arbitrary
types,  combined  with  a  range  of  set  operations,  pose  non-trivial  implementation
problems.  Tables  are  similar  to  sets,  but  require  additional  attention  because  of  the
implicit way that elements are added.

Procedures and Functions.  Since procedures and functions  are values,  they must  be
represented as data objects. More significantly, the meaning of a function call cannot, in
general, be determined when a program is translated. The expression write(s) may write a
string or it may do something else, depending on whether or not write still has its initial
value. Such meanings must, instead, be determined at run time.

Polymorphic  Operations.  Although  the  meanings  of  operations  cannot  be  changed
during program execution in the way that the meanings of calls can, several operations
perform different computations depending on the types of their operands. Thus, x[i] may
subscript a string, a list, or a table.

The meanings of some operations also depend on whether they occur in an assignment or
a dereferencing context. For example, if s has a string value, assignment to s [i] is an
abbreviation for a concatenation followed by an assignment to s, while if s[i] occurs in a
context  where  its  value  is  needed,  it  is  simply a  substring  operation.  Moreover,  the
context cannot, in general, be determined at translation time.

The way subscripting operations are specified in Icon offers considerable convenience to
the programmer at the expense of considerable problems for the implementer.

Expression  Evaluation.  Generators  and  goal-directed  evaluation  present  obvious
implementation problems. There is a large body of knowledge about the implementation
of expression evaluation for conventional languages in which expressions always produce
a  single  result,  but  there  is  comparatively  little  knowledge  about  implementing
expressions that produce results in sequence.

While there are languages in which expressions can produce more than one result, this
capability is limited to specific contexts, such as pattern matching, or to specific control
structures or data objects.

In Icon, generators and goal-directed evaluation are general and pervasive and apply to all
evaluation contexts and to all types of data. Consequently, their implementation requires
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a fresh approach. The mechanism also has to handle the use of failure to drive control
structures and must support novel control structures, such as alternation and limitation.
Efficiency  is  a  serious  concern,  since  whatever  mechanism  is  used  to  implement
generators is also used in conventional computational situations in which only one result
is needed.

String  Scanning.  String  scanning  is  comparatively  simple.  The  subject  and
position--"state  variables"--have  to  be  saved  at  the  beginning  of  string  scanning and
restored when it is completed. Actual string analysis and matching follow trivially from
generators and goal-directed evaluation.

Co-Expressions.  Co-expressions,  which  are  only relevant  because  of  the  expression-
evaluation mechanism of Icon, introduce a whole new set of complexities. Without co-
expressions, the results that a generator can produce are limited to its site in the program.
Control  backtracking is  limited  syntactically,  and its  scope can be determined  during
program translation.  With co-expressions,  a generator in a state of suspension can be
activated at any place and time during program execution.

RETROSPECTIVE:  Icon has  a  number  of  unusual  features  that  are  designed to  facilitate
programming, and it has an extensive repertoire of string and structure operations. One of
Icon's  notable  characteristics  is  the  freedom from translation-time  constraints  and the
ability to  specify and change the  meanings  of  operations  at  run  time.  This  run-time
flexibility  is  valuable  to  the  programmer,  but  it  places  substantial  burdens  on  the
implementation---and also makes it interesting.

At the top level,  there is the question of how actually to carry out some of the more
sophisticated operations. Then there are questions of efficiency, both in execution speed
and  storage  utilization.  There  are  endless  possibilities  for  alternative  approaches  and
refinements.

It is worth noting that many aspects of the implementation are relatively independent of
each other and can be approached separately. Operations on strings and structures are
largely disjoint and can, except for general considerations of the representation of values
and storage management, be treated as independent problems.

The independence of expression evaluation from other implementation considerations is
even clearer.  Without  generators  and goal-directed evaluation,  Icon would be a  fairly
conventional  high-level  string  and  structure  processing  language,  albeit  one  with
interesting implementation  problems.  On the other hand,  generators  and goal-directed
evaluation are not dependent in any significant way on string and structure data types.
Generators, goal-directed evaluation, and related control structures could just as well be
incorporated  in  a  programming  language  emphasizing  numerical  computation.  The
implementation problems related to expression evaluation in the two contexts are largely
the same.

While untyped variables and automatic storage management have pervasive effects on the
overall implementation of Icon, there are several aspects of Icon that are separable from
the  rest  of  the  language  and  its  implementation.  Any  specific  data  structure,  string
scanning, or co-expressions could be eliminated from the language without significantly
affecting the rest of the implementation. Similarly, new data structures and new access
mechanisms could be added without requiring significant modifications to the balance of
the implementation.
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EXERCISES
2.1 What is the outcome of the following expression if the file f contains a line consisting

of "end", or if it does not?
     while line := read(f) do
          if line == "end" then break
          else write(line)

2.2 What does
      write("hello" | "howdy")
write?

2.3 What is the result of evaluating the following expression:
      1(1 to 3) > 10

2.4 Explain the rationale for dereferencing of variables when a procedure call returns.

2.5 Give an example  of  a  situation  in  which it  cannot  be determined until  run time
whether a string subscripting expression is used in an assignment or a dereferencing
context.
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Chapter 3: Organization of the Implementation
PERSPECTIVE:  Many factors  influence the implementation  of a  programming language.
The properties of the language itself,  of course, are of paramount importance. Beyond
this, goals, resources, and many other factors may affect the nature of an implementation
in significant and subtle ways.

In the case of the implementation of Icon described here, several unusual factors deserve
mention. To begin with, Icon's origins were in a research project, and its implementation
was designed not only to make the language available for use but also to support further
language development.  The language itself  was less well  defined and more subject to
modification than is usually the case with an implementation. Therefore, flexibility and
ease of modification were important implementation goals.

Although the implementation was not a commercial enterprise, neither was it a toy or a
system intended only for a few '"friendly users." It was designed to be complete, robust,
easy to maintain, and sufficiently efficient to be useful for real applications in its problem
domain.

Experience  with  earlier  implementations  of  SNOBOL4,  SL5,  and  the  Ratfor
implementation of Icon also influenced the implementation that is described here. They
provided  a  repertoire  of  proven  techniques  and  a  philosophy  of  approach  to  the
implementation of a programming language that has novel features.

The computing environment also played a major role. The implementation started on a
PDP-11/70 running under UNIX. The UNIX environment (Ritchie and Thompson 1978),
with its extensive range of tools for program development, influenced several aspects of
the  implementation  in  a  direct  way.  C  (Kernighan  and  Ritchie  1978)  is  the  natural
language for writing such an implementation under UNIX, and its use for the majority of
Icon had pervasive effects, which are described throughout this book. Tools, such as the
Yacc parser-generator (Johnson 1975), influenced the approach to the translation portion
of the implementation.

Since the initial work was done on a PDP-11/70, with a user address space of only l28K
bytes  (combined  instruction  and  data  spaces),  the  size  of  the  implementation  was  a
significant concern. In particular, while the Ratfor implementation of Icon fit comfortably
on computers with large address spaces, such as the DEC-10, CDC Cyber, and IBM 370,
this implementation was much too large to fit on a PDP-11/70.

3.1 The Icon Virtual Machine
The implementation of Icon is organized around a virtual machine (Newey, Poole, and
Waite  1972;  Griswold  1977).  Virtual  machines,  sometimes  called  abstract  machines,
serve as software design tools for implementations in which the operations of a language
do not fit a particular computer architecture or where portability is a consideration and the
attributes of several real computer architectures can be abstracted in a single common
model.  The expectation  for most  virtual  machine  models  is  that  a translation  will  be
performed to map the virtual machine operations onto a specific real machine. A virtual
machine also provides a basis for developing an operational definition of a programming
language in which details can be worked out in concrete terms.
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During  the  design  and  development  phases  of  an  implementation,  a  virtual  machine
serves as an idealized model  that  is  free of the details  and idiosyncrasies of any real
machine. The virtual machine can be designed in such a way that treatment of specific,
machine-dependent  details  can  be  deferred  until  it  is  necessary  to  translate  the
implementation of the virtual machine to a real one.

Icon's virtual machine only goes so far. Unlike the SNOBOL4 virtual machine (Griswold
1972), it  is incomplete and characterizes only the expression-evaluation mechanism of
Icon  and  computations  on  Icon  data.  It  does  not,  per  se,  include  a  model  for  the
organization of memory. There are many aspects of the Icon run-time system, such as
type checking, storage allocation and garbage collection, that are not represented in the
virtual  machine.  Instead Icon's virtual  machine serves more as a guide and a tool  for
organizing  the  implementation  than  it  does  as  a  rigid  structure  that  dominates  the
implementation.

3.2 Components of the Implementation
There  are  three  major  components  of  the  virtual  machine  implementation  of  Icon:  a
translator, a linker, and a run-time system. The translator and linker are combined to form
a single executable program, but they remain logically independent.

The translator plays the role of a compiler for the Icon virtual machine. It analyzes source
programs and converts them to virtual machine instructions. The output of the translator
is  called  ucode.  Ucode  is  represented  as  ASCII  which  is  helpful  in  debugging  the
implementation.

The  linker  combines  one  or  more  ucode  files  into  a  single  program for  the  virtual
machine. This allows programs to be written and translated in a number of modules, and
it  is  particularly  useful  for  giving  users  access  to  pretranslated  libraries  of  Icon
procedures. The output of the linker, called icode, is in binary format for compactness and
ease of processing by the virtual machine. Ucode and icode instructions are essentially the
same, differing mainly in their format.

Translating and linking are done in two phases:

These phases can be performed separately. If only the first phase is performed, the result
is ucode, which can be saved and linked at another time.

The run-time system consists of an interpreter for icode and a library of support routines
to carry out the various operations that may occur when an Icon program is executed. The
interpreter serves, conceptually, as a software realization of the Icon virtual machine. It
decodes  icode  instructions  and  their  operands  and  carries  out  the  corresponding
operations.

It  is  worth  noting  that  the  organization  of  the  Icon  system does  not  depend  in  any
essential  way  on  the  use  of  an  interpreter.  In  fact,  in  the  early  versions  of  this
implementation, the linker produced assembly-language code for the target machine. That
code  then  was  assembled  and  loaded  with  the  run-time  library.  On  the  surface,  the
generation of machine code for a specific target machine rather than for a virtual machine
corresponds to the conventional compilation approach. However, this is somewhat of an
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illusion,  since the  machine  code consists  largely of  calls  to  run-time  library routines
corresponding to  virtual  machine  instructions.  Execution  of machine code in  such an
implementation therefore differs only slightly from interpretation,  in which instruction
decoding is done in software rather than in hardware. The difference in speed in the case
of Icon is relatively minor.

An interpreter offers a number of advantages over the generation of machine code that
offset the small loss of efficiency. The main advantage is that the interpreter gets into
execution very quickly, since it does not require a loading phase to resolve assembly-
language  references  to  library  routines.  Icode  files  also  are  much  smaller  than  the
executable binary files produced by a loader, since the run-time library does not need to
be included in them. Instead, only one sharable copy of the run-time system needs to be
resident in memory when Icon is executing.

3.3 The Translator
The translator that produces ucode is relatively conventional. It is written entirely in C
and is independent of the architecture of the target machine on which Icon runs. Ucode is
portable from one target machine to another.

The translator consists of a lexical analyzer, a parser, a code generator, and a few support
routines. The lexical analyzer converts a source-language program into a stream of tokens
that are provided to the parser as they are needed. The parser generates abstract syntax
trees on a per-procedure basis. These abstract syntax trees are in turn processed by the
code generator to produce ucode. The parser is generated automatically by Yacc from a
grammatical  specification.  Since  the  translator  is  relatively  conventional  and  the
techniques that it uses are described in detail elsewhere (Aho, Lam, Sethi, and Ullman
2006), it is not discussed here.

There  is  one  aspect  of  lexical  analysis  that  deserves  mention.  The  body of  an  Icon
procedure consists of a series of expressions that are separated by semicolons. However,
these semicolons usually do not need to be provided explicitly, as illustrated by examples
in Chapter 2. Instead, the lexical analyzer performs semicolon insertion. If a line of a
program ends with a token that is legal for ending an expression, and if the next line
begins  with  a  token  that  is  legal  for  beginning  an  expression,  the  lexical  analyzer
generates a semicolon token between the lines. For example, the two lines
   i := j + 3
   write(i)

are equivalent to
   i := j + 3;
   write(i)

since an integer literal is legal at the end of an expression and an identifier is legal at the
beginning of an expression.

If an expression spans two lines, the place to divide it is at a token that is not legal at the
end of a line. For example,
   s1 := s2 ||
      s3

is equivalent to
   s1 := s2 || s3
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No semicolon is inserted, since || is not legal at the end of an expression.

3.4 The Linker
The linker reads ucode files and writes icode files. An icode file consists of an executable
header that loads the run-time system, descriptive information about the file, operation
codes and operands, and data specific to the program. The linker, like the translator, is
written  entirely  in  C.  While  conversion  of  ucode  to  icode  is  largely  a  matter  of
reformatting, the linker performs two other functions.

3.4.1 Scope Resolution

The scope of  an  undeclared  identifier  in  a  procedure  depends  on  global  declarations
(explicit or implicit) in the program in which the procedure occurs. Since the translator in
general  operates  on  only  one  module  of  a  program,  it  cannot  resolve  the  scope  of
undeclared identifiers, because not all global scope information is contained in any one
module. The linker, on the other hand, processes all the modules of a program, and hence
it has the task of resolving the scope of undeclared identifiers.

An identifier may be global for several reasons:

●  As the result of an explicit global declaration.
●  As the name in a record declaration.
●  As the name in a procedure declaration.
●  As the name of a built-in function.

If an identifier with no local declaration falls into one of these categories, it is global.
Otherwise it is local.

3.4.2 Construction of Run-Time Structures

A number of aspects of a source-language Icon program are represented at run time by
various data structures. These structures are described in detail in subsequent chapters.
They include procedure blocks, strings, and blocks for cset and real literals that appear in
the program.

This data is represented in ucode in a machine-independent fashion. The linker converts
this information into binary images that are dependent on the architecture of the target
computer.

3.5 The Run-Time System
Most  of  the  interesting  aspects  of  the  implementation  of  Icon reside  in  its  run-time
system. This run-time system is written mostly in C, although there are a few lines of
assembly-language code for checking for arithmetic overflow and for co-expressions. The
C portion is mostly machine-independent and portable, although some machine-specific
code  is  needed  for  some  idiosyncratic  computer  architectures  and  to  interface  some
operating-system environments.

There are two main reasons for concentrating the implementation in the run-time system:

●   Some features of Icon do not lend themselves to translation directly into executable
code for the target machine,  since there is  no direct image for them in the target-
machine architecture. The target machine code necessary to carry out these operations
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therefore is too large to place in line; instead, it is placed in library routines that are
called from in-line code. Such features range from operations on structures to string
scanning.

●   Operations that cannot be determined at translation time must be done at run time.
Such operations range from type checking to storage allocation and garbage collection.

The  run-time  system  is  logically  divided  into  four  main  parts:  initialization  and
termination routines, the interpreter, library routines called by the interpreter, and support
routines called by library routines.

Initialization and Termination Routines. The initialization routine sets up regions in
which objects created at run time are allocated. It also initializes some structures that are
used during program execution. Once these tasks are completed, control is transferred to
the Icon interpreter.

When a program terminates, either normally or because of an error, termination routines
flush output buffers and return control to the operating system.

The  Interpreter. The  interpreter  analyzes  icode  instructions  and  their  operands  and
performs  corresponding  operations.  The  interpreter  is  relatively  simple,  since  most
complex operations are performed by library routines. The interpreter itself is described
in Chapter 8.

Library Routines.  Library routines are divided into three categories, depending on the
way they are called by the interpreter: routines for Icon operators, routines for Icon built-
in functions, and routines for complicated virtual machine instructions.

The meanings of operators are known to the translator and linker, and hence they can be
called directly. On the other hand, the meanings of functions cannot be determined until
they are executed, and hence they are called indirectly.

Support Routines. Support routines include storage allocation and garbage collection, as
well  as  type  checking  and  conversion.  Such  routines  typically  are  called  by  library
routines, although some are called by other support routines.

RETROSPECTIVE: Superficially, the implementation of Icon appears to be conventional. An
Icon program is translated and linked to produce an executable binary file. The translator
and linker  are  conventional,  except  that  they generate  code and data  structures  for  a
virtual machine instead of for a specific computer.

The run-time system dominates the implementation and plays a much larger role than is
played by run-time systems in conventional implementations. This run-time system is the
focus of the remainder of this book.

EXERCISES
3.1  Explain  why there  is  only  a  comparatively  small  difference  in  execution  times
between a version of Icon that generates assembly-language code and one that generates
virtual machine code that is interpreted.

3.2 List all the tokens in the Icon grammar that are legal as the beginning of an expression
and as the end of an expression. Are there any tokens that are legal as both? As neither?



40

3.3 Is a semicolon inserted by the lexical analyzer between the following two program
lines?

s1 := s2
|| s3

3.4 Is it possible for semicolon insertion to introduce syntactic errors into a program that
would be syntactically correct without semicolon insertion?
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Chapter 4: Values and Variables
PERSPECTIVE:  No feature of the Icon programming language has a greater impact on the
implementation  than untyped variables-variables  that  have no specific  type associated
with  them.  This  feature  originated  in  Icon's  predecessors  as  a  result  of  a  desire  for
simplicity and flexibility.

The absence of type declarations reduces the amount that a programmer has to learn and
remember. It also makes programs shorter and (perhaps) easier to write. The flexibility
comes mainly from the support for heterogeneous aggregates. A list,  for example, can
contain  a  mixture  of  strings,  integers,  records,  and  other  lists.  There  are  numerous
examples of Icon programs in which this flexibility leads to programming styles that are
concise and simple. Similarly, "generic" procedures, whose arguments can be of any type,
often are useful, especially for modeling experimental language features.

While these facilities can be provided in other ways, such as by C's union construct, Icon
provides them by the  absence  of features, which fits with the philosophy of making it
easy to write good programs rather than hard to write bad ones.

The other side of the coin is that the lack of type declarations for variables makes it
impossible for the translator to detect most type errors and defers type checking until the
program is executed. Thus, a check that can be done only once at translation time in a
language with a strong compile-time type system must be done repeatedly during program
execution in Icon. Furthermore, just as the Icon translator cannot detect most type errors,
a person who is writing or reading an Icon program does not have type declarations to
help clarify the intent of the program.

Icon  also  converts  arguments  to  the  expected  type  where  possible.  This  feature  is,
nevertheless, separable from type checking; Icon could have the latter without the former.
However, type checking and conversion are naturally intertwined in the implementation.

As far as the implementation is concerned, untyped variables simplify the translator and
complicate the run-time system. There is little the translator can do about types. Many
operations  are  polymorphic,  taking  arguments  of  different  types  and  sometimes
performing significantly different computations, depending on those types. Many types
are convertible  to  others.  Since procedures  are  data  values  and may change meaning
during program execution, there is nothing the translator can know about them. For this
reason, the translator does not attempt any type checking or generate any code for type
checking or conversion. All such code resides in the run-time routines for the functions
and operations themselves.

There is a more subtle way in which untyped variables influence the implementation.
Since any variable can have any type of value at any time, and can have different types of
values  at  different  times,  all  values  must  be  the  same  size.  Furthermore,  Icon's  rich
repertoire of data types includes values of arbitrary size-lists, tables, procedures, and so
on.

The solution to this problem is the concept of a descriptor, which either contains the data
for the value, if it is small enough, or else contains a pointer to the data if it is too large to
fit into a descriptor. The trick, then, is to design descriptors for all of Icon's data types,
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balancing considerations  of size,  ease of type testing,  and efficiency of  accessing the
actual data.

4.1 Descriptors
Since every Icon value is represented by a descriptor, it is important that descriptors be as
small as possible. On the other hand, a descriptor must contain enough information to
determine the type of the value that it represents and to locate the actual data. Although
values  of some types cannot  possibly fit  into  any fixed-size  space,  it  is  desirable  for
frequently used, fixed-sized values, such as integers, to be stored in their descriptors. This
allows values of these types to be accessed directly and avoids the need to provide storage
elsewhere for such values.

If Icon were designed to run on only one kind of computer, the size and layout of the
descriptor could be tailored to the architecture of the computer. Since the implementation
is designed to run on a wide range of computer architectures,  Icon takes an approach
similar to that of C. Its descriptor is composed of "'words," which are closely related to
the concept of a word on the computer on which Icon is implemented. One word is not
large enough for a descriptor that must contain both type information and an integer or a
pointer. Therefore, a descriptor consists of two words, which are designated as the  d-
word and the v-word, indicating that the former contains descriptive information, while
the latter contains the value

The dotted line between the two words of a descriptor  is  provided for readability.  A
descriptor is merely two words, and the fact that these two words constitute a descriptor is
a matter of context.

The v-word of a descriptor may contain either a value, such as an integer, or a pointer to
other data. In C terms. the v-word may contain a variety of types, including both ints and
pointers.  On  many  computers,  C  ints  and  C  pointers  are  the  same  size.  For  some
computers, however, C compilers have a memory-model in which integers are smaller
than pointers, which must allow access to a large amount of memory. In this situation, the
C long or  long long type are the same size as C pointers. There are computers with
many different word sizes, but the main considerations in the implementation of Icon are
the accommodation of computers with 32- and 64-bit words and the large-memory model,
in which pointers are larger than integers. In the large-memory model,  a v-word must
accommodate the largest of the types.

The d-words of descriptors contain a type code (a small integer) in their least significant
bits and flags in their most significant bits. There are twelve type codes that correspond to
source-language data types:

data type type code

null null
integer integer or long
real number real
cset cset
file file
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procedure proc
list list
set set
table table
record record
co-expression coexpr

Other  type codes  exist  for  internal  objects,  which are on a par  with source-language
objects,  from an  implementation  viewpoint,  but  which  are  not  visible  at  the  source-
language level. The actual values of these codes are not important, and they are indicated
in diagrams by their type code names.

4.1.1 Strings

There is no type code for strings. They have a special representation in which the d-word
contains the length of the string (the number of characters in it) and the v-word points to
the first character in the string:

String descriptors are called qualifiers. In order to make qualifiers more intelligible in the
diagrams that follow, a pointer to a string is followed by the string in quotation marks
rather than by an address. For example, the qualifier for "hello" is depicted as

In order to distinguish qualifiers from other descriptors with type codes that might be the
same as a string length, all descriptors that are not qualifiers have an n flag in the most
significant bit of the d-word. The d-words of qualifiers do not have this n flag, and string
lengths are restricted to prevent their overflow into this flag position, the most significant
bit of a 32- or 64-bit dword.

4.1.2 The Null Value

A descriptor for the null value has the form

As explained previously, the n flag occurs in this and all other descriptors that are not
qualifiers so that strings can be easily and unambiguously distinguished from all other
kinds of values. The value in the v-word could be any constant value, but zero is useful
and easily identified---and suggests "null."
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4.1.3 Integers

Icon  supports  word-size  integers  at  least  32-bits  in  size.  Such  integers  therefore  are
typically C longs, depending on the computer architecture. As long as it fits, the value of
an Icon integer is stored in the v-word of its descriptor. For example, the integer 13570 is
represented by

Note that the n flag distinguishes this descriptor from a string whose first character might
be at the address 13570 and whose length might have the same value as the type code for
integer.

An Icon integer that fits in the v-word is stored there. An integer that is too large to fit
into a word is stored in a data structure that is pointed to by the v-word, as illustrated in
the  next  section.  The  two  representations  of  integers  are  distinguished  by  different
internal  type  codes:  integer  for  integers  that  are  contained  in  the  v-words  of  their
descriptors and lrgint for integers that are contained in blocks pointed to by the v-words
of their descriptors. Thus, there are two internal types for one source-language data type.

The p flag in the descriptor indicates that the v-word contains a pointer to a block.

Blocks of some other types, such as record blocks, vary in size from value to value, but
any one block is fixed in size and never grows or shrinks. If the type code in the title does
not determine the size of the block, the second word in the block contains its  size in
bytes. In the diagrams that follow, the sizes of blocks are given for computers with 32-bit
words. The diagrams would be slightly different for computers with 16-bit words.

Records, which differ in size depending on how many fields they have, are examples of
blocks that contain their sizes. For example, given the record declaration
   record complex(r, i)

and
   point := complex(1, 3)

the value of point is
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The  record-constructor  block  contains  information  that  is  needed  to  resolve  field
references.

On the other hand, with the declaration
   record term(value, code, count)

and
   word := term("chair", "noun", 4)

the value of word is:

As illustrated by these examples, blocks may contain descriptors as well as non-descriptor
data.  Non-descriptor  data  comes  first  in  the  block,  followed  by any descriptors,  as
illustrated  by the  preceding figure.  The  location  of  the  first  descriptor  in  a  block  is
constant for all blocks of a given type, which facilitates garbage collection.

Blocks for the remaining types are described in subsequent chapters.

4.3 Variables
Variables are represented by descriptors, just as values are. This representation allows
values and variables to be treated uniformly in terms of storage and access. Variables for
identifiers point to descriptors for the corresponding values. Variables always point to
descriptors for values, never to other variables. For example, if
   s := "hello"
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then a variable for s has the form

The v flag distinguishes descriptors for variables from descriptors for values.

The values of local identifiers are kept on a stack, while the values of global and static
identifiers are located at fixed places in memory. Variables that point to the values of
identifiers are created by icode instructions that correspond to the use of the identifiers in
the program.

Some variables, such as record field references, are computed. A variable that references
a  value  in  a  data  structure  points  directly to  the  descriptor  for  the  value.  The least-
significant bits of the d-word for such a variable contain the offset, in words, of the value
descriptor from the top of the block in which the value is contained. This offset is used by
the garbage collector. The use of words, rather than bytes, allows larger offsets, which is
important for computers with 16-bit words. For example, the variable word.count for the
record given in the preceding section is

The variable points directly to the value rather than to the title of the block so that access
to the value is more efficient. Note that the variable word.count cannot be determined
at translation time, since the type of word is not known then and different record types
could have count fields in different positions.

4.3.1 Operations on Variables

There  are  two  fundamentally  different  contexts  in  which  a  variable  can  be  used:
dereferencing and assignment.

Suppose, as shown previously, that the value of the identifier s is the string "hello". Then
a variable descriptor that points to the value of s and the corresponding value descriptor
for "hello" have the following relationship:
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In an expression such as write(s), s is dereferenced by fetching the descriptor pointed
to by the v-word of the variable.

In the case of assignment, as in
   s := 13570

the value descriptor pointed to by the v-word of the variable descriptor changed:

These operations  on  variables  correspond to  indirect  load  and store instructions  of  a
typical computer.

4.3.2 Trapped Variables

Icon  has  several  variables  with  special  properties  that  complicate  assignment  and
dereferencing. Consider, for example, the keyword &trace. Its value must always be an
integer. Consequently, in an assignment such as
   &trace := expr

the value produced by expr must be checked to be sure that it is an integer. If it is not, an
attempt is made to convert it to an integer, so that in
   &trace := "1"

the value assigned to &trace is the integer 1, not the string "1".

There are four keyword variables that require special processing for assignment: &trace,
&random,  &subject,  and  &pos.  The keyword  &random is  treated in  essentially the
same way that &trace is. Assignment to &subject requires a string value and has the
side  effect  of  assigning  the  value  1 to  &pos.  Assignment  to  &pos is  even  more
complicated: not only must the value assigned be an integer, but if it is not positive, it
must also be converted to the positive equivalent with respect to the length of &subject.
In any event, if the value in the assignment to &pos is not in the range of &subject, the
assignment fails. Dereferencing these keywords, on the other hand, requires no special
processing.

A naive way to handle assignment to these keywords is to check every variable during
assignment  to  see whether it  is  one of the four that  requires special  processing.  This
would  place  a  significant  computational  burden  on  every  assignment.  Instead,  Icon
divides variables into two classes: ordinary and trapped. Ordinary variables point to their
values as illustrated previously and require no special processing. Trapped variables, so
called because their processing is "trapped," are distinguished from ordinary variables by
a t flag. Thus, assignment only has to check a single flag to separate the majority of
variables from those that require special processing.

A trapped-variable descriptor for a keyword points to a block that contains the value of
the keyword, its string name, and a pointer to a C function that is called when assignment
to the keyword is made. For example, the trapped variable for &trace is:
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It  is  worth  noting  that  the  more  conventional  approach  to  handling  the  problem  of
assignment to keywords is to compile special code if a keyword occurs an assignment
context. It is not always possible, however, to determine the context in which a variable is
used in Icon. Consider a procedure of the form
   procedure diagnose(s)

return &trace
   end

The semantics of Icon dictate that the result returned in this case should be a variable, not
just its value, so that it is possible to write an expression such as
   diagnose(s) := 10

which has the effect of assigning the value 10 to &trace.

The  translator  has  no  way of  knowing  that  an  assignment  to  the  call  diagnose(s)  is
equivalent to an assignment to &trace. In fact, the translator cannot even determine that
the value of diagnose will  be a function when the previous assignment  is  performed,
much less that it will be the procedure given earlier.

Thus,  the  trapped-variable  mechanism  provides  a  way  to  handle  uniformly  all  the
situations in which such a keyword can be used.

4.4 Descriptors and Blocks in C
Descriptors  and  blocks  of  data  are  described  and  depicted  abstractly  in  the  previous
sections of this chapter. In order to understand the implementation of some aspects of
Icon, it is helpful to examine the C code that actually defines and manipulates data.

The following sections  illustrate  typical  C declarations  for  the  structures  used in  the
implementation of Icon. Some of the terminology and operations that appear frequently in
the C code are included as well. Other operations are introduced in subsequent chapters.
as they are needed.

4.4.1 Descriptors

As mentioned in Sec. 4.1, for C compilers in which ints and pointers are the same size,
the size of a word is the size of an int, while if pointers are larger than ints, the size of a
word is  the  size  of  a  long,  or  a  long long.  The difference  between these  models  of
memory  is  handled  by  typedefs  under  the  control  of  conditional  compilation.  Two
constants that characterize the sizes are defined: IntBits and WordBits. These sizes are
used to select appropriate definitions for signed and unsigned words. The fact that on
some 64-bit C compilers a long is only 32 bits, while on others it is 64 bits, complicates
matters. The symbol LongLongWord indicates this situation.



49

   #if IntBits != WordBits
      #ifdef LongLongWord
         typedef long word;
         typedef unsigned long uword;
      #else
         typedef long word;
         typedef unsigned long uword;
      #endif
   #else
   typedef int word;
   typedef unsigned int uword;
   #endif

A descriptor is declared as a structure:
   struct descrip { /* descriptor */
      word dword; /* type field */
      union {
         word integr; /* integer value */
#ifdef DescriptorDouble
         double realval;
#endif
         char *sptr; /* pointer to character string */
         union block *bptr; /* pointer to a block */
         struct descrip *dptr; /* pointer to a descriptor */
      } vword;
   };

The v-word of a descriptor is a union that reflects its various uses: an integer, a pointer to
a string, a pointer to a block, or a pointer to another descriptor (in the case of a variable).

4.4.2 Blocks

Each  block type  has  a  structure  declaration.  For  example.  the  declaration  for  record
blocks is
   struct b_record {         /* record block */
      word title; /* T_Record */
      word blksize; /* size of block */
      struct descrip recdesc; /* record constructor descriptor */
      struct descrip fields[1];/* fields */
   };

Blocks for records vary in size, depending on the number of fields declared for the record
type. The size of 1 in

struct descrip fields[1];

is provided to satisfy the C compiler. Actual blocks for records are constructed at run
time in a region that is managed by Icon's storage allocator. Such blocks conform to the
previous declaration, but the number of fields varies. The declaration provides a means of
accessing portions of such blocks from C.

The declaration for keyword trapped-variable blocks is
   struct b_tvkywd { /* keyword trapped variable block */
      word title; /* T Tvkywd */
      int (*putval) (); /* assignment function */
      struct descrip kyval; /* keyword value */
      struct descrip kyname;/* keyword name */
   };
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Note that the title fields of b_record and b_tvkywd contain type codes, as indicated in
previous diagrams. The second field of b_record is a size as mentioned previously, but
b_tvkywd has no size field, since all keyword trapped-variable blocks are the same size,
which therefore can be determined from their type.

The block union given in the declaration of struct descrip consists of a union of all
block types:
   union block {
      struct b_real realblk;
      struct b_cset cset;
      struct b_file file;
      struct b_proc proc;
      struct b_list list;
      struct b_lelem lelem;
      struct b_table table;
      struct b_telem telem;
      struct b_set set;
      struct b_selem selem;
      struct b_record record;
      struct b_tvsubs tvsubs;
      struct b_tvtbl tvtbl;
      struct b_refresh refresh;
      struct b_coexpr coexpr;
      struct b_externl externl;
      struct b_slots slots;
      struct b_bignum bignumblk;
      };

Note that there are several kinds of blocks in addition to those that correspond to source-
language data types.

4.4.3 Defined Constants

The type codes are defined symbolically:
   #define T_Null 0
   #define T_Integer 1
   #define T_Lrgint 2
   #define T_Real 3
   #define T_Cset 4
   #define T_File 5
   #define T_Proc 6
   #define T_Record 7
   #define T_List 8
   #define T_Lelem 9
   #define T_Set 10
   #define T_Selem 11
   #define T_Table 12
   #define T Telem 13
   #define T_Tvtbl 14
   #define T_Slots 15
   #define T_Tvsubs 16
   #define T_Refresh 17
   #define T_Coexpr 18
   #define T_External 19
   #define T_Kywdint 20
   #define T_Kywdpos 21
   #define T_Kywdsubj 22
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The type codes in diagrams are abbreviated, as indicated by previous examples.

The defined constants for d-word flags are
   n F_Nqual
   p F_Ptr
   v F_Var
   t F_Tvar

The values of these flags depend on the word size of the computer.

The d-words of descriptors are defined in terms of flags and type codes:
   #define D_Null (T_Null | F_Nqual)
   #define D_Integer (T_Integer | F_Nqual)
   #define D_Long (T_Long | F_Ptr | F_Nqual)
   #define D_Real (T_Real | F_Ptr | F_Nqual)
   #define D_Cset (T_Cset | F_Ptr | F_Nqual)
   #define D_File (T_File | F_Ptr | F_Nqual)
   #define D_Proc (T_Proc | F_Ptr | F_Nqual)
   #define D_List (T_List | F_Ptr | F_Nqual)
   #define D_Table (T_Table | F_Ptr | F_Nqual)
   #define D_Set (T_Set | F_Ptr | F_Nqual)
   #define D_Selem (T_Selem | F_Ptr | F_Nqual)
   #define D_Record (T_Record | F_Ptr | F_Nqual)
   #define D_Telem (T_Telem | F_Ptr | F_Nqual)
   #define D_Lelem (T_Lelem | F_Ptr | F_Nqual)
   #define D_Tvsubs (T_Tvsubs | D_Tvar)
   #define D_Tvtbl (T Tvtbl | D_Tvar)
   #define D_Tvkywd (T_Tvkywd | D_Tvar)
   #define D_Coexpr (T_Coexpr | F_Ptr | F_Nqual)
   #define D_Refresh (T_Refresh | F_Ptr | F_Nqual)
   #define D_Var (F_Var | F _Nqual | F _Ptr)
   #define D_Tvar (D_Var | F_Tvar)

As indicated previously, flags, type codes, and d-words are distinguished by the prefixes
F_, T_, and D_, respectively.

4.4.4 RTL Coding

Since the optimizing compiler was introduced in versions 8 and 9 of Icon, the routines for
the run-time system use an extended C syntax called RTL (for Run-Time Language) that
encodes the type information for arguments and results. Some of these are illustrated by
the RTL function for the Icon operator *x, which produces the size of x:
   operator{1} * size(x)
   abstract { return integer }
   type_case x of {
      string: inline { return C_integer StrLen(x); }
      list: inline { return C_integer BlkD(x,List)->size; }
      table: inline { return C_integer BlkD(x,Table)->size; }
      set: inline { return C_integer BlkD(x,Set)->size; }
      cset: inline {
         register word i = BlkD(x,Cset)->size;
         if (i < 0) i = cssize(&x);
         return C_integer i;
         }
      ...
      default: {
            /*
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             * Try to convert it to a string.
             */
           if !cnv:tmp_string(x) then
              runerr(112, x); /* no notion of size */
           inline {
              return C_integer StrLen(x);
              }
           }
      }
end

operator is an RTL construct that performs several operations. One of these operations
is to provide a C function declaration. Since the function is called by the interpreter, the
header is somewhat different from what it would be if  size were called directly. The
details are described in Chapter 8.

The arguments of the Icon operation are referred to via named descriptors, such as x. The
result that is produced is also a descriptor.

RTL extends C's return statement to include type information, with which the d-word
of the return value is set to D_lnteger, since the returned value is a C_integer. Next,
the  type_case selects different branches of code depending on the type of x.  In the
generated code there is a test to determine if descriptor x holds a qualifier. Qual() is a
macro that is defined as
   #define Qual(d) (!((d).dword & F_Nqual))

If x is a qualifier, its length is placed in the v-word of the return value descriptor, using
the macros IntVal and StrLen, which are defined as
   #define IntVal(d) ((d).vword.integr)
   #define StrLen(d) ((d).dword)

If x is not a qualifier, then the size depends on the type. The macro Type() isolates the
type code
   #define Type(d) ((d).dword & TypeMask)

where the value of TypeMask is 63, providing considerable room for additions to Icon's
internal types.

For most Icon types that are represented by blocks, their source-language size is contained
in their size field. The macro BlkLoc() accesses a pointer in the v-field of a descriptor
and is defined as
   #define BlkLoc(d) ((d).vword.bptr)

A  more  specialized  macro  BlkD() wraps  uses  of  BlkLoc() and  subsequent  union
member  access,  allowing  descriptor-block  consistency  to  be  verified  at  run-time  if
desired.

If the type is not one of those given, the final task is an attempt to convert x to a string.
The RTL expression  cnv:tmp_string() does this, using local temporary buffer. The
value of x is changed accordingly. A fixed-sized buffer can be used, since there is a limit
to the size of a string that can be obtained by converting other types. This limit is 256,
which is reached only for conversion of &cset. The conversion may fail, as for *&null,
which is signaled by the return value 0 from cnv:tmp_string(). In this case, program
execution  is  terminated  with  a  run-time:  error  message,  using  runerr().  If  the
conversion is successful, the size is placed in the v-word of the result, as is the case if x
was a qualifier originally.
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RETROSPECTIVE:  Descriptors  provide  a  uniform  way of  representing  Icon  values  and
variables. Since descriptors for all types of data are the same size, there are no problems
with assigning different types of values to a variable---they all fit.

The importance of strings is reflected in the separation of descriptors into two classes---
qualifiers and nonqualifiers---by the n flag. The advantages of the qualifier representation
for strings are discussed in Chapter 5.

It  is  comparatively easy to  add  a  new type  to  Icon.  A  new type  code  is  needed  to
distinguish it from other types. If the possible values of the new type are small enough to
fit into the v-word, as is the case for integers, no other data is needed. For example, the
value of a character data type could be contained in its descriptor. For types that have
values that are too large to fit into a v-word, pointers to blocks containing the data are
placed in the v-words instead. Lists, sets, and tables are examples of data types that are
represented this way. See Chapters 6 and 7.

EXERCISES
4.1 Give examples  of  Icon programs in  which heterogeneous aggregates  are  used in

significant ways.

4.2 Design a system of type declarations for Icon so that the translator could do type
checking. Give special consideration to aggregates, especially those that may change
in size during program execution.  Do this from two perspectives:  (a) changing the
semantics of Icon as little as possible, and (b) maximizing ,the type checking that can
be done by the translator at the expense of flexibility in programming.

4.3 Suppose that functions in Icon were not first-class values and that their meanings
were bound at translation time. How much could the translator do in the way of error
checking?

4.4 Compile a list of all Icon functions and operators. Are there any that do not require
argument type checking? Are there any that require type checking but not conversion?
Identify those that are polymorphic. For the polymorphic ones, identify the different
kinds of computations that are performed depending on the types of the arguments.

4.5 Compose  a  table  of  all  type  checks  and  conversions  that  are  required  for  Icon
functions and operators.

4.6 To what extent would the implementation of Icon be simplified if automatic type
conversion were not supported? How would this affect the programmer?

4.7 Why is it desirable for string qualifiers not to have flags and for all other kinds of
descriptors to have flags indicating they are not qualifiers, rather than the other way
around?

4.8 Is  the  n  flag that  distinguishes  string  qualifiers  from all  other  descriptors  really
necessary? If not, explain how to distinguish the different types of descriptors without
this flag.

4.9 On computers with extremely limited address space, two-word descriptors may be
impractically large. Describe how one-word descriptors might be designed, discuss
how various types might be represented, and describe the ramifications for storage
utilization and execution speed.
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4.10 Identify the diagrams in this chapter that would be different if they were drawn for a
computer with 16-bit words. Indicate the differences.

4.11 There is nothing in the nature of keywords that requires them to be processed in a
special way for assignment but not for dereferencing. Invent a new keyword that is a
variable that requires processing when it is dereferenced. Show how to generalize the
keyword trapped-variable mechanism to handle such cases.

4.12 List all the syntactically distinct cases in which the translator can determine whether
a keyword variable is used in an assignment or dereferencing context.

4.13 What would be gained if special code were compiled for those cases in which the
context for keyword variables could be determined?
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Chapter 5: Strings and Csets
PERSPECTIVE:  Several  aspects  of  strings  as  a  language  feature  in  Icon have  a  strong
influence on how they are handled by the implementation. First of all, strings are the most
frequently used type of data in the majority of Icon programs. The number of different
strings and the total amount of string data often are large. Therefore, it is important to be
able to store and access strings efficiently.

Icon has many operations  on strings---nearly fifty of  them.  Some operations,  such as
determining  the  size  of  a  string,  are  performed  frequently.  The  efficiency  of  these
operations is an important issue and influences, to a considerable extent, how strings are
represented.

Icon strings may be very long. Although some limitation on the maximum length of a
string may be acceptable as a compromise with the architecture of the computer on which
Icon is implemented (and hence considerations of efficiency), this maximum must be so
large as to be irrelevant for most Icon programs.

String lengths are determined dynamically during program execution,  instead of being
specified statically in declarations. Much of the advantage of string processing in Icon
over other programming languages comes from the automatic management of storage for
strings.

Any of the 256 8-bit  ASCII characters can appear  in  an Icon string.  Even the "null"
character is allowed.

Several  operations in Icon return substrings of other strings.  Substrings tend to occur
frequently, especially in programs that analyze (as opposed to synthesize) strings.

Strings in Icon are atomic---there are no operations in Icon that change the characters in
existing strings.  This  aspect  of Icon is  not  obvious;  in  fact,  there are  operations  that
appear to change the characters in strings. The atomic nature of string operations in Icon
simplifies its implementation considerably. For example, assignment of a string value to a
variable need not (and does not) copy the string.

The order in which characters appear is an essential aspect of strings. There are many
situations in Icon, however, where several characters have the same status but where their
order is irrelevant. For example, the concepts of vowels and punctuation marks depend on
set membership but not on order. Csets are provided for such situations. Interestingly,
many  computations  can  be  performed  using  csets  that  have  nothing  to  do  with  the
characters themselves (Griswold and Griswold 1983, pp. 181-191).

5.1 Strings

5.1.1 Representation of Strings

Although it may appear natural for the characters of a string to be stored in consecutive
bytes,  this  has  not  always  been  so.  On  earlier  computer  architectures  without  byte
addressing  and  character  operations,  some  string-manipulation  languages  represented
strings  by  linked  lists  of  words,  each  word  containing  a  single  character.  Such  a
representation seems bizarre for modem computer architectures and obviously consumes
a very large amount of memory-an intolerable amount for a language like Icon.
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The  C  programming  language  represents  strings  (really  arrays  of  characters)  by
successive bytes  in  memory,  using a  zero (null)  byte  to  indicate  the end of  a  string.
Consequently, the end of a string can be determined from the string itself, without any
external information. On the other hand, determining the length of a string, if it is not
already known, requires indexing through it, incrementing a counter until a null byte is
found.  Furthermore,  and  very important  for  a  language  like  Icon,  substrings  (except
terminal ones) cannot occur within strings, since every C string must end with a null byte.

Since  any character  can  occur  in  an  Icon  string,  it  is  not  possible  to  use  C's  null-
termination approach to mark ends of strings. Therefore, there is no way to detect the end
of a string from the string itself, and there must be some external way to determine where
a string ends. This consideration provides the motivation for the qualifier representation
described in the last chapter. The qualifier provides information, external to the string
itself, that delimits the string by the address of its first character and its length. Such a
representation  makes  the  computation  of  substrings  fast  and  simple---and,  of  course,
determining the length of a string is fast and independent of its length.

Note that C-style strings serve perfectly well as Icon-style strings; the null byte at the end
of a C-style string can be ignored by Icon. This allows strings produced by C functions to
be used by Icon. The converse is not true; in order for an Icon string to be used by C, a
copy must be made with a null byte appended at the end.

Some strings are compiled into the run-time system and others, such as strings that appear
as literals in a program, are contained in icode files that are loaded into memory when
program execution begins. During program execution, Icon strings may be stored in work
areas (usually referred to as "buffers"). Most newly created strings, however, are allocated
in a common string region.

As source-language operations construct new strings, their characters are appended to the
end of those already in the string region. The amount of space allocated in the string
region typically increases during program execution until the region is full, at which point
it is compacted by garbage collection, squeezing out characters that are no longer needed.
See Chapter 11 for details.

In the previous chapter, the string to which a qualifier points is depicted by an arrow
followed by the string. For example, the string "the" is represented by the qualifier

The pointer to "the" is just a notational convenience. A more accurate representation is
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The actual value of the v-word might be 0x569a (hexadecimal), where the character t is at
memory location 0x569a, the character h is at location 0x569b, and the character e is at
location 0x569c.

5.1.2 Concatenation

In an expression such as
s := "hello"

the string "hello" is contained in data provided as part of the icode file, and a qualifier for
it is assigned to s; no string is constructed. Some operations that produce strings require
the allocation of new strings. Concatenation is a typical example:

s1 := "ab" || "cdef"

In this expression, the concatenation operation allocates space for six characters, copies
the two strings into this space, and produces a qualifier for the result:

This qualifier then becomes the value of s1.

There  are  important  optimizations  in  concatenation.  If  the  first  argument  in  a
concatenation  is  the  last  string  in  the  string  region,  the  second  argument  is  simply
appended to the end of the string region. Thus, operations of the form

s := s || expr

perform less allocation than operations of the form
s := expr || s

Similarly, if the strings being concatenated are already adjacent, no concatenation need be
performed. Except for these optimizations, no string construction operation attempts to
use another instance of a string that may exist somewhere else in the string region. As a
result,

s1 := "ab" || "c"
s2 := "a" || "bc"

produce two distinct strings:

The RTL code for the concatenation operation is
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   operator{1} || cater(x,y)
   if !cnv:string(x) then
      runerr(103, x)
   if !cnv:string(y) then
      runerr(103, y)

   abstract {
      return string
      }
   body {
      CURTSTATE();

      /*
       *  Optimization 1:  The strings to be concatenated are
       *  already adjacent in memory; no allocation is required.
       */
      if (StrLoc(x) + StrLen(x) == StrLoc(y)) {
         StrLoc(result) = StrLoc(x);
         StrLen(result) = StrLen(x) + StrLen(y);
         return result;
         }
      else if ((StrLoc(x) + StrLen(x) == strfree)
      && (DiffPtrs(strend,strfree) > StrLen(y))) {
         /*
          * Optimization 2: The end of x is at the end of the 
string space.
          *  Hence, x was the last string allocated and need
          *  not be re-allocated. y is appended to the string
          *  space and the result is pointed to the start of x.
          */

 result = x;
 /*
  * Append y to the end of the string space.
  */
 Protect(alcstr(StrLoc(y),StrLen(y)), runerr(0));
 /*
  *  Set the length of the result and return.
  */
 StrLen(result) = StrLen(x) + StrLen(y);
 return result;

         }

      /*
       * Otherwise, allocate space for x and y, and copy them
       *  to the end of the string space.
       */
      Protect(StrLoc(result) = alcstr(NULL, StrLen(x) +
                                         StrLen(y)), runerr(0));
      memcpy(StrLoc(result), StrLoc(x), StrLen(x));
      memcpy(StrLoc(result) + StrLen(x), StrLoc(y), StrLen(y));

      /*
       *  Set the length of the result and return.
       */
      StrLen(result) = StrLen(x) + StrLen(y);
      return result;
      }
end
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The function strreq(n) assures that there are at least n bytes available in the allocated
string  region.  See  Chapter  11  for  details.  The  function  alcstr(s, n) allocates  n
characters  and  copies  s to  that  space.  The  global  variable  strfree points  to  the
beginning of the free space at the end of the allocated string region.

5.1.3 Substrings

Many string operations do not require the allocation of a new string but only produce new
qualifiers. For example, if the value of s1 is "abcdef", the substring formed by
   s2 := s1[3:6]

does not allocate a new string but only produces a qualifier that points to a substring of
s1:

In order for Icon string values to be represented in memory by substrings, it is essential
that there be no Icon operation that changes the characters inside a string. As mentioned
earlier,  this  is  the case,  although it  is  not  obvious from a cursory examination of the
language.  C,  on the other hand, allows the characters in  a string to  be changed. The
difference is that C considers a string to be an array of characters and allows assignment
to the elements of the array, while Icon considers a string to be an indivisible atomic
object. It makes no more sense in Icon to try to change a character in a string than it does
to try to change a digit in an integer. Thus, if
   i := j

and
   j := j + 1

the value of i does not change as a result of the subsequent assignment to j. So it is with
strings in Icon.

Admittedly, there are operations in Icon that appear to change the characters in a string.
For example,
   s1[3] := "x"

gives  the  appearance  of  changing  the  third  character  in  s1 to  "x".  However,  this
expression is simply shorthand for
   s1 := s1[1:3] || "x" || s1[4:0]

A new string is created by concatenation and a new qualifier for it is assigned to s1, as
shown by
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Of course, the length of the string may be increased or decreased by assignment  to a
substring, as in
   s1[3] := "xxx"
   s1 [2:5] := ""

5.1.4 Assignment to Subscripted Strings

Expressions  such  as  x[i] and  x[i:j] represent  a  particular  challenge  in  the
implementation of Icon. In the first place, the translator cannot determine the type of x. In
the case of  x[i], there are four basic types that  x may legitimately have: string, list,
table, and record. Of course, any type that can be converted to a string is legitimate also.
Unfortunately,  the  nature  of the operation,  not  just  the  details  of  its  implementation,
depends on the type. For strings,
   s1 [3] := s2

replaces the third character of s1 by s2 and is equivalent to concatenation, as described
previously. For lists, tables, and records,
   x[3] := y

changes the third element of x to y–quite a different matter (see Exercise 5.5).

This problem is pervasive in Icon and only needs to be noted in passing here. The more
serious  problem is  that  even  if  the  subscripted  variable  is  a  string,  the  subscripting
expression has different meanings, depending on the context in which it appears.

If s is a variable, then s[i] and s[i:j] also are variables. In a dereferencing context,
such as
   write(s[2:5])

the result produced by s[2:5] is simply a substring of s, and the subscripting expression
produces the appropriate qualifier.

Assignment to a subscripted string, as in
   s[2:5] := "xxx"

is not at all what it appears to be superficially. Instead, as already noted, it shorthand for
an assignment to s:
   s := s[1] || "xxx" || s[6:0]

If  the  translator  could  determine  whether  a  subscripting  expression  is  used  in
dereferencing or assignment context, it could produce different code for the two cases. As
mentioned in Sec. 4.3.2, however, the translator cannot always make this determination.
Consequently, trapped variables are used for subscripted string much in the way they are
used for keywords. For example, if the value of s is "abcdef", the result of evaluating
the subscripting expression s[2:5] is a substring trapped variable that has the form
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Note that both the variable for s and the variable in the substring trapped-variable block
point to the same value. This makes it possible for assignment to the substring trapped
variable to change the value of s.

The length and offset of the substring provide the necessary information either to produce
a qualifier  for the substring, in case the subscripting expression is dereferenced, or to
construct a new string in case an assignment is made to the subscripting expression. For
example, after an assignment such as
   s[2:5] := "x"

the situation is

Note that the value of s has changed. The length of the subscripted portion of the string
has been changed to correspond to the length of the string assigned to it. This reflects the
fact that subscripting identifies the portions of the string before and after the subscripted
portion ("a" and "ef", in this case). In the case of a multiple assignment to a subscripted
string, only the original subscripted portion is changed. Thus, in
   (s[2:5] := "x") := "yyyyy"

the final value of s is "ayyyyyef".

5.1.5 Mapping

String mapping is interesting in its own right, and the RTL function that implements it
illustrates several aspects of string processing:
function{1} map(s1,s2,s3)
   /*
    * s1 must be a string; s2 and s3 default to (string 
    * conversions of) &ucase and &lcase, respectively.
    */
   if !cnv:string(s1) then
      runerr(103,s1)
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   ...
   abstract {
      return string
      }
   body {
      register int i;
      register word slen;
      register char *str1, *str2, *str3;
#ifndef Concurrent
      static char maptab[256];
#endif /* Concurrent */
      CURTSTATE();
      /*
       * Default is here, conversion only if cached maptab fails
       */
      if (is:null(s2))
         s2 = ucase;
      /*
       * Short-cut conversions of &lcase and &ucase.
       */
      else {

 struct descrip _k_lcase_, _k_ucase_;
 Klcase(&_k_lcase_);
 Kucase(&_k_ucase_);
 if (s2.dword == D_Cset) {
    if (BlkLoc(s2) == BlkLoc(_k_lcase_)) {
       s2 = lcase;
       }
    else if (BlkLoc(s2) == BlkLoc(_k_ucase_)) {
       s2 = ucase;
       }
    }
 }

      if (is:null(s3))
         s3 = lcase;
      /*
       * Short-cut conversions of &lcase and &ucase.
       */
      else {

 struct descrip _k_lcase_, _k_ucase_;
 Klcase(&_k_lcase_);
 Kucase(&_k_ucase_);
 if (s3.dword == D_Cset) {
    if (BlkLoc(s3) == BlkLoc(_k_lcase_)) {
       s3 = lcase;
       }
    else if (BlkLoc(s3) == BlkLoc(_k_ucase_)) {
       s3 = ucase;
       }
    }
 }

#endif /* !COMPILER */

      /*
       * If s2 and s3 are the same as for the last call of map,
       *  the current values in maptab can be used. Otherwise, 
the
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       *  mapping information must be recomputed.
       */
      if (!EqlDesc(maps2,s2) || !EqlDesc(maps3,s3)) {
         maps2 = s2;
         maps3 = s3;

#if !COMPILER
         if (!cnv:string(s2,s2))
            runerr(103,s2);
         if (!cnv:string(s3,s3))
            runerr(103,s3);
#endif /* !COMPILER */
         /*
          * s2 and s3 must be of the same length
          */
         if (StrLen(s2) != StrLen(s3))
            runerr(208);

         /*
          * The array maptab is used to perform the mapping.  
First,
          *  maptab[i] is initialized with i for i from 0 to 255.
          *  Then, for each character in s2, the position in 
maptab
          *  corresponding to the value of the character is 
assigned
          *  the value of the character in s3 that is in the same
          *  position as the character from s2.
          */
         str2 = StrLoc(s2);
         str3 = StrLoc(s3);
         for (i = 0; i <= 255; i++)
            maptab[i] = i;
         for (slen = 0; slen < StrLen(s2); slen++)
            maptab[str2[slen]&0377] = str3[slen];
         }

      slen = StrLen(s1);

      if (slen == 0) {
 return emptystr;
 }

      else if (slen == 1) {
 char c = maptab[*(StrLoc(s1)) & 0xFF];
 return string(1, (char *)&allchars[FromAscii(c) & 0xFF]);
 }

      /*
       * The result is a string the size of s1; create the result
       *  string, but specify no value for it.
       */
      StrLen(result) = slen;
      Protect(StrLoc(result) = alcstr(NULL, slen), runerr(0));
      str1 = StrLoc(s1);
      str2 = StrLoc(result);

      /*
       * Run through the string, using values in maptab to do the
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       *  mapping.
       */
      while (slen-- > 0)
         *str2++ = maptab[(*str1++)&0377];

      return result;
      }
end

The mapping is  done using the character array  maptab.  This  array is  set  up by first
assigning every possible character to its own position in maptab and then replacing the
characters at positions corresponding to characters in s2 by the corresponding characters
in  s3.  Note  that  if  a  character  occurs  more  than  once  in  s2,  its  last  (rightmost)
correspondence with a character in s3 applies.

To avoid rebuilding maptab unnecessarily, this step is bypassed if map() is called with
the same values of  s2 and s3 as in the previous call. The global variabIes maps2 and
maps3 are used to hold these "cached" values. The macro  EqlDesc(d1,d2) tests the
equivalence of the descriptors d1 and d2.

The function  map() is  an example of a function that  defaults  null-valued arguments.
Omitted arguments are supplied as null values. The defaults for s2 and s3 are &ucase
and &lcase, respectively. Consequently,

map(s)

is equivalent to
map(s, &ucase, &lcase)

The  macro  ChkNull(d) tests  whether  or  not  d is  null.  The  values  of  &ucase and
&lcase are in the global constants ucase and lcase.

5.2 Csets
Since Icon uses 8-bit characters, regardless of the computer on which it is implemented,
there are 256 different characters that can occur in csets. A cset block consists of the
usual title containing the cset type code followed by a word that contains the number of
characters  in  the  cset.  Next,  there are  words  containing a  total  of  256 bits.  Each bit
represents one character, with a bit value of 1 indicating that the character is present in
the cset  and a bit  value of  0 indicating it  is  absent.  An example  is  the value of the
keyword &ascii:

The  first  128  bits  are  1,  since  these  are  the  bits  that  correspond  to  those  in  ASCII
character set.

The C structure for a cset block is
   struct b_cset { /* cset block */
      word title; /* T_Cset */
      word size; /* size of cset */
      unsigned int bits [CsetSize]; /* array of bits */
   };
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where CsetSize is the number of words required to make up a total of 256 bits. CsetSize
is 8 on a computer with 32-bit words and 4 on a computer with 64-bit words.

Cset  operations  are  comparatively  straightforward.  The  characters  in  a  cset  are
represented  by a  bit  vector  that  is  divided  into  words  to  accommodate  conventional
computer architectures. For example, the C code for cset complementation is
operator{1} ~ compl(x)
   /*
    * x must be a cset.
    */
   if !cnv:tmp_cset(x) then
      runerr(104, x)

   abstract {
      return cset
      }
   body {
      register int i;
      struct b_cset *cp, *cpx;

      /*
       * Allocate a new cset and then copy each cset word from
       *  x into the new cset words, complementing each bit.
       */
      Protect(cp = alccset(), runerr(0));
      /* must come after alccset() since BlkLoc(x) could move */
      cpx = (struct b_cset *)BlkLoc(x); 
      for (i = 0; i < CsetSize; i++) 
          cp->bits[i] = ~cpx->bits[i];
      return cset(cp);
      }
end

RETROSPECTIVE:  The  central  role  of  strings  in  Icon and  the  nature  of  the  operations
performed on them leads to a representation of string data that is distinct from other data.
The qualifier representation is particularly important in providing direct access to string
length and in allowing the construction of substrings without the allocation of additional
storage. The penalty paid is that a separate test must be performed to distinguish strings
from all other kinds of values.

The ability to assign to subscripted strings causes serious implementation problems. The
trapped-variable mechanism provides a solution, but it does so at considerable expense in
the complexity of code in the run-time system as well as storage allocation for trapped-
variable blocks. This expense is incurred even if assignment is not made to a subscripted
string.

EXERCISES
5.1 What are the ramifications of Icon's use of the 256-bit ASCII character set, regardless

of the "native" character set of the computer on which Icon is implemented?

5.2 Catalog all  the operations  on strings in  Icon and point  out  any that  might  cause
special implementation problems. Indicate the aspects of strings and string operations
in Icon that are the most important in terms of memory requirements and processing
speed.
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5.3 List all the operations in Icon that require the allocation of space for the construction
of strings.

5.4 It has been suggested that it would be worth trying to avoid duplicate allocation of the
same string by searching the string region for a newly created string to see if it already
exists before allocating the space for it. Evaluate this proposal.

5.5 Consider the following four expressions:
 s1 [i] := s2
 s1 [i+:1] := s2
 a1 [i] := a2
 a1 [i+:1] := a2
where  s1 and  s2 have string values and  a1 and  a2 have list values. Describe the
essential differences between the string and list cases. Explain why these differences
indicate flaws in language design. Suggest an alternative.

5.6 The substring trapped-variable concept has the advantage of making it possible to
handle  all  the  contexts  in  which  string-subscripting  expressions  can  occur.  It  is
expensive, however, in terms of storage utilization. Analyze the impact of this feature
on the performance of "typical" Icon programs.

5.7 Since the contexts in which most subscripting expressions occur can be determined,
describe how to handle these without using trapped variables.

5.8 If a subscripting expression is applied to a result that is not a variable, it is erroneous
to  use  such  an  expression  in  an  assignment  context.  In  what  situations  can  the
translator detect this error? Are there any situations in which a subscripting expression
is applied to a variable but in which the expression cannot be used in an assignment
context?

5.9 There are some potential advantages to unifying the keyword and substring trapped-
variable mechanisms into a single mechanism in which all trapped variables would
have  pointers  to  functions  for  dereferencing  and  assignment.  What  are  the
disadvantages of such a unification?

5.10 Presumably,  it  is unlikely for a programmer to have a constructive need for the
polymorphic aspect of subscripting expressions. Or is it? If it is unlikely, provide a
supporting argument. On the other hand, if there are situations in which this capability
is useful, describe them and give examples.

5.11 In some uses of  map(s1, s2, s3),  s1 and  s2 remain fixed while  s3 varies
(Griswold 1980b). Devise a heuristic that takes advantage of such usage.
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Chapter 6: Lists
PERSPECTIVE:Most programming languages support some form of vector or array data type
in which elements can be referenced by position. Icon's list data type fills this need, but it
differs from similar types in many languages in that Icon lists  are constructed during
program execution instead of being declared during compilation. Therefore, the size of a
list may not be known until run time.

Icon's lists are data objects. They can be assigned to variables and passed as arguments to
functions. They are not copied when this is done; in fact, a value of type list is simply a
descriptor that points to the structure that contains the list elements. These aspects of lists
are  shared  by  several  other  Icon  data  types  and  do  not  add  anything  new  to  the
implementation. The attribute of lists that presents the most challenging implementation
problem  is  their  ability  to  grow  and  shrink  by  the  use  of  stack  and  queue  access
mechanisms.

Lists present different faces to the programmer, depending on how they are used. They
may be static vectors referenced by position or they may be dynamic changing stacks or
queues. It might seem that having a data structure with such apparently discordant access
mechanisms  would  be  awkward  and  undesirable.  In  practice,  Icon's  lists  provide  a
remarkably flexible mechanism for dealing with many common programming problems.
The two ways of manipulating lists are rarely intermixed. When both aspects are needed,
they usually are needed at different times. For example, the number of elements needed in
a list  often is  not known when the list  is created. Such a list  can be created with no
elements, and the elements can be pushed onto it as they are produced. Once such a list
has been constructed, it may be accessed by position with no further change in its size.

6.1 Structures for Lists
The fusion of vector, stack, and queue organizations is reflected in the implementation of
Icon  by  relatively  complicated  structures  that  are  designed  to  provide  a  reasonable
compromise between the conflicting requirements of the different access mechanisms.

A list consists of a fixed-size list-header block, which contains the usual title, the current
size of the list (the number of elements in it), and descriptors that point to the first and
last  blocks on a doubly-linked chain of  list-element blocks  that contain the actual list
elements. List-element blocks vary in size.

A list-element block contains the usual title, the size of the block in bytes three words
used to determine the locations of elements in the list-element block and descriptors that
point to the next and previous list-element blocks, if any.  A null pointer  (in Unicon, a
pointer back to the list header block) indicates the absence of a pointer to another list-
element  block.  Following this  data,  there are slots  for elements.  Slots  always contain
valid descriptors, even if they are not used to hold list elements.

The structure declarations for list-header blocks and list-element blocks are
   struct b_list { /* list-header block */
      word title; /* T_List */
      word size; /* current list size */
      word id; /* identification number */
      union block *listhead; /* first list-element block */
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      union block *listtail; /* last list-element block */
   };
   struct b_lelem { /* list-element block */
      word title; /* T_Lelem */
      word blksize; /* size of block */
      word nslots; /* total number of slots */
      word first; /* index of first used slot */
      word nused; /* number of used slots */
      union block *listprev;  /* previous list-element block */
      union block *listnext;  /* next list-element block */
      struct descrip lslots[1]; /* array of slots */
   };

When a list is created, either by
   list(n, x)

or by
   [x1 ,x2, ..., xn]

there is only one list-element block. Other list-element blocks may be added to the chain
as the result of pushs or puts.

List-element blocks have a minimum number of slots. This allows some expansion room
for adding elements to lists, such as the empty list, that are small initially. The minimum
number of slots is given by MinListSlots, which normally is eight. In the examples that
follow, the value of MinListSlots is assumed to be four in order to keep the diagrams to a
manageable size.

The code for the list function is
function{1} list(n, x)
   if is:set(n) then {
      abstract {
         return new list(store[type(n).set_elem])
       }
      body {
         struct descrip d;
         cnv_list(&n, &d); /* can't fail, we know n is a set */
         return d;
         }
      }
   else {
      if !def:C_integer(n, 0L) then

 runerr(101, n)

   abstract {
      return new list(type(x))
      }

   body {
      tended struct b_list *hp;
      register word i, size;
      word nslots;
      register struct b_lelem *bp; /* doesnt need to be tended */

      nslots = size = n;

      /*
       * Ensure that the size is positive and that the
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       *  list-element block has at least MinListSlots slots.
       */
      if (size < 0) {
         irunerr(205, n);
         errorfail;
         }
      if (nslots == 0)
         nslots = MinListSlots;
      /*
       * Allocate the list-header block and a list-element block.
       *  nslots is the number of slots in the list-element
       *  block while size is the number of elements in the list.
       */
      Protect(hp = alclist_raw(size, nslots), runerr(0));
      bp = (struct b_lelem *)hp->listhead;

      /*
       * Initialize each slot.
       */
      for (i = 0; i < size; i++)
         bp->lslots[i] = x;

      Desc_EVValD(hp, E_Lcreate, D_List);

      /*
       * Return the new list.
       */
      return list(hp);
      }
   }
end

The data structures produced for a list are illustrated by the result of evaluating
   a := list(1, 4)

which produces a one-element list containing the value 4:
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Data Structures for list(1,4)

Note that there is only one list-element block and that the slot indexing in the block is
zero-based. Unused slots contain null values that are logically inaccessible.

6.2 Queue and Stack Access
Elements  in  a  list-element  block  are  stored  as  a  doubly-linked  circular  queue.  If  an
element is added to the end of the list a, as in
   put(a, 5)

the elements of the list  are 4 and 5. The value is added to the '"end" of the last list-
element block, assuming there is an unused slot (as there is in this case). The code in
put() to do this is
   /*
    * Point hp to the list-header block and bp to the last
    * list-element block.
    */
   hp = (struct b_list *)BlkLoc(x);
   bp = (struct b_lelem *) hp->listtail;
   /*
    * If the last list-element block is full, allocate a new
    * list-element block, make it the first list-element block,
    * and make it the next block of the former last list-element
    * block.
    */
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 if (bp->nused >= bp->nslots) {
    /*
     * Set i to the size of block to allocate.
     */
    i = hp->size / two;
    if (i < MinListSlots)
       i = MinListSlots;

#ifdef MaxListSlots
    if (i > MaxListSlots)
       i = MaxListSlots;

#endif /* MaxListSlots */
    /*
     * Allocate a new list element block.  If the block
     *  can't be allocated, try smaller blocks.
     */
    while ((bp = alclstb(i, (word)0, (word)0)) == NULL) {
       i /= 4;
       if (i < MinListSlots)

  runerr(0);
       }

    hp->listtail->lelem.listnext = (union block *) bp;
    bp->listprev = hp->listtail;
    hp->listtail = (union block *) bp;
    }

   /*
    * Set i to position of new last element and assign val to
    * that element.
    */
   i = bp->first + bp->nused;
   if (i >= bp->nslots)
      i -= bp->nslots;

 bp->lslots[i] = dp[val];

 /*
  * Adjust block usage count and current list size.
  */
 bp->nused++;
 hp->size++;
 }

      /*
       * Return the list.
       */
      return x;
      }
end

The effect on the list-header block and list-element block is:
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Note that the increase in the number of elements in the header block and in the number of
slots used in the list-element block.

If an element is added to the beginning of a list, as in
   push(a,3)

the elements of the list are 3, 4, and 5. The new element is put at the '"beginning" of the
first list-element block. The result is

The List Element-Block after a push
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Note that the "beginning," which is before the first physical slot in the list-element block,
is the last physical slot.  The locations of elements that are in a list-element block are
determined by the three integers at the head of the list element block. "Removal" of an
element by a pop, get, or pull does not shorten the list-element block or overwrite the
element; the element merely becomes inaccessible.

If an element is added to a list and no more slots are available in the appropriate list-
element  block,  a  new  list-element  block  is  allocated  and  linked  in.  For  example,
following evaluation of
   push(a.2)
   push(a.1)

the list elements are 1,2,3,4, and 5. The resulting structures are

The Addition of a List-Element Block
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As elements are removed from a list by pop (which is synonymous with get) or pull. The
indices in the appropriate list-element block are adjusted. The code for pop is
int c_get(hp, res)
struct b_list *hp;
struct descrip *res;
{
   register word i;
   register struct b_lelem *bp;

   /*
    * Fail if the list is empty.
    */
   if (hp->size <= 0)
      return 0;

   /*
    * Point bp at the first list block.  If the first block has
    *  no elements in use, point bp at the next list block.
    */
   bp = (struct b_lelem *) hp->listhead;
   if (bp->nused <= 0) {
      bp = (struct b_lelem *) bp->listnext;
      hp->listhead = (union block *) bp;
      bp->listprev = NULL;
      }

   /*
    * Locate first element and assign it to result for return.
    */
   i = bp->first;
   *res = bp->lslots[i];

   /*
    * Set bp->first to new first element, or 0 if the block is
    *  now empty.  Decrement the usage count for the block and
    *  the size of the list.
    */
   if (++i >= bp->nslots)
      i = 0;
   bp->first = i;
   bp->nused--;
   hp->size--;
   return 1;
}

where the c_get() helper function is invoked from RTL as follows:
function{0,1} get_or_pop(x)
   if !is:list(x) then
      runerr(108, x)

   abstract {
      return store[type(x).lst_elem]
      }

   body {
      if (!c_get((struct b_list *)BlkLoc(x), &result)) fail;
      return result;
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      }
end

Thus, as a result of
   pop(a)

the list elements are 2, 3, 4, and 5. The resulting structures are

The Result of Removing Elements from a List-Element Block

Note that the first list-element block is still linked in the chain, even though it no longer
contains any elements that are logically accessible. A list-element  block is not removed
from the chain when it becomes empty. It is removed only when an element is removed
from a list that already has an empty list-element block. Thus, there is always at least one
list-element  block on the chain,  even if  the list  is  empty.  Aside from simplifying the
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access  to  list-element  blocks  from the list-header  block,  this  strategy avoids  repeated
allocation  in  the  case  that  pop/push  pairs  occur  at  the  boundary of  two  list-element
blocks.

Continuing the previous example,
   pop(a)

leaves the list elements 3, 4, and 5. The empty list-element block is removed from the
chain:

Removal of an Empty List-Element Block

Note that the value 2 is still physically in the list-element block, although it is logically
inaccessible.

6.3 Positional Access
Positional reference of the form  a[i] requires locating the correct list-element block.
Out-of-range references can be determined by examining the list-header block. If the list
has  several  list-element  blocks,  this  involves  linking through the  list-element  blocks,
while keeping track of the count of elements in each block until the appropriate one is
reached. The result of evaluating a[i] is a variable that points to the appropriate slot.

The portion of the subscripting code that handles lists is
   type_case dx of {
      list: {
         abstract {
            return type(dx).lst_elem
            }
         /*
          * Make sure that y is a C integer.
          */
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         if !cnv:C_integer(y) then {
    /*
     * If it isn't a C integer, but is a large integer,
     * fail on the out-of-range index.
     */
    if cnv : integer(y) then inline { fail; }
    runerr(101, y)
    }

         body {
            word i, j;
            register union block *bp; /* no need to be tended */
            struct b_list *lp;    /* doesn't need to be tended */

    /*
     * Make sure that subscript y is in range.
     */

            lp = (struct b_list *)BlkLoc(dx);
            i = cvpos((long)y, (long)lp->size);
            if (i == CvtFail || i > lp->size)
               fail;
            /*
             * Locate the list-element block containing the
             *  desired element.
             */
            bp = lp->listhead;
            j = 1;

    /*
     * y is in range, so bp can never be null here. If it
     * was, a memory violation would occur in the code that
     * follows, anyhow, so exiting the loop on a NULL bp
     * makes no sense.
     */
   while (i >= j + bp->lelem.nused) {
      j += bp->lelem.nused;
      bp = BlkLoc(bp->lelem.listnext);
      }

   /*
    * Locate desired element and return a pointer to it.
    */
   i += bp->lelem.first - j;
   if (i >= bp->lelem.nslots)
      i -= bp->lelem.nslots;
   return struct_var(&bp->lelem.lslots[i], bp);
   }
 }

For the preceding example, a[3] produces a variable that points to the descriptor for the
value 5:
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Referencing a List Element

Note the offset of eleven words in the d-word of the variable. This is present so that the
title of the block to which the variable points can be located in case there is a garbage
collection. See Chapter 11 for details.

RETROSPECTIVE: The structures used for implementing lists are relatively complicated, but
they provide a reasonable compromise, both in the utilization of storage and access speed,
that accommodates different access mechanisms.

Using a chain of list-element blocks allows lists to grow in size without limit. From the
viewpoint  of positional  access,  this  amounts  to  segmentation.  This  segmentation  only
occurs, however, when elements are added to a list.  The use of circular queues within list-
element blocks allows elements to be removed and added without wasting space.

EXERCISES
6.1 Diagram the structures that result from the evaluation of the following expressions:

 graph := ["a",,]
 graph[2] := graph[3] := graph

6.2 How much space does an empty list occupy?

6.3 The portions of the structures for a list that are not occupied by elements of the list
constitute  overhead.  Calculate  the  percentage  of  overhead  in  the  following  lists.
Assume that the minimum number of slots in a list-element block is eight.
 a := []
 a := [1, 2]
 a := [1, 2, 3, 4, 5]
 a := list(100)
 a := []; every put(a, 1 to 100)
How do these figures vary as a function of the minimum number of slots in a list-
element block?
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6.4 What  are the implications  of not  "zeroing" list  elements  when they are logically
removed by a pop, get, or pull?

6.5 When a list-element block is unlinked as the result of a pop, get, or pull,  are the
elements in it really inaccessible to the source program?

6.6 There is considerable overhead involved in the implementation of  lists  to support
both positional access and stack and queue access mechanisms. Suppose the language
were changed so that stack and queue access mechanisms applied only to lists that
were initially empty. What would the likely impact be on existing Icon programs?
How could the implementation take advantage of this change?

6.7 As elements are added to lists, more list-element blocks are added and they tend to
become "fragmented." Is it feasible to reorganize such lists, combining the elements in
many list-element blocks into one large block? If when and how could this be done?

6.8 A suggested alternative to maintaining a chain of list-element blocks is to allocate a
larger block when space is needed and copy elements from the previous block into it.
Criticize this proposal.

6.9 Suppose it were possible to insert elements in the middle of lists, rather than only at
the ends. How might this feature be implemented?
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Chapter 7: Sets and Tables
PERSPECTIVE:  Sets and tables are data aggregates that are very useful for a number of
common programming tasks.  Nevertheless,  few programming languages support  these
data  types,  with  the  notable  exceptions  of  Sail  (Reiser  1976)  and  SETL  (Dewar,
Schonberg, and Schwartz 1981). There are many reasons why these obviously useful data
types  are  not  found  in  most  programming  languages,  but  perceived  implementation
problems certainly rank high among them. If only for this reason, their implementation in
Icon is worth studying.

Historically, tables in Icon were inherited from SNOBOL4 and SL5. Sets came later, as
an extension to Icon, and were designed and implemented as a class project. Although
sets were a late addition to Icon, they are simpler than tables. Nonetheless, they present
many  of  the  same  implementation  problems  that  tables  do.  Consequently,  sets  are
considered here first.

Sets and the operations on them support the familiar mathematical concepts of finite sets:
membership,  the  insertion  and  deletion  of  members,  and  the  operations  of  union,
intersection, and difference. What is interesting about a set in Icon is that it can contain
members  of  any data  type.  This  is  certainly a  case  where  heterogeneity significantly
increases  the  usefulness  of  a  data  aggregate  without  adding  to  the  difficulty  of  the
implementation, per se.

The ability of a set to grow and shrink in size influences the implementation significantly.
Efficient access to members of a set, which is needed for testing membership as well as
the addition and deletion of members, is an important consideration, since sets can be
arbitrarily large.

Tables have more structure than sets. Abstractly, a table is a set of pairs that represents a
many-to-one relationship-a function. In this sense, the default value of a table provides an
extension of the partial function represented by the entry and assigned value pairs to a
complete function over all possible entry values. Programmers, however, tend to view
tables in a more restricted way, using them to tabulate the attributes of a set of values of
interest. In fact, before sets were added to Icon, tables were often used to simulate sets by
associating a specific assigned value with membership.

7.1 Sets

7.1.1 Data Organization for Sets

Hash lookup and linked lists are used to provide an efficient way of locating set members.
For every set there is a set-header block that contains a word for the number of members
in the set and slots that serve as heads for (possibly empty) linked lists of set-element
blocks. The number of slots is an implementation parameter. There are thirty-seven slots
in table-header blocks on computers with large address spaces but only thirteen slots on
computers with small address spaces.

The structure for an empty set, produced by

   s := set([])

is
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Each member of a set  is  contained in a separate set-element  block.  When a value is
looked up in a set (for example, to add a new member), a hash number is computed from
this value. The absolute value of the remainder resulting from dividing the hash number
by the number of slots is used to select a slot.

Each  set-element  block  contains  a  descriptor  for  its  value,  the  corresponding  hash
number,  and  a  pointer  to  the  next  set-element  block,  if  any,  on  the  linked  list.  For
example, the set-element block for the integer 39 is:

As illustrated by this figure, the hash number for an integer is just the value of the integer.
This member goes in slot 2 on computers with large address spaces, since its remainder
on division by the number of slots is two. Hash computation is discussed in detail in Sec.
7.3.

The structures for the set
s := set([39,2])

are
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This example was chosen for illustration, since both 2 and 39 go in slot 2.

In searching the list, the hash number of the value being looked up is compared with the
hash numbers in the set-element blocks. If a match is found, the value in the set-element
block mayor may not be the same as the value being looked up, since collisions in the
hash computation are unavoidable. Thus, if the hash numbers are the same, it is necessary
to determine whether or not their values are equivalent. The comparison that is used is the
same one that is used by the source-language operation x === y.

To improve the performance of the lookup process, the set-element blocks in each linked
list  are  ordered  by their  hash  numbers.  When  a  linked  list  of  set-element  blocks  is
examined, the search stops if a hash number of an element on the list is greater than the
hash number of the value being looked up.

If the value is not found and the lookup is being performed to insert a new member, a set-
element block for the new member is created and linked into the list at that point. For
example,
   insert(s, -39)

inserts a set-element block for -39 at the head of the list in slot 2, since its hash value is
-39.  The  word  in  the  set-header  block  that  contains  the  number  of  members  is
incremented to reflect the insertion.

7.1.2 Set Operations

The set operations of union, intersection, and difference all produce new sets and do not
modify their arguments.

In the case of union, a copy of the larger set is made first to provide the basis for the
union. This involves not only copying the set-header block but also all of its set-element
blocks. These are linked together as in the original set, and no lookup is required. After
this copy is made, each member of the set for the other argument is inserted in the copy,
using the same technique that is used in insert. The larger set is copied, since copying
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does not require lookup and the possible comparison of values that insertion does. The
insertion of a member from the second set may take longer, however, since the linked
lists in the copy may be longer.

In the case of intersection, a copy of the smaller argument set is made, omitting any of its
members  that  are  not  in  the  larger  set.  As  with  union,  this  strategy is  designed  to
minimize the number of lookups.

For the difference of two sets, a copy of the first  argument  set  is made,  adding only
elements that are not in the second argument. This involves looking up all members in the
first argument set in the second argument set.

7.2 Tables

7.2.1 Data Organization for Tables

The implementation of tables is similar to the implementation of sets, with a header block
containing slots for elements ordered by hash numbers. A table-header block contains an
extra descriptor for the default assigned value.

An empty table with the default assigned value 0 is produced by
   t := table(0)

The structure of the table-header block is

Table lookup is more complicated than set lookup, since table elements contain both an
entry value  and an assigned value.  Furthermore,  table  elements  can be referenced by
variables.  A  new  table  element  is  created  as  a  byproduct  of  assignment  to  a  table
reference with an entry value that is not in the table.
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The result of evaluating an assignment expression such as
   t[39] := 1

illustrates the structure of a table-element block:

In the case of a table reference such as  t[x], the hash number for the entry value x is
used to select a slot, and the corresponding list is searched for a table-element block that
contains the same entry value. As in the case of sets, comparison is first made using hash
numbers; values are compared only if their hash numbers are the same.

If a table-element block with a matching entry value is found, a variable that points to the
corresponding  assigned  value  is  produced.  For  example,  if  39  is  in  t  as  illustrated
previously, t[39] produces

If this variable is dereferenced, as in
   write(t[39])

the value 1 is written. On the other hand, if an assignment is made to this variable, as in
   t[39] +:= 1

the assigned value in the table-element block is changed:

If a table element with a matching entry value is not found, the situation is very similar to
that in a subscripted string: the operation to be performed depends on whether the table
reference is used in a dereferencing or assignment context. In a dereferencing context, the
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default value for the table is produced, while in an assignment context, a new element is
added to the table.

The approach taken is similar to that for subscripted strings: a trapped variable is created.
As  with  substring  trapped  variables,  table-element  trapped  variables  contain  the
information  that  is  necessary  to  carry  out  the  required  computation  for  either
dereferencing or assignment.

Suppose, for example, that the entry value 36 is not in the table t. Then t[36] produces
the following result:

Note that the size of a table-element trapped-variable block is the same as the size of a
table-element  block. The last  descriptor in the table-element  trapped-variable  block is
reserved for subsequent use, as described below.

If this trapped variable is dereferenced, as in
   write(t[36])

the  default  assigned value,  0,  which  is  in  the  table-header  block  for  t,  is  produced.
Unfortunately, the situation is not always this simple. It is possible for elements to be
inserted in a table between the time the table-element trapped-variable  block is created
and the time it is dereferenced. An example is
   write(t[36] , t[36] := 2)

Since functions  do not  dereference their  arguments  until  all  the arguments  have been
evaluated, the result of dereferencing the first argument of write should be 2, not 0. In
order to handle such cases, when a table-element  trapped variable is  dereferenced, its
linked list in the table must be searched again to determine whether to return the assigned
value of a newly inserted element or to return the default value.

If an assignment is made to the table reference, as in
   t[36] +:= 1

the table-element trapped-variable block is converted to a table-element block with the
assigned value  stored in  the  reserved descriptor  of  the  table-element  trapped-variable
block.  The table-element  block is  then linked in  the appropriate  place.  Note that  the
structures of table-element blocks and table-element trapped-variable blocks are the same,
allowing this conversion without allocating a new table-element block.

It then is necessary to search the linked list for its slot again to determine the place to
insert the table-element block. As in the case of dereferencing, elements may have been
inserted in the table between the time the table-element trapped variable was created and
the time a value is assigned to it. Normally, no matching entry is found, and the table-
element trapped-variable block, transformed into a table-element block, is inserted with
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the  new  assigned  value.  If  a  matching  entry  is  found,  its  assigned  value  is  simply
changed, and the block is discarded.

Note that reference to a value that is not in a table requires only one computation of its
hash value, but two lookups are required in the linked list of table-element blocks for its
slot.

7.3 Hashing Functions
Ideally, a hash computation should produce a different result for every different value to
which it is applied, and the distribution of the remainder on division by the number of
slots should be uniform. Even approaching this ideal requires an impractical amount of
computation  and  space.  In  practice,  it  is  desirable  to  have  a  fast  computation  that
produces few collisions.

The subject of hash computation has been studied extensively and there is a substantial
body  of  knowledge  concerning  useful  techniques  (Knuth  1973,  pp.  506-549).  For
example, it is known that the number of slots should be a prime that is not close to a
power of two. This consideration motivated the choices of 37 and 13 for computers with
large and small address spaces, respectively. In general, there is a trade-off between faster
lookup, on the average, and more storage overhead.

In most situations in which hashing techniques are used, all the values for which hash
computations are performed are strings. In Icon, however, any kind of value can be the
member of a set or the entry value in a table. The hash computation must, therefore, apply
to any type of value. The support routine for computing hash numbers is
uword hash(dp)
dptr dp;
   {
   register char *s;
   register uword i;
   register word j, n;
   register unsigned int *bitarr;
   double r;

   if (Qual(*dp)) {
   hashstring:
      /*
       * Compute the hash value for the string based on a scaled 
       *  sum of its first ten characters, plus its length.
       */
      i = 0;
      s = StrLoc(*dp);
      j = n = StrLen(*dp);
      if (j > 10) /* limit scan to first ten characters */
         j = 10;
      while (j-- > 0) {
         i += *s++ & 0xFF; /* add unsigned version of char */
         i *= 37; /* scale by a nice prime number */
         }
      i += n; /* add (untruncated) string length */
      }

   else {
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      switch (Type(*dp)) {
         /*
          * The hash value of an integer is itself times eight 
          *  times the golden ratio.  We do this calculation in 
          *  fixed point.  We don't just use the integer itself, 
          *  for that would give bad results with sets having
          *  entries that are multiples of a power of two.
          */
         case T_Integer:
            i = (13255 * (uword)IntVal(*dp)) >> 10;
            break;

         /*
          * The hash value of a bignum is based on its length and
          *  its most and least significant digits.
          */

 case T_Lrgint:
    {
    struct b_bignum *b = &BlkLoc(*dp)->bignumblk;

    i = ((b->lsd - b->msd) << 16) ^
(b->digits[b->msd] << 8) ^ b->digits[b->lsd];

    }
    break;

         /*
          * The hash value of a real number is itself times a 
          *  constant, converted to an unsigned integer.  The 
          *  intent is to scramble the bits well, in the case of 
          *  integral values, and to scale up fractional values 
          *  so they don't all land in the same bin. The constant
          *  below is 32749 / 29, the quotient of two primes,
          *  and was observed to work well in empirical testing.
          */
         case T_Real:
            GetReal(dp,r);
            i = r * 1129.27586206896558;
            break;

         /*
          * The hash value of a cset is based on a convoluted 
          *  combination of all its bits.
          */
         case T_Cset:
            i = 0;
            bitarr = BlkLoc(*dp)->cset.bits + CsetSize - 1;
            for (j = 0; j < CsetSize; j++) {
               i += *bitarr--;
               i *= 37; /* better distribution */
               }
            i %= 1048583; /* scramble the bits */
            break;

         /*
          * The hash value of a list, set, table, or record is 
          *  its id, hashed like an integer.
          */
         case T_List:
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            i = (13255 * BlkLoc(*dp)->list.id) >> 10;
            break;

         case T_Set:
            i = (13255 * BlkLoc(*dp)->set.id) >> 10;
            break;

         case T_Table:
            i = (13255 * BlkLoc(*dp)->table.id) >> 10;
            break;

         case T_Record:
            i = (13255 * BlkLoc(*dp)->record.id) >> 10;
            break;

 case T_Proc:
    dp = &(BlkLoc(*dp)->proc.pname);
    goto hashstring;

         default:
            /*
             * For other types, use the type code as the hash
             *  value.
             */
            i = Type(*dp);
            break;
         }
      }

   return i;
   }

To hash a string, its characters are added together as integers. At most ten characters are
used, since strings can be very long and adding many characters does not improve the
hashing sufficiently to justify the time spent in the computation. The maximum of ten is,
however, ad hoc. To provide a measure of discrimination between strings with the same
initial  substring,  the  length  of  the  string is  added to  the  sum of  the  characters.  This
technique for hashing strings is not sophisticated, and others that produce better hashing
results are known. However, the computation is simple, easy to write in C, and works
well in practice.

For a numeric type, the hash value is derived from the number. In the case of a cset, the
words containing the bits for the cset are combined using the exclusive-or operation.

The remaining data types pose an interesting problem. Hash computation must be based
on attributes of a value that are invariant with time. Some types, such as files, have such
attributes. On the other hand, there is no time-invariant attribute that distinguishes one list
from another. The size of a list may change, the elements in it may change, and even its
location in memory may change as the result of garbage collection. For a list,  its only
time-invariant attribute is its type.

This presents a dilemma–the type of such a value can be used as its hash number, but if
that is done, all values of that type are in the same slot and have the same hash number.
Lookup for these values degenerates to a linear search. The alternative is to add some
time-invariant attribute, such as a serial number, to these values. Icon does this, at the
cost of increasing the size of every such value.
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RETROSPECTIVE: Few programming languages support sets or tables with Icon's generality.
The  implementation  of  sets  and  tables  provides  a  clear  focus  on  the  generality  of
descriptors and the uniformity with which different kinds of data are treated in Icon.

Since sets and tables may be very large, efficient lookup is an important concern. The
hashing and chaining technique used is only one of many possibilities. However, there
must  be  a  mechanism for  determining  the  equivalence  of  values  independent  of  the
structure in which they are stored.

The  fact  that  elements  in  tables  are  accessed  by subscripting  expressions  introduces
several  complexities.  In  particular,  the  fact  that  the  contents  of  the  table  that  is
subscripted may change between the time the subscripting expression is evaluated and the
time it is dereferenced or assigned to introduces the necessity of two lookups for every
table reference.

Hashing  a  variety  of  different  types  of  data  raises  interesting  issues.  The  hashing
techniques  used  by  Icon  are  not  sophisticated  and  there  is  considerable  room  for
improvement. The trade-offs involved are difficult to evaluate, however.

EXERCISES

7.1Contrast  sets  and  csets  with  respect  to  their  implementation,  their  usefulness  in
programming, and the efficiency of operations on them.

7.2 Give  an  example  of  a  situation  in  which  the  heterogeneity of  sets  is  useful  in
programming.

7.3 How much space does an empty set occupy?

7.4 Diagram the structures resulting from the evaluation of the following expressions:
 t := table()
 t[t] := t

7.5 There are many sophisticated data structures that are designed to ensure efficient
lookup in data aggregates like sets and tables (Gonnet 1984). Consider the importance
of speed of lookup in sets  and tables in  Icon and the advantages that  these more
sophisticated data structures might supply.

7.6 Some of the more sophisticated data structures mentioned in the preceding exercise
have  been  tried  experimentally  in  Icon  and  either  have  introduced  unexpected
implementation  problems  or  have  not  provided  a  significant  improvement  in
performance. What are possible reasons for these disappointing results?

7.7 Icon goes to a lot of trouble to avoid adding table-element blocks to a table unless an
assignment is made to them. Suppose a table-element block were simply added when
a reference was made to an entry value that is not in the table.

• How would this simplify the implementation?

• What  positive  and  negative  consequences  could  this  change  have  on  the
running speed and space required during program execution?

• Give examples of types of programs for which the change would have positive
and negative effects on performance, respectively.
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• Would  this  change  be  transparent  to  the  Icon  programmer,  not  counting
possible time and space differences?

7.8There is space in a table-element trapped-variable block to put the default value for
the table. Why is this not done?

7.9 What is the consequence of evaluating the following expressions?
   t := table(0)
   t[37] := 2
   write(t[37], t := table(1))

What would happen if the last line given previously were
   write(t[37],t := list(100,3))

or
   write(t[37], t := "hello")

7.10 Give examples of different strings that have the same hash numbers.

7.11 Design a method for hashing strings that produces a better distribution than the the
current one.

7.12 What attribute of a table is time-invariant?

7.13 What kinds of symptoms might  result  from a hashing computation based on an
attribute of a value that is not time-invariant?
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Chapter 8: The Interpreter
PERSPECTIVE:  The interpreter provides a software realization of Icon's virtual machine.
This machine is stack-based. The basic units on which the Icon virtual machine operates
are  descriptors.  The  instructions  for  the  virtual  machine  consist  of  operations  that
manipulate the stack, call C functions that carry out the built-in operations of Icon, and
manage  the  flow  of  control.  The  Icon  interpreter  executes  these  virtual  machine
instructions. It consists of a loop in which a virtual machine instruction is fetched and
control is transferred to a section of code to perform the corresponding operation.

8.1 Stack-Based Evaluation
Virtual machine instructions typically push and pop data on the interpreter stack. The
interpreter stack, which is distinct from the stack used for calls of C functions, is an array
of words. The variable sp points to the last word pushed on the interpreter stack. Pushing
increments  int, while popping decrements it. When the interpreter executes code that
corresponds to a built-in operation in Icon, it pushes descriptors for the arguments on the
interpreter stack and calls a C function corresponding to that operation with a pointer to
the place on the interpreter stack where the arguments begin. A null descriptor is pushed
first to serve as a "zeroth" argument (Arg0) that receives, by convention, the result of the
computation and becomes the top descriptor on the stack when the C function returns. On
a more conventional virtual machine, the result of the computation would be pushed on
the stack, instead of being returned in an argument. The latter method is more convenient
in Icon.

To illustrate this basic mechanism, consider the expression
   ?10

which  produces  a  randomly  selected  integer  between  1  and  10,  inclusive.  The
corresponding virtual machine instructions are
   pnull # push null descriptor for the result
   int 10 # push descriptor for the integer 10
   random # compute random value

The instructions  pnull and  int operate directly on the stack. The instruction  random
calls a C function that computes random values.

The pnull instruction pushes a null descriptor:
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The int instruction pushes a descriptor for the integer 10:

Suppose that the C function for random computes 3. It replaces the null value of Arg0 by
a descriptor for the integer 3. When it returns, sp is set to point to Arg0 and the situation
is

8.2 Virtual Machine Instructions
The various  aspects  of  expressions  that  appear  in  Icon source-language programs are
reflected,  directly  or  indirectly,  in  the  instruction  set  for  the  Icon  virtual  machine.
References  to  constants  (literals)  and  identifiers  have  direct  correspondences  in  the
instruction  set  of the virtual  machine.  There is  a virtual  machine instruction  for each
source-language operator. This is possible, since the meaning of an operation is fixed and
cannot be changed during program execution. The meaning of a function call, however,
cannot be determined until it is evaluated, and there is a single virtual machine instruction
for function invocation. The invocation of functions is described in detail in Chapter 10.

There are several virtual machine instructions related to control structures and the unique
aspects of expression evaluation in Icon. These are discussed in the next two chapters. A
complete list of virtual machine instructions is given in Appendix B.

8.2.1 Constants

Four kinds of data can be represented literally in Icon programs: integers, strings, csets,
and real numbers. The four corresponding virtual machine instructions are

int n # integer n
str n, a # string of length n at address a
cset a # cset block at address a
real a # real block at address a

The values  of  integer  literals  appear  as  arguments  of  int  instructions.  In the  case  of
strings, the two arguments give its length and the address of its first character.

The string itself is constructed by the linker and is loaded into memory from the icode
file. For csets and real numbers, the linker constructs blocks, which are also loaded from
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the icode file. These blocks are identical in format to blocks that are constructed during
program execution.

The virtual machine instructions  str,  cset, and  real push appropriate descriptors to
reference the data as it appears in the icode. For example, the virtual machine instructions
for
   ?"aeiou"

are
   pnull
   str 5, a
   random

where a is  the address  of  the  string  "aeiou".  The  pnull instruction  pushes  a  null
descriptor as in the previous example:

      

The str instruction constructs a descriptor for the string "aeiou":

If random produces the string "o", this string replaces the null descriptor and the stack
becomes

8.2.2 Identifiers

From  the  viewpoint  of  the  interpreter,  there  are  four  kinds  of  identifiers:  global
identifiers, static identifiers, local identifiers, and arguments. The values of global and
static identifiers are in arrays of descriptors at fixed locations in memory. The values of
local identifiers and arguments, on the other hand, are kept on the stack as part of the
infonnation associated with a procedure call.
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The values of the arguments in the call of a procedure are pushed on the stack as the
result of the evaluation of expressions prior to the invocation of the procedure. The initial
null values for local identifiers are pushed on the stack when the procedure is called.

The portion of the stack between the arguments and local identifiers is fixed in size and
contains  information  that  is  saved  when  a  procedure  is  called.  This  information  is
described in Chapter 10.

There are four virtual machine instructions for constructing variable descriptors:
   global n
   static n
   arg n
   local n

Identifiers of each kind are numbered starting at zero. Consequently,
   arg 0

pushes a variable descriptor for the first argument.  In each case, the descriptor that is
pushed  on  the  stack  is  a  variable  that  points  to  the  descriptor  for  the  value  of  the
corresponding identifier.

Consider the expression
   j := 1

The corresponding virtual machine instructions are
   pnull # push null descriptor for the result
   local 2 # push variable descriptor for j
   int 1 # push descriptor for the integer 1
   asgn # perform assignment

When these instructions are interpreted. the succession of stack states is

The Stack after pnull
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The Stack after local 2
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The Stack after int 1

The Stack after asgn
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Note that asgn assigns the value of its second argument to j and overwrites Arg0 with a
variable descriptor, which is left on the top of the stack.

Similarly, the virtual machine instructions for
   z := x

are
   pnull
   local 0
   arg 0
   asgn

the states of the stack are

The Stack after pnull
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The Stack after local 0
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The Stack after arg 0

The Stack after asgn
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8.3 Operators
There is a virtual machine instruction for each of the forty-two operators in Icon. The
instructions random and asgn described previously are examples. Casting Icon operators
as virtual machine instructions masks a considerable amount of complexity,  since few
Icon operators are simple. For example, although x + y appears to be a straightforward
computation, it involves checking the types of x and y, converting them to numeric types
if  they are not  already numeric,  and terminating with an error  message if  this  is  not
possible. If x and y are numeric or convertible to numeric, addition is performed. Even
this is not simple, since the addition may be integer or floating-point, depending on the
types of the arguments. For example, if x is an integer and y is a real number, the integer
is  converted  to  a  real  number.  None of  these  computations  is  evident  in  the  virtual
machine instructions produced for this expression. which are
   pnull
   local x
   local y
   plus

In the instructions given previously, the indices that are used to access identifiers have
been  replaced  by the  names  of  the  identifiers,  which  are  assumed  to  be  local.  This
convention is followed in subsequent virtual machine instructions fo ease of reading.

Augmented  assignment  operations  do  not  have  separate  virtual  machine  instructions.
Instead, the instruction dup first pushes a null descriptor and then pushes a duplicate of
the descriptor that was previously on top of the stack. For example, the virtual machine
instructions for
   i +:= 1

are
   pnull
   local i
   dup
   int 1
   plus
   asgn

The stack after the execution of local is

The execution of dup produces
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The dup instruction simply takes the place of the pnull and second local instructions
in the virtual machine instructions for
   i := i + 1

which are
   pnull
   local i
   pnull
   local i
   int 1
   plus
   asgn

In this  case,  only a single  local instruction is  avoided. If the variable  to  which the
assignment is made is not just an identifier but, instead, a more complicated construction,
as in
   a[j] +:= 1

substantial  computation  may be  saved by duplicating  the  result  of  the  first  argument
expression instead of recomputing it.

8.2.4 Functions

While the meaning of an operation is fixed and can be translated into a specific virtual
machine instruction, the meaning of a function call can change during program execution.
The value of the function also can be computed. as in
   (p[i])(x, y)

The general form of a call is
   expr0(expr1, expr2, ..., exprn)

The corresponding virtual machine instructions are
   code for expr0
   code for expr1
   code for expr2
   code for exprn
   invoke n

The  invoke instruction  is  relatively complicated,  since the value of  expr0  may be a
procedure, an integer (for mutual evaluation), or even a value that is erroneous. Function
invocation is discussed in detail in Chapter 10.
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8.3 The Interpreter Proper

8.3. 1 The Interpreter Loop

The interpreter, which is called interp(), is basically simple in structure. It maintains a
location in the icode (ipc) and begins by fetching the instruction pointed to by ipc and
incrementing ipc to the next location. It then branches to a section of code for processing
the virtual machine instruction that it fetched. The interpreter loop is
   for (;;) {
      op = GetWord;
      switch (op) {
         case Op_Asgn:
         case Op_Plus:
         }
      }

where GetWord is a macro that is defined to be (*ipc++).

Macros are used extensively in the interpreter to avoid repetitious coding and to make the
interpreter easier to read. The coding is illustrated by the case clause for the instruction
plus:
   case Op_Plus: /* e1 + e2 */
      Setup_Op(2);
      DerefArg(1);
      DerefArg(2);
      Call_Op;
      break;

Setup_Op(n) sets  up a pointer  to the address of Arg0 on the interpreter stack.  The
resulting code is
   rargp = (dptr)(sp - 1) - n;

The value of n is the number of arguments on the stack.

DerefArg(n) dereferences argument  n. If it  is a variable, it  is replaced by its value.
Thus, dereferencing is done in place by changing descriptors on the interpreter stack.

Call_Cond calls  the appropriate C function with a pointer to the interpreter stack as
provided by Setup_Op(n). The function itself is obtained by looking up op in an array
of pointers to functions. The code produced by Call_Cond is (almost)
   (*(optab(op]) )(rargp);
   sp = (word * )rargp + 1:
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Chapter 9: Expression Evaluation
PERSPECTIVE:  The  preceding  chapter  presents  the  essentials  of  the  interpreter  and
expression evaluation as it might take place in a conventional programming language in
which every expression produces exactly one result. For example, expressions such as
   i := j
   k := i + j
   i +:= ?k

each produce a single result:  they can neither  fail  nor can they produce sequences of
results.

The  one  feature  of  Icon  that  distinguishes  it  most  clearly  from  other  programming
languages is the capacity of its expression-evaluation mechanism to produce no result at
all or to produce more than one result. From this capability come unconventional methods
of controlling program flow, novel control structures, and goal-directed evaluation.

The generality of this expression-evaluation mechanism alone sets Icon apart from other
programming languages. While generators, in one form or another, exist in a number of
programming languages,  such as IPL-V (Newell  1961),  CLU (Liskov 1981),  Alphard
(Shaw 1981), and SETL (Dewar, Schonberg, and Schwartz 1981), such generators are
limited to specific constructs, designated contexts, or restricted types of data. Languages
with  pattern-matching  facilities,  such  as  SNOBOL4 (Griswold,  Poage,  and  Polonsky
1971),  InterLisp (Teitelman 1974),  and Prolog (Clocksin and Mellish 1981),  generate
alternative matches, but only within pattern matching.

Just as Icon's expression-evaluation mechanism distinguishes it from other programming
languages,  it  is  also  one  of  the  most  interesting  and  challenging  aspects  of  Icon's
implementation. Its applicability in every context and to all kinds of data has a pervasive
effect on the implementation.

9.1 Bounded Expressions
A clear understanding of the semantics of expression evaluation in Icon is necessary to
understand  the  implementation.  One  of  the  most  important  concepts  of  expression
evaluation in Icon is that of a  bounded expression,  within which backtracking can take
place. However, once a bounded expression has produced a result, it cannot be resumed
for another result. For example, in
   write(i = find(s1,s2))

find  may  produce  a  result  and  may  be  resumed  to  produce  another  result  if  the
comparison fails. On the other hand, in
   write(i = find(s1, s2))
   write(j = find(s1, s3))

the two lines constitute separate expressions. Once the evaluation of the expression on the
first line is complete, it cannot be resumed. Likewise, the evaluation of the expression on
the second line is not affected by whether the expression on the first line succeeds or fails.
However, if the two lines are joined by a conjunction operation, as in
   write(i = find(s1, s2)) &
   write(i = find(s1, s3))
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they are combined into a larger single expression and the expression on the second line is
not evaluated if the expression on the first line fails. Similarly, if the expression on the
first line succeeds, but the expression on the second line fails, the expression on the first
line is resumed.

The reason for  the  difference  in  the  two cases  is  obscured by the  fact  that  the  Icon
translator automatically inserts a semicolon at the end of a line on which an expression is
complete and for which a new expression begins on the next line.

Consequently, the first example is equivalent to
   write(i = find(s1, s2));
   write(i = find(s1 , s3))

The difference  between the  semicolon  and the  conjunction  operator  is  substantial.  A
semicolon  bounds  an  expression,  while  an  operator  binds  its  operands  into  a  single
expression.

Bounded expressions are enclosed in ovals in the following examples to make the extent
of backtracking clear. A compound expression, for example, has the following bounded
expressions:

Note that exprn is not, of itself, a bounded expression. However, it may be part of a larger
bounded expression. as in

Here  exprn  is part of the bounded expression for the comparison operator. The entire
enclosing bounded expression is a consequence of the final semicolon. In the absence of
the context provided by this semicolon, the entire expression might be part of a larger
enclosing bounded expression, and so on.

The separation of a procedure body into a number of bounded expressions, separated by
semicolons  (explicit  or  implicit)  and other  syntactic  constructions,  is  very important.
Otherwise,  a procedure body would consist  of a single expression,  and failure of any
component  would  propagate  throughout  the  entire  procedure  body.  Instead,  control
backtracking is limited in scope to abounded expression, as is the lifetime (and hence
stack space) for temporary computations.

Bounded expressions are particularly important in control structures. For example, in the
if-then-else control structure, the control expression is bounded but the other expressions
are not:

As  with  the  compound  expression  illustrated  earlier,  expr2  or  exp13  (whichever  is
selected) may be the part of a larger bounded expression. An example is
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If the control expression were not a separate bounded expression, the failure of expr2 or
exp13  would  result  in  backtracking  into  it  and  the  if-then-else  expression  would  be
equivalent to
   (expr1 & expr2) | expr3

which is hardly what is meant by if-then-else.

In a while-do loop, the control expression and the expression in the do clause are both
bounded:

The two bounded expressions ensure that the expressions are evaluated independently of
each other and any surrounding context. For example, if  expr2 fails, there is no control
backtracking into expr,

9.1.1 Expression Frames

In the implementation  of  Icon, the scope of  backtracking is  delineated  by  expression
frames. The virtual machine instruction
   mark L1

starts an expression frame. If the subsequent expression fails, ipc is set to the location in
the icode that corresponds to L1. The value of ipc for a label is relative to the location of
the icode that is read in from the icode file. For simplicity in the description that follows,
the value of ipc is referred to just by the name of the corresponding label.

The  mark instruction pushes an  expression frame marker  onto the stack and sets  the
expression frame pointer,  efp, to it.  Thus,  efp indicates the beginning of the current
expression frame. There is also a generator frame pointer,  gfp, which points to another
kind of frame that is used to retain information when an expression suspends with a result
and is capable of being resumed for another. Generator frames are described in Sec. 9.3.
The mark instruction sets gfp to zero, indicating that there is no suspended generator in a
new expression frame.

An expression frame marker consists of four words: the value  ipc for the argument of
mark (called the failure ipc), the previous efp, the previous gfp, and ilevel, which is
related to suspended generators:

An expression frame marker is declared as a C structure:
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   struct ef_marker { /* expression frame marker */
      word *ef_failure; /* failure ipc */
      struct ef_marker *ef_efp; /* efp */
      struct gf_marker *ef_gfp; /* gfp */
      word ef_ilevel; /* ilevel */

This structure is overlaid on the interpreter stack in order to reference its components.
The code for the mark instruction is
   case Op_Mark: /* create expression frame marker */
      newefp = (struct ef_marker *)(sp + 1);
      opnd = GetWord;
      opnd += (word)ipc;
      newefp->ef_failure = (word *)opnd;
      newefp->ef_gfp = gfp;
      newefp->ef_efp = efp;
      newefp->ef_ilevel = ilevel;
      sp += Wsizeof(*efp);
      efp = newefp;
      gfp = 0;
      break;

The macro Wsizeof(x) produces the size of x in words.

An expression frame is removed by the virtual machine instruction
   unmark

which restores the previous efp and gfp from the current expression frame marker and
removes the current expression frame by setting  sp to the word just above the frame
marker.

The use of mark and unmark is illustrated by
   if expr1 then expr2 else expr3

for which the virtual machine instructions are
      mark L1
      code for expr1
      unmark
      code for expr2
      goto L2
L1:
      code for expr3
L2:

The  mark instruction creates an expression frame for the evaluation of  expr1.  If  expr1
produces a result, the unmark instruction is evaluated, removing the expression frame for
expr1, along with the result produced by expr1. Evaluation then proceeds in expr2.

If expr1 fails, control is transferred to the location in the icode corresponding to L1 and
the unmark instruction is not executed. In the absence of generators, failure also removes
the current expression frame, as described in Sec. 9.2.

It is  necessary to  save the  previous  value  of  efp in  a  new expression  marker,  since
expression frames may be nested.  This occurs in interesting ways in  some generative
control structures, which are discussed in Sec. 9.4. Nested expression frames also occur
as a result of evaluating compound expressions, such as
   while expr1 do ifexpr2thenexpr2
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9.2 Failure
The interesting aspects of implementing expression evaluation in Icon can be divided into
two  cases:  without  generators  and  with  generators.  The  possibility  of  failure  in  the
absence of generators is itself of interest, since it occurs in other programming languages,
such as SNOBOL4. This section describes the handling of failure and assumes, for the
moment, that there are no generators. The next section describes generators.

In the  absence  of  generators,  if  failure  occurs  anywhere  in  an  expression,  the  entire
expression fails without any further evaluation. For example, in the expressions
   i := numeric(s)
   line := read(f)

if  numeric(s) fails in the first line, the assignment is not performed and evaluation
continues  immediately  with  the  second  line.  In  the  implementation,  this  amounts  to
removing the current expression frame in which failure occurs and continuing with ipc
set to the failure ipc from its expression frame marker.

The virtual machine instructions for the previous example are
   mark L1
   pnull
   local i
   global numeric
   local s
   invoke 1
   asgn
   unmark
L1:
   mark L2
   pnull
   local line
   global read
   local f
   invoke 1
   asgn
   unmark
L2:

Prior to the evaluation of the expression on the first line, there is some expression frame
on the stack:

The instruction
   mark L1
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starts a new expression frame. The execution of subsequent virtual machine instructions
pushes  additional  descriptors.  The  state  of  the  stack  when  numeric  is  called  by the
invoke instruction is

If numeric(s) fails, efp and sp are reset, so that the stack is in the same state as it was
prior to the evaluation of the expression on the first line:

Control is transferred to the location in the icode corresponding to L1, and the execution
of
   mark L2

starts a new expression frame by pushing a new expression frame marker onto the stack.
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It is worth noting that failure causes only the current expression frame to be removed and
changes ipc to the failure ipc. Any remaining virtual machine instructions in the current
expression frame are bypassed; failure is simple and quick.

Failure can occur at three levels: directly from the virtual machine instruction  efail,
from a C function that implements an operator or function (as in the previous example),
or from an Icon procedure.

When  a  conditional  operator  or  function  returns,  it  signals  the  interpreter,  indicating
whether  it  is  producing a result  or failing by using one of  the RTL forms of  return,
return or fail. These RTL constructs simply produce return statements with different
returned values.

The code in the interpreter for a conditional operation is illustrated by
   case Op_Numlt: /* e1 < e2 */
      Setup_Op(2);
      DerefArg(1);
      DerefArg(2) ;
      Call_Cond;

The macro  Call_Cond is similar to  Call_Op described in Sec. 8.3.1, but it tests the
signal returned by the C function. If the signal corresponds to the production of a result,
the break is executed and control is transferred to the beginning of the interpreter loop to
fetch the next virtual machine instruction. On the other hand, if the signal corresponds to
failure, control is transferred to the place in the interpreter that handles failure, efail.

An Icon procedure can fail in three ways: by evaluating the expression fail, by the failure
of the argument of a return expression, or by flowing off the end of the procedure body.
The virtual machine instructions generated for the three cases are similar. For example,
the virtual machine instructions for
   if i < j then fail else write(j)

are
   mark L1
   pnull
   local i
   local j
   numlt
   unmark
   pfail
L1:
   global write
   local j
   invoke 1

The virtual machine instruction pfail first returns from the current procedure call (see
Sec. 10.3), and then transfers to efail.

9.3 Generators and Goal-Directed Evaluation
The capability of an expression not to produce a result is useful for controlling program
flow and for bypassing unneeded computation,  but generators add the real power and
expressiveness to the expression-evaluation semantics of Icon. It should be no surprise
that generators also present difficult implementation problems. There are several kinds of
generators,  including  those  for  control  structures,  functions  and  operators,  and



110

procedures. While the implementation of the different kinds of generators varies in detail,
the same principles apply to all of them.

As far as using a result of an expression in further computation is concerned, there is no
difference between an expression that simply produces a result and an expression that
produces a result and is capable of being resumed to produce mother one. For example, in
   i := numeric("2")
   j := upto('aeiou', "Hello world")

the two assignment operations are carried out in the same way, even though upto() is a
generator and numeric() is not.

Since such contexts cannot be determined, in general, prior to the time the expressions
are evaluated, the implementation is designed so that the interpreter stack is the same, as
far as enclosing expressions are concerned, whether an expression returns or suspends.
For the previous example,  the arguments to the assignment operation are in the same
relative place in both cases.

On the other hand, if a generator that has suspended is resumed, it must be capable of
continuing its computation and possibly producing another result. For this to be possible,
both the generator's state and the state of the interpreter stack must be preserved. For
example, in
   j := (i < upto('aeiou', "Hello world"))

when the function upto() suspends, both i and the result produced by upto() must be
on the  stack  as  arguments  of  the  comparison  operation.  However,  if  the  comparison
operation fails and upto() is resumed, the arguments of upto() must be on the stack as
they  were  when  upto() suspended.  To  satisfy  these  requirements,  when  upto()
suspends, a portion of the stack prior to the arguments for upto() is copied to the top of
the stack and the result produced by upto is placed on the top of the stack. Thus, the
portion  of  the  stack  required  for  the  resumption  of  upto() is  preserved  and  the
arguments for the comparison are in the proper place.

Generator Frames.  When an expression suspends, the state of the interpreter stack is
preserved by creating a generator frame on the interpreter stack that contains a copy of
the portion of the interpreter stack that is needed if the generator is resumed. A generator
frame  begins  with  a  generator  frame  marker  that  contains  information  about  the
interpreter state that must be restored if the corresponding generator is resumed. There are
three kinds of generator frames that are distinguished by different codes:

   G_Csusp suspension from a C function
   G_Esusp suspension from an alternation expression
   G_Psusp suspension from a procedure

For the first two types of generators, the information saved in the generator frame marker
includes the code for the type of the generator, the i-state variables efp,  gfp,  ipc, and
the source-program line number at the time the generator frame is created:
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The corresponding C structure is
   struct gf_marker { /* generator frame marker */
      word gf_gentype; /* type */
      struct ef_marker *gf_efp; /* efp */
      struct gf_marker *gf_gfp; /* gfp */
      word *gf_ipc; /* ipc */
      word gf_line; /* line number */
   };

Generators for procedure suspension contain, in addition, the i-state variable related to
procedures. See Sec. 10.3.3.

As an example, consider the expression
   write(i = (1 to 3));

The virtual machine instructions for this expression are:
   mark L1
   global write
   pnull
   local i
   int 1
   int 3
   push 1 # default increment
   toby
   numeq
   invoke 1
   unmark
L1 :

The state of the stack after execution of the first seven instructions is
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The code in the interpreter for calling a generative operator with n arguments is
   rargp = (struct descrip *)(sp -1) -n;
   signal = (*(optab[op]))(rargp);
   goto C_rtn_term;

Note that rargp points to Arg0 and is the argument of the call to the C function for the
operator.

The RTL function for toby is
operator{*} ... toby(from, to, by)
   /*
    * arguments must be integers.
    */
   if !cnv:C_integer(from) then
      runerr(101, from)
   if !cnv:C_integer(to) then
      runerr(101, to)
   if !cnv:C_integer(by) then
      runerr(101, by)
   abstract {
      return integer
      }
   inline {
      /*
       * by must not be zero.
       */
      if (by == 0) {
         irunerr(211, by);
         errorfail;
         }
      /*
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       * Count up or down (depending on relationship of from and
       *  to) and suspend each value in sequence, failing when
       *  the limit has been exceeded.
       */
      if (by > 0)
         for ( ; from <= to; from += by) {
            suspend C_integer from;
            }
      else
         for ( ; from >= to; from += by) {
            suspend C_integer from;
            }
      fail;
      }
end

The RTL operator construct, which is similar to function, produces the C header
int Otoby(dptr r_args)

so that toby is called with a pointer to Arg0. Arguments with logical names Arg0, Arg1,
and so forth are referred as r_args[0], r_args[1], and so on in the generated code.

When toby is called, it replaces its Arg0 descriptor by a descriptor for the integer from
and suspends by using the RTL suspend construct rather than return.

The suspend statement calls interp() instead of returning to it. This leaves the call of
toby intact with its variables preserved and also transfers control to  interp() so that
the next virtual machine instruction can be interpreted. However, it is necessary to push a
generator marker on the interpreter stack and copy a portion of the interpreter stack, so
that interpretation can continue without changing the portion of the interpreter stack that
toby needs  in  case  it  is  resumed.  This  is  accomplished  by calling  interp() with
arguments that signal it to build a generator frame. The C code generated for suspend is
   if ((signal = interp(G_Osusp, r_args RTTCURTSTATARG)) !=
        A_Resume) {
      return signal;
      }

The argument G_Osusp in the call of interp() indicates that a generator frame for C
function  that  implements  an operator  is  needed.  The argument  r_args points  to  the
location on the interpreter stack where Arg0 for the suspending C function is located.
This location is the same as rargp in the call of interp() that called upto.

In this situation,  interp() puts a generator frame marker on the interpreter stack and
copies the portion of the interpreter stack from the last expression 01 generator frame
marker through cargp onto the top of the interpreter stack:
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The stack is exactly the same, as far as the execution of numeq is concerned, as it would
have  been  if  toby had  simply returned.  However,  the  arguments  of  toby (and  the
preceding  arguments  of  numeq)  are  still  intact,  so  that  toby can  be  resumed.  The
generator frame is interposed between the two portions of the interpreter stack. The top of
the stack corresponds to the evaluation of
   write(i = 1);

Resumption. Suppose the value of i in the previous example is 2. The comparison fails
and control is transferred to efail, as it is in the case of all operations that fail. The code
for efail is
   case Op_Efail:
   efail:
      /*
       * Failure has occurred in the current expression frame.
       */
      if (gfp == 0) {
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         /*
          * There are no suspended generators to resume. Remove
          * the current expression frame, restoring values.
          *
          * If the failure ipc is 0, propagate failure to the
          * enclosing frame by branching back to efail.
          * This happens, for example, in looping control
          * structures that fail when complete.
          */
         ipc = efp->ef_failure;
         gfp = efp->ef-9fp;
         sp = (word *)efp -1;
         efp = efp->ef_efp;
         if (ipc == 0)
            goto efail;
         break;
         }
      else {
         /*
          * There is a, generator that can be resumed. Make
          * the stack adjustments and then switch on the
          * type of the generator frame marker.
          */
         register struct gf_marker *resgfp = gfp;
         tvoe = resgfp->gf gentype;
         ipc = resgfp->gf_ipc;
         efp = resgfp->gf_efp;
         line = resgfp->gf_line;
         gfp = resgfp->gf_gfp;
         sp = (word * )resgfp -1;
         switch (type) {
         case G_Csusp: {
            --ilevel;
            return A_Resumption;
            break;
            }
         case G_Esusp:
            goto efail;
         case G_Psusp:
            break;
         }
      break;
      }

If there were no generator frame (if  gfp were 0), the entire expression frame would be
removed, and the expression would fail as described in Sec. 9.2. However, since there is a
C_Susp generator frame, the stack is restored to the state it is  in  when  toby suspended,
and the values saved in the generator frame marker are restored:
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All traces of the first execution of numeq have been removed from the stack. As shown
by the code for  efail, the call to  toby is resumed by returning to it from interp()
with the signal A_Resumption, which indicates another result is needed. When control
is returned to toby, it changes its Arg0 descriptor to the integer 2 suspends again:
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The interpreter stack is exactly as it was when toby suspended the first time, except that
the integer 2 is on the stack in place of the integer 1. The top of the stack corresponds to
the evaluation of
   write(i = 2);

Since the value of i is 2, numeq succeeds. It copies the value of its second argument to
its  Arg0 descriptor and returns. The value 2 is  written and the  unmark instruction is
executed, removing the entire expression frame from the stack.

Goal-Directed Evaluation. Goal-directed evaluation occurs when an expression fails and
there are generator frames on the interpreter stack as the consequence of expressions that
have suspended.

In the case of an expression such as
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   1 to upto(c, s)

upto() suspends first, followed by toby. These generator frames are linked together,
with  gfp pointing to the one for  toby, which in turn contains a pointer to the one for
upto(). In general, generator frames are linked together with gfp pointing to the one for
the  most  recent  suspension.  This  produces  the  last-in,  first-out  (depth-first)  order  of
expression evaluation in Icon. Goal-directed evaluation occurs as a result  of resuming a
suspended expression when failure occurs in the surrounding expression frame.

Removing  C  Frames.  Since  C  functions  that  suspend  call  the  interpreter  and  the
interpreter in turn calls C functions, expression evaluation typically results in a sequence
of frames  for  calls  on the  C stack.  When the evaluation  of  a bounded expression  is
complete,  there  may  be  frames  on  the  C  stack  for  generators,  even  though  these
generators no longer can be resumed.

In order to "unwind" the C stack in such cases, the i-state variable ilevel is used to keep
track of the level of call of interp() by C functions. Whenever interp() is called, it
increments ilevel. When an expression frame is created, the current value of ilevel is
saved in it, as illustrated previously.

When the expression frame is about to be removed, if the current value of  ilevel is
greater than the value in the current expression frame,  ilevel is decremented and the
interpreter  returns  with a signal to the C function that called it to return rather than to
produce another result.  If the signal returned by  interp() is  A_Resumption,  the C
function continues execution, while for any other signal the C function returns.

Since C functions return to interp(), interp() always checks the signal returned to it
to determine if it produced a result or if it is unwinding. If it is unwinding,  interp()
returns the unwinding signal instead of continuing evaluation of the current expression.

Consider again the expression
   write(i = (1 to 3));

for which the virtua1 machine instructions are
   mark L1
   global write
   pnull
   local i
   int 1
   int 3
   push1 # default increment
   toby
   numeq
   invoke 1
   unmark
L1 :

When  toby produces  a  result,  it  calls  interp().  When  the  unmark instruction  is
executed, the C stack contains a frame for the call to toby and for its call to interp().
The code for unmark is
   case Op_Unmark: /* remove expression frame */
      gfp = efp->ef-9fp;
      sp = (word *)efp -1;
      /*
       * Remove any suspended C generators.
       */



119

   Unmark_uw:
      if (efp->ef_ilevel < ilevel) {
         --ilevel;
         return A_Unmark_uw;
         }
      efp = efp->ef_efp;
      break;

Note that in this case Suspend gets the return code  A_Unmark_uw and in turn returns
A_Unmark_uw to  interp(). The section of code in  interp() that checks the signal
that is returned from C functions is
   C_rtn_term:
      switch (signal) {
      case A_Failure:
         goto efail;
      case A_Unmark_uw: /* unwind for unmark */
         goto Unmark uw;
      case A_Lsusp_uw: /* unwind for Isusp */
         goto Lsusp_uw;
      case A_Eret_uw: /* unwind for eret */
         goto Eret_uw;
      case A_Pret_uw: /* unwind for pret */
         goto Pret_uw;
      case A_Pfail_uw: /* unwind for pfail */
         goto Pfail_uw;
      }
      sp = (word * )rargp + 1; /* set sp to result */
      continue;
   }

Thus,  when  interp() returns  to  a  C function  with  an unwinding signal,  there  is  a
cascade of C returns until  ilevel is the same as it  was when the current expression
frame  was  created.  Note  that  there  are  several  cases  in  addition  to  unmark where
unwinding is necessary.

9.4 Generative Control Structures
In addition to functions and operators that may generate more than one result, there are
several generative control structures at the level of virtual machine instructions.

9.4.1 Alternation

The virtual machine instructions for
      expr2 | expr3

are
   mark L1
   code for expr2
   esusp
   goto L2
L1:
   code for expr3
L2:

The mark instruction creates an expression frame marker for alternation whose purpose is
to  preserve the failure  ipc for  L1 in  case the results  for  expr3  are needed. If  expr2
produces a result, esusp creates a generator frame with the usual marker and then copies
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the portion of the interpreter stack between the last expression or generator frame marker
and the alternation marker to the top of the stack. It then pushes a copy of the result
produced by expr2. This connects the result produced by expr2 with the expression prior
to the alternation control structure. Next, esusp sets efp to point to the expression frame
marker prior to the alternation marker. For example, in the expression
   write(i := 1 | 2)

the stack after the execution of esusp is

The top portion of the stack is the same as if expr2 had produced a result in the absence
of alternation. However, the generator frame marker pushed by esusp contains a pointer
to the alternation marker.

If another result from  expr2  is needed, the generator frame left by  esusp is removed,
restoring  the  stack  to  its  state  when  expr2  produced  a  result.  If  expr2  itself  was  a
generator that suspended, it is resumed. Otherwise, control is transferred to  efail and
ipc is set to a value corresponding to L1, so that expr3 is evaluated next.
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9.4.2 Repeated Alternation

Alternation is the general model for generative control structures. Repeated alternation,
|expr, is similar to alternation, and would be equivalent to

expr | expr | expr | ...

except for a special termination condition that causes repeated alternation to stop if expr
does not produce a result. Without this termination condition, an expression such as
     |upto(c, s)

would never return if  upto() failed–expression evaluation would vanish into a "black
hole." Expressions that produce results at one time but not at another also are useful. For
example,
     |read()

generates the lines from the standard input file. Because of the termination condition, this
expression terminates  when the end of the input  file is  reached. If it  vanished into  a
"black hole," it could not be used safely.

If it  were not for the termination condition, the virtual machine instructions for  |expr
would be
L1:
      mark L1
      code for expr
      esusp

The "black hole" here is evident---if expr fails, it is evaluated again and there is no way
out.

The termination condition is handled by an instruction that changes the failure ipc in the
current expression marker. The actual virtual machine instructions for |expr are
L1:
      mark0
      code for expr
      chfail L1
      esusp

The virtual machine instruction  mark0 pushes an expression frame marker with a zero
failure ipc. If a zero failure ipc is encountered during failure, as illustrated by the code
for efail in Sec. 9.3, failure is transmitted to the enclosing expression. If expr produces
a result, however, the chfail instruction is executed. It changes the failure ipc in the
current expression marker to correspond to L1, so that if expr does not produce a result
when it  is  resumed,  execution starts  at  the location  in the icode corresponding to  L1
again,  causing another iteration  of  the alternation  loop.  It is  important  to  realize  that
chfail only changes  the failure  ipc in  the current  expression marker  on the stack.
Subsequent execution of mark0 creates a new expression frame whose marker has a zero
failure ipc.

9.4.3 Limitation

In the limitation control structure,
   expr1 \ expr2

the normal left-to-right evaluation of Icon is reversed and  expr2  is evaluated first. The
virtual machine instructions are
      code for expr2



122

      limit
      code for expr1
      lsusp

If  expr2 succeeds, its result is on the top of the stack. The limit instruction checks this
result to be sure that it is legal---an integer greater than or equal to zero. If it is not an
integer, an attempt is made to convert it  to one. If the limit  value is zero, limit  fails.
Otherwise,  limit  creates  an  expression  frame  marker  with  a  zero  failure  ipc and
execution continues, so that  expr1 is evaluated in its own expression frame. During the
evaluation of expr1, the limit value is directly below its expression marker. For example.
in

expr1 \ 10

the stack prior to the evaluation of expr1 is

If expr1 produces a result,  lsusp is executed. The lsusp instruction is very similar to
esusp. Before producing a generator frame, however, lsusp decrements the limit value.
If it becomes zero, the expression frame for expr1 is removed, the C stack is unwound,
and the last value it produced is placed on the stack in place of the limit value. Otherwise,
it copies the portion of the interpreter stack between the end of the last expression or
generator frame marker and the limit value to the top of the stack. Note that no generator
frame is needed.

9.5 Iteration
The difference between evaluation and resumption in a loop is illustrated by the virtual
machine instructions for a conventional loop
   while expr1 do expr2

and the iteration control structure
   every expr1 do expr2

The instructions for while-do are
L1:

mark0
code for expr1
unmark
mark L1
code for expr2
unmark
goto L1

If  expr1  fails,  the  entire  expression  fails  and  failure  is  transmitted  to  the  enclosing
expression frame because the failure  ipc is zero. If  expr1  produces a result,  expr2  is
evaluated in a separate expression frame.  Whether  expr2  produces a result  or not,  its
expression frame is removed and execution continues at the beginning of the loop.

The instructions for every-do are
mark0
code for expr1
pop
mark0
code for expr2
unmark
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efail

If  expr1  fails,  the  entire  expression  fails  and  failure  is  transmitted  to  the  enclosing
expression frame as in the case of while-do. If expr1 produces a result, it is discarded
by the pop instruction, since this result is not used in any subsequent computation. The
expression frame for  expr1 is not removed, however, and expr2 is evaluated in its own
expression frame within the expression frame for  expr1  (unlike the case for the while
loop). If expr2 produces a result, its expression frame is removed and efail is executed.
If  expr2  fails,  it  transmits  failure  to  the  enclosing  expression  frame,  which  is  the
expression  frame  for  expr1.  If  expr2  produces  a  result,  efail causes  failure  in  the
expression frame for expr1. Thus, the effect is the same, whether or not expr2 produces a
result. All results are produced simply by forcing failure.

If the expression frame for expr1 contains a generator frame, which is the case if expr1
suspended, evaluation is resumed accordingly, so that expr1 can produce another result. If
expr1 simply produces a result instead of suspending, there is no generator frame, efail
removes  its  expression  frame,  and  failure  is  transmitted  to  the  enclosing  expression
frame.

9.6 String Scanning
String scanning is one of the most useful operations in Icon. Its implementation, however,
is comparatively simple. There is no special expression-evaluation mechanism associated
with string scanning per se;  all "pattern matching" follows naturally from goal-directed
evaluation.

The string-scanning keywords, &subject and &pos must be handled properly, however.
These keywords have global scope with respect to procedure invocation,  but they are
maintained in a stack-like fashion with respect to string-scanning expressions.

The expression
expr1 ? expr2

is a control structure, not an operation, since, by definition, the arguments for ar operation
are evaluated before the operation is performed.  This form of evaluation does not work
for  string scanning,  since after  expr1  is  evaluated,  but  before  expr2  is  evaluated,  the
previous  values  of  &subject and  &pos must  be  saved  and  new  ones  established.
Furthermore, when string scanning is finished, the old values of  &subject and  &pos
must be restored. In addition, if string scanning succeeds, the values of these keywords at
the time string scanning produces a result must be saved so that they can be restored if the
string-scanning operation is resumed to produce another result.

The virtual machine instructions for
expr1 ? expr2

are
code for expr1
bscan
code for expr2
escan

If expr1 succeeds, it leaves a result on the top of the stack. The bscan instruction assures
that this value is a string, performing a conversion if necessary. Otherwise, the old values
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of  &subject and  &pos are pushed on the stack, the value of  &subject is set to the
(possibly converted) one produced by expr1, and &pos is set to 1.

The bscan instruction then suspends. This is necessary in case expr2 fails, so that bscan
can  get  control  again  to  perform data  backtracking,  restoring  the  previous  values  of
&subject and &pos from the stack where they were saved.

If expr2 succeeds, the escan instruction copies the descriptor on the top of the stack to
its Arg0 position, overwriting the result produced by expr2. It then exchanges the current
values of  &subject and &pos with those saved by bscan thus restoring the values of
these keywords to their  values prior to the scanning expression and at  the same time
saving the values they had at the time  expr2  produced a result. The  escan instruction
then suspends.

If  escan is resumed, the values of  &subject and  &pos are restored from the stack,
restoring  the  situation  to  what  it  was  when  expr2  produced  a  result.  The  escan
instruction then fails in order to force the resumption of any suspended generators left by
expr2.

Suppose,  for  example,  that  the  values  of  &subject and  &pos are  "the" and  2
respectively, when the following expression is evaluated:

read(f) ? move(4)

Suppose read(f) produces the string "coconuts". The stack is

&subject: "the"
&pos: 2

The bscan instruction is executed, pushing the current values of &subject and &pos:

&subject: "the"
&pos: 2

The  bscan instruction  sets  &subject to  "coconuts" and  &pos to  1.  The  bscan
instruction then suspends and move(4) is evaluated. It suspends, and the top I



125

&subject: "coconuts"
&pos: 5

The escan instruction is executed next. It copies the descriptor on the top of the stack to
replace the result produced by expr2. It then exchanges the current values of &subject
and &pos with those on the stack:

&subject: "the"
&pos: 2

The escan instruction then suspends, building a generator frame. The result of expr2 is
placed on the top of the stack, becoming the result of the entire scanning expression.

Since  escan suspends,  the  saved values  of  &subject and  &pos are  preserved in  a
generator frame on the stack until escan is resumed or until the current expression frame
is removed.

RETROSPECTIVE:  The  implementation  of  expression  evaluation  in  Icon focuses  on  the
concept of an expression frame within which control backtracking can occur. Bounded
expressions,  for  example,  are  represented  on  the  stack  by expression  frames,  which
confine backtracking.

In  the  absence  of  generators,  failure  simply  results  in  the  removal  of  the  current
expression frame and transfer to a new location in the icode, bypassing instructions that
otherwise would have been executed.
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State information must be saved when a generator suspends, so that its evaluation can be
resumed. This information is preserved in a generator frame within the current expression
frame. Generator frames are linked together in a last-in, first-out fashion. Goal-directed
evaluation is a natural consequence of resuming the most recently suspended generator
when an expression fails, instead of simply removing the current expression frame.

String scanning involves saving and restoring the values of &subject and &pos. This is
somewhat  complicated,  since  scanning expressions  can  suspend and be  resumed,  but
string scanning itself introduces nothing new into expression evaluation: generators and
goal-directed evaluation provide "pattern matching."

EXERCISES

9.1 Circle all the bounded expressions in the following segments of code:
   while line := read() do
      if *line = i then write(line)

   if (i = find(s1,s2)) & (j = find(s1,s3)) then {
      write(i)
      write(j)
      }

   line ? while write(move(1)) do
         move(1)

9.2 Describe the effect of nested generators and generators in mutual evaluation on the
interpreter level.

9.3 Consider a hypothetical control structure called exclusive alternation that is the same
as regular  alternation,  except  that  if  the  first  argument  produces  least  one  result,  the
results from the second argument are not produced. Show the virtual machine instructions
that should be generated for exclusive alternation.

9.4 The expression read(f) is an example of an expression that may produce result at
one time and fail at another. This is possible because of a side effect of evaluating it---
changing the position in the file f. Give an example of an expression that may fail at one
time and produce a result at a subsequent time.

9.5 There are potential  "black holes" in the expression-evaluation mechanism of Icon,
despite the termination condition for repeated alternation. Give an example of one.

9.6 The expression frame marker produced by limit makes it easy to locate the limitation
counter. Show how the counter could be located without the marker.

9.7 Suppose that the virtual machine instructions for
   every expr1 do expr2

did not pop the result produced by expr1. What effect would this have?

9.8 The virtual machine instructions for
   every expr

are
   mark0
   code for expr
   pop



127

   efail

so that failure causes  expr  to be resumed.  The keyword  &fail also fails,  so that the
virtual machine instructions for
   expr & &fail

are
   code for expr
   efail

It is sometimes claimed that these two expressions are equivalent. If this were so, the
shorter virtual machine instruction sequence for the second expression could be used for
the first expression. Explain why the two expressions are not equivalent, in general, and
give an example in which they are different.

9.9  Diagram the  states  of  the  stack  for  the  example  given  in  Sec.  9.6,  showing  all
generator frames.

9.10 Show the successive stack states for the evaluation of the following expressions,
assuming that the values of &subject and &pos are "the" and 2 respectively, and that
read() produces "coconuts" in each case:

(a) read(f) ? move(10)
(b) (read(f) ? move(4)) ? move(2)
(c) read(f) ? (move(4) ? move(2))
(d) (read(f) ? move(4)) ? move(10)
(e) (read(f) ? move(4 | 6)) ? move(5)
(f) (read(f) ? move(4)) & (read(f) & move(10))

9.11 Write Icon procedures to emulate string scanning. Hint: consider the virtual machine
instructions for

expr1 ? eXpr2
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Chapter 10: Functions, Procedures, and Co-
Expressions
PERSPECTIVE: The invocation of functions and procedures is central to the evaluation of
expressions in most programming languages. In Icon, this activity has several aspects that
complicate  its  implementation.  Functions  and procedures  are  data  values  that  can  be
assigned to identifiers, passed as arguments, and so on. Consequently, the meaning of an
invocation  expression  cannot  be  determined  until  it  is  evaluated.  Functions  and
procedures can be called with more or fewer arguments than expected. Thus, there must
be a provision for adjusting argument lists at run time. Since mutual evaluation has the
same  syntax  as  function  and  procedure  invocation,  run-time  processing  of  such
expressions is further complicated.

Co-expressions, which require separate stacks for their evaluation, add complexities and
dependencies  on  computer  architecture  that  are  not  found  elsewhere  in  the
implementation.

10.1 Invocation Expressions
As mentioned in Sec. 8.2.4, the virtual machine code for an expression such as
   expr0(expr1, expr2, ..., exprn)

is
   code for expr0
   code for expr1
   code for expr2
   ...
   code for exprn
   invoke n

Consequently, the stack when the invoke instruction is executed is
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The meaning of the expression, and hence the action taken by invoke, depends on the
result produced by expr0. If the value of expr0 is an integer or convertible to an integer,
the invocation expression corresponds to mutual evaluation. If this integer is negative, it
is converted to the corresponding positive value with respect to the number of arguments,
If the value is between one and n, the corresponding descriptor is copied on top of the
result of expr0, sp is set to this position, and invoke transfers control to the beginning of
the interpretive loop. On the other hand, if the value is out of range, invoke fails. Note
that the returned value overwrites the descriptor for expr0,  whereas for operators a null-
valued descriptor is pushed to receive the value.

If the value of expr0 is a function or a procedure, the corresponding function or procedure
must  be  invoked  with  the  appropriate  arguments.  A  function  or  procedure  value  is
represented by a descriptor  that  points  to  a block that  contains information  about the
function or procedure.

10.2 Procedure Blocks
Functions  and  procedures  have  similar  blocks,  and  there  is  no  source-language  type
distinction between them.

Blocks  for  Procedures.  Blocks  for  procedures  are  constructed  by  the  linker,  using
information provided by the translator. Such blocks are read in as part of the icode file
when an Icon program is executed. The block for a procedure contains the usual title and
size words, followed by six words that characterize the procedure:

(1)The icode location of the first virtual machine instruction for the procedure.

(2) The number of arguments expected by the procedure.

(3) The number of local identifiers in the procedure.

(4) The number of static identifiers in the procedure.

(5) The index in the static identifier array of the first static identifier in the procedure.

(6) A C string for the name of the file in which the procedure declaration occurred.

The remainder of the procedure block contains qualifiers: one for the string name of the
procedure, then others for the string names of the arguments, local identifiers, and static
identifiers, in that order.

For example, the procedure declaration
   procedure calc(i,j)
   local k
   static base, index
           .
           .
           .
   end

has the following procedure block:
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The 0 value for the index in the static identifier array indicates that base is the first static
identifier  in  the program. The indices of static  identifiers are zero-based and increase
throughout a program as static declarations occur.

Blocks for Functions. Blocks for functions are created by the macro FncDcl that occurs
at the beginning of every C function that implements an Icon function. Such blocks for
functions are similar to those for procedures but are distinguished by the value -1 in the
word that otherwise contains the number of local identifiers. The entry point is the entry
point of the C routine for the function. The procedure block for repl is typical:

Note that there are no argument names.

Some functions,  such as  write(),  allow an  arbitrary number  of  arguments.  This  is
indicated by the value -1 in place of the number of arguments:

size of block
-> C entry point number of 
arguments function indicator
not used
not used
not used

-> "repl"
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10.3 Invocation

10.3.1 Argument Processing

Argument processing begins by dereferencing the arguments in place on the stack. If a
fixed number of arguments is specified in the procedure block, this number is compared
with the argument of invoke, which is the number of arguments on the stack.

If there are too many arguments, sp is set to point to the last one expected. For example,
the expression

numeric(i, j)

results in

Since numeric() expects only one argument, sp is reset, effectively popping the second
argument:

size of block
-> C entry point
indicator of a variable number of arguments
function indicator
not used
not used
not used

-> "write"



132

On the other hand, if there are not enough arguments, null-valued descriptors pushed to
supply the missing arguments. For example, the expression

left(s, i)

results in

and a null value is pushed to provide the missing third argument:

10.3.2 Function Invocation

Function invocation involves calling a C function in a fashion that is  very similar to
evaluating  an  operator.  In  the  case  of  an  Icon  function,  the  entry  point  of  the
corresponding C function is obtained from the procedure block rather than by indexing an
array of function pointers corresponding to operator codes.

For an Icon function that has a fixed number of arguments, the C function is called with a
single argument that is a pointer to the location of Arg0 on the interpreter stack. Note that
Arg0 is the descriptor that points to the procedure block. For an Icon function that may be
called  with  an  arbitrary  number  of  arguments,  the  C  function  is  called  with  two
arguments: the number of arguments on the stack and a pointer to Arg0.

Like an operator, a function may fail, return a result, or suspend. The coding protocol is
the same as for operators. The function find is an example:
function{*} find(s1,s2,i,j)
   str_anal( s2, i, j )
   if !cnv:string(s1) then
      runerr(103,s1)

   body {
      register char *str1, *str2;
      C_integer s1_len, l, term;
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      /*
       * Loop through s2[i:j] trying to find s1 at each point,
       * stopping when the remaining portion s2[i:j] is too short
       * to contain s1. Optimize me!
       */
      s1_len = StrLen(s1);
      term = cnv_j - s1_len;
      while (cnv_i <= term) {
         str1 = StrLoc(s1);
         str2 = StrLoc(s2) + cnv_i - 1;
         l    = s1_len;

         /*
          * Compare strings on a byte-wise basis; if the end is
          * reached before inequality is found, suspend with the
          * position of the string.
          */
         do {
            if (l-- <= 0) {
               suspend C_integer cnv_i;
               break;
               }
            } while (*str1++ == *str2++);
         cnv_i++;
         }
      fail;
      }
end

str_anal() is an RTL multi-line macro for performing the standard conversions and
defaulting for string analysis functions. It takes as arguments the parameters for subject,
beginning  position,  and  ending  position.  It  produces  declarations  for  these  3  names
prepended  with  cnv_.  These  variables  will  contain  the  converted  versions  of  the
arguments.
#begdef str_anal(s, i, j)
   declare {
      C_integer cnv_ ## i;
      C_integer cnv_ ## j;
      }

   abstract {
      return integer
      }

   if is:null(s) then {
      inline {
         s = k_subject;
         }
      if is:null(i) then inline {
         cnv_ ## i = k_pos;
         }
      }
   else {
      if !cnv:string(s) then
         runerr(103,s)
      if is:null(i) then inline {
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         cnv_ ## i = 1;
         }
      }

   if !is:null(i) then
      if cnv:C_integer(i,cnv_ ## i) then inline {
         if ((cnv_ ## i = cvpos(cnv_ ## i, StrLen(s))) ==
              CvtFail)
            fail;
         }
      else
         runerr(101,i)

    if is:null(j) then inline {
       cnv_ ## j = StrLen(s) + 1;
       }
    else if cnv:C_integer(j,cnv_ ## j) then inline {
       if ((cnv_ ## j = cvpos(cnv_ ## j, StrLen(s))) == CvtFail)
          fail;
       if (cnv_ ## i > cnv_ ## j) {
          register C_integer tmp;
          tmp = cnv_ ## i;
          cnv_ ## i = cnv_ ## j;
          cnv_ ## j = tmp;
          }
       }
    else
       runerr(101,j)
#enddef

10.3.3 Procedure Invocation

In the case of procedure invocation,  a  procedure frame  is  pushed onto the interpreter
stack to preserve information that may be changed during the execution of the procedure
and that must be restored when the procedure returns.  As for other types of frames, a
procedure frame begins with a marker. A procedure frame marker consists of eight words:

The current procedure frame is pointed to by pfp, and argp points to the place on the
interpreter  stack  where  the  arguments  begin,  analogous  to  Arg0  for  functions.  The
number of arguments, which can be computed from pfp and argp, is provided to make
computations related to arguments more convenient.

After the procedure marker is constructed, a null-valued descriptor is pushed for each
local identifier. For example, the call
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calc(3,4)

for the procedure declaration given in Sec. 10.2 produces

Once the null values for the local identifiers are pushed,  ipc is set to the entry point
given in the procedure block and efp and gfp are set to zero. Execution then continues
in the interpreter with the new ipc.

The three forms of return from a procedure are the same as those from a function and
correspond to the source-language expressions
   return e
   fail
   suspend e

The  corresponding  virtual  machine  instructions  are  pret,  pfail,  and  psusp.  For
example, the virtual machine code for
   return &null

is
   pnull
   pret

In the case of pret, the result currently on the top of the interpreter stack is copied on top
of the descriptor pointed to by argp. If this result is a variable that is on the stack (and
hence local to  the current procedure call),  it  is  dereferenced  in place.  The C stack is
unwound, since there may be suspended generators at the time of the return. The values
saved  in  the  procedure  frame  marker  are  restored,  and  execution  continues  in  the
interpreter with the restored ipc.

In the case of failure, the C stack is unwound as it is for pret, values arc restored from
the procedure frame marker, and control is transferred to efail.

Procedure suspension is similar to other forms of suspension. The descriptor on the top of
the interpreter stack is dereferenced, if necessary, and saved. A generator frame marker is
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constructed on the interpreter stack to preserve values that may be needed if the procedure
call is resumed. For procedure suspension, a generator frame marker contains two words
in addition to those needed for other kinds of generator frame markers and has the form

After the generator frame marker is pushed, the portion of the stack between the last
generator or expression frame marker before the call to this procedure and the word prior
to argp is copied to the top of the stack. Finally, the saved descriptor, which is the result
produced by the procedure, is pushed on the top of the stack. Execution then continues in
the interpreter with the restored ipc.

10.4 Co-Expressions
Co-expressions add another dimension to expression evaluation in Icon. The important
thing to understand about co-expressions is that Icon evaluation is always in  some  co-
expression. Although it is not evident, the execution of an Icon program begins in a co-
expression, namely the value of &main.

A co-expression requires both an interpreter stack and a C stack. In the co-expression for
&main, the interpreter stack is statically allocated and the C stack is the one normally
used for C execution–the "system stack" on some computers. The creation of a new co-
expression produces a new interpreter stack and a new C stack, as well as space that is
needed to  save  state  information.  When a  co-expression  is  activated,  the  context  for
evaluation is changed to the stacks for the activated co-expression. When the activation of
a co-expression produces a result, it in turn activates the co-expression that activated it,
leaving the stacks from which the return occurred in a state of suspension. Thus, co-
expression  activation  constitutes  a  simple  context  switch.  In  every  co-expression,
expression evaluation is in some state, possibly actively executing, possibly suspended, or
possibly complete and unreachable.

The virtual machine instructions for
   create expr0

are
      goto L3
L1:
      pop
      mark L2
      code for expr0
      coret
      efail
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L2:
      cofail
      goto L2
L3:
      create L1

Control goes immediately to L3, where the instruction create constructs a co-expression
block and returns  a  descriptor  that  points  to  it.  This  block contains  space  for  i-state
variables, space for the state of the C stack, an interpreter stack, and a C stack.

The code between L1 and L3 is not executed until the co-expression is activated. The pop
instruction  following  L1 discards the result  transmitted to  a co-expression on its  first
activation,  since  there  is  no  expression  waiting  to  receive  the  result  of  an  initial
activation.  Next,  an  expression  frame  marker  is  created,  and  the  code  for  expr0 is
executed.  If  expr0 produces  a  result,  coret is  executed  to  return  the  result  to  the
activating expression. If the co-expression is activated again, its execution continues with
efail, which causes any suspended generators in the code for expr0 to be resumed. If expr0

fails, the expression frame is removed and cofail is executed. The cofail instruction
is  very  similar  to  the  coret instruction,  except  that  it  signals  failure  rather  than
producing a  result.  Note  that  if  a  co-expression  that  returns  by means  of  cofail is
activated again, the cofail instruction is executed in a loop.

A co-expression is activated by the expression
   expr1 @ expr2

for which the virtual machine code is
   code for expr1
   code for expr2
   coact

The more common form of activation, @expr0, is just an abbreviation for &null @ expr0;
a result is always transmitted, even if it is the null value.

The virtual machine code for  expr1 produces the descriptor for the result that is to be
transmitted to the co-expression being activated. The coact instruction dereferences the
result  produced by  expr2,  if necessary, and checks to make sure it is a co-expression.
After setting up state information, coact transfers control to the new co-expression with
ipc set to L1. Execution continues there. If coret is reached, control is restored to the
activating co-expression. The instructions coact and coret are very similar. Each saves
the current co-expression state, sets up the new co-expression state, and transfers control.

Co-Expression  Blocks.  There  is  quite  a  bit  of  information  associated  with  a  co-
expression, and space is provided for it in a co-expression block:
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The interpreter stack and C stack shown in this diagram are not to scale compared with
the rest of the block. Both are comparatively large; the actual sizes depend on the address
space of the target computer.

The first word of the block is the usual title. The next word contains the number of results
the  co-expression  has  produced-its  "size."  Then  there  is  a  pointer  to  the  next  co-
expression block on a list that is maintained for garbage collection purposes. See Sec.
11.3.4. Following this pointer there are i-state variables: pfp, efp, gfp, argp, ipc, sp,
the current program line number, and ilevel.

Then there is a descriptor for the transmitted result, followed by two more descriptors:
one for the co-expression that activates this one and one for a refresh block that is needed
if a copy of this co-expression block is needed. C state information is contained in an
array of words,  cstate,  for registers and possibly other state information.  The array
cstate typically contains  fifteen words  for  such information.  The C  sp  is  stored in
cstate[0]. The use of the rest of cstate is machine-dependent.

Finally, there is an interpreter stack and a C stack. On a computer with a downward-
growing C stack,  such as the VAX, the base of the C stack is  at  the end of the co-
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expression block and the interpreter and C stacks grow toward each other. On a computer
with an upward-growing C stack, the C stack base follows the end of the interpreter stack.

Stack Initialization. When a co-expression is first activated, its interpreter stack must be
in an appropriate state. This initialization is done when the co-expression block is created.
A procedure frame, which is a copy of the procedure frame for the procedure in which the
create instruction is executed, is placed on the new stack. It consists of the words from
argp through the procedure frame marker and the descriptors for the local identifiers.
The efp and gfp in the co-expression block are set to zero and the ipc is set to the value
given in the argument to the create instruction (L1).

No C state  is  set  up on the new C stack;  this  is  handled when the  co-expression  is
activated the first time. The initial null value for the activator indicates the absence of a
valid C state.

Co-Expression Activation. As mentioned previously, coact and coret perform many
similar functions–both save current state information,  establish new state information,
and activate another co-expression. The current i-state variables are saved in the current
co-expression block, and new ones are established from the co-expression block for the
co-expression being activated. Similar actions are taken for the C state. Since the C state
is  machine-dependent, the "context  switch" for the C state is performed by a routine,
called coswitch(), that contains assembly-language code.

The C state typically consists of registers that are used to address the C stack and registers
that must be preserved across the call of a C function. On the VAX, for example, the C
stack registers are  sp, ap, and fp.  Only the registers  r6 through r11 must be saved for
some C compilers, while other C compilers require that r3 through r11 be saved. Once
the necessary registers are saved in the cstate array of the current co-expression, new
values of these registers are established. If the co-expression being activated has been
activated before, the C state is set up from its cstate array, and coswitch() returns to
interp().  At  this  point,  execution  continues  in  the  newly activated  co-expression.
Control is transferred to the beginning of the interpreter loop, and the next instruction
(from the ipc for the co-expression) is fetched.

However, when a co-expression is activated for the first time, there are no register values
to restore, since no C function has yet been called for the new co-expression. This is
indicated,  as  mentioned  previously,  by  a  null  activator,  which  is  communicated  to
coswitch() by an integer argument. In this case, coswitch() sets up registers for the
call of a C function and calls interp() to start the execution of the new co-expression.
Such a call to interp() on the first activation of a co-expression corresponds to the call
to  interp() that  starts  program execution  in  the co-expression  &main for the main
procedure. There can never be a return from the call to interp() made in coswitch(),
since  program  execution  can  only  terminate  normally  by  a  return  from  the  main
procedure, in &main.

The function coswitch() is fastest if it is machine-dependent. The version for the x86
with the GCC compiler is an example:
coswitch:

pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%eax
movl %esp,0(%eax)
movl %ebp,4(%eax)
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movl 12(%ebp),%eax
cmpl $0,16(%ebp)
movl 0(%eax),%esp
je .L2

movl 4(%eax),%ebp
jmp .L1

.L2:
movl $0,%ebp
pushl $0
pushl $0
call new_context
pushl $.LC0
call syserr
addl $12,%esp

.L1:
leave
ret

If no assembler co-expression switch is available, modern platforms with POSIX threads
can use Icon 9.5.1's supported form of co-expressions, which is more than 100x slower
and approximately twice as many lines of C. The public interface in either case looks like:
int coswitch(void *old_cs, void *new_cs, int first);

The variables old_cs and new_cs are pointers to the cstate arrays for the activating
and activated co-expressions, respectively. The value of first is 0 if the co-expression is
being activated for the first time. Note that in order to write coswitch() it is necessary
to know how the first two arguments are accessed in assembly language. For the previous
example,  old_cs and  new_cs are  eight  and  twelve  bytes  from  the  ebp  register,
respectively.

Refreshing a Co-Expression. The operation ^expr0 creates a copy of the co-expression
produced by expr0 with its state initialized to what it was when it was originally created.
The refresh block for  expr0 contains the information necessary to reproduce the initial
state. The refresh block contains the original  ipc for the co-expression, the number of
local identifiers for the procedure in which  expr0 was created, a copy of the procedure
frame marker at the time of creation, and the values of the arguments and local identifiers
at the time of creation. Consider, for example,
   procedure labgen(s)
      local i, j, e
      i := 1
      j := 100
      e := create (s || (i to j) || ":")
   end

For the call labgen("L"), the refresh block for e is
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RETROSPECTIVE:  Invocation  expressions  are  more  complicated  to  implement  than
operators,  since  the  meaning  of  an  invocation  expression  is  not  known  until  it  is
evaluated. Since functions and procedures are source-language values, the information
associated with them is stored in blocks in the same manner as for other types.

The C code that implements Icon functions is written in the same fashion as the code for
operators.  Procedures  have  source-language  analogs  of  the  failure  and  suspension
mechanisms used for implementing functions and operators. Procedure frames identify
the portions of the interpreter stack associated with the procedures currently invoked.

A co-expression  allows  an  expression  to  be  evaluated  outside  its  lexical  site  in  the
program by providing separate stacks for its evaluation. The possibility of multiple stacks
in  various  states  of  evaluation  introduces  technical  problems  in  the  implementation,
including a machine-dependent context switch.

EXERCISES

10.1  What  happens  if  a  call  of  a  procedure  or  function  contains  an  extra  argument
expression, but the evaluation of that expression fails?

10.2 Sometimes it is useful to be able to specify a function or procedure by means of its
string name. Icon supports "string invocation," which allows the value of expr0 in
   expr0(expr1, expr2, ..., exprn) .

to be a string. Thus,
   "write"(s)

produces the same result as
   write(s)
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Of course, such a string name is usually computed, as in
   (read())(s)

Describe what is involved in implementing this aspect of invocation. Operators also may
be invoked by their string names, as in
   "+"(i,j)

What is needed in the implementation to support this facility? Can a control structure be
invoked by a string name?

10.3 If the result returned by a procedure is a variable, it may need to be dereferenced.
This is done in the code for pret and psusp. For example, if the result being returned is
a local identifier, it must be replaced by its value What other kinds of variables must be
dereferenced? Is there any difference in the dereferencing done by pret and psusp?

10.4  How is  the  structure  of  a  co-expression  block different  on  a  computer  with  an
upward-growing C stack compared to one with a downward-growing C stack? What is
the difference between the two cases in terms of potential storage fragmentation?
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Chapter 11: Storage Management
PERSPECTIVE:  The  implementation  of  storage  management  must  accommodate  a  wide
range of allocation  requirements.  At the same time,  the implementation  must  provide
generality and some compromise between "normal" programs and those that have unusual
requirements. Although it is clearly sensible to satisfy the needs of most programs in an
efficient manner, there is no way to define what is typical or to predict how programming
style and applications may change. Indeed, the performance of the implementation may
affect both programming style and applications.

Strings  and blocks  can  be  created  during  program execution  at  times  that  cannot  be
predicted, in general, from examination of the text of a program. The sizes of strings and
of  some  types  of  blocks  may  vary  and  may  be  arbitrarily  large,  although  practical
considerations  dictate  some limits.  There  may be  an  arbitrary number  of  strings  and
blocks. The "lifetimes" during which they may be used are arbitrary and are unrelated, in
general, to procedure calls and returns.

Different programs vary considerably in the number, type, and sizes of data objects that
are created at run time. Some programs read in strings, transform them, and write them
out without ever creating other types of objects. Other programs create and manipulate
many  lists,  sets,  and  tables  but  use  few  strings.  Relatively  few  programs  use  co-
expressions,  but  there  are  applications  in  which  large  numbers  of  co-expressions  are
created.

Since a program can construct an arbitrary number of data objects of arbitrary sizes and
lifetimes, some mechanism is needed to allow the reuse of space for "dead" objects that
are no longer accessible to the program. Thus, in addition to a mechanism for allocating
storage for objects at run time, there must be a storage-reclamation mechanism, which
usually  is  called  garbage  collection.  The  methods  used  for  allocation  and  garbage
collection  are  interdependent.  Simple  and  fast  allocation  methods  usually  require
complex  and  time-consuming  garbage-collection  techniques,  while  more  efficient
garbage-collection techniques generally lead to more complex allocation techniques.

Storage  management  has  influences  that  are  far-reaching.  In  some  programs,  it  may
account for a major portion of execution time. The design of data structures, the layout of
blocks,  and  the  representation  of  strings  are  all  influenced  by  storage-management
considerations. For example, both a descriptor that points to a block and the first word of
the block contain the same type  code. This information is redundant as far as program
execution is concerned, since blocks are accessed only via descriptors that point to them.
The  redundant  type  information  is  motivated  by  storage-management  considerations.
During garbage collection, it is necessary to access blocks directly, rather than through
pointers from descriptors, and it must be possible to determine the type of a block from
the block itself. Similarly, the size of a block is of no interest in performing language
operations, but the size is needed during garbage collection. Blocks, therefore, carry some
"overhead" for  storage management.  This  overhead consists  primarily of  extra  space,
reflecting the fact that it takes more space to manage storage dynamically than would be
needed if space were allocated statically. Balancing space overhead against efficiency in
allocating and collecting objects is a complex task.

Such problems have plagued and intrigued implementors since the early days of LISP.
Many  ways  have  been  devised  to  handle  dynamic  storage  management,  and  some
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techniques have been highly refined to meet specific requirements (Cohen 1981). In the
case of Icon, there is more emphasis on storage management for strings than there is in a
language,  such  as  LISP,  where  lists  predominate.  Icon's  storage-management  system
reflects previous experience with storage-management systems used in XPL (McKeeman,
Horning,  and  Wortman  1970),  SNOBOL4  (Hanson  1977),  and  the  earlier  Ratfor
implementation of Icon (Hanson 1980). The result is, of course, somewhat idiosyncratic,
but it provides an interesting case study of a real storage-management system.

11.1 Memory Layout
During the execution of an Icon program, memory is divided  into several regions. The
sizes and locations of these regions are somewhat dependent on computer architecture
and the operating system used, but typically they have the following form:

run-time system

icode

allocated storage

free space

system stack

This diagram is not drawn to scale; some regions are much larger than others.

The  Run-Time  System.  The  run-time  system  contains  the  executable  code  for  the
interpreter, built-in operators and functions, support routines, and so forth. It also contains
static storage for some Icon strings and blocks that appear in C functions. For example,
the blocks for keyword trapped variables are statically allocated in the data area of the
run-time system. Such blocks never move, but their contents may change. The size of the
run-time system is machine-dependent.

The Icode Region. One of the first things done by the run-time system is to read in the
icode file for the program that is to be executed. The data in the icode region, which is
produced by the linker, is divided into a number of sections:

code and blocks

record information

global identifier values

global identifier names

static identifier values

strings

The first  section  contains  virtual  machine  code,  blocks  for  cset  and real  literals,  and
procedure blocks, on a per-procedure basis. Thus, the section of the icode region that
contains code and blocks consists of segments of the following form for each procedure:

blocks for real literals

blocks for cset literals

procedure blocks

virtual machine instructions
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Record information for the entire program is in the second section of the icode region.
Next,  there  is  an  array of  descriptors  for  the  values  of  the  global  identifiers  in  the
program,  followed  by  an  array  that  contains  qualifiers  for  the  names  of  the  global
identifiers. These two arrays are parallel. The ith descriptor in the first array contains the
value of the ith global identifier, and the ith descriptor in the second array contains a
qualifier for its name.

Following the two arrays related to global identifiers is an array for the values of static
identifiers. As mentioned in Sec. 2.1.10, static identifiers have global scope with respect
to procedure invocation, but a static identifier is accessible only to the procedure in which
it is declared.

Unlike cset and real blocks, which are compiled on a per-procedure basis, all strings in a
program are pooled and are in a single section of the icode region that follows the array of
static identifiers. A literal string that occurs more than once in a program occurs only
once in the string section of the icode region.

Data in the icode region is never moved, although some components of it may change at
run time. The size of the icode region depends primarily on the size of the corresponding
source program. As a rule of thumb, an icode region is approximately twice as large as
the corresponding Icon source-language file. An icode file for a short program might be
1,000 bytes, while one for a large program (by Icon standards) might be 20,000 bytes.

Allocated Storage. The space for data objects that are constructed at run time is provided
in allocated storage regions. This portion of memory is divided into three parts:

static region

string region

block region

The static region contains co-expression blocks. The remainder of the allocated storage
region  is  divided  into  strings  and  blocks  as  shown.  The  string  region  contains  only
characters. The block region, on the other hand, contains pointers. This leads to a number
of differences in allocation and garbage-collection techniques in different regions.

Data in the static region is never moved, but strings and blocks may be. Both the string
and block regions may be moved if it is necessary to increase the size of the static region.
Similarly, the block region may be moved in order to enlarge the string region.

The initial  sizes  of  the allocated  storage regions  vary considerably from computer  to
computer, depending on the size of the user address space. On a computer with a small
address space, such as the PDP-ll, Icon was implemented with region sizes as small as:

 static region: 4,096 bytes (2,048 words)
string region: 10,240 bytes (5,120 words)
block region: 10,240 bytes (5,120 words)
total: 24,576 bytes (12,288 words)

On modern machines,  initial  sizes of 500,000 bytes or 2,000,000 bytes per region are
common.  Unicon allocates  1% of  physical  memory for  each of  the  string  and block
region. The user may establish different initial sizes prior to program execution by using
environment  variables  STRSIZE and BLKSIZE. As indicated previously,  the sizes  of
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these  regions  are  increased  at  run  time  if  necessary,  but  there  is  no  provision  for
decreasing the size of a region once it has grown to a given size.

Free  Space  and  the  System  Stack.  On  computers  with  system  stacks  that  grow
downward, such as the VAX, the system stack grows toward the allocated storage region.
Between the two regions is a region of free space into which the allocated storage region
may grow upward. Excessive recursion in C may cause collision of the system stack and
the  allocated  storage  region.  This  is  an  unrecoverable  condition,  and  the  result  is
termination of program execution.  Similarly,  more space may be needed for allocated
storage  than  is  available.  This  also  results  in  termination  of  program  execution.  In
practice,  the actual situation depends to a large extent on the size of the user address
space, which is the total amount of memory that is available for all the regions shown
previously.  On a computer  with a small  user address space,  such as the PDP-11, the
amount of memory available for allocated storage is a limiting factor for some programs.
Furthermore, collision of the allocated storage region and the system stack is a serious
problem. On a computer that supports a large virtual memory, the size of the system stack
is deliberately limited, since the the total amount of memory available is so large that
runaway  recursion  would  consume  enormous  resources  before  a  collision  occurred
between the system stack and the allocated storage region.

11.2 Allocation
Storage  allocation  in  Icon  is  designed  to  be  fast  and  simple.  Garbage  collection  is
somewhat more complicated as a result.  Part of the rationale for this approach is that
most Icon programs do a considerable amount of allocation, but many programs never do
a garbage collection. Hence, programs that do not garbage collect are not penalized by a
strategy that makes garbage collection more efficient at the expense of making allocation
less efficient. The other rationale for this approach is that the storage requirements of Icon
do not readily lend themselves to more complex allocation strategies.

11.2.1 The Static Region

Data allocated in the static region is never moved, although it may be freed for reuse. Co-
expression blocks are allocated in the static region, since their C stacks contain internal
pointers that depend on both the computer and the C compiler and hence are difficult to
relocate to another place in memory. Furthermore, since co-expression blocks are all the
same size, it is economical and simple to free and reuse their space.

The C library routines malloc() and free() are used to allocate and free co-expression
blocks in the static region. These routines maintain a list of blocks of free space. The
routine  malloc() finds  a  block  of  the  requested  size,  dividing  a  larger  block  if
necessary, and revises the free list  accordingly. The routine  free() returns the freed
space to the free list, coalescing it with adjacent free blocks if possible. See Kernighan
and Ritchie 1978 for a discussion of free-list allocation.

Icon contains its own version of these routines to assure that space is allocated in its own
static region and to allow its overall memory region to be expanded without conflict with
other users of malloc(). Thus, if a user extension to Icon or the operating system calls
malloc(), Icon's own routine handles the request. This means that the static region may
contain space allocated for data other than co-expression blocks, although this normally is
not the case.
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11.2.2 Blocks

For other  kinds  of  blocks,  Icon takes  advantage of  the fact  that  its  own data  can be
relocated if necessary and uses a very simple allocation technique. The allocated region
for blocks is divided into two parts:

When there is a request for a block of n bytes, the free pointer, blkfree, is incremented
by n and the previous value of the free pointer is returned as the location of the newly
allocated block. This process is fast and free of the complexities of the free-list approach.

Note that this technique really amounts to a free list with only one block. The problem of
reclaiming fragmented space on the free list is exchanged for the process of reclaiming
unused  blocks  and  rearranging  the  block  region  so  that  all  the  free  space  is  in  one
contiguous portion of the block region. This is done during garbage collection.

11.2.3 Strings

There is even less justification for a free-list  approach for allocating strings. A newly
created  string may be  one  character  long or  it  may be  thousands of  characters  long.
Furthermore, while there is space in blocks that can be used to link together free storage,
there is no such space in strings, and a free list would involve additional storage.

Instead, the string region is allocated in the same way that the block region is allocated:

As with the block region, a garbage collection is performed if there is not enough space in
the string region to satisfy an allocation request.

11.3 Garbage Collection
Allocation  is  simple,  but  garbage  collection  is  not.  The  primary purpose  of  garbage
collection is  to  reclaim the space occupied by "dead" objects  that  are not  needed for
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subsequent program execution, so that this space can be reallocated. This means different
things  in  different  regions.  In  the  static  region,  it  means  freeing  dead  co-expression
blocks. In the string and block regions, it involves moving the space for dead objects from
the  allocated  portion  of  the  region  to  the  free  portion.  This  is  considerably  more
complicated than adding a pointer to a free list. Since all free space must be in a single
block in these regions, "live" objects must be moved to fill in the holes left by dead ones.
This is done by compacting the allocated portion of these regions, relocating live objects
toward the beginning of these regions and squeezing out dead objects. In turn, pointers to
live  objects  have to  be adjusted to  correspond to their  new locations.  There are  two
phases in garbage collection:

● Location of live objects and all the pointers to them.

● Compaction of live objects and adjustment of the pointers to them.

"Garbage collection" is somewhat of a misnomer, since the process is oriented toward
saving "non-garbage" objects; garbage disappears as a byproduct of this operation.

11.3.1 The Basis

The challenging problem for garbage collection is the location of objects that have to be
saved, as well as all pointers to them. An object is dead, by definition, if it cannot be
accessed by any future source-language computation. Conversely, by definition, an object
is  live  if  it  can  be  accessed.  Consequently,  the  important  issue  is  the  possibility  of
computational  access.  For  example,  it  is  always  possible  to  access  the  value  of
&subject, and this value must be preserved by garbage collection. On the other hand, in
   a := [1,2,3]
   a := list(10)

after the execution of the second assignment, the first list assigned to a is inaccessible and
can be collected.

It is essential to save any object that may be accessed, but there is no way, in general, to
know if a specific object will be accessed. For example, a computational path may depend
on factors that are external to the program, such as the value of data that is read from a
file. It does comparatively little harm to save an object that might be accessed but, in fact,
never is. Some storage is wasted, but it  is likely to be reclaimed during a subsequent
collection. It is a serious error, on the other hand, to discard an object that subsequently is
accessed. In the first place, the former value of such an object usually is overwritten and
hence is "garbage" if it is subsequently accessed. Furthermore, accessing such an object
may overwrite another accessible object that now occupies the space for the former one.
The effects may range from incorrect computational results to addressing violations. The
sources of such errors also are hard to locate, since they may not be manifested until
considerably later during execution and in a context that is unrelated to the real cause of
the problem. Consequently, it is important to be conservative and to err, if at all, on the
side of saving objects whose subsequent accessibility is questionable. Note that it is not
only necessary to locate all accessible objects, but it is also necessary to locate all pointers
to objects that may be relocated.

The location phase starts with a basis that consists of descriptors that point to objects that
may  be  accessible  and  from  which  other  objects  may  be  accessed.  For  example,
&subject is in the basis. The precise content of the basis is partly a consequence of
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properties of the Icon language and partly a consequence of the way the run-time system
is implemented. The basis consists of the following descriptors:

• &main (co-expression block for the initial call of main)

• current co-expression block

• values of global identifiers

• values of static identifiers

• &subject

• saved values of map arguments

• tended descriptors

The tended descriptors provide temporary storage for a run-time support routine in which
a garbage collection may occur. See Sec. 12.2.2.

Not all objects that have to be saved are pointed to directly by the basis. The value of a
local identifier on the interpreter stack may point to a list-header block that in turn points
to a list-element block that contains elements pointing to strings and other blocks. Pointer
chains also can be circular.

11.3.2 The Location Phase

For historical reasons, the location phase is sometimes called marking. This term refers to
the common practice of setting an identifying bit in objects that have been located. Not all
such processes actually change the objects that are located. The way that this is done in
Icon depends on the region in which an object is located.

During the location phase, every descriptor in the basis is examined. A descriptor is of
interest only if it is a qualifier or if its v-word contains a pointer (that is, if its d-word
contains a p flag). For a pointer dp to a descriptor, the following checks are performed:
   if (Qual(*dp))
      postqual(dp);
   else if (Pointer(*dp))
      markblock(dp);

where the macro Pointer(d) tests the d-word of d for a p flag.

Strings. The routine postqual() first checks that the v-word of the qualifier points to a
string in the allocated string region, since strings in other parts of memory are not of
interest during garbage collection. If the string is in the allocated string region, a pointer
to the qualifier is placed in an array:
   void postqual(dptr dp)
   {
   ...
   if (InRange(strbase,StrLoc(*dp),strfree+1)) {
      *qualfree++ = dp;
      }
   }

The array quallist is empty when garbage collection begins. Its size is checked before
a pointer is added to it, and more space is obtained if it is needed although the code for
doing that is not shown here. See Sec. 11.3.6.
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The  pointers  that  accumulate  in  quallist during  the  marking  phase  provide  the
information necessary to determine the portion of the allocated string region that is in use.
In addition, these pointers point to all the qualifiers whose v-word must be adjusted when
the strings they point  to are moved during the compaction of string region. See Sec.
11.3.3.

Blocks.  The location phase for blocks is more complicated than that for strings, since
blocks can contain descriptors that point to strings as well as to other blocks. The objects
that these descriptors point to must be processed also.

Unlike strings, in which a separate array is used to keep track of qualifier that have been
located, no extra space is needed to keep track of descriptors that point to blocks. Instead,
descriptors and the titles of the blocks they point to are modified temporarily.

The title of any block located in the allocated block region is changed to point to a back
chain that contains all the descriptors that point to that block. The descriptors are linked
through their v-words.

The following example illustrates the process. Suppose there is a record declaration
record term(value, code, count)

and that the following expressions are evaluated:
x := term("chair", "noun",4)
y := x

The values of x, y, and the block they point to are related as follows:

Suppose that the descriptor containing the value of x is processed during the location
phase before the descriptor  containing the value of  y.  This  descriptor  is  identified as
pointing to a block in the allocated block region by virtue of the p flag in its d-word and
an address range check on the value of its  v-word. The back chain is  established by
setting the title word of the block to point to the descriptor and setting the v-word of the
descriptor to hold the previous contents of the title word. The result is
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The title word of the block now points to the descriptor that previously pointed to the
block. This change is reversible, and prior to the completion of the garbage collection
process the previous relationship is restored. A crucial but somewhat subtle aspect of the
change is that it is now possible to tell that the block has been marked. The numerical
magnitude of the value of its title word is greater than that of any type code, since all
descriptors in the run-time system are at memory locations whose addresses are larger
than the largest type code.

The descriptors in the record block now are processed in the same way as descriptors in
the basis. In order to do this, it is necessary to know where descriptors are located in the
block. Since blocks in the allocated block region are organized so that all  descriptors
follow all non-descriptor data, it is only necessary to know where the first descriptor is
and how large the block is. These values are determined using two arrays that have entries
for each type code.

The first array, bsizes, provides the information that is needed to determine block sizes.
There are three kinds of entries. An entry of -1 indicates a type for which there is no block
or for which the blocks are not in the allocated block region. Examples are T_Null and
T_Coexpr. An entry of 0 indicates that the size of the block follows the block title. This
is  the case for  records.  Any other  entry is  the actual  size  of  the  block in  bytes.  For
example, the entry in bsizes for T_List is 24 on a 32-bit computer.

The second array, firstd, is used to determine the byte offset of the first descriptor in
the  block.  As  with  bsizes,  a  value  of  -1  indicates  a  type  for  which  there  are  no
associated blocks in the allocated block region. A value of 0 indicates that there are no
descriptors in the block. Examples are T_Cset and T_Real. For T_Record, the entry is
8 for 32-bit computers, indicating that the first descriptor is at an offset of 8 bytes (2
words) from the beginning of the block. See Sec. 4.2.

For the previous example,  after  the descriptors in the record block are processed,  the
location phase continues. When the descriptor that contains the value of y is processed, it
is  added to  the  back chain  by again exchanging the  contents  of  its  v-word with  the
contents of the title of the block. As a result, the title of the block points to the descriptor
for the value of y and its v-word points to the descriptor for the value of x:
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Since  the  title  of  the  block  that  y points  to  is  marked,  the  descriptors  in  it  are  not
processed. This prevents descriptors from being processed twice and also  prevents the
marking phase from looping in case there are pointer loops among blocks.

If  a  variable  descriptor  is  encountered  when  processing  descriptors  whose  d-words
contain p flags, the value the variable points to belongs to one of the following categories:

●  trapped-variable block

●  global or static identifier

●  argument or local identifier

●  descriptor in a structure

A trapped variable, indicated by a t flag in its v-word, points to a block and is processed
like any other descriptor that points to a block. The values of global and static identifiers
are  in  the  basis  and  are  processed  separately.  The  values  of  arguments  and  local
identifiers are on an interpreter stack and are processed when its co-expression block is
processed. A variable descriptor that points to a descriptor in a structure points within a
block, not to the title  of a block. This is  the only case in which the offset,  which is
contained  in  the  least-significant  portion  of  the  d-word  of  a  non-trapped-variable
descriptor, is nonzero. Consequently, this offset is used to distinguish such variables from
those in the second and third categories.

Continuing  the  previous  example,  suppose  that  a  garbage  collection  is  triggered  by
evaluation of the expression

x.count := read()

At  the  beginning  of  garbage  collection,  there  is  a  variable  descriptor  for  the  field
reference that points to the record block in addition to the descriptors for the values of x
and y. If the values of x and y are processed first as described previously, the situation
when the variable descriptor is encountered is



153

Note that the offset in the d-word of the variable descriptor is in words, not bytes. The
offset,  converted to  bytes,  is  added to the v-word in the variable  descriptor,  and this
descriptor is linked into the back chain.

When the location phase is complete, the title of each block in the allocated block region
that must be saved points to a chain of all the descriptors that originally pointed to it. This
provides the necessary information to adjust the v-words of these descriptors to account
for the relocation of the block during the compaction phase. See Sec. 11.3.3.

If a descriptor that points to a co-expression block is encountered during the location
phase,  the  title  of  the  co-expression  block  is  marked  and  the  descriptors  in  the  co-
expression block are processed in a fashion similar to that for blocks in the allocated
block region. Since co-expression blocks are never moved, it is not necessary to keep
track of descriptors that point to them. To mark the title, it is sufficient to change it to a
value that is larger than any type code.

The activator  of  the  co-expression  (if  any)  is  processed like  any other  co-expression
block. Similarly, the refresh block that is pointed to from the co-expression block must be
processed like any other block. The rest of the descriptors associated with a co-expression
are in its interpreter stack.
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Here the situation is more complicated than it is with blocks in the allocated block region,
since interpreter stacks contain frame markers in addition to descriptors. Despite this, all
the descriptors, and only the descriptors, on an interpreter stack must be processed.

Interpreter stacks are processed by the routine sweep(), which starts at sp for the stack
and works toward the stack base. Descriptors are processed until the next frame marker is
encountered, at which point, depending on the type of the frame, the marker is skipped
and new frame pointers are set up from it.

The routine for marking blocks is
static void markblock(dp)                                        
dptr dp;                                                         
   {                                                             
   register dptr dp1;                                            
   register char *block, *endblock;                              
   word type, fdesc;                                             
   int numptr;                                                   
   register union block **ptr, **lastptr;                        
                                                                 
   if (Var(*dp)) {                                               
       if (dp->dword & F_Typecode) {                             
          switch (Type(*dp)) {                                   
             case T_Kywdint:                                     
             case T_Kywdpos:                                     
             case T_Kywdsubj:                                    
                /*                                               
                 * descriptor points to a keyword, not a block.  
                 */                                              
                return;                                          
             }                                                   
          }                                                      
       else if (Offset(*dp) == 0) {                              
          /*                                                     
           * A simple variable not residing in a block.       
           */                                                    
          return;                                                
          }                                                      
      }                                                          
                                                                 
   /*                                                            
    * Get the block to which dp points.                          
    */                                                           
   block = (char *)BlkLoc(*dp);                                  
                                                                 
   if (InRange(blkbase,block,blkfree)) {                         
      type = BlkType(block);                                     
      if ((uword)type <= MaxType) {                              
                                                                 
         /*                                                      
          * The type is valid, which indicates that this block
          *  has not been marked.  Point endblock to the byte
          *  past the end of the block.                          
          */                                                     
         endblock = block + BlkSize(block);                      
         }                                                       
                                                                 
      /*                                                         
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       * Add dp to the back chain for the block and point the    
       *  block (via the type field) to dp.vword.                
       */                                                        
      BlkLoc(*dp) = (union block *)type;                         
      BlkType(block) = (uword)&BlkLoc(*dp);

      if ((uword)type <= MaxType) {                              
         /*                                                      
          * The block was not marked; process pointers and       
          *  descriptors within the block.                       
          */                                                     
         if ((fdesc = firstp[type]) > 0) {                       
            /*                                                   
             * The block contains pointers; mark each pointer.   
             */                                                  
            ptr = (union block **)(block + fdesc);               
            numptr = ptrno[type];                                
            if (numptr > 0)                                      
               lastptr = ptr + numptr;                           
            else                                                 
               lastptr = (union block **)endblock;               
            for (; ptr < lastptr; ptr++)                         
               if (*ptr != NULL)                                 
                  markptr(ptr);                                  
            }                                                    
         if ((fdesc = firstd[type]) > 0)                         
            /*                                                   
             * The block contains descriptors; mark each one. 
             */                                                  
            for (dp1 = (dptr)(block + fdesc);                    
                 (char *)dp1 < endblock; dp1++) {                
               if (Qual(*dp1))                                   
                  postqual(dp1);                                 
               else if (Pointer(*dp1))                           
                  markblock(dp1);                                
               }                                                 
         }                                                       
      } 

   else if ((unsigned int)BlkType(block) == T_Coexpr) {          
      struct b_coexpr *cp;                                       
      struct astkblk *abp;                                       
      int i;                                                     
      struct descrip adesc;                                      
                                                                 
      /*                                                         
       * dp points to a co-expression block that has not been    
       *  marked.  Point the block to dp.  Sweep the interpreter 
       *  stack in the block.  Then mark the block for the       
       *  activating co-expression and the refresh block.        
       */                                                        
      BlkType(block) = (uword)dp;                                
      sweep((struct b_coexpr *)block);                           
                                                                 
      /*                                                         
       * Mark the activators of this co-expression.   The        
       *  activators are stored as a list of addresses, but     
       *  markblock requires the address of a descriptor.  To    
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       *  accommodate markblock, the dummy descriptor adesc is
       *  filled in with each activator address in turn and then 
       *  marked.  Since co-expressions and the descriptors that 
       *  reference them don't participate in the back-chaining  
       *  scheme, it's ok to reuse the descriptor in this manner.
       */                                                        
      cp = (struct b_coexpr *)block;                             
      adesc.dword = D_Coexpr;                                    
      for (abp = cp->es_actstk; abp!=NULL; abp = abp->astk_nxt) {
         for (i = 1; i <= abp->nactivators; i++) {               
            BlkLoc(adesc) =
               (union block *)abp->arec[i-1].activator;          
            markblock(&adesc);                                   
            }                                                    
         }                                                       
      if(BlkLoc(cp->freshblk) != NULL)                           
         markblock(&((struct b_coexpr *)block)->freshblk);       
      }
   else {
      /* … code for blocks found in other regions */
      }
   }

The macro  BlkType(cp) produces the type code of the block pointed to by  cp. The
macro BlkSize(cp) uses the array bsizes to determine the size of the block pointed to
by cp.

11.3.3 Pointer Adjustment and Compaction

Strings.  When the location phase is complete, quallist contains a list pointers to all the
qualifiers whose v-words point to the allocated string region. For example, suppose that
the allocated string region at the beginning of a garbage collection is

Suppose also that the following qualifiers reference the allocated string region:
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The pointers to the allocated string region are

Note that the qualifiers point to overlapping strings.

After the location phase, quallist might contain the following pointers:

The order of the pointers in quallist depends on the order in which the qualifiers are
processed:  there  is  no  necessary  relationship  between  the  order  of  the  pointers  in
quallist and the order of the pointers to the allocated string region.

At  the  beginning  of  the  pointer-adjustment  phase  of  garbage  collection,  the  array
quallist is sorted in non-decreasing order by the v-words in qualifiers that are pointed
to from quallist. This allows the pointers to the allocated string region to be processed
in non-decreasing order so that the portions of the allocated string region that must be
saved and compacted can be determined.

Continuing the previous example, quallist becomes
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The v-words of the qualifiers in the order of the pointers in quallist now are

strbase+400
strbase+400
strbase+400
strbase+415
strbase+420
strbase+430
strbase+430

Since  qualifiers  may  reference  overlapping  strings,  care  must  be  taken  to  identify
contiguous  "clumps"  of  characters  that  may be  shared  by qualifiers.  The  pointers  in
quallist are processed in order. Three pointers in the string region are maintained:
dest, the next free destination for a clump of characters to be saved; source, the start of
the next clump; and cend, the end character in the current clump.

When a qualifier that is pointed to from  quallist is processed, the first question is
whether its  v-word addresses a character that  is  beyond the end of the current clump
(since v-words are processed in numerical order, the address is either in the current clump
or beyond the end of it). If it is in the current clump, cend is updated, provided the last
character of the current qualifier is beyond cend. If it  is not in the current clump, the
clump is moved from source to dest. In either case, the v-word of the current qualifier is
adjusted (dest -source is added to it).

In the previous example, the allocated string region after collection is

and the seven qualifiers that point to it are
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The routine for compacting the allocated string region and adjusting pointers to it is
static void scollect(extra)                                      
word extra;                                                      
   {                                                             
   register char *source, *dest;                                 
   register dptr *qptr;                                          
   char *cend;                                                   
   CURTSTATE();                                                  
                                                                 
   if (qualfree <= quallist) {                                   
      /*                                                         
       * There are no accessible strings.  Thus, there are none 
to              
       *  collect and the whole string space is free.            
       */                                                        
      strfree = strbase;                                         
      return;                                                    
      }                                                          
   /*                                                            
    * Sort the pointers on quallist in ascending order of string 
    *  locations.                                                
    */                                                           
   qsort((char *)quallist, (int)(DiffPtrs((char *)qualfree,(char 
*)quallist)) / 
     sizeof(dptr *), sizeof(dptr), (QSortFncCast)qlcmp);         
   /*                                                            
    * The string qualifiers are now ordered by starting location.
    */                                                           
   dest = strbase;                                               
   source = cend = StrLoc(**quallist);                           
                                                                 
   /*                                                            
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    * Loop through qualifiers for accessible strings.            
    */                                                           
   for (qptr = quallist; qptr < qualfree; qptr++) {              
      if (StrLoc(**qptr) > cend) {                               
                                                                 
         /*                                                      
          * qptr points to a qualifier for a string in the next 
clump.          
          *  The last clump is moved, and source and cend are set
for           
          *  the next clump.                                     
          */                                                     
         while (source < cend)                                   
            *dest++ = *source++;                                 
         source = cend = StrLoc(**qptr);                         
         }                                                       
      if ((StrLoc(**qptr) + StrLen(**qptr)) > cend)              
         /*                                                      
          * qptr is a qualifier for a string in this clump; 
extend              
          *  the clump.                                          
          */                                                     
         cend = StrLoc(**qptr) + StrLen(**qptr);                 
      /*                                                         
       * Relocate the string qualifier.                          
       */                                                        
      StrLoc(**qptr) = StrLoc(**qptr) + DiffPtrs(dest,source) + 
(uword)extra;   
      }                                                          
                                                                 
   /*                                                            
    * Move the last clump.                                       
    */                                                           
   while (source < cend)                                         
      *dest++ = *source++;                                       
   strfree = dest;                                               
   }

The argument extra provides an offset in case the string region is moved. See Sec. 11.3.5.

Sorting is done by the C library routine qsort, whose fourth argument is a routine that
performs the comparison
   static int qlcmp(dptr *q1, dptr *q2)
   {
   return (int)(DiffPtrs(StrLoc(**q1),Strloc(**q2))); 
   }

Blocks. After the location phase, some blocks in the allocated block region are marked
and others are not. In the following typical situation, the horizontal lines delimit blocks,
gray areas indicate marked blocks, and clear areas indicate unmarked blocks:
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In the allocated block region, pointer adjustment and compaction are done in two linear
passes over the region between blkbase and blkfree. In the first pass, two pointers are
used,  dest and  source.  dest points to where the next block will be after blocks are
moved in the next pass, while  source points to the next block to be processed. Both
dest and source start at blkbase, pointing to the first allocated block.

During this pass, the title of each block pointed to by source is examined. If it is not
marked (that is, if it is not larger than the maximum type code), dest is left unchanged
and source is incremented by the size of the block to get to the title of the next block.
Thus, unmarked blocks are skipped. The array bsizes is used, as before, to determine
block sizes.

If the title of the block pointed to by source is marked, its back chain of descriptors is
processed, changing their v-words to point to where dest points. In the case of a variable
descriptor that is not a trapped-variable descriptor, the offset in its d-word is added to its
v-word, so that it points to the appropriate relative position with respect to dest.

The last descriptor in the back chain is identified by the fact that its v-word contains a
type code (a value smaller than any possible pointer to the allocated block region). This
type code is restored to the title of the block before the v-word is changed to point to the
destination. An m flag is set in the title to distinguish it as a marked block, since the
former marking method no longer applies, but the compaction phase needs to determine
which blocks are to be moved.

After the back chain has been processed, all descriptors that point to the block now point
to where the block will be when it is moved during the compaction phase. The block itself
is not moved at this time. This is illustrated by the example given previously, in which
three descriptors point to a record block. After marking, the situation is
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After processing the back chain, the situation is

Note that the v-words of the descriptors point to where the block will be after it is moved.

The routine for adjusting pointers to the allocated block region is
static void adjust(char *source, char *dest)                     
   {                                                             
   register union block **nxtptr, **tptr;                        
                                                                 
   /*                                                            
    * Loop through to the end of allocated block region, moving  
    *  source to each block in turn and using the size of a block
    *  to find the next block.                                   
    */                                                           
   while (source < blkfree) {                                    
      if ((uword)(nxtptr = (union block **)BlkType(source)) >
           MaxType) {        
                                                                 
         /*                                                      
          * The type field of source is a back pointer.  Traverse
          *  the chain of back pointers, changing each block     
          *  location from source to dest.                       
          */                                                     
         while ((uword)nxtptr > MaxType) {                       
            tptr = nxtptr;                                       
            nxtptr = (union block **) *nxtptr;                   
            *tptr = (union block *)dest;                         
            }                                                    
         BlkType(source) = (uword)nxtptr | F_Mark;               
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         dest += BlkSize(source);                                
         }                                                       
      source += BlkSize(source);                                 
      }                                                          
   }

When the pointer-adjustment phase is complete, the blocks can be moved. At this time,
all the block titles contain type codes, and those that are to be saved are marked by m
flags.  During  the  compaction  phase,  these  pointers  are  used  again  to  reference  the
destination and source of blocks to be moved.

If an unmarked block is encountered, source is incremented by the block skipping over
the block. If a marked block is encountered, the m flag in its is removed and the block is
copied to dest. Then dest and source are incremented by the size of the block.

When blkfree is reached, it is set to dest. At this point the allocated block region has
been compacted. All saved blocks are before blkfree, and all free space is after it. The
pointers that were adjusted now point to their blocks, and the relative situation is the
same as it was before garbage collection.

The routine for compacting the allocated block region is
static void compact(source)                                      
char *source;                                                    
   {                                                             
   register char *dest;                                          
   register word size;                                           
                                                                 
   /*                                                            
    * Start dest at source.                                      
    */                                                           
   dest = source;                                                
                                                                 
   /*                                                            
    * Loop through to end of allocated block space, moving source
    *  to each block in turn, using the size of a block to find  
    *  the next block. If a block has been marked, it is copied  
    *  to the location pointed to by dest and dest is pointed    
    *  past the end of the block, which is the location to place 
    *  the next saved block.  Marks are removed from the saved
    *  blocks.                         
    */                                                           
   while (source < blkfree) {                                    
      size = BlkSize(source);                                    
      if (BlkType(source) & F_Mark) {                            
         BlkType(source) &= ~F_Mark;                             
         if (source != dest)                                     
            mvc((uword)size,source,dest);                        
         dest += size;                                           
         }                                                       
      source += size;                                            
      }                                                          
                                                                 
   /*                                                            
    * dest is the location of the next free block.  Now that     
    *  compaction is complete, point blkfree to that location.   
    */                                                           
   blkfree = dest;                                               
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   }

The routine mvc(n, source, dest) moves n bytes from source to dest.

11.3.4 Collecting Co-Expression Blocks

After  the  location  phase of  garbage collection  is  complete,  all  the live  co-expression
blocks are marked, but the dead co-expression blocks are not. It is a simple matter to
process the list  of co-expression blocks,  which are linked by pointers,  calling free to
deallocate  dead ones and at  the same time removing them  from the list.  For live co-
expressions,  the  type  code  in  the  title  is  restored.  The  routine  cofree  that  frees  co-
expression blocks is
   static void cofree()
   {
   register struct b_coexpr **ep, *xep;

   /*
    * Reset the type for &main.
    */
   BlkLoc(k_main)->coexpr.titie = T_Coexpr;
   /*
    * The co-expression blocks are linked together through their
    * nextstk fields, with stklist pointing to the head of the
    * list. The list is traversed and each stack that was not
    * marked is freed.
    */
   ep = &stklist;
   while (*ep != NULL) {
      if (BlkType(*ep) == T_Coexpr) {
         xep = *ep;
         *ep = (*ep)->nextstk;
         /*                                                      
          * Free the astkblks. There should always be one and it 
          *  seems that it's not possible to have more than one, 
          *  but nonetheless, the code provides for more than one
          */                                                     
         for (abp = xep->es_actstk; abp; ) {                     
            xabp = abp;                                          
            abp = abp->astk_nxt;                                 
            free((pointer)xabp);                                 
            }                                                    
         coclean(xep->cstate); 
         free((char *)xep);
         }
      else {
         BlkType(*ep) = T_Coexpr;
         ep = &(*ep)->nextstk;
         }
      }
   }

11.3.5 Multiple Regions

Garbage collection may not produce enough free space in a region to satisfy the request
that caused the garbage collection. In this case, the region for which the request was made
is replaced with a new larger region. In addition, the allocated string and block regions
are replaced if the amount of free space in them after garbage collection otherwise would
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be less than a minimum value, which is called "breathing room." This attempts to avoid
"thrashing" that might result from a garbage collection that leaves a small amount of free
space, only to result in a subsequent garbage collection almost immediately.

The set of string and block regions for a program are managed as a linked list. Older,
“tenured” regions  are  revisited,  and garbage collected,  prior  to  allocating new, larger
regions. If an older region frees enough space, it  is made the active region instead of
allocating a new one.

11.3.6 Storage Requirements during Garbage Collection

Garbage  collection  itself  takes  some  work  space.  Space  for  pointers  to  qualifiers  is
provided in quallist, while C stack space is needed for calls to routine that perform the
various aspects of garbage collection, which are heavily recursive.

The space for quallist is obtained from the free space at the end of the allocated block
region. The amount of space needed is proportional to the number of qualifiers whose v-
words point to strings in the allocated string region and usually is comparatively small.
Space for quallist is obtained in small increments

This is done in postqual(), for which the complete routine is
static void postqual(dptr dp)
   {
   char *newqual;

   if (InRange(strbase,StrLoc(*dp),strfree + 1)) {
      /*
       * The string is in the string space.  Add it to the string
       *  qualifier list, but before adding it, expand the string
       *  qualifier list if necessary.                           
       */                                                        
      if (qualfree >= equallist) {                               
                                                                 
         /* reallocate a qualifier list that's twice as large */ 
         newqual = realloc(quallist, 2 * qualsize);              
         if (newqual) {                                          
            quallist = (dptr *)newqual;                          
            qualfree = (dptr *)(newqual + qualsize);             
            qualsize *= 2;                                       
            equallist = (dptr *)(newqual + qualsize);            
            }                                                    
         else {                                                  
            qualfail = 1;                                        
            return;                                              
            }                                                    
         }
      *qualfree++ = dp;
      }
   }

The amount of stack space required during garbage collection depends primarily on the
depth  of  recursion  in  calls  to  markblock() and  markptr().  Recursion  in  these
functions corresponds to linked lists of pointers in allocated storage. It occurs where a
descriptor in the static region or the allocated block region points to an as-yet unmarked
block. C stack overflow may occur during garbage collection. This problem is particularly
serious on computers with small address spaces for programs that use a large amount of
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allocated data. The use of stack space during marking is minimized by testing descriptor
v-words  before  calling  markblock(),  by  using  static  storage  for  variables  in
markblock() that are not needed in recursive calls, and by incorporating the code for
processing co-expression blocks in markblock(), rather than calling a separate routine.

11.4 Predictive Need
In  most  systems  that  manage  allocated  storage  dynamically,  garbage  collections  are
triggered by allocation requests that cannot be satisfied by the amount of free storage that
remains. In these systems, garbage collections occur during calls to allocation routines.

Whenever a garbage collection occurs, all potentially accessible data must be reachable
from the basis, and any descriptors that are reachable from the basis must contain valid
data.  These  requirements  pose  serious  difficulties,  since,  in  the  normal  course  of
computation, pointers to accessible objects may only exist in registers or on the C stack as
C  local  variables  that  the  garbage  collector  has  no  way  of  locating.  Furthermore,
descriptors  that  are  being  constructed  may temporarily hold  invalid  data.  While  it  is
helpful to know that garbage collection can occur only during calls to allocation routines,
allocation often is done in the midst of other computations. Assuring that all accessible
data is reachable and that all reachable data is valid can be difficult and prone to error.

For these reasons, Icon uses a slightly different strategy, called "predictive need," for
triggering garbage collections. Instead of garbage collection occurring as a byproduct of
an allocation request, the amount of space needed is requested in advance. There is a
routine,  reserve(Region,n), for reserving space in advance. This routine checks the
specified region to assure the amount of free space needed is actually available. If it is
not, it calls the garbage collector. The code for reserve() is conceptually
   char *reserve(int r, uword n)
   {
   if (DiffPtrs(regions[r]->end,regions[r]->free < n)
      collect(r,n);
   return regions[r]->free;
   }

In practice, things are more complicated, as the current region may be changed or a new
region may be allocated in order to satisfy the request.

The string allocator mainly ensures space is available and then updates the free pointer:
   char *alcstr(char *s, word slen)
   {
   tended struct descrip ts;                                     
   register char *d;                                             
   char *ofree;                                                  
                                                                 
   /*                                                            
    * Make sure there is enough room in the string space.        
    */                                                           
   if (DiffPtrs(strend,strfree) < slen) {                        
      StrLen(ts) = slen;                                         
      StrLoc(ts) = s;                                            
      if (!reserve(Strings, slen))                               
         return NULL;                                            
      s = StrLoc(ts);                                            
      }                                                          
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   strtotal += slen;
   /*
    * Copy the string into the string space, saving a pointer to
    * its beginning. Note that s may be null, in which case the
    * space is still to be allocated but nothing is to be copied
    * into it.
    */
   ofree = d = strfree;
   if (s) {
      while (slen-- > 0)
      *d++ = *s++;
      }
   else
      d += slen;
   strfree = d;
   return ofree;
   }

If a garbage collection  occurs,  a parameter  is  passed to be sure that  enough space is
collected to satisfy any remaining allocation requests.

Since  a  predictive  need  request  assures  an  adequate  amount  of  space,  no  garbage
collection can occur during the subsequent allocation request. The advantage of having a
garbage collection  occur  during  a  predictive  need request  rather  during  an  allocation
request is that a safe time can be chosen for a possible garbage collection. The amount of
space needed (or at least an upper bound on it) usually is known before the storage is
actually needed. and when all valid data can be located from the basis.

A few lines  from the  implementation  of  the  image() function,  showing how string
images are constructed, illustrates predictive need. The image will consist of a pair of
double quotes, enclosing a representation of the string contents with special characters
escaped. If  alcstr() is  called separately for the various components,  they might  be
allocated  non-contiguously.  Reserving  the  maximum  space  needed  ahead  of  time
guarantees subsequent calls to alcstr() will be contiguous. The maximum needed for
image would be StrLen(source)*4+2, done using a shift operator:
         s = StrLoc(source);                                     
         len = StrLen(source);                                   
         Protect (reserve(Strings,(len << 2) + 2), return Error);
         Protect(t = alcstr("\"", (word)(1)), return Error);     
         StrLoc(*dp2) = t;                                       
         StrLen(*dp2) = 1;                                       
         while (len-- > 0)                                       
            StrLen(*dp2) += doimage(*s++, '"');                  
         Protect(alcstr("\"", (word)(1)), return Error);         
         ++StrLen(*dp2);

A disadvantage of predictive need is that the maximum amount of storage needed must be
determined and care must be taken to make predictive need requests prior to allocation.
These problems do not occur in storage-management systems where garbage collection is
implicit in allocation.

RETROSPECTIVE: Storage management is one of the major concerns in the implementation
of a run-time system in which space is allocated dynamically and automatically. Although
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many programs  never  garbage  collect  at  all,  for  those  that  do,  the  cost  of  garbage
collection may be significant.

The requirements of storage management have a significant influence on the way that
data is represented in Icon, particularly in blocks. Aspects of data representation that may
appear  arbitrary in  the absence of considerations  related to  storage management  have
definite uses during garbage collection.

The garbage collector can only identify those pointers of which it is informed. Globals are
informed by placing them in the basis set. Locals are informed by declaring them to be
tended. Descriptors and block pointers within blocks are specified in tables, indexed by
the block's type code, that describe the number and positional offset of all pointers within
the block.

While it is possible to devise more economical methods of representing such data at the
expense of complexity and loss of generality, any method of representing data for which
space is allocated automatically has some overhead.

Garbage collection  is  most  expensive when there are  many live  objects  that  must  be
saved. For programs in which allocated storage is used transiently and in which there are
few live objects, garbage collection is fast.

EXERCISES

11.1 Since the first word of a block contains its type code, why is there also a type code
in a descriptor that points to it?

11.2 Give an example of an Icon expression that changes the contents of a block that is
allocated statically in the run-time system.

11.3 Give an example of an Icon expression that changes data in the icode region.

11.4 Why not combine global and static identifiers in a single array of descriptors in the
icode region?

11.5 Why are the names of global identifiers needed?

11.6 Why is there no array for the names of static identifiers?

11.7 How long can a string be?

11.8 How many elements can a single list-element block hold?

11.9 List all the regions of memory in which the following Icon data objects can occur:

• strings
• descriptors
• co-expression blocks
• other blocks

11.10 List all the source-language operations in Icon that may cause the allocation of
storage.

11.11 Give an example of an expression for which it  cannot be determined from the
expression itself whether or not it allocates storage.

11.12 List the block types for which block size may vary from one block to another.
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11.13 List all the types of blocks that may occur in the allocated block region.

11.14 List all the types of blocks that may occur outside of the allocated block region.

11.15 Give an example of an Icon program in which the only access path to a live object
during garbage collection is a variable that points to an element in a structure.

11.16 Give an example of an Icon program that constructs a circular pointer chain.

11.17 Explain how it can be assured that all blocks in the allocated block region are at
addresses that are larger than the maximum type code.

11.18 Aside from the possibility of looping in the location phase of garbage collection,
what are the possible consequences of processing the descriptors in a block more than
once?

11.19 What would happen if there were more than one pointer on quallist to the  same
qualifier?

11.20 Because of the way that the Icon run-time system is written, blocks that are not in
the allocated block region do not contain pointers to allocated objects. Consequently,
the descriptors in such blocks do not have to be processed during garbage collection.

• What does this imply about access to such blocks?

• What  changes would have to  be made to  the garbage collector  if  such blocks
could contain pointers to allocated objects?

11.21 There is one exception to the statement in the preceding exercise that blocks that
are  not  in  the  allocated  data  region  do  not  contain  pointers  to  allocated  objects.
Identify this exception and explain how it is handled during garbage collection.

11.22 In the allocated string region, pointer adjustment and compaction are done in one
pass,  while  two  passes  are  used  in  the  allocated  block  region.  Why are  pointer
adjustment and compaction not done in a single pass over the allocated block region?

11.23 What would be the effect of failing to remove the m flag from a block title during
the compaction of the allocated block region?

11.24 If garbage collection cannot produce enough free space in the region for which the
collection was triggered, program execution is terminated even if there is extra space
in another region. Describe how to modify the garbage collector to avoid this problem.

11.25 Write a program that requires an arbitrarily large amount of space for quallist.

11.26 Write a program that causes an arbitrary amount of recursion in markblock during
garbage collection.

11.27 Write a program that produces an arbitrarily large amount of data that must be
saved by garbage collection, and observe the results.

11.28 Devise  a  more  sophisticated  method  of  preventing  thrashing in  allocation  and
garbage collection than the fixed breathing-room method.

11.29 There is  no mechanism to  reduce the size  of  an allocated  region that  may be
expanded during one garbage collection, but which has an excessive amount of free
space after another garbage collection. Describe how to implement such a mechanism.
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11.30 Suppose that a garbage collection could occur during a call of any C routine from
any other C routine. How would this complicate the way C routines are written?

11.31 What might happen if

• The amount of storage specified in a predictive need request were larger than the
amount subsequently allocated?

• The amount of storage specified in a predictive need request were smaller than the
amount subsequently allocated?

11.32 When a list-element block is unlinked as the result of a pop, get, or pull, can the
space it occupies always be reclaimed by a garbage collection? What are the general
considerations in answering questions such as these?

11.33 A variable that refers to a descriptor in a block points directly to the descriptor,
with an offset in its d-word to the head of the block in which the descriptor resides.
Could it be the other way around, with a variable pointing to the head of the block and
an offset to the descriptor? If so, what are the advantages and disadvantages of the two
methods?

11.34 Why does sweep process an interpreter stack from its sp to its base, rather than the
other way around?

11.35 As mentioned in Sec. 11.3, all regions are collected, regardless of the region in
which space is needed. Discuss the pros and cons of this approach.

11.36 Evaluate the cost of using two-word descriptors for all pointers to blocks, even
when these pointers do not correspond to source-language values (as, for example, in
the links among list-element blocks).

11.37 The need to garbage-collect blocks that are allocated during program execution
significantly  affects  the  structure  and  organization  of  such  blocks.  Suppose  that
garbage collection were never needed. How could the structure and organizations of
blocks be revised to save space?

11.38 Discuss  the pros  and cons of  having different  regions  for  allocating blocks  of
different types.

11.39 Some expressions, such as
while write(read())
result in a substantial amount of "storage throughput," even though no space really
needs to be allocated. Explain why this effect cannot be avoided in general and discuss
its impact on program performance.

11.40 Physical  memory  is  becoming  less  and  less  expensive,  and  more  computer
architectures and operating systems are providing larger user address spaces. Discuss
how very large  user  address  spaces  might  affect  allocation  and garbage-collection
strategies.



171

Chapter 12: Run-Time Support Operations
PERSPECTIVE: Several features of Icon's run-time system cannot be compartmentalized as neatly
as  storage  management  but  present  significant  implementation  problems  nonetheless.  These
features include type checking and conversion dereferencing and assignment, input and output,
and diagnostic facilities.

12.1 Type Checking and Conversion
Type checking is relatively straightforward in Icon. If only one type is of interest a test of
the d-word is sufficient, as in
   if (Type(Arg1) != T_List)
      runerr(108, &Arg1);

It is necessary to test the entire d-word, since a qualifier may have a length that is the
same as a type code. The d-word test takes care of this, because all descriptors that are not
qualifiers have n flags.

If different actions are needed for different types, a separate test is required for qualifiers,
since  there  is  no  type  code  for  strings.  The  RTL  runtime  language's  type_case
statement  looks  like  a  switch,  but  is  really performing  a  selection  according to  type
generally of the form:
   if (is:string(Arg1)) /* string */
   else switch (Type(Arg1) {

case T_List: /* list */

The real problems lie in type conversion, not type checking. At the source-language level,
type conversion can occur explicitly, as a result of type-conversion functions,  such as
string(x), or it may be implicit. Implicit type conversion occurs frequently in many
kinds of computations. For example, numeric data may be read from files in the form of
strings, converted to numbers in arithmetic computations, and then converted to strings
that are written out. Many operations support this implicit type conversion, and they rely
on type-conversion routines.

There are four types among which mutual conversion is supported: strings, csets, integers,
and real numbers. The details of type conversion are part of the Icon language definition
(Griswold and Griswold 1983). For example, when a cset is converted to a string, the
characters of the resulting string are in lexical order. Some conversions are conditional
and may succeed or fail, depending on the value being converted. For example, a real
number can be converted to an integer only if its value is in the range of a C long. The
conversions  are  illustrated  in  the  following  diagram,  where  dashed  lines  indicate
conversions that are conditional:
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Thus, of the twelve conversions, five are conditional.

Some  kinds  of  conversions  are  "natural"  and  occur  frequently  in  typical  programs.
Examples  are  string-to-integer  conversion  and  integer-to-string  conversion.  Other
conversions,  such  as  cset-to-integer,  are  unlikely  to  occur  in  the  normal  course  of
computation.  To  reduce  the  number  of  conversion  routines  required,  these  unlikely
conversions are done in two steps. For example, the conversion of a cset to an integer is
done by first converting the cset to a string and then converting the string to an integer.
The direct conversions are

Conversions are done by calling routines that convert values to expected types. These
routines are

   cnv_cset convert to cset
   cnv_int convert to integer
   cnv_real convert to real
   cnv_str convert to string

Since these routines may be called with any type of value, all of them are conditional. For
example, it is not possible to convert a list to a string. These routines return the value
CvtFail to indicate the failure of a conversion. If conversion is successful, they return a
value indicating the type of conversion.
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Numerical computation introduces complications in addition to the types integer and real,
since  there  is  the  concept  of  a  numeric  "type"  that  includes  both  integers  and  real
numbers.  This  is  represented  explicitly  by  the  Icon  type-conversion  function
numeric(x), which converts x to either integer or real, depending on the value of x.  Its
implementation illustrates RTL's extensions to the C language for type conversions.  Rtt
can generate special-case functions for each call to numeric(x), based on what it knows
about the type information at that call site, and skip the checks and conversions where
they are not necessary.
function{0,1} numeric(n)
   if cnv:(exact)integer(n) then {
      abstract { return integer }
      inline   { return n; }
      }
   else if cnv:real(n) then {
      abstract { return real }
      inline   { return n; }
      }
   else {
      abstract { return empty_type }
      inline   { fail; }
      }
end

Numeric conversion also occurs implicitly in polymorphic operations such as
   n+m

which performs integer or real arithmetic, depending on the types of n and m. The RTL
language was  given  an  arith_case construct  specifically  to  handle  this  issue.  The
general form of the arithmetic operators looks like:
   operator{1} icon_op func_name(x, y)
      declare {
         tended struct descrip lx, ly;

 C_integer irslt;
         }
     arith_case (x, y) of {
         C_integer: {
            abstract { return integer }
            inline {
               extern int over_flow;
               c_int_op(x,y);
               }
            }
         integer: { /* large integers only */
            abstract { return integer }
            inline {
               big_ ## c_int_op(x,y);
               }
            }
         C_double: {
            abstract { return real }
            inline {
               c_real_op(x, y);
               }
            }
         }
   end
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Internally, a macro  GetReal() is used to handle the real type, since some computers
have restrictions on the alignment of doubles. Thus, GetReal() has different definitions
depending on the target computer. The actual conversion of a string to a numeric value is
done by ston(). Note that the conversion of a cset to a numeric value occurs by way of
conversion to a string.

When types are not known at compile-time, RTL constructs such as  cnv:str(d) are
translated down to conversion routines in cnv.r. String conversion requires a buffer to
construct the string. In a common special-case, this buffer is provided by the routine that
is requesting string conversion for temporary use, avoiding the heap memory allocator.
This is used, for example when a value is converted to a string in order to convert it to a
number. See Sec. 4.4.4. The code for the “temporary string” version of string conversion
is in a function tmp_str():
static int tmp_str(char *sbuf, dptr s, dptr d)
   {
   type_case *s of {
      string:
         *d = *s;
      integer: {
         if (Type(*s) == T_Lrgint) {
            word slen, dlen;
            slen = (BlkLoc(*s)->bignumblk.lsd -
                    BlkLoc(*s)->bignumblk.msd +1);
            dlen=slen * NB * 0.3010299956639812; /* 1/log2(10) */
            bigtos(s,d);
            }
         else
            itos(IntVal(*s), d, sbuf);
         }
      real: {
         double res;
         GetReal(s, res);
         rtos(res, d, sbuf);
         }
      cset:
         cstos(BlkLoc(*s)->cset.bits, d, sbuf);
      default:
         return 0;
      }
   return 1;
   }

If a conversion is required, itos(), rtos(), or cstos() does the actual work, placing
its result in sbuf and changing the descriptor pointed to by d accordingly. These routines
return a 1 if the result is a string and a 0 otherwise. The monitoring facilities in Unicon
can  also  report  whether  no  conversion  was  needed  (E_Nconv),  a  conversion  was
performed successfully (E_Sconv), or the conversion failed (E_Fconv).

If a converted string is in a buffer that is local to the calling routine, it must be copied into
allocated storage, or it would be destroyed when that routine returns. The fully general
version of  cnv_str() is equivalent to the following function. Because this function is
heavily called, in reality the body of tmp_str() is inlined in cnv_str().
int cnv_str(dptr s, dptr d)
   {
   char sbuf[MaxCvtLen];
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   type_case *s of {
      string: {
         *d = *s;
         return 1;
         }
      default: {
         if (!tmp_str(sbuf, s, d)) return 0;
         }
      }
   Protect(StrLoc(*d) =
              alcstr(StrLoc(*d), StrLen(*d)), fatalerr(0,NULL));
   return 1;
   }

12.2 Dereferencing and Assignment
If there were no trapped variables, dereferencing and assignment would be trivial.  For
example, the descriptor d is dereferenced by
   d = *VarLoc(d)

where VarLoc references the v-word of d:
   #define VarLoc(d) ((d).vword.dptr)

The dereferencing or assignment to a trapped variable, on the other hand, may involve a
complicated  computation.  This  computation  reflects  the  meaning  associated  with  the
operation on the source-language expression that is represented in the implementation as
a trapped variable. For example, as discussed previously, in
   x[y] := z

the value of x may be a list, a string, a table, or a record. A subscripted list or record does
not produce a trapped variable, but the other two cases do. For a string, the variable on
the left side of the assignment is a substring trapped variable. For a table, the variable is a
table-element  trapped  variable.  In  the  first  case,  the  assignment  involves  the
concatenation of three strings and the assignment of the result to x. In the second case, it
involves looking for y in the table. If there is a table element for y, its assigned value is
changed  to  the  value  of  z.  Otherwise,  the  table-element  trapped-variable  block  is
converted to a table-element block with the assigned value, and the block is inserted in
the appropriate chain.

12.2.1 Dereferencing

Dereferencing  of  other  trapped  variables  involves  computations  of  comparable
complexity. Dereferencing is done in the interpreter loop for arguments of operators for
which variables are not needed. For example, in
   n+m

the identifiers n and m are dereferenced before the function for addition is called (See
Sec. 8.3.1). On the other hand, in
   s[i]

the  identifier  i  is  dereferenced,  but  s  is  not,  since the  subscripting routine  needs  the
variable as well as its value.

The function invocation routine also dereferences variables before a function is called.
Note that there is no function that requires an argument that is a variable. Suspension and
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return from procedures also dereference local identifiers and arguments. Dereferencing
occurs in a number of other places. For example, the function that handles subscripting
must dereference the subscripted variable to determine what kind of result to produce.

The dereferencing routine begins as follows:
void deref(s, d)
dptr s, d;
   {
   /*
    * no allocation is done, so nothing need be tended.
    */
   register union block *bp, **ep;
   struct descrip v;
   int res;

   if (!is:variable(*s)) {
      *d = *s;
      }

If s does not point to a variable descriptor, the remaining code is skipped.

If s points to a variable that is not a trapped variable, dereferencing is simple:
         /*
          * An ordinary variable is being dereferenced.
          */
         *d = *(dptr)((word *)VarLoc(*s) + Offset(*s));

Otherwise, there are three types of trapped variables with a switch on the type:
   type_case *s of {
      tvsubs: {
         /*
          * A substring trapped variable is being dereferenced.
          *  Point bp to the trapped variable block and v to
          *  the string.
          */
         bp = BlkLoc(*s);
         deref(&bp->tvsubs.ssvar, &v);
         if (!is:string(v))
            fatalerr(103, &v);
         if (bp->tvsubs.sspos + bp->tvsubs.sslen - 1 > StrLen(v))
            fatalerr(205, NULL);
         /*
          * Make a descriptor for the substring by getting the
          *  length and pointing into the string.
          */
         StrLen(*d) = bp->tvsubs.sslen;
         StrLoc(*d) = StrLoc(v) + bp->tvsubs.sspos - 1;
        }

      tvtbl: {
         /*
          * Look up the element in the table.
          */
         bp = BlkLoc(*s);
         ep = memb(bp->tvtbl.clink,&bp->tvtbl.tref,
                   bp->tvtbl.hashnum,&res);
         if (res == 1)
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            *d = (*ep)->telem.tval; /* found; use value */
         else
            *d = bp->tvtbl.clink->table.defvalue;/*use default */
         }

A table-element trapped variable may point to a table-element trapped-variable block or
to  a  table-element  block.  The  second  situation  occurs  if  two  table-element  trapped
variables point to the same table-element trapped-variable block and assignment to one of
the variables converts the table-element trapped-variable block to a table-element block
before the second variable is processed. See Sec. 7.2. In this case, the value of the trapped
variable is in the table-element block. On the other hand, if the trapped variable points to
a table-element trapped-variable block, it is necessary to look up the subscripting value in
the table, since an assignment for it may have been made between the time the trapped
variable  was  created  and  the  time  it  was  dereferenced.  If  it  is  in  the  table,  the
corresponding assigned value is returned. If it  is not in the table, the default assigned
value is returned.

The last  case,  keyword trapped variables,  is  almost  the same as for simple  variables.
These variables impose special semantics on assignment, but not on dereferencing.
      kywdint:
      kywdpos:
      kywdsubj:
      kywdevent:
      kywdwin:
      kywdstr:
         *d = *VarLoc(*s);

12.2.2 Assignment

The values of global identifiers are established initially as a byproduct of reading the
icode file into the icode region. When procedures are called, the values of arguments and
local  identifiers  are  on  the  interpreter  stack.  These  operations  associate  values  with
variables, but assignment, unlike dereferencing, is explicit in the source program.

The macro  GeneralAsgn() is used to perform all such operations. For example,  the
function for
   x := y

is
operator{0,1} := asgn(underef x, y)
   if !is:variable(x) then
      runerr(111, x)
   abstract {
      return type(x)
      }
   GeneralAsgn(x, y)
   inline {
      /*
       * The returned result is the variable to which assignment 
       *  is being made.
       */
      return x;
      }
end
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Note that assignment may fail. This can occur as the result of an out-of-range assignment
to &pos and is indicated by an RTL fail statement from within GeneralAsgn().

Like dereferencing, assignment is trivial  for variables that are not trapped. The macro
GeneralAsgn() begins as follows:
#begdef GeneralAsgn(x, y)

   type_case x of {

As  for  dereferencing,  there  are  three  types  of  trapped  variables  to  be  considered.
Assignment  to  a  substring  trapped  variable  is  rather  complicated  and  deferred  to  a
function subs_asgn():
      tvsubs: {
        abstract {
           store[store[type(x).str_var]] = string
           }
        inline {
           if (subs_asgn(&x, (const dptr)&y) == Error)
              runerr(0);
           }
        }

The function subs_asgn():
int subs_asgn(dptr dest, const dptr src)
   {
   tended struct descrip deststr, srcstr, rsltstr;
   tended struct b_tvsubs *tvsub;

   char *s, *s2;
   word i, len;
   word prelen;/* length of portion of string before substring */
   word poststrt, postlen; /* start and length of portion of
                              string following substring */
   if (!cnv:tmp_string(*src, srcstr))
      ReturnErrVal(103, *src, Error);
   /*
    * Be sure that the variable in the trapped variable points
    *  to a string and that the string is big enough to contain
    *  the substring.
    */
   tvsub = (struct b_tvsubs *)BlkLoc(*dest);
   deref(&tvsub->ssvar, &deststr);
   if (!is:string(deststr))
      ReturnErrVal(103, deststr, Error);
   prelen = tvsub->sspos - 1;
   poststrt = prelen + tvsub->sslen;
   if (poststrt > StrLen(deststr))
      ReturnErrNum(205, Error);

   /*
    * Form the result string.
    *  Start by allocating space for the entire result.
    */
   len = prelen + StrLen(srcstr) + StrLen(deststr) - poststrt;
   Protect(s = alcstr(NULL, len), return Error);
   StrLoc(rsltstr) = s;
   StrLen(rsltstr) = len;
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   /*
    * First, copy the portion of the substring string to
    *  the left of the substring into the string space.
    */
   s2 = StrLoc(deststr);
   for (i = 0; i < prelen; i++)
      *s++ = *s2++;
   /*
    * Copy the string to be assigned into the string space,
    *  effectively concatenating it.
    */
   s2 = StrLoc(srcstr);
   for (i = 0; i < StrLen(srcstr); i++)
      *s++ = *s2++;
   /*
    * Copy the portion of the substring to the right of the
    *  substring into the string space, completing the result.
    */
   s2 = StrLoc(deststr) + poststrt;
   postlen = StrLen(deststr) - poststrt;
   for (i = 0; i < postlen; i++)
      *s++ = *s2++;

   /*
    * Perform the assignment and update the trapped variable.
    */
   type_case tvsub->ssvar of {
      kywdevent: {
         *VarLoc(tvsub->ssvar) = rsltstr;
         }
      kywdstr: {
         *VarLoc(tvsub->ssvar) = rsltstr;
         }
      kywdsubj: {
         *VarLoc(tvsub->ssvar) = rsltstr;
         k_pos = 1;
         }
      tvtbl: {
         if (tvtbl_asgn(&tvsub->ssvar, (const dptr)&rsltstr) ==
               Error)
            return Error;
         }
      default: {
         Asgn(tvsub->ssvar, rsltstr);
         }
      }
   tvsub->sslen = StrLen(srcstr);
   return Succeeded;
   }

Table-element trapped variables are once again deferred in GeneralAsgn() to call  to a
function, tvtbl_asgn():

      tvtbl: {
        abstract {
           store[store[type(x).trpd_tbl].tbl_val] = type(y)
           }
        inline {
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           if (tvtbl_asgn(&x, (const dptr)&y) == Error)
              runerr(0);
           }
         }

Table-element  trapped  variables  have  the  same  possibilities  for  assignment  as  for
dereferencing. The processing is more complicated, since it may be necessary to convert a
table-element trapped-variable block into a table-element block and link it into a chain.
Parameters cannot be tended, so their information must be preserved in tended variables
before anything is allocated.
int tvtbl_asgn(dptr dest, const dptr src)
   {
   tended struct b_tvtbl *bp;
   tended struct descrip tval;
   struct b_telem *te;
   union block **slot;
   struct b_table *tp;
   int res;

   /*
    * Allocate table element now (even if we may not need it)
    * because slot cannot be tended. Parameters have to be
    * preserved in tended variables first.
    */
   bp = (struct b_tvtbl *) BlkLoc(*dest);
   tval = *src;
   Protect(te = alctelem(), return Error);

   /*
    * First see if reference is in the table; if it is, just 
    *  update the value.  Otherwise, allocate a new table entry.
    */
   slot = memb(bp->clink, &bp->tref, bp->hashnum, &res);

   if (res == 1) {
      /*
       * Do not need new te, just update existing entry.
       */
      deallocate((union block *) te);
      (*slot)->telem.tval = tval;
      }
   else {
      /*
       * Link te into table, fill in entry.
       */
      tp = (struct b_table *) bp->clink;
      tp->size++;

      te->clink = *slot;
      *slot = (union block *) te;

      te->hashnum = bp->hashnum;
      te->tref = bp->tref;
      te->tval = tval;

      if (TooCrowded(tp)) /* grow hash table if now too full */
         hgrow((union block *)tp);
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      }
   return Succeeded;
   }

In the case of a keyword trapped variable, the semantic requirements of the keyword are
expressed in the usual mixture of RTL and C, except that type information is guaranteed
not to change. The code for &subject is typical:
      kywdsubj: {
         /*
          * No side effect in the type realm = no abstract clause
          *  &subject is still a string and &pos is still an int.
          */
         if !cnv:string(y, *VarLoc(x)) then
            runerr(103, y);
         inline {
            k_pos = 1;
            }
         }

12.3 Input and Output
Icon supports only sequential file access. The run-time system uses C library routines to
perform input  and output,  so the  main  implementation  issues  are  those  that  relate  to
interfacing these routines.

12.3.1 Files

A value of type file in Icon points to a block that contains the usual title word, a FILE *
reference to the file, a status word, and the string name of the file. The file status values
include

0 closed
1 open for reading
2 open for writing
4 open to create
8 open to append
16 open as a pipe

These decimal numbers correspond to bits in the status word.

For example, the value of &input is

while the value of &output is
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Another example is
   out := open("log", "a")

for which the value of out is

Note that the file status is 10, corresponding to being open for writing and appending.

Closing a file, as in
   close(out)

merely changes its file status:

12.3.2 Reading and Writing Data

The function  read(f) reads a line from the file  f. In UNIX, a line is just a string of
characters up to a newline character. There is no limit  on the length of a line and the
length of a line cannot be determined before it is read. On the other hand, there must be a
place to store the line.

Characters are read into a buffer until a newline character is encountered or the buffer
size (by default 512) is reached. A predictive need request is then made to assure that
there is enough space in the allocated string region for the string, and the string is copied
from the buffer into the string region. This is repeated as needed.

The function  reads(f,i) reads  i characters  from the  file  f.  These characters  may
include  newline  characters.  There  is  no  limit  on  i other  than  available  memory.  A
predictive need request can be made to assure that there is enough space in the allocated
string region. Characters are then read directly into the allocated string region without the
use of an intervening buffer.
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When strings are written, they are written directly from the allocated string region. There
is no need to perform any allocation or to use an intermediate buffer.

Several strings can be concatenated on a file by
   write(s1 , s2, ..., sn)

This avoids the internal allocation and concatenation that is required for
   write(s1 || s2 || ...|| sn)

12.4 Diagnostic Facilities
Icon's diagnostic facilities consist of

●  The function image(x), which produces a string representation of the value
of x.

●  The  function  display(f,  i),  which  writes  the  names  and  values  of
identifiers in at most i levels of procedure call to the file f.

●  Tracing of procedure calls, returns, resumptions, and suspensions.

●  Run-time error termination messages.

Procedure  tracing  is  done in  the  virtual  machine  instructions  invoke,  pret,  pfail,  and
psusp. If the value of  &trace is  nonzero,  it  is  decremented and an appropriate trace
message is written to standard error output. See Sec. 2.1.12 for an example.

The function  display(f,i) must locate the names and values of local identifiers and
arguments.  The names are in  the procedure block for the current procedure,  which is
pointed to by the zeroth argument of the current procedure call. The values are on the
interpreter stack as described in Sec. 10.3.3.

Run-time termination messages are produced by the C routine runerr(n,dp), where dp
is a pointer to the descriptor for the offending value. The value NULL is used for dp in
cases where there is no offending value to print.

In all of these diagnostic situations, string representations of values are needed. The string
representation for the "scalar" types string, cset, integer, and real is similar to what it is in
the text of a source-language program. Long strings and csets are truncated to provide
output that is easy to read. Other types present a variety of problems. For procedures, the
type and procedure name are given.

A list, on the other hand, may be arbitrarily large and may contain values of any type,
even lists. While the name may suffice for a procedure, often more information about a
list is needed. As a compromise between information content and readability, only the
first three and last three elements of a long list are included in its string representation.
Since lists  and other non-scalar types may be  elements of lists, their representation as
elements of a list is more restricted, with only the type and size being shown.

Since trace, display, and error output are written to files, the string representations can be
written  as  they are  determined,  without  regard  for  how long  they are.  The  function
image(x), on the other hand, returns a string value, and space must be allocated for it. A
more limited form of string representation is used for non-scalar values, since the space
needed might otherwise be very large.
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EXERCISES

12.1 It is possible to conceive of meaningful ways to convert any type of data in Icon to
any other. For example, a procedure might be converted to a string that consists of the
procedure declaration. How would such a general conversion feature affect the way
that types are converted in the run-time system?

12.2 On computers with 16-bit words, Icon has two representations for integers internally
(see Sec. 4.1.3). Describe how this complicates type conversion.

12.3 How would the addition of a new numeric type, such as complex numbers, affect
type conversion?

12.4 How big would MaxCvtLen be if Icon had 512 different characters? 128? 64?

12.5 List all the source-language operations that perform assignment.

12.6 Assuming that x, y, z, and w all have string values, diagram the structures that are
produced in the course of evaluating the following expressions:
x[y] := z
z := x[y]
x[y] := z[w]
x[y][z] := w
Repeat this exercise for the case where all the identifiers have tables as values.

12.7 Give an expression in  which a table-element  trapped variable  points  to a table-
element block rather than to a table-element trapped-variable block.

12.8 Give an expression in  which a table-element  trapped variable  points  to a table-
element trapped-variable block, but where there is a table-element block in the table
with the same entry value.

12.9 Why are tended descriptors needed in assignment but not in dereferencing?

12.10 Show an expression in which, at the end of the case for assignment to a substring
trapped variable,  the variable to which the assignment  is  to  be made is  a trapped
variable. Can such a trapped variable be of any of the three types?

12.11 Why is the string produced by read(f) not read directly into the allocated string
region?

12.12 Are there any circumstances in which write(x1, x2, ..., xn) requires the
allocation of storage?

12.13 Identify all the portions of blocks for source-language values that are necessary
only for diagnostic output. How significant is the amount of space involved?

12.14 The use  of  trapped variables  for  keywords  that  require  special  processing  for
assignment suggests that a similar technique might be used for substring and table-
element trapped variables. Evaluate this possibility.
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Part II: An Optimizing Compiler for Icon

by Kenneth W. Walker 
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Preface to Part II

There are many optimizations that can be applied while translating Icon programs. These
optimizations and the analyses needed to apply them are of interest for two reasons. First,
Icon's  unique  combination  of  characteristics  requires  developing  new  techniques  for
implementing them. Second, these optimizations are useful in variety of languages and
Icon can be used as a medium for extending the state of the art. 

Many of  these optimizations  require  detailed  control  of  the generated code.  Previous
production implementations of the Icon programming language have been interpreters.
The virtual machine code of an interpreter is seldom flexible enough to accommodate
these optimizations and modifying the virtual machine to add the flexibility destroys the
simplicity that justified using an interpreter in the first place. These optimizations can
only reasonably be implemented in a compiler. In order to explore these optimizations for
Icon programs, a compiler was developed. This part of the compendium describes the
compiler and the optimizations it employs. It also describes a run-time system designed to
support the analyses and optimizations. 

Icon  variables  are  untyped.  The  compiler  contains  a  type  inferencing  system  that
determines what values variables and expression may take on during program execution.
This  system  is  effective  in  the  presence  of  values  with  pointer  semantics  and  of
assignments to components of data structures.

The compiler stores intermediate results in temporary variables rather than on a stack. A
simple  and  efficient  algorithm  was  developed  for  determining  the  lifetimes  of
intermediate results in the presence of goal-directed evaluation. This allows an efficient
allocation of temporary variables to intermediate results. 

The compiler uses information from type inferencing and liveness analysis to simplify
generated code. Performance measurements on a variety of Icon programs show these
optimizations to be effective.

The optimizing compiler for Icon was developed by Ken Walker as part of his Ph.D.
research,  and this  part  of the Icon/Unicon Compendium is essentially a reprint of his
dissertation, which also appeared as University of Arizona CS TR 91-16. Along with his
consent,  Ken  kindly  provided  the  original  groff  sources  to  his  dissertation.  Any
typographical and formatting errors that remain are the fault of the editor.
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Chapter 13: The Optimizing Compiler
Iconc  is  a  practical  and  complete  optimizing  compiler  for  a  unique  and  complex
programming language. Part II describes the theory behind several parts of the compiler
and describes the implementation of all interesting aspects of the compiler. 

13.1 Motivation

The motivation for developing a compiler for the Icon programming language is to have a
vehicle for exploring optimization techniques. Some performance improvements can be
obtained  by  modifying  the  run-time  system  for  the  language,  for  example  by
implementing  alternative  data  structures  or  storage  management  techniques.  These
improvements may apply to a broad class of programs and the techniques can reasonably
be implemented in an interpreter system. However, other techniques, such as eliminating
unnecessary type  checking,  apply to  expressions  within  specific  programs.  The  Icon
interpreter  described  in  Part  I  is  based  on  a  virtual  machine  with  a  relatively small
instruction set of powerful operations. A small instruction set is easier to implement and
maintain than a large one, and the power of many of the individual operations insures that
the overhead of the decoding loop is not excessive. The disadvantage of this instruction
set is that an Icon translator that generates code for the interpreter does not have enough
flexibility to do many of the possible program-specific optimizations.  It is possible to
devise a set of more primitive virtual machine instructions that expose more opportunities
for these optimizations. Increasingly primitive instruction sets provide increasingly more
opportunities  for  optimizations.  In  the  extreme,  the  instruction  set  for  a  computer
(hardware interpreter) can be used and the translator becomes a compiler. A compiler was
chosen  for  this  research  because  it  is  a  good  vehicle  for  exploring  program-specific
optimizations  and  eliminates  the  overhead  of  a  software  interpreter  which  might
otherwise become excessive. 

13.2 Type Inferencing
Most  Icon  operations  require  operands  with  specific  types.  The  types  of  the  actual
operands in an expression must be checked and possibly converted to the required types.
However, Icon variables are untyped; in general, this checking cannot done at translation
time. The Icon interpreter takes the simple approach to the problem and performs all of
the type checking for an expression every time it is executed. For most programs, a type
inferencing system can provide the information needed to do much of the checking at
translation time, eliminating the need for these checks at run time. A type inferencing
system  determines  the  types  that  elements  of  a  program  (variables,  expression,
procedures, etc) can take on at run time. The Icon compiler contains an effective and
practical  type  inferencing system,  and implements  code generation  optimizations  that
make use of the information produced by the type inferencing system. 

Two  basic  approaches  have  been  taken  when  developing  type  inferencing  schemes.
Schemes based on unification [.Milner,smltlk type,unify.] construct type signatures for
procedures;  schemes  based  on  global  data  flow  analysis  [.typinfer,  typrcsv,  flwanal,
progflw.] propagate throughout a program the types variables may take on. One strength
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of the unification approach is that it is effective at handling polymorphous procedures.
Such  schemes  have  properties  that  make  them  effective  in  implementing  flexible
compile-time  type  systems.  Much  of  the  research  on  them focuses  on  this  fact.  The
primary purpose of the type inferencing system for the Icon compiler is to eliminate most
of the run-time type checking rather than to report on type inconsistencies at compile
time, so these properties have little impact on the choice of schemes used in the compiler.
Type inferencing systems based on unification have a significant weakness. Procedure
type-signatures do not describe side effects to global variables. Type inferencing schemes
based on unification must make crude assumptions about the types of these variables. 

Schemes based on global data flow analysis handle global variables effectively. Many
Icon programs make significant use of global variables; this is a strong argument in favor
of using this kind of type inferencing scheme for Icon. These schemes do a poor job of
inferring types in the presence of polymorphous procedures. It is generally too expensive
for  them to  compute  the result  type of  a call  in  terms  of  the argument  types  of  that
specific call,  so result types are computed based on the aggregate types from all calls.
Poor  type  information  only  results  if  polymorphism  is  actually  exploited  within  a
program. 

The primary use of polymorphous procedures is to implement abstract data types. Icon,
on the other hand, has a rich set of built-in data types. While Icon programs make heavy
use  of  these  built-in  data  types  and  of  Icon's  polymorphous  built-in  operations,  they
seldom make use of user-written polymorphous  procedures.  While  a  type inferencing
scheme  based  on  global  data  flow  analysis  is  not  effective  in  inferring  the  precise
behavior  of  polymorphous  procedures,  it  is  effective  in  utilizing  the  predetermined
behavior of built-in polymorphous operations. These facts combined with the observation
that  Icon programs often make  use of  global  variables  indicate  that  global  data  flow
analysis is the approach of choice for type inferencing in the Icon compiler. 

Icon has several types of non-applicative data structures with pointer semantics. They all
can be heterogeneous and can be combined to form arbitrary graphs. An effective type
inferencing system must handle these data structures without losing too much information
through crude assumptions. These composite data structures typically consist of a few
basic elements used repeatedly and they logically have a recursive structure. A number of
type  inferencing  systems  handle  recursion  in  applicative  data  structures
[.analrcsv,prlgtyp,typrcsv.]; the system described here handles Icon data types that have
pointer semantics and handles destructive assignment to components of data structures.
Analyses  have  been  developed  to  handle  pointer  semantics  for  problems  such  as
allocation  optimizations  and  determining  pointer  aliasing  to  improve  other  analyses.
However, most of these analyses lose too much information on heterogeneous structures
of unbounded depth (such as the mutually referencing syntax trees and symbol tables
commonly  found  in  a  translator)  to  be  effective  type  inferencing  systems
[.progflw,depptr.]. 

Work by Chase,  Wegman,  and Zadeck [.pntstr.]  published subsequent  to  the original
technical  report  on  the  Icon type  inferencing  system [.tr88-25.]  presents  a  technique
similar to the one used in this type inferencing system. They use a minimal  language
model to describe the use of the technique for pointer analysis. They speculate that the
technique might  be too slow for practical  use and propose methods of improving the
technique in the context of pointer analysis. Use of the prototype Icon type inferencing
system described in the original technical report indicates that memory usage is more of a
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problem than execution time. This problem is addressed in the implementation of type
inferencing in the Icon compiler. 

13.3 Liveness Analysis 
Type checking optimizations can be viewed as forms of argument handling optimizations.
Other argument handling optimizations are possible. For example, when it is safe to do
so,  it  is  more efficient  to pass a variable  argument  by reference than to  copy it  to a
separate  location  and pass  a reference to  that  location  (this  particular  opportunity for
optimization  arises  because  of  implementation  techniques  borrowed  from  the  Icon
interpreter -- Icon values are larger than pointers and Icon parameter passing is built on
top  of  C  parameter  passing).  Such  optimizations  are  not  possible  in  a  stack-based
execution model; a temporary-variable model is needed and such a model is used by the
Icon compiler. Icon's goal-directed evaluation can extend the lifetime of the intermediate
values stored in temporary variables. Icon presents a unique problem in liveness analysis,
which  is  the  static  determination  of  the  lifetime  of  values  in  a  program  [ASU86,
progflw.].  While  this  problem,  like  other  liveness  problems,  can  be  solved  with
traditional techniques, it has enough structure that it can be solved without precomputing
a flow graph or using expensive forms of data flow analysis. 

The only previous implementation of Icon using a temporary-variable model is a partial
implementation  by  Christopher  [.tccompile.].  Christopher  uses  the  fact  that  Icon
programs contain many instances of bounded goal-directed evaluation to deduce limits
for the lifetimes of intermediate values. However, this approach produces a very crude
estimate  for  these  lifetimes.  While  overestimating  the  lifetime  of  intermediate  values
results in a safe allocation of temporary variables to these values, a fine-grained liveness
analysis results in the use of fewer temporary variables. The Icon compiler addresses this
problem of fine-grained liveness analysis in the presence of goal-directed evaluation and
addresses the problem of applying the information to temporary variable allocation. 

13.4 Analyzing Goal-Directed Evaluation
Many kinds of analyses of Icon programs must deal with Icon's goal-directed evaluation
and  its  unique  control  structures.  These  analyses  include  type  inferencing,  liveness
analysis,  and  the  control  flow  analyses  in  O'Bagy's  prototype  compiler  [.tr88-31.].
Determining possible execution paths through an Icon program is more complicated than
it  is for programs written in more conventional languages. The implementation of the
type inferencing system and liveness analysis here explore variations on the techniques
presented by O'Bagy. 

The Organization of Part II

Part II is logically divided into three subparts. Chapters 14 through 16 present the main
ideas  upon  which  the  compiler  is  based,  Chapters  17  through  22  describe  the
implementation of these ideas, and Chapter 23 presents performance measurements of
compiled code. 

Chapter  14  describes  the  code generated  by the  compiler.  It  explains  how Icon data
values, variables, and goal-directed evaluation are implemented, independent of the actual
translation  process.  Chapter  15  presents  a  theoretical  model  of  the  type  inferencing
system  used  in  the  compiler.  The  model  includes  the  important  ideas  of  the  type
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inferencing system, while ignoring some purely pragmatic details. Chapter 16 explains
the liveness analysis problem and presents the solution used in the compiler.

The Icon compiler is designed to be a production-quality system. The compiler system
consists of the compiler itself and a run-time system. The fact that these two components
are  not  entirely  independent  must  be  carefully  considered  in  the  design  of  such  a
production-quality system.  Chapter  17  describes  the  system as  a  whole  and how the
interactions between the components are handled.

Chapter 18 presents the organization of the compiler itself. This chapter describes some
parts of the compiler in detail, but defers major topics to other chapters. Chapter 19 builds
on the model presented in Chapter 15 and describes the full type inferencing system used
in the compiler and its implementation. Chapter 20 describes the translation techniques
used  to  produce  code  from  expressions  that  employ  Icon's  goal-directed  evaluation
scheme and its unique control structures. It also describes the allocation of temporary
variables using the information produced by liveness analysis. 

The code generator does no look-ahead and as a result it often produces code that is poor
when  taken  in  context  of  subsequent  code.  This  problem is  shared  with  most  code
generators as are some of the solutions used in this compiler. The unique code generation
techniques required by Icon's goal-directed evaluation produce unusual variations of this
problem and require some innovative solutions in addition to the standard ones. Chapter
21  describes  the  various  techniques  employed  to  handle  this  problem.  Chapter  22
describes the optimizations that can be done using the results of type inferencing. These
optimizations also make use of liveness information.

Chapter 23 demonstrates the effects of the various optimizations used in the compiler on
the performance of specific kinds of expressions. It also presents measurements of the
performance  of  compiled  code  for  a  variety  of  complete  programs,  comparing  the
performance to that of the Icon interpreter. In addition, the sizes of the executable code
for the complete programs are presented. The conclusions, Chapter 24, summarize what
has been done and lists some work that remains to be explored. Chapter 25 describes one
successful project to improve the compiler and make it usable on larger programs.
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Chapter 14: The Translation Model
Modern compilers seldom produce machine code directly. They translate a program into a
form closer to machine code than the source language and depend on other tools to finish
the translation. If the compiler produces an object module, it depends on a linker and a
loader to produce executable code. If the compiler produces assembly language, it also
depends  on  an  assembler.  A  recent  trend  among  compilers  produced  in  research
environments has been to produce C code [.cbook,ansi-c.], adding a C compiler to the list
of tools required to finish the translation to machine code [.SR, Ramakrishnan, Bartlett
89, Yuasa,Stroustrup,yacc,lex.]. The Icon compiler takes this approach and generates C
code. 

There are several advantages to compiling a language into C. Low-level problems such as
register allocation and the selection and optimization of machine instructions are handled
by the  C compiler.  As long as  these problems  are  outside  the  scope of  the  research
addressed by the compiler, it is both reasonable and effective to allow another compiler to
deal with them. In general, it is easier to generate code in a higher-level language, just as
it is easier to program in a higher-level language. As long as the target language lies on a
``nearly direct path'' from the source language to machine code, this  works well.  C is
closely matched to most  modern machine  architectures,  so few tangential  translations
must be done in generating C code from Icon. 

Another advantage of generating C code is that it greatly increases the portability of the
compiler  and  facilitates  cross-compilation.  The  popularity  of  C  in  recent  years  has
resulted in production-quality C compilers for most systems. While the implementation of
Icon in C contains some machine and system dependencies, C's conditional compilation,
macro, and file inclusion facilities make these dependencies relatively easy to deal with
when they arise. These facts make possible the development of a highly portable Icon
compiler,  allowing  the  compiler's  effectiveness  to  be  tested  by  Icon's  large  user
community. 

14.1 Data Representation
Because the target language is C, Icon data must be represented as C data. The careful
representation of data and variables is important to the performance of an implementation
of  a  high-level  language  such  as  Icon.  In  addition,  information  provided  by  type
inferencing can be used to optimize these representations. However, such considerations
are largely outside the scope of this current research. For this reason, the representations
used in code produced by this compiler and the compiler's run-time system are largely
unchanged from those of the Icon interpreter system described in Part I. The interpreter's
run-time  system is  written  in  C.  Therefore  borrowing its  data  representations  for  the
compiler system is simple. This choice of representation means that the run-time system
for the compiler could be adapted directly from the run-time system for the interpreter,
and it allowed the compiler development to concentrate on parts of the system addressed
by  this  research.  In  addition,  this  choice  of  representation  allows  a  meaningful
comparison of the performance of compiled code to the performance of interpreted code. 

An Icon value is represented by a two-word descriptor (see Section 4.1). The first word,
the d-word, contains type information. In the case of a string value, the type is indicated
by zero in a high-order bit in the d-word, and the length of a string is stored in low-order
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bits of the d-word. All other types have a one in that bit and further type information
elsewhere in the d-word. The v-word of a descriptor indicates the value. The v-word of
the null value is zero, the v-word of an Icon integer is the corresponding C integer value,
and v-words of other types are pointers to data. A descriptor is implemented with the
following C structure: 
      struct descrip {
         word dword; /* type field */
         union {
            word integr; /* integer value */
            char sptr; /* pointer to character string */
            union block bptr; /* pointer to a block */
            dptr descptr; /* pointer to a descriptor */
            } vword;
         };

word is defined to be a C integer type (one that is at least 32-bits long), block is a union
of structures implementing various data types, and dptr is a pointer to a descrip structure. 

14.2 Intermediate Results
While the representation of data in the compiler is  the same as in the interpreter, the
method of storing the intermediate  results  of expression evaluation is  not.  Two basic
approaches have been used in language implementations to store intermediate results. A
stack-based approach is simple and dynamic. It requires no pre-analysis of expressions to
allocate storage for the intermediate results, but the simple rigid protocol allows little
room  for  optimization.  For  Icon  there  is  an  additional  problem  with  a  stack-based
approach.  Goal-directed  evaluation  extends  the  lifetime  of  some  intermediate  results,
requiring that  the top elements  of the evaluation  stack be copied at  critical  points  in
execution [see Part I, or UA tr88-31]. In spite of the need for this extra copying, most
previous implementations of Icon have been implemented with an evaluation stack. 

An  alternative  to  using  a  stack  is  to  pre-allocate  a  temporary  variable  for  each
intermediate  result.  In  this  model,  operations  take  explicit  locations  as  arguments.
Therefore an operation can directly access program variables as arguments; there is no
need  to  perform  the  extra  operations  of  pushing  addresses  or  values  on  a  stack.  In
addition, the lifetime of a temporary variable is not determined by a rigid protocol. The
compiler  can  assign  an  intermediate  result  to  a  temporary variable  over  an  arbitrary
portion of the program, eliminating the copying needed to preserve a value beyond the
lifetime imposed by a stack-based approach. This compiler uses the temporary-variable
model because it allows more opportunities to optimize parameter handling, a major goal
of this research. 

Icon's automatic storage management dictates the use of a garbage collector in the run-
time system. When this garbage collector is invoked, it must be able to locate all values
that may be used later in the program. In the interpreter system, intermediate values and
local variables are stored on the same stack. The garbage collector sweeps this stack to
locate values. In the compiler, a different approach is taken to insure that all necessary
values are locatable. Arrays of descriptors are allocated contiguously along with a count
of the number of descriptors in the array. The arrays are chained together. An array of
descriptors may be local to a C function, or it may be allocated with the malloc library
function. The garbage collector locates values by following the chain and scanning the
descriptors in each array. These descriptors are referred to as tended descriptors. 
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14.3 Executable Code
Even  more  important  than  where  intermediate  results  are  stored  is  how  they  are
computed. Some aspects of Icon expression evaluation are similar to those of many other
languages, but others aspects are not. Goal-directed evaluation with backtracking poses a
particular challenge when implementing Icon expression evaluation. The Icon interpreter
is based on a virtual machine that includes backtracking, as are Prolog interpreters based
on the  Warren  Abstract  Machine  [.wam.].  While  details  differ  between the  Icon and
Prolog virtual machines,  their implementation of control backtracking is  based on the
same abstract data structures and state variables. Such a virtual machine contains a stack
of procedure frames, but the stack is maintained differently from that of a virtual machine
that does not implement goal-directed evaluation. 

The difference manifests  itself  when a procedure produces  a  result,  but  has  alternate
results that it can produce in the event of backtracking. When this occurs, the frame for
the procedure remains on the stack after control returns to the caller of the procedure.
This frame contains the information needed to produce the alternate results. The left stack
in the following diagram shows that procedure f has called procedure g. The arrows on
the left  of the stack represent  the  backtracking chain of  procedures  that  can produce
alternate results. btp points to the head of the backtracking chain which currently starts
further down in the stack. The arrows on the right represent the call chain of procedures.
fp points to the frame of the currently executing procedure.

 

Suppose g produces the first of several possible results. Execution returns to f and g's
frame is added to the backtracking chain. This is represented by the middle stack in the
diagram. If f then calls h, its procedure frame is added to the top of the stack as shown in
the right stack in the diagram. 

If h produces a result and is not capable of producing more, execution returns to f and the
stack again looks like the one in the middle of the diagram (the program pointer within f
is different, of course). If h produces a result and is capable of producing more, execution
returns to f, but h's frame remains on the stack and is added to the head backtracking
chain,  similar  to  what  was done when g produced a result.  If h  produces no results,
backtracking  occurs.  h's  frame  is  removed  from  the  stack,  execution  returns  to  the
procedure  g  who's  frame  is  at  the  head  of  the  backtracking  chain,  and  g's  frame  is
removed from the head of the chain. The stack once again looks like left stack in the
diagram and g proceeds to produce another result. 

Traditional languages such as Pascal or C present high-level virtual machines that contain
no notion of backtracking and have no need to perform low-level stack manipulations.
Icon expressions  with goal-directed evaluation  cannot  be translated  directly into  such
languages. This is  the fundamental  problem that must be addressed when designing a
compiler for Icon. O'Bagy presents an elegant solution to this problem in her dissertation
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[.tr88-31.]. Her solution is used by this optimizing compiler as a basis for translating Icon
expressions  into  C code.  The rest  of  this  section  contains  a  brief  explanation  of  the
variation of her approach that is used in the compiler, while exploring useful ways of
viewing the problem. O'Bagy's dissertation describes how control structures not covered
in this discussion can be implemented using her model. 

Formal  semantics  is  one tool  that  can be  used  in  understanding a  language [.gordon
denote,stoy.]. The added complexity caused by Icon's goal-directed evaluation is reflected
in Gudeman's description of Icon using denotational semantics [.gudeman denotational.].
While conventional programming languages can be described using one continuation for
each expression,  Icon requires  two continuations.  One continuation  for  an expression
embodies the rest of the program if the expression succeeds, while the other embodies the
rest of the program if the expression fails. 

The Icon compiler uses the notion of success continuations to implement goal-directed
evaluation.  However,  these  continuations  violate  some  of  the  properties  traditionally
associated  with  continuations.  A  continuation  in  denotational  semantics  and  in  the
language Scheme [.Abelson,[Rees 86].]  is a function that never returns. However, the
success continuations produced by the compiler implement backtracking by returning. In
addition, these continuations implement the rest of the current bounded expression rather
than  the  rest  of  the  entire  program.  Note  that  unlike  continuations  in  Scheme,  these
continuations are created at compile time, not at run time. Some Prolog compilers have
been based on a similar continuation-passing technique [.Nilsson,Ramakrishnan.]. 

The  C  language is  oriented  toward  an  imperative  style  of  programming.  In order  to
produce efficient code, the Icon compiler should not generate an excessive number of
function calls. Specifically, it should avoid creating continuations for every expression. A
more  operational  view  of  Icon's  semantics  and  of  C's  semantics  can  be  useful  in
understanding how to accomplish this. An operation in Icon can succeed or fail. In the
view of denotational semantics, the question of what will be done in each case must be
answered, with the answers taking the form of functions.  In an operational  view, the
questions can take the form of where to go in each case. The answers to these questions
can be any type of transfer of control  supported by the C language: execute the next
sequential instruction, execute a function, return from a function, or go to a label. 

Most operations in Icon are  monogenic.  That is,  they produce exactly one result,  like
operations  in  conventional  languages.  For these operations,  the compiler  can generate
code whose execution simply falls through into the code that implements the subsequent
operation. 

Conditional operations  are more  interesting.  These operations  either  produce a single
value  or  fail.  If  such  an  operation  succeeds,  execution  can  fall  through  into  code
implementing the subsequent operation. However, if the operation fails, execution must
transfer elsewhere in the program. This is accomplished by branching to a failure label. If
the code for the operation is put in-line, this is straightforward. However, if the operation
(either a built-in operation or an Icon procedure) is implemented by a separate C function,
the function must notify the caller  whether it  succeeded or failed and the caller must
effect the appropriate transfer of control. 

By convention, C functions produced by the compiler and those implementing the run-
time routines each return a signal (this convention is violated in some special cases). A
signal is an integer (and is unrelated to Unix signals). If one of these C functions needs to
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return an Icon value, it does so through a pointer to a result location that is passed to it as
an argument. Two standard signals are represented by the manifest constants A_Continue
and A_Resume. A return (either an Icon return expression or the equivalent construct in a
built-in operation) is implemented with code similar to 
      *result = operation result;
      return A_Continue;

Failure is implemented with the code 
       return A_Resume;

The code implementing the call  of an operation consists  of both a C call  and signal-
handling code. 
      switch (operation(args, &result)) {
         case A_Continue: break;
         case A_Resume: goto failure label;
         }

This  code clearly can be simplified.  This form is  general  enough to handle the more
complex  signal  handling  that  can  arise  during  code  generation.  Simplifying  signal
handling code is described in Chapter 21. 

Generators pose the real challenge in implementing Icon. A generator includes code that
must be executed if subsequent failure occurs. In addition, a generator, in general, needs
to retain state information between suspending and being resumed. As mentioned above,
this is accomplished by calling a success continuation. The success continuation contains
subsequent operations. If an operation in the continuation fails, an A_Resume signal is
returned to the generator, which then executes the appropriate code. The generator retains
state information in local variables. If the generator is implemented as a C function, a
pointer  to  the  continuation  is  passed  to  it.  Therefore,  a  function  implementing  a
generative operation need not know its success continuation until run time. 

Consider the operation i to j. This operation can be implemented in Icon with a procedure
like 
      procedure To(i, j)
         while i <= j do {
            suspend i
            i +:= 1
            }
          fail
      end

It can be implemented by an analogous C function similar to the following (for simplicity,
C ints are used here instead of Icon values). 
      int to(i, j, result, succ_cont)
      int i, j;
      int *result;
      int (*succ_cont)();
         {
         int signal;

         while (i <= j) {
            *result = i;
            signal = (*succ_cont)();
            if (signal != A_Resume)
               return signal;
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            ++i;
            }
         return A_Resume;
         }

There is no explicit failure label in this code, but it is possible to view the code as if an
implicit failure label occurs before the ++i. 

The Icon expression 
      every write(1 to 3)

can be compiled  into  the  following code (for  simplicity,  the  write  function  has  been
translated into printf and scoping issues for result have been ignored). Note that the every
simply introduces failure. 
      switch (to(1, 3, &result, sc)) {
         /* standard signal-handling code */
         ...
         }
      int sc() {
         printf("%d\n", result);
         return A_Resume;
         }

The final aspect of Icon expression evaluation that must be dealt with is that of bounded
expressions.  Once  execution  leaves  a  bounded  expression,  that  expression  cannot  be
resumed. At this point, the state of the computation with respect to backtracking looks as
it  did when execution  entered the bounded expression.  This  means that,  in generated
code,  where  to  go  on  failure  (either  by branching  to  an  explicit  failure  label  or  by
returning an A_Resume signal) must be the same. However, this failure action is only
correct in the C function containing the start of the code for the bounded expression. If a
function  suspended by calling  a  success  continuation,  execution  is  no  longer  in  that
original C function. To accommodate this restoration of failure action, execution must
return to that original function.

This  is  accomplished  by setting  up  a  bounding  label in  the  original  C  function  and
allocating a signal that corresponds to the label. When the end of the bounded expression
is reached, the signal for the bounding label is  returned. When the signal reaches the
function containing the label, it is converted into a goto. It can be determined statically
which calls must convert which signals. Note that if the bounded expression ends in the
original C function, the ``return signal'' is already in the context of the label. In this case,
it  is  immediately transformed into a goto by the compiler,  and there is  no real signal
handling. 

Consider the Icon expression 
      move(1);
      ...

The  move  function  suspends  and  the  C  function  implementing  it  needs  a  success
continuation.  In  this  case,  move  is  called  in  a  bounded  context,  so  the  success
continuation must return execution to the function that called move. The continuation
makes use of the fact that, like the C function for to, the one for move only intercepts
A_Resume signals and passes all other signals on to its caller. 

This expression can be implemented with code similar to the following. There are two
possible signals that might be returned. move itself might produce an A_Resume signal or
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it might pass along the bounding signal from the success continuation. Note that for a
compound expression,  both the bounding label  and the failure label  are the same.  In
general, this is not true. In this context, the result of move(1) is discarded. The variable
trashcan receives this value; it is never read. 
      switch (move(1, &trashcan, sc)) {
         case 1:
            goto L1;
         case A_Resume:
            goto L1;
         }
   L1: /* bounding label & failure label */
      ...

   int sc() {
      return 1; /* bound signal */
      }

Calling Conventions

This discussion has touched on the subject of calling conventions for run-time routines. In
Icon, it is, in general, impossible to know until run time what an invocation is invoking.
This is handled in the compiler with a standard calling convention for the C functions
implementing operations and procedures. This calling convention allows a C function to
be called without knowing anything about the operation it implements. 

A function conforming to the standard calling convention has four parameters.  These
parameters are, in order of appearance, the number of Icon arguments (a C int), a pointer
to the beginning of an array of descriptors holding the Icon arguments, a pointer to the
descriptor  used  as  the  Icon  result  location,  and  a  success  continuation  to  use  for
suspension.  The function  itself  is  responsible  for any argument  conversions  including
dereferencing, and for argument list adjustment. As explained above, the function returns
an integer signal. The function is allowed to return the signals A_Resume, A_Continue,
and  any  signals  returned  by  the  success  continuation.  It  may  ignore  the  success
continuation if it does not suspend. The function may be passed a null continuation. This
indicates that the function will not be resumed. In this case, suspend acts like a simple
return,  passing back the signal  A_Continue  (this  is  not  shown in the examples).  The
outline of a standard-conforming function is 
   int function-name(nargs, args, result, succ_cont)
   int nargs; dptr args; dptr result;
   continuation succ_cont;
      {
       ...
       }

continuation is defined to be a pointer to a function taking no arguments and returning an
integer.

Later sections of this dissertation describe the code generation process in more detail and
describe  optimizations  of  various  parts  of  the  code  including  parameter  passing,
continuations, signal handling, and branching.
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Chapter 15: The Type Inferencing Model
Three sections of this dissertation are devoted to type inferencing: two chapters and an
appendix.  This chapter develops a theoretical model  of type inferencing for Icon. For
simplicity,  it  ignores  some  features  of  the  language.  This  chapter  presents  intuitive
arguments  for  the  correctness  of  the  formal  model.  Chapter  19  describes  the  actual
implementation of type inferencing in the Icon compiler. The implementation handles the
full Icon language and, for pragmatic reasons, differs from the theoretical model in some
details.

This chapter starts with the motivation for performing type inferencing. It then describes
the concept of  abstract interpretation. This concept is used as a tool in this chapter to
develop a type inferencing system from Icon's semantics. This chapter gives an intuitive
presentation of this development process before presenting the formal models of abstract
semantics for Icon. The most abstract of the formal models is the type inferencing system.

15.1 Motivation
Variables in the Icon programming language are untyped. That is, a variable may take on
values  of  different  types  as  the  execution  of  a  program  proceeds.  In  the  following
example, x contains a string after the read (if the read succeeds), but it is then assigned an
integer or real, provided the string can be converted to a numeric type. 
   x := read()
   if numeric(x) then x +:= 4

In general, it is impossible to know the type of an operator's operands at translation time,
so some type checking must be done at run time. This type checking may result in type
conversions,  run-time  errors,  or  the  selection  among  polymorphous  operations  (for
example, the selection of integer versus real addition). In the Icon interpreter system, all
operators check all of their operands at run time. This incurs significant overhead.

Much of  this  run-time  type checking is  unnecessary.  An examination  of  typical  Icon
programs reveals that the types of most variables remain consistent throughout execution
(except  for  the  initial  null  value)  and  that  these  types  can  often  be  determined  by
inspection. Consider 
   if x := read() then
      y := x || ";"

Clearly both operands of || are strings so no checking or conversion is needed.

The goal of a type inferencing system is to determine what types variables may take on
during the execution of a program. It associates with each variable usage a set of the
possible types of values that variable might have when execution reaches the usage. This
set may be a conservative estimate (overestimate) of the actual set of possible types that a
variable  may take  on  because  the  actual  set  may not  be  computable,  or  because  an
analysis  to  compute  the  actual  set  may  be  too  expensive.  However,  a  good  type
inferencing system operating on realistic programs can determine the exact set of types
for most operands and the majority of these sets in fact contain single types, which is the
information needed to generate code without type checking. The Icon compiler has an
effective type inferencing system based on data flow analysis techniques. 
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15.2 Abstract Interpretation 
Data flow analysis can be viewed as a form of abstract interpretation [.absintrp.]. This can
be particularly useful for understanding type inferencing. A ``concrete'' interpreter for a
language implements the standard (operational) semantics of the language, producing a
sequence of states,  where a state consists  of an execution point,  bindings of program
variables  to  values,  and  so  forth.  An  abstract  interpreter  does  not  implement  the
semantics,  but  rather computes  information related to  the semantics.  For example,  an
abstract interpretation may compute the sign of an arithmetic expression rather than its
value. Often it computes a ``conservative'' estimate for the property of interest rather than
computing  exact  information.  Data  flow  analysis  is  simply  a  form  of  abstract
interpretation  that  is  guaranteed  to  terminate.  This  chapter  presents  a  sequence  of
approximations to Icon semantics, culminating in one suitable for type inferencing.

Consider a simplified operational semantics for Icon, consisting only of program points
(with the current execution point maintained in a program counter) and variable bindings
(maintained  in  an  environment).  As  an  example  of  these  semantics,  consider  the
following program. Four program points are annotated with numbers using comments
(there are numerous intermediate points not annotated). 
      procedure main()
      local s, n

         # 1:
         s := read()
         # 2:
         every n := 1 to 2 do {
            # 3:
            write(s[n])
            }
         # 4:
      end

If the program is executed with an input of abc, the following states are included in the
execution sequence (only the annotated points are listed). States are expressed in the form
program point: environment. 
      1: [s = null, n = null]
      2: [s = "abc", n = null]
      3: [s = "abc", n = 1]
      3: [s = "abc", n = 2]
      4: [s = "abc", n = 2]

It  is  customary to  use  the  collecting  semantics of  a  language as  the  first  abstraction
(approximation) to the standard semantics of the language. The collecting semantics of a
program is defined in Cousot and Cousot [.absintrp.] (they use the term static semantics)
to be an association between program points and the sets of environments that can occur
at those points during all possible executions of the program.

Once  again,  consider  the  previous  example.  In  general,  the  input  to  the  program is
unknown,  so  the  read  function  is  assumed  to  be  capable  of  producing  any  string.
Representing this general case, the set of environments (once again showing only variable
bindings) that can occur at point 3 is 
      [s = "", n = 1],
      [s = "", n = 2],
      [s = "a", n = 1],
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      [s = "a", n = 2],
        ...
      [s = "abcd", n = 1],
      [s = "abcd", n = 2],
        ...

A  type  inferencing  abstraction  further  approximates  this  information,  producing  an
association  between each variable  and a  type at  each program point.  The actual  type
system chosen for this abstraction must be based on the language and the use to which the
information is put. The type system used here is based on Icon's run-time type system. For
structure types, the system used retains more information than a simple use of Icon's type
system would retain; this is explained in detail later. For atomic types, Icon's type system
is used as is. For point 3 in the preceding example the associations between variables and
types are 
      [s = string, n = integer]

The  type  inferencing  system  presented  in  this  chapter  is  best  understood  as  the
culmination of a sequence of abstractions to the semantics of Icon, where each abstraction
discards certain information. For example, the collecting semantics discards sequencing
information among states; in the preceding program, collecting semantics determine that,
at  point  3,  states  may occur  with  n  equal  to  1 and with  n equal  to  2,  but  does  not
determine the order in which they must occur. This sequencing information is discarded
because desired type information is a static property of the program.

The  first  abstraction  beyond  the  collecting  semantics  discards  dynamic  control  flow
information  for  goal  directed  evaluation.  The  second  abstraction  collects,  for  each
variable,  the  value  associated  with  the  variable  in  each  environment.  It  discards
information such as, ``x has the value 3 when y has the value 7'', replacing it with ``x may
have  the  value  3  sometime  and  y  may  have  the  value  7  sometime.''.  It  effectively
decouples associations between variables.

This second abstraction associates a set of values with a variable, but this set may be any
of an infinite number of sets and it may contain an infinite number of values. In general,
this precludes either a finite computation of the sets or a finite representation of them.
The  third  abstraction  defines  a  type  system  that  has  a  finite  representation.  This
abstraction discards information by increasing the set associated with a variable (that is,
making the set less precise) until it matches a type. This third model can be implemented
with standard iterative data flow analysis techniques. 

This chapter assumes that an Icon program consists of a single procedure and that all
invocations  are to  built-in  functions.  It also assumes  that  there are  no co-expressions
beyond the main co-expression. See Chapter 19 for information on how to extend the
abstractions to multiple procedures and multiple co-expressions. 

15.3 Collecting Semantics
The collecting semantics of an Icon program is defined in terms of a  flow graph of the
program. A flow graph is  a directed graph used to represent the flow of control in a
program. Nodes in the graph represent the executable primitives in the program. An edge
exists from node  A to node  B if it  is possible for execution to pass directly from the
primitive  represented by node  A to  the primitive  represented by node  B.  Cousot  and
Cousot [.absintrp.] prove that the collecting semantics of a program can be represented as
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the least fixed point of a set of equations defined over the edges of the program's flow
graph. These equations operate on sets of environments.

For an example of a flow graph, consider the Icon program 
   procedure main()
      every write(1 to 3)
   end

The diagram below on the left shows the abstract syntax tree for this procedure, including
the implicit fail at the end of the procedure. The invoke node in the syntax tree represents
procedure invocation. Its first argument must evaluate to the procedure to be invoked; in
this case the first argument is the global variable write. The rest of the arguments are used
as  the  arguments  to  the  procedure.  pfail  represents  procedure  failure  (as  opposed  to
expression failure within a procedure). Nodes corresponding to operations that produce
values are numbered for purposes explained below.

A flow graph can be derived from the syntax tree. This is shown on the right. 

 

 

The node labeled procedure main is the  start node for the procedure; it  performs any
necessary initializations to establish the execution environment for the procedure. The
edge from invoke to to is a resumption path induced by the control structure every.
The path from  to to  pfail is the failure path for  to. It is a forward execution path
rather than a resumption path because the compound expression (indicated by ;) limits
backtracking out of its left-hand sub-expression. Chapter 7 describes how to determine
the edges of the flow graph for an Icon program.

Both the standard semantics and the abstract semantics must deal with the intermediate
results of expression evaluation. A temporary-variable model is used because it is more
convenient for this analysis than a stack model. This decision is unrelated to the use of a
temporary-variable  model  in  the  compiler.  This  analysis  uses  a  trivial  assignment  of
temporary variables to intermediate  results.  Temporary variables are not  reused. Each
node that produces a result is assigned some temporary variable  ri in the environment.
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Assuming that temporary variables are assigned to the example according to the node
numbering, the to operation has the effect of 
      r3 := r4 to r5

Expressions that represent alternate computations must be assigned the same temporary
variable, as in the following example for the subexpression x := ("a" | "b"). The syntax
tree below on the left and the and the flow graph are shown on the right.

 

The if and case control structures are handled similarly. In addition to temporary variables
for intermediate results, some generators may need additional temporary variables to hold
internal states during suspension. It is easy to devise a scheme to allocate them where
they are needed; details are not presented here. The syntax tree is kept during abstract
interpretation and used to determine the temporary variables associated with an operation
and its operands.

The equations that determine the collecting semantics of the program are derived directly
from the standard semantics of the language. The set of environments on an edge of the
flow graph is related to the sets of environments on edges coming into the node at the
head of this edge. This relationship is derived by applying the meaning of the node (in the
standard semantics) to each of the incoming environments.

It requires a rather complex environment to capture the full operational semantics (and
collecting semantics)  of a language like Icon. For example,  the environment  needs to
include a representation of the external file system. However, later abstractions only use
the fact that the function read produces strings. This discussion assumes that it is possible
to represent the file system in the environment, but does not give a representation. Other
complexities  of  the  environment  are  discussed  later.  For  the  moment,  examples  only
show the bindings of variables to unstructured (atomic) values.

As an example of environments associated with the edges of a flow graph, consider the
assignment at the end of the following code fragment. The comments in the if expression
are assertions that are assumed to hold at those points in the example. 
      if x = 7 then {
         ...
         # x is 7 and y is 3
         }
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      else {
         ...
         # (x is null and y is 1) or (x is "abc" and y is 2)
         }
      x := y + 2

Because of the preceding if expression, there are two paths reaching the assignment. The
diagram below shows the flow graph and accompanying environments for the expression;
the diagram ignores the fact that the assignment  expression requires several  primitive
operations to implement. 

 

For a conditional expression, an incoming environment is propagated to the path that it
would cause execution to take in the standard semantics. This requires distinguishing the
paths to be taken on failure (backtracking paths) from those to be taken on success. The
following diagram shows an example of this.

In general there may be several possible backtracking paths. The environments in the
standard and collecting semantics need to include a stack of current backtracking points
and control  flow information,  and the  flow graph needs  instructions  to  maintain  this
stack.  The  Icon  interpreter  system  described  in  Part  I  is  an  example  of  how  this
information can be maintained. However, the first abstraction to the collecting semantics
eliminates the need for this information, so the information is not presented in detail here.

15.4 Model 1: Eliminating Control Flow Information
The first abstraction involves taking the union of the environments propagated along all
the failure paths from a node in the collecting semantics and propagating that union along
each of the failure paths in the new abstraction. This abstraction eliminates the stack of
backtracking points from the environment.
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A more formal definition for this model requires taking a closer look at Icon data values,
especially those values with internal structure. In order to handle Icon data objects with
pointer  semantics,  an  environment  needs  more  than  variable  bindings.  This  fact  is
important to type inferencing. The problem is handled by including two components in
the environment. The first is the store, which maps variables to values. Variables include
named variables,  temporary variables,  and  structure variables.  Named  variables
correspond  to  program  identifiers.  Temporary  variables  hold  intermediate  results  as
discussed above. Structure variables are elements of structures such as lists. Note that the
sets of named variables and temporary variables are each finite (based on the assumption
that a program consists of a single non-recursive procedure; as mentioned earlier, this
assumption is removed in Chapter 19), but for some non-terminating programs, the set of
structure variables may be infinite. Program variables include both named variables and
structure variables but not temporary variables.

Values include atomic data values such as integers, csets, and strings. They also include
pointers that  reference  objects  with  pointer  semantics.  In  addition  to  the  values  just
described,  temporary  variables  may  contain  references  to  program  variables.  These
variable  references may be  used by assignments  to  update  the  store or  they may be
dereferenced by other operations to obtain the values stored in the variables.

The second part of the environment is the  heap. It maps pointers to the corresponding
data objects (this differs from the heap in the Icon implementation in that that heap also
contains some data objects that do not have pointer semantics). For simplicity, the only
data type with pointer semantics included in this discussion is the list. A list is a partial
mapping from integers to variables. Representing other data types with pointer semantics
is straightforward; this is discussed in Chapter 19.

The first abstraction is called Model 1. The notations envir[n], store[n], and heap[n] refer to

the sets of possible environments, stores, and heaps respectively in model n. For example,
envir[1] is the set of possible environments in the first abstraction. In the following set of

definitions, X × Y is the set of ordered pairs where the first value in the pair is from X and
the second value is  from  Y.  X  Y is  the set  of  partial  functions  from  X to  Y.  The
definition of the set possible environments for model 1 is 
   envir[1] = store[1] × heap[1]

   store[1] = variables  values
   values = integers  strings ...  pointers  variables
   heap[1] = pointers  lists, where lists = integers  variables

For example, the expression 
   a := ["abc"]

creates a list  of one element whose value is the string abc and assigns the list  to the
variable a. Let p1 be the pointer to the list and let v1 be the (anonymous) variable within

the list. The resulting environment, e  envir[1], might be 

   e = (s,h), where s  store[1], h  heap[1]

   s(a) =  p1

   s(v1) = "abc"
   h(p1) = L1, where L1  lists
   L1(1) = v1

If the statement 
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   a[1] := "xyz"

is executed, the subscripting operation dereferences a producing p1, then uses the heap to

find L1, which it applies to 1 to produce the result v1. The only change in the environment

at this point is to temporary variables that are not shown. The assignment then updates the
store, producing 
  e1 = (s1, h)
  s1(a) = p1

  s1(v1) = "xyz"

Assignment does not change the heap. On the other hand, the expression 
  put(a, "xyz")

adds the string xyz to the end of the list; if it is executed in the environment e, it alters the
heap along with adding a new variable to the store. 
  e1 = (s1, h1)
  s1 (a) = p1

  s1 (v1) = "abc"
  s1 (v2) = "xyz"
  h1 (p1) = L2

  L2(1) = v1

  L2(2) = v2

If  a  formal  model  were  developed  for  the  collecting  semantics,  it  would  have  an
environment similar to the one in Model 1. However, it would need a third component
with which to represent the backtracking stack. 

15.5 Model 2: Decoupling Variables
The next approximation to Icon semantics, Model 2, takes all the values that a variable
might have at a given program point and gathers them together. In general, a variable may
have the same value in many environments, so this, in some sense, reduces the amount of
space required to store the information (though the space may still be unbounded). The
“cost” of this reduction of storage is that any information about relationship of values
between variables is lost.

Model 2 is also defined in terms of environments, stores, and heaps, although they are
different from those of Model 1. A store in Model 2 maps sets of variables to sets of
values; each resulting set contains the values associated with the corresponding variables
in environments in Model 1. Similarly, a heap in Model 2 maps sets of pointers to sets of
lists; each of these sets contains the lists associated with the corresponding pointers in
environments in Model 1. An environment in Model 2 contains a store and a heap, but
unlike in Model 1, there is only one of these environments associated with each program
point. The environment is constructed so that it effectively “contains” the environments
in the set associated with the point in Model 1.

The definition of Model 2 is 
  envir[2] = store[2] × heap[2]

  store[2] = 2variables  2values

  heap[2] = 2pointers 2→ lists

In Model 1, operations produce elements  from the set  values.  In Model 2, operations
produce subsets of this set. It is in this model that read is taken to produce the set of all
strings and that the existence of an external file system can be ignored.
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Suppose  a  program  point  is  annotated  with  the  set  containing  the  following  two
environments from Model 1. 
 e1,e2  envir∈ [1]

 e1 = (s1, h1)
 s1(x) = 1
 s1(y) = p1

 h1(p1) = L1

 e2 = (s2, h2)
 s2 (x) = 2
 s2 (y) = p1

 h2 (p1) = L2

Under Model 2 the program point is annotated with the single environment ê  envir[2],

where 
  ê = (ŝ,ĥ)
  ŝ({x}) = {1,2}
  ŝ({y}) = {p1}
  ŝ({x, y}) = {1, 2, p1}
  ĥ({p1}) = {L1, L2}

Note that a store in Model 2 is distributive over union. That is, 

 ŝ(X  Y) = ŝ(X)  ŝ(Y)
so listing the result of ŝ ({x, y}) is redundant. A heap in Model 2 also is distributive over
union.

In going to Model 2 information is lost. In the last example, the fact that x = 1 is paired
with p1 = L1 and x = 2 is paired with p1 = L2 is not represented in Model 2.

Just  as read is extended to produce a set of values, so are all other operations. These
"extended"  operations  are  then  used to  set  up the  equations  whose solution  formally
defines Model 2. This extension is straightforward. For example, the result of applying a
unary operator to a set is the set obtained by applying the operator to each of the elements
in the operand. The result of applying a binary operator to two sets is the set obtained by
applying the operator to all pairs of elements from the two operands. Operations with
more operands are treated similarly. For example 
 {1, 3, 5} + {2, 4} = {1 + 2, 1 + 4, 3 + 2, 3 + 4, 5 + 2, 5 + 4}
                    = {3, 5, 5, 7, 7, 9}
                    = {3, 5, 7, 9}

The  loss  of  information  mentioned  above  affects  the  calculation  of  environments  in
Model 2. Suppose the addition in the last example is from 
   z := x + y

and that Model 1 has the following three environments at the point before the calculation 
   [x = 1, y = 2, z = 0]
   [x = 3, y = 2, z = 0]
   [x = 5, y = 4, z = 0]

After the calculation the three environments will be 
   [x = 1, y = 2, z = 3]
   [x = 3, y = 2, z = 5]
   [x = 5, y = 4, z = 9]

If these latter three environments are translated into an environment of Model 2, the result
is 
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   [x = {1, 3, 5}, y = {2, 4}, z = {3, 5, 9}]

However, when doing the computation using the semantics of + in Model 2, the value for
z is {3, 5, 7, 9}. The solution to the equations in Model 2 overestimates (that is, gives a
conservative estimate for) the values obtained by computing a solution using Model 1 and
translating it into the domain of Model 2.

Consider the following code with respect to the semantics of assignment in Model 2.
(Assume that the code is executed once, so only one list is created.) 
   x := [10, 20]
   i := if read() then 1 else 2
   x[i] := 30

After the first two assignments, the store maps x to a set containing one pointer and maps
i  to  a  set  containing 1 and 2.  The third  assignment  is  not  as straightforward.  Its  left
operand evaluates to two variables; the most that can be said about one of these variables
after the assignment is that it might have been assigned 30. If (s, h) is the environment
after the third assignment then 
   s({x}) = { p1 }
   s({i}) = {1, 2}
   s({v1}) = {10, 30}
   s({v2}) = {20, 30}

   h({p1}) = {L1}

   L1(1) = v1

   L1(2) = v2

Clearly all assignments could be treated as weak updates [.pntstr.], where a weak update
is an update that may or may not take place. However, this would involve discarding too
much information; assignments would only add to the values associated with variables
and not replace the values. Therefore assignments where the left hand side evaluates to a
set containing a single variable are treated as special cases. These are implemented as
strong updates. 

15.6 Model 3: A Finite Type System
The environments  in  Model  2  can contain  infinite  amounts  of  information,  as  in  the
program 
   x := 1
   repeat x +:= 1

where the set of values associated with x in the loop consists of all the counting numbers.
Because equations in Model 2 can involve arbitrary arithmetic, no algorithm can find the
least fixed point of an arbitrary set of these equations.

The final step is to impose a finitely representable type system on values. A type is a
(possibly  infinite)  set  of  values.  The  type  system  presented  here  includes  three
classifications of basic types. The first classification consists of the Icon types without
pointer semantics: integers, strings, csets, etc. The second classification groups pointers
together according to the lexical point of their creation. This is similar to the method used
to handle recursive data structures in Jones and Muchnick [.analrcsv.]. Consider the code 
   every insert(x, [1 to 5])
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If this code is executed once, five lists are created, but they are all created at the same
point in the program, so they all belong to the same type. The intuition behind this choice
of  types  is  that  structures  created  at  the  same point  in  a  program are  likely to  have
components of the same type, while structures created at different points in a program
may have components of different types.

The third classification of basic types handles variable references. Each named variable
and temporary variable is given a type to itself. Therefore, if a is a named variable, {a} is
a type. Structure variables are grouped into types according to the program point where
the pointer to the structure is created. This is not necessarily the point where the variable
is created; in the following code, a pointer to a list is created at one program point, but
variables are added to the list at different points 
  x := []
  push(x, 1)
  push(x ,2)

References to these variables are grouped into a type associated with the program point
for [], not the point for the corresponding push.

If a program contains k non-structure variables and there are n locations where pointers
can be created, then the basic types for the program are integer, string, ..., P1, ..., Pn, V1, ...,
Vn, {v1}, ..., {vk} where Pi is the pointer type created at location i, Vi is the variable type
associated with Pi, and vi is a named variable or a temporary variable. Because programs
are lexically finite they each have a finite number of basic types. The set of all types for a
program is the smallest set that is closed under union and contains the empty set along
with the basic types:

   types = {{}, integers, strings,..., (integers   strings),..., (integers  strings  ...  {vk})}

Model  3 replaces the arbitrary sets  of values  of  Model  2  by types.  This  replacement
reduces the precision of the information, but allows for a finite representation and allows
the information to be computed in finite time.

In Model 3, both the store and the heap map types to types. This store is referred to as the
type store. The domain of type store is  variable types, that is, those types whose only
values are variable references. Similarly, the domain of the heap is pointer types. Its range
is  the set  types  containing only structure variables.  A set  of  values  from Model  2  is
converted to a type in Model 3 by mapping that set to the smallest type containing it. For
example, the set 
   {1, 4, 5, "23", "0"}

is mapped to 
   integer  string∪
The definition of envir[3] is 

   envir[3] = store[3] × heap[3]
   store[3] = variable-types  types→
   heap[3] = pointer-types  structure-variable-types→
   types  2⊆ values

   variable-types  types⊆
   structure-variable-types  variable-types⊆
   pointer-types  types⊆
There is exactly one variable type for each pointer type in this model. The heap simply
consists of this one-to-one mapping; the heap is of the form 
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   h( Pi ) = Vi

This  mapping is  invariant  over  a  given program.  Therefore,  the  type  equations  for  a
program can be defined over store[3] rather than envir[3] with the heap embedded within

the type equations.

Suppose an environment from Model 2 is 

  e  envir[2]

  e = (s, h)

  s({a}) = { p1 , p2}
  s({v1}) = {1, 2}
  s({v2}) = {1}
  s({v3}) = {12.03}

  h({p1}) = {L1, L2}
  h({p2}) = {L3}

  L1(1) = v1

  L2(1) = v1

  L2(2) = v2

  L3(1) = v3

Suppose the pointers p1 and p2 are both created at program point 1. Then the associated

pointer type is P1 and the associated variable type is V1. The corresponding environment

in Model 3 is 

   ê  envir[3]

   ê = (ŝ,ĥ )

   ŝ({a}) =  P1

   ŝ(V1) = integer  real

   ĥ(P1) = V1

The collecting semantics of a program establishes a set of (possibly) recursive equations
between  the  sets  of  environments  on  the  edges  of  the  program's  flow  graph.  The
collecting semantics of the program is the least fixed point of these equations in which
the  set  on the  edge entering the start  state  contains  all  possible  initial  environments.
Similarly, type inferencing establishes a set of recursive equations between the type stores
on the edges of the flow graph. The least fixed point of these type inferencing equations is
computable using iterative methods. This is discussed in Chapter 19. The fact that these
equations have solutions is due to the fact that the equations in the collecting semantics
have a solution and the fact the each abstraction maintains the “structure” of the problem,
simply discarding some details.

Chapter 19 also extends type inferencing to handle the entire Icon language. Chapter 22
uses the information from type inferencing to optimize the generated code.
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Chapter 16: Liveness Analysis of Intermediate 
Values
The  maintenance  of  intermediate  values  during  expression  evaluation  in  the  Icon
programming language is more complicated than it is for conventional languages such as
C and Pascal. O'Bagy explains this in her dissertation [.tr88-31.]: 

"Generators prolong the lifetime of temporary values. For example, in 

           i = find(s1,s2)

the operands of the comparison operation cannot be discarded when find produces
its result. If find is resumed, the comparison is performed again with subsequent
results from find(s1,s2), and the left operand must still be available."

In some implementation models, it is equally important that the operands of find still be
available if that function is resumed (this depends on whether the operand locations are
used during resumption or whether all needed values are saved in the local state of the
function).

As noted in Chapter 14, a stack-based model handles the lifetime problem dynamically.
However,  a  temporary-variable  model  like  the  one  used  in  this  compiler  requires
knowledge at compile-time of the lifetime of intermediate values. In a straightforward
implementation  of  conventional  languages,  liveness  analysis  of  intermediate  values  is
trivial: an intermediate value is computed in one place in the generated code, is used in
one place, and is live in the contiguous region between the computation and the use. In
such  languages,  determining  the  lifetime  of  intermediate  values  only  becomes
complicated when certain optimizations are performed, such as code motion and common
subexpression elimination across basic blocks [.dragonbk,progflw.]. This is not true in
Icon. In the presence of goal-directed evaluation, the lifetime of an intermediate value can
extend  beyond  the  point  of  use.  Even  in  a  straightforward  implementation,  liveness
analysis is not trivial.

In its most general form, needed in the presence of the optimizations mentioned above,
liveness analysis requires iterative methods. However, goal-directed evaluation imposes
enough structure on the liveness problem that, at least in the absence of optimizations,
iterative methods are not needed to solve it. This chapter presents a simple and accurate
method for computing liveness information for intermediate values in Icon. The analysis
is formalized in an attribute grammar. 

16.1 Implicit Loops
Goal-directed evaluation extends the lifetime of intermediate values by creating implicit
loops within an expression. In O'Bagy's example, the start of the loop is the generator find
and the end of the loop is the comparison that may fail. An intermediate value may be
used within such a loop, but if its value is computed before the loop is entered, it is not
recomputed on each iteration and the temporary variable must not be reused until the loop
is exited.

The following fragment of C code contains a loop and is therefore analogous to code
generated for goal-directed evaluation. It is used to demonstrate the liveness information
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needed  by  a  temporary  variable  allocator.  In  the  example,  v1 through  v4 represent
intermediate values that must be assigned to program variables. 
   v1 = f1();
   while (--v1) {
      v2 = f2();
      v3 = v1 + v2;
      f3(v3);
      }
   v4 = 8;

Separate variables must be allocated for v1 and v2 because they are both needed for the
addition. Here, x is chosen for v1 and y is chosen for v2. 
   x = f1();
   while (--x) {
      y = f2();
      v3 = x + y;
      f3(v3);
      }
   v4 = 8;

x cannot be used to hold v3, because x is needed in subsequent iterations of the loop. Its
lifetime must  extend through the end of the loop.  y,  on the other  hand,  can be used
because it is recomputed in subsequent iterations. Either variable may be used to hold v4. 
   x = f1();
   while (--x) {
      y = f2();
      y = x + y;
      f3(y);
      }
   x = 8;

Before temporary variables  can be allocated,  the extent  of the loops created by goal-
directed evaluation must be estimated. Suppose O'Bagy's example 
   i = find(s1, s2)

appears in the following context 
   procedure p(s1, s2, i)
      if i = find(s1, s2) then return i + *s1
      fail
   end

The simplest  and most  pessimistic  analysis  assumes that a loop can appear anywhere
within  the  procedure,  requiring  the  conclusion  that  an  intermediate  value  in  the
expression  may  live  to  the  end  of  the  procedure.  Christopher's  simple  analysis
[.tccompile.]  notices  that  the  expression  appears  within  the  control  clause  of  an  if
expression. This is a bounded context; implicit loops cannot extend beyond the end of the
control  clause.  His  allocation  scheme  reuses,  in  subsequent  expressions,  temporary
variables used in this control clause. However, it  does not determine when temporary
variables can be reused within the control clause itself. 

The analysis presented here locates the operations within the expression that can fail and
those that can generate results. It uses this information to accurately determine the loops
within the expression and the intermediate values whose lifetimes are extended by those
loops. 
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16.2 Liveness Analysis
It is instructive to look at a specific example where intermediate values must be retained
beyond (in a lexical sense) the point of their use. The following expression employs goal-
directed evaluation to conditionally write sentences in the data structure x to an output
file. Suppose f is either a file or null. If f is a file, the sentences are written to it; if f is
null, the sentences are not written. 
   every write(\f, !x, ".")

In order to avoid the complications of control structures at this point in the discussion, the
following equivalent expression is used in the analysis: 
   write(\f, !x, ".") & &fail

This  expression  can  be  converted  into  a  sequence  of  primitive  operations  producing
intermediate  values  (v1,  v2,  ...).  This  is  shown  in  diagram.  For  convenience,  the
operations are expressed in Icon, except that the assignments do not dereference their
right-hand operands. 

 

Whether  or not  the program variables  and constants  are  actually placed in  temporary
variables  depends  on  the  machine  model,  implementation  conventions,  and  what
optimizations  are  performed.  Clearly  a  temporary  variable  is  not  needed  for  &fail.
However,  temporary  variables  are  needed  if  the  subexpressions  are  more  complex;
intermediate values are shown for all subexpressions for explanatory purposes. 

When &fail is executed, the ! operation is resumed. This creates an implicit loop from the
!  to  &fail,  as  shown  by  the  arrow  in  the  above  diagram.  The  question  is:  What
intermediate values must be retained up to &fail? A more instructive way to phrase the
question is: After &fail is executed, what intermediate values could be reused without
being recomputed? From the sequence of primitive operations, it is clear that the reused
values  include  v1 and  v3,  and,  if  the  element  generation  operator,  !,  references  its
argument after resumption, then the reused values include  v4. v2 is not used within the
loop, v5 and v6 are recomputed within the loop, and v7 and v8 are not used. The lines in
the diagram to the left of the code indicate the lifetime of the intermediate values. The
dotted portion of each line represents the region of the lifetime beyond what would exist
in the absence of backtracking.

Liveness  information  could  be  computed  by making  the  implicit  loops  explicit  then
performing a standard liveness analysis in the form of a global data flow analysis. That is
unnecessarily expensive. There is enough structure in this particular liveness problem that
it can be solved during the simple analysis required to locate the implicit loops caused by
goal-directed evaluation.
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Several concepts are needed to describe analyses involving execution order within Icon
expressions. Forward execution order is the order in which operations would be executed
at run time in the absence of goal-directed evaluation and explicit loops. Goal-directed
evaluation involves both failure and the resumption of suspended generators. The control
clause  of  an  if-then-else  expression  may fail,  but  instead  of  resuming  a  suspending
generator,  it  causes  the  else  clause  to  be  executed.  This  failure  results  in  forward
execution order. Forward execution order imposes  a partial  ordering on operations.  It
produces  no  ordering  between  the  then  and  the  else  clauses  of  an  if  expression.
Backtracking order is the reverse of forward execution order. This is due to the LIFO
resumption of suspended generators. The backward flow of control caused by looping
control structures does not contribute to this liveness analysis (intermediate results used
within a looping control structure are also computed within the loop), but is dealt with in
later  chapters.  The  every  control  structure  is  generally  viewed  as  a  looping  control
structure. However, it simply introduces failure. Looping only occurs when it is used with
a generative control clause, in which case the looping is treated the same as goal-directed
evaluation.

A notation that emphasizes intermediate values, subexpressions, and execution order is
helpful for understanding how liveness is computed.  Both postfix notation and syntax
trees are inadequate. A postfix notation is good for showing execution order, but tends to
obscure  subexpressions.  The  syntax  tree  of  an  expression  shows  subexpressions,  but
execution  order  must  be  expressed  in  terms  of  a  tree  walk.  In  both  representations,
intermediate  values  are implicit.  For this  discussion,  an intermediate  representation  is
used. A subexpression is represented as a list of explicit intermediate values followed by
the operation that uses them, all enclosed in ovals. Below each intermediate value is the
subexpression that computes it. This representation is referred to as a  postfix tree. The
postfix tree for the example above is: 

 

In this notation, the forward execution order of operations (which includes constants and
references to program variables) is left-to-right and the backtracking order is right-to-left.
In this example, the backtracking order is &fail, invoke, ".", !, x, \, f, and write.

As explained above, the use of an intermediate value must appear in an implicit loop for
the value to have an extended lifetime. Two events are needed to create such a loop. First,
an operation must fail,  initiating backtracking. Second, an operation must be resumed,
causing  execution  to  proceed  forward  again.  This  analysis  computes  the  maximum
lifetime  of  intermediate  values  in  the  expression,  so  it  only  needs  to  compute  the
rightmost operation (within a bounded expression) that can fail. This represents the end
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of the farthest reaching loop. Once execution proceeds beyond this point, no intermediate
value can be reused.

The intermediate values of a subexpression are used at the end of the subexpression. For
example,  invoke uses the intermediate values  v1,  v3,  v5,  and  v6;  the following figure
shows these intermediate results and the operation in isolation.

 

In order for these uses to be in a loop, backtracking must be initiated from outside; that is,
beyond  the  subexpression  (in  the  example,  only  &fail  and  &  are  beyond  the
subexpression).

In addition, for an intermediate value to have an extended lifetime, the beginning of the
loop must start after the intermediate value is computed. Two conditions may create the
beginning of a loop. First, the operation itself may be resumed. In this case, execution
continues forward within the operation. It may reuse any of its operands and none of them
are  recomputed.  The  operation  does  not  have  to  actually  generate  more  results.  For
example, reversible swap (the operator <->) can be resumed to reuse both of its operands,
but it does not generate another result. Whether an operation actually reuses its operands
on  resumption  depends  on  its  implementation.  In  the  Icon  compiler,  operations
implemented with a C function using the standard calling conventions always use copies
of  operands  on  resumption,  but  implementations  tailored  to  a  particular  use  often
reference operand locations on resumption. Liveness analysis is presented here as if all
operations  reuse their  operands on resumption.  In the actual  implementation,  liveness
analysis computes  a separate lifetime for values used internally by operations and the
code generator decides whether this lifetime applies to operands. This internal lifetime
may also be used when allocating tended descriptors for variables declared local to the in-
line code for an operation. The behavior of the temporary-variable model presented in
this  dissertation  can  be  compared  with  one  developed  by  Nilsen  and  Martinek
[.martinek.]; it also relies on the liveness analysis described in this chapter. 

The second way to create the beginning of a loop is  for a subexpression to  generate
results. Execution continues forward again and any intermediate values to the left of the
generative  subexpression  may  be  reused  without  being  recomputed.  Remember,
backtracking is initiated from outside the expression. Suppose an expression that can fail
is  associated  with  v6,  in  the  previous  figure.  This  creates  a  loop  with  the  generator
associated with  v5. However, this particular loop does not include invoke and does not
contribute to the reuse of v1 or v3. 

A resumable operation and generative subexpressions are all resumption points within an
expression.  A simple  rule  can be used to  determine  which intermediate  values  of  an
expression have extended lifetimes: If the expression can be resumed, the intermediate
values with extended lifetimes consist of those to the left of the rightmost resumption
point of the expression. This rule refers to the ``top level'' intermediate values. The rule
must be applied recursively to subexpressions to determine the lifetime of lower level
intermediate values.

It sometimes may be necessary to make conservative estimates of what can fail and of
resumption points (for liveness analysis, it is conservative to overestimate what can fail or
be resumed). For example, invocation may or may not be resumable, depending on what
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is being invoked and, in general, it cannot be known until run time what is being invoked
(for the purposes of this example analysis, it  is assumed that the variable write is not
changed anywhere in the program). 

In the example, the rightmost operation that can fail is &fail. Resumption points are ! and
the subexpressions corresponding to the intermediate values v5 and v7.

Once  the  resumption  points  have  been  identified,  the  rule  for  determining  extended
lifetimes  can  be  applied.  If  there  are  no  resumption  points  in  an  expression,  no
intermediate values in that expression can be reused. Applying this rule to the postfix tree
above yields v1, v3, and v4 as the intermediate values that have extended lifetimes. 

Similar techniques can be used for liveness analysis  of Prolog programs, where goal-
directed evaluation also creates implicit loops. One difference is that a Prolog clause is a
linear sequence of calls. It does not need to be ``linearized'' by construction a postfix tree.
Another difference is that all intermediate values in Prolog programs are stored in explicit
variables. A Prolog variable has a lifetime that extends to the right of its last use if an
implicit loops starts after the variable's first use and ends after the variable's last use. 

16.3 An Attribute Grammar
To cast this  approach as an attribute grammar, an expression should be thought of in
terms of an abstract syntax tree. The transformation from a postfix tree to a syntax tree is
trivial. It is accomplished by deleting the explicit intermediate values. A syntax tree for
the example is:

 

Several interpretations can be given to a node in a syntax tree. A node can be viewed as
representing either an operation, an entire subexpression, or an intermediate value.

This analysis associates four attributes with each node (this ignores attributes needed to
handle break expressions). The goal of the analysis is to produce the lifetime attribute.
The  other  three  attributes  are  used  to  propagate  information  needed  to  compute  the
lifetime. 
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• resumer is either the rightmost operation (represented as a node) that can initiate
backtracking into the subexpression or it is null if the subexpression cannot be
resumed. 

• failer  is  related  to  resumer.  It  is  the  rightmost  operation  that  can  initiate
backtracking that can continue past the subexpression. It is the same as resumer,
unless the subexpression itself contains the rightmost operation that can fail. 

• gen is a boolean attribute.  It is true if the subexpression can generate multiple
results if resumed. 

• lifetime is the operation beyond which the intermediate value is no longer needed.
It is either the parent node, the resumer of the parent node, or null. The lifetime is
the  parent  node if  the  value  is  never  reused after  execution  leaves  the  parent
operation. The lifetime is the resumer of the parent if the parent operation or a
generative  sibling  to  the  right  can  be  resumed.  A lifetime  of  null  is  used  to
indicate that the intermediate value is never used. For example, the value of the
control clause of an if expression is never used. 

Attribute  computations  are  associated with  productions  in  the grammar.  The attribute
computations for failer and gen are always for the non-terminal on the left-hand side of
the production. These values are then used at the parent production; they are effectively
passed up the syntax tree. The computations for resumer and lifetime are always for the
attributes of non-terminals on the right-hand side of the production. resumer is then used
at the productions defining these non-terminals; it is effectively passed down the syntax
tree. lifetime is usually saved just for the code generator, but it is sometimes used by child
nodes. 

16.4 Primary Expressions
Variables, literals, and keywords are primary expressions. They have no subexpressions,
so  their  productions  contain  no  computations  for  resumer  or  lifetime.  The  attribute
computations for a literal follow. A literal itself cannot fail, so backtracking only passes
beyond it  if the backtracking was initiated before (to the right of) it.  A literal  cannot
generate multiple results. 
   expr ::= literal {
      expr.failer := expr.resumer
      expr.gen := false
      }

Another  example  of  a  primary  expression  is  the  keyword  &fail.  Execution  cannot
continue past &fail, so it must be the rightmost operation within its bounded expression
that can fail. A pre-existing attribute, node, is assumed to exist for every symbol in the
grammar. It is the node in the syntax tree that corresponds to the symbol. 
   expr ::= &fail {
      expr.failer := expr.node
      expr.gen := false
      }
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16.5 Operations with Subexpressions
Addition provides an example of the attribute computations involving subexpressions.
The following diagram shows how resumer, failer, and gen information would be passed
through the postfix tree. 

 

This information would then be used to compute lifetime information for v1 and v2. The
next figure shows how the attribute information is actually passed through the syntax tree.

 

The lifetime attributes are computed for the roots of the subtrees for expr1 and expr2.

The details of the attribute computations depend, in part,  on the characteristics of the
individual operation. Addition does not fail, so the rightmost resumer, if there is one, of
expr2 is the rightmost resumer of the entire expression. The rightmost resumer of expr1 is

the rightmost operation that can initiate backtracking that continues past expr2. Addition

does not suspend, so the lifetime of the value produced by expr2 only extends through the

operation (that is, it always is recomputed in the presence of goal-directed evaluation). If
expr2 is a generator, then the result of expr1 must be retained for as long as expr2 might

be resumed. Otherwise, it need only be retained until the addition is performed. expr1 is

the  first  thing  executed  in  the  expression,  so  its  failer  is  the  failer  for  the  entire
expression. The expression is a generator if either expr1 or expr2 is a generator (note that

the operation | is logical or, not Icon's alternation control structure): 
   expr ::= expr1 + expr2 {
      expr2.resumer := expr.resumer
      expr2.lifetime := expr.node
      expr1.resumer := expr2.failer
      if expr2.gen & (expr.resumer ≠ null) then
         expr1.lifetime := expr.resumer
      else
         expr1.lifetime := expr.node
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      expr.failer := expr1.failer
      expr.gen := (expr1.gen | expr2.gen)
      }

/expr provides an example of an operation that can fail. If there is no rightmost resumer
of the entire expression, it is the rightmost resumer of the operand. The lifetime of the
operand is simply the operation, by the same argument used for expr2 of addition. The

computation of failer is also analogous to that of addition. The expression is a generator if
the operand is a generator: 
   expr ::= /expr1 {
      if expr.resumer = null then
         expr1.resumer := expr.node
      else
         expr1.resumer := expr.resumer
      expr1.lifetime := expr.node
      expr.failer := expr1.failer
      expr.gen := expr1.gen
      }

!expr differs from /expr in that it can generate multiple results. If it can be resumed, the
result of the operand must be retained through the rightmost resumer: 
   expr ::= !expr1 {
      if expr.resumer = null then {
         expr1.resumer := expr.node
         expr1.lifetime := expr.node
         }
      else {
         expr1.resumer := expr.resumer
         expr1.lifetime := expr.resumer
         }
      expr.failer := expr1.failer
      expr.gen := true
      }

16.6 Control Structures
Other  operations  follow  the  general  pattern  of  the  ones  presented  above.  Control
structures, on the other hand, require unique attribute computations. In particular, several
control structures bound subexpressions, limiting backtracking. For example, not bounds
its argument and discards the value. If it has no resumer, then it is the rightmost operation
that can fail. The expression is not a generator: 
   expr ::= not expr1 {
      expr1.resumer := null
      expr1.lifetime := null
      if expr.resumer = null then
         expr.failer := expr.node
      else
         expr.failer := expr.resumer
      expr.gen := false
      }

expr1; expr2 bounds expr1 and discards the result. Because the result of expr2 is the result

of the entire expression, the code generator makes their result locations synonymous. This
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is reflected in the lifetime computations. Indeed, all the attributes of expr2 and those of

the expression as a whole are the same: 
   expr ::= expr1 ; expr2 {
      expr1.resumer := null
      expr1.lifetime := null
      expr2.resumer := expr.resumer
      expr2.lifetime := expr.lifetime
      expr.failer := expr2.failer
      expr.gen := expr2.gen
      }

A reasonable implementation of alternation places the result of each subexpression into
the same location: the location associated with the expression as a whole. This is reflected
in the lifetime computations. The resumer of the entire expression is also the resumer of
each subexpression. Backtracking out of the entire expression occurs when backtracking
out of expr2 occurs. This expression is a generator: 

   expr ::= expr1 | expr2 {
      expr2.resumer:= expr.resumer
      expr2.lifetime := expr.lifetime
      expr1.resumer := expr.resumer
      expr1.lifetime := expr.lifetime
      expr.failer := expr2.failer
      expr.gen := true
      }

The first operand of an if expression is bounded and its result is discarded. The other two
operands are treated similar to those of alternation. Because there are two independent
execution paths, the rightmost resumer may not be well-defined. However, it is always
conservative to treat the resumer as if it is farther right than it really is; this just means
that  an intermediate  value  is  kept  around longer  than needed.  If there is  no resumer
beyond the if expression, but at least one of the branches can fail, the failure is treated as
if it came from the end of the if expression (represented by the node for the expression).
Because backtracking out of an if expression is rare, this inaccuracy is of little practical
consequence. The if expression is a generator if either branch is a generator: 
   expr ::= if expr1 then expr2 else expr3 {
      expr3.resumer := expr.resumer
      expr3.lifetime := expr.lifetime
      expr2.resumer := expr.resumer
      expr2.lifetime := expr.lifetime
      expr1.resumer := null expr1.lifetime := null
      if expr.resumer = null & (expr1.failer null | expr2.failer 
null) then
         expr.failer := expr.node
      else
         expr.failer = expr.resumer
      expr.gen := (expr2.gen | expr3.gen)
      }

The do clause of every is bounded and its result discarded. The control clause is always
resumed at the end of the loop and can never be resumed by anything else. The value of
the control clause is discarded. Ignoring break expressions, the loop always fails: 
   expr ::= every expr1 do expr2 {
      expr2.resumer := null
      expr2.lifetime := null
      expr1.resumer := expr.node
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      expr1.lifetime := null
      expr.failer := expr.node
      expr.gen := false
      }

Handling break expressions requires some stack-like attributes. These are similar to the
ones used in the control flow analyses described in O'Bagy's dissertation [.tr88-31.] and
the ones used to construct flow graphs in the original technical report on type inferencing.

The attributes presented here can be computed with one walk of the syntax tree. At a
node, subtrees are processed in reverse execution order: first the resumer and lifetime
attributes of a subtree are computed, then the subtree is walked. Next the failer and gen
attributes for the node itself are computed, and the walk moves back up to the parent
node.
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Chapter 17: Overview of the Compiler

17.1 Components of the Compiler
The Icon compiler is divided into two components: a run-time system and the compiler
itself.  This  organization  is  illustrated  below.  In the  diagram,  labeled  boxes  represent
programs,  other  text  (some  of  it  delimited  by  braces)  represents  files,  and  arrows
represent data flow. 

 

The run-time system appears above the dotted line and the compiler itself appears below
the line. The programs shown with the run-time system are executed once when the run-
time system is installed or updated.  They build a data base, rt.db, and an object-code
library, rt.a, for use by the compiler. The general definition of the term ``data base'' is
used here: a collection of related data. rt.db is stored as a text file. It is accessed and
manipulated in internal tables by the programs rtt and iconc. The rtt program is specific to
the  Icon  compiler  system  and  is  described  below.  The  C  compiler  and  the  library
maintenance program are those native to the system on which the Icon compiler is being
used. The format  of the object-code library is  dictated by the linker  used with the C
compiler.  The file  rt.h  contains  C  definitions  shared  by the  routines  in  the  run-time
system and code generated by the compiler.

The diagram of  the  compiler  itself  reflects  the  fact  that  the  Icon compiler  uses  a  C
compiler and linker as a back end. However, iconc automatically invokes these programs,
so the Icon programmer sees a single tool that takes Icon source as input and produces an
executable file. 

17.2 The Run-time System
As with the run-time system for the interpreter,  the run-time system for the compiler
implements  Icon's  operations.  However,  the  compiler  has  needs  beyond those  of  the
interpreter.  In  the  interpreter's  run-time  system,  all  operations  are  implemented  as  C
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functions  conforming  to  certain  conventions.  The  interpreter  uses  the  same
implementation of an operation for all uses of the operation. While this approach results
in  acceptable  performance  for  many  Icon  programs,  the  purpose  of  an  optimizing
compiler is to obtain better performance. A major goal in the development of iconc is to
use information from type inferencing to tailor the parameter passing and parameter type
conversions of an operation to particular uses of the operation and to place code in line
where appropriate. The compiler needs a mechanism to support this tailored operation
invocation. In addition, the compiler needs information about the properties of operations
for use in performing type inferencing and other analyses.

In addition to supporting the analyses and optimizations of iconc, there are several other
major goals in the design of the compiler's run-time system. These include 

• Specification of all information about an operation in one place. 

• Use of  one coding to  produce both general  and tailored implementation  of  an
operation. 

• Use of the pre-existing run-time system as a basis for the new one. 

Most of the design goals for the run-time system would best  be served by a special-
purpose language in which to implement the run-time system. Such a language would
allow the properties of an operation needed by various analyses to be either explicitly
coded or easily inferred from parts of the code used to produce an implementation of the
operation. The language would also allow easy recognition and manipulation of parts of
the  code that  need to  be tailored  to  individual  uses  of  an operation.  In addition,  the
language would provide support for features of Icon such as its  data  types and goal-
directed evaluation.

While a special-purpose language is consistent with most design goals, it is not consistent
with  using  the  interpreter's  run-time  system  written  in  C  as  a  basis  for  that  of  the
compiler. A special-purpose language also has the problem that it requires a large effort
to implement. These conflicting goals are resolved with a language that is a compromise
between  an  ideal  special-purpose  implementation  language  and  C.  The  core  of  the
language is C, but the language contains special features for specifying those aspects of a
run-time operation that must be dealt with by the compiler. This language is called the
implementation  language for  the  Icon  compiler's  run-time  system.  Because  the
implementation  language  is  designed  around  C,  much  of  the  detailed  code  for
implementing an operation can be borrowed from the interpreter system with only minor
changes. The important facets of the implementation language are discussed here. A full
description  of  the  language  can  be  found  in  the  reference  manual  for  the  language
[.ipd79.]. The core material from this reference manual is included as Appendix A of this
dissertation. 

17.3 The Implementation Language 
The implementation language is used to describe the operators, keywords, and built-in
functions of Icon. In addition to these operations, the run-time system contains routines to
support other features of Icon such as general invocation, co-expression activation, and
storage management. These other routines are written in C.

The program rtt takes as input files containing operations coded in the implementation
language and translates the operations into pure C. rtt also builds the data base, rt.db, with
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information about the operations. In addition to operations written in the implementation
language, rtt input may contain C functions. These C functions can use several of the
extensions  available  to  the  detailed  C  code  in  the  operations.  These  extensions  are
translated into ordinary C code. While not critical to the goals of the run-time system
design,  the  ability  to  use  these  extensions  in  otherwise  ordinary C  functions  is  very
convenient. 

The definition of an operation is composed of three layers. The outer layer brackets the
code for  the  operation.  It  consists  of  a  header  at  the  beginning of  the  code and the
reserved word end at the end of the code. The header may be preceded by an optional
description of the operation in the form of a string literal; this description is used only for
documentation.  The second layer consists  of type checking and type conversion code.
Type checking code may be nested. The inner layer is the detailed C code, abstract type
computations, and code to handle run-time errors. An abstract type computation describes
the possible side-effects and result types of the operation in a form that type inferencing
can use. This feature is needed because it is sometimes impractically difficult to deduce
this information from the C code. The code to handle run-time errors is exposed; that is, it
is  not buried within the detailed C code. Because of this,  type inferencing can easily
determine  conditions  under which an operation terminates  without  either  producing a
value  or  failing.  (A  further  reason  for  exposing  this  code  is  explained  in  the
implementation language reference manual in the section on scoping.)

An operation header starts with one of the three reserved words operator, function,  or
keyword. The header contains a description of the operation's  result sequence, that is,
how many results it can produce. This includes both the minimum and maximum number
of results, with indicating an unbounded number. In addition, it indicates, by a trailing +,
when an operation can be resumed to perform a side-effect after it has produced its last
result. This information is somewhat more detailed than can easily be inferred by looking
at the returns, suspends, and fails in the detailed C code. The information is put in the
data base for use by the analysis phases of iconc.

An  operation  header  also  includes  an  identifier.  This  provides  the  name  for  built-in
functions and keywords. For all types of operations, rtt uses the identifier to construct the
names of the C functions that implement the operations. The headers for operators also
include an operator symbol. The parser for iconc is not required to use this symbol for the
syntax  of  the  operation,  but  for  most  operations  it  does  so;  list  creation,  [...],  is  an
example  of  an  exception.  The  headers  for  built-in  functions  and operators  include  a
parameter  list.  The  list  provides  names  for  the  parameters  and  indicates  whether
dereferenced and/or undereferenced versions of the corresponding argument are needed
by the  operation.  It  also  indicates  whether  the  operation  takes  a  variable  number  of
arguments.

The following are five examples of operation headers. 
   function{0,1+} move(i)
   function{} bal(c1,c2,c3,s,i,j)
   operator{1} [...] llist(elems[n])
   operator{0,1} / null(underef x -> dx)
   keyword{3} regions

move is a function that takes one argument. It may produce zero or one result and may be
resumed to  produce a  side  effect  after  its  last  result.  bal  is  a  function  that  takes  six
arguments. It produces an arbitrary number of results. The list-creation operator is given
the symbol [...] (which may be used for string invocation, if string invocation is enabled)
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and is given the name llist. It takes an arbitrary number of arguments with elems being
the  array of  arguments  and  n  being  the  number  of  arguments.  List  creation  always
produces one result. The / operator is given the name null. It takes one argument, but both
undereferenced and dereferenced versions are needed by the operation. It produces either
zero or one result. &regions is a keyword that produces three results.

Type checking and type conversion constructs consist of an if-then construct, an if-then-
else construct, a type_case construct that selects code to execute based on the type of an
argument, and a len_case construct that selects code to execute based on the number of
arguments in the variable part of a variable-length argument list. The conditions in the if-
then  and  if-then-else  constructs  are  composed  of  operations  that  check  the  types  of
arguments or attempt to convert arguments to specific types.

A type check starts with `is:'. This is followed by the name of a type and an argument in
parentheses. For example, the then clause of the following if is executed if x is a list. 
   if is:list(x) then ...

A type conversion is  similar  to a type check, but starts  with `cnv:'.  For example,  the
following code attempts  to convert  s to  a string.  If the conversion succeeds, the then
clause of the if is executed. 
   if cnv:string(s) then ...

There are forms of conversion that convert a null value into a specified default value,
forms that put a converted value in a location other than the parameter, and forms that
convert  Icon  values  into  certain  types  of  C  values.  The  later  type  of  conversion  is
convenient because the detailed code is expressed in C. In addition, exposing conversions
back  and  forth  between  Icon  and  C  values  leaves  open  the  possibility  of  future
optimizations to eliminate unnecessary conversions to Icon values. The control clause of
an if may also use limited forms of expressions involving boolean operators. The full
syntax  and  semantics  of  conversions  are  described  in  the  implementation  language
reference manual.

Detailed code is expressed in a slightly extended version of C and is introduced by one of
two constructs. The first is 
   inline { extended C }

This indicates that it is reasonable for the Icon compiler to put the detailed code in line.
The second construct is 
   body { extended C }

This indicates that the detailed code is too large to be put in line and should only appear
as part of a C function in the run-time library. The person who codes the operation is free
to decide which pieces of detailed code are suitable to in-lining and which are not. The
decision  is  easily changed,  so an operation  can be fine tuned after  viewing the code
produced by the compiler.

One extension  to  C is  the ability to  declare variables  that  are tended with respect  to
garbage  collection.  Another  extension  is  the  ability  to  use  some  constructs  of  the
implementation  language,  such as type conversions,  within the C code.  An important
extension is the inclusion of return, suspend, and fail statements that are analogous to
their Icon counterparts. This extension, combined with the operation headers, makes the
coding of run-time routines independent of the C calling conventions used in the compiler
system.  The return and suspend statements  have forms  that  convert  C values to  Icon
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values, providing inverses to conversions in the type checking code of the implementation
language.

This mechanism is more than is necessary for those keywords that are simple constants.
For keywords that are string, cset, integer, or real constants there is a special form of
definition. The Icon compiler treats keywords coded with these definitions as manifest
constants. When future versions of the Icon compiler implement constant folding, that
optimization will be automatically applied to these keywords. 

17.4 Standard and Tailored Operation Implementations
For  every  operation  that  it  translates,  except  keywords,  rtt  creates  a  C  function
conforming to the standard calling conventions of the compiler system. With the help of
the  C  compiler  and  library  maintenance  routine,  rtt  puts  an  object  module  for  that
function in the compiler system's run-time library. This function is suitable for invocation
through a procedure block. It is used with unoptimized invocations.

rtt creates an entry in the data base for every operation it translates, including keywords.
This entry contains the code for the operation. The code is stored in the data base in a
form that is easier to parse and process than the original source, and the body statements
are replaced by calls to C functions. These C functions are in the run-time library and
implement the code from the body statement. The calling conventions for these functions
are tailored to  the needs of the code and do not,  in general,  conform to the standard
calling conventions of the compiler system.

When the compiler can determine that a particular operation is being invoked, it locates
the operation in the data base and applies information from type inferencing to simplify or
eliminate  the  code  in  the  operation  that  performs  type  checking  and  conversions  on
arguments. These simplifications will eliminate detailed code that will never be executed
in this invocation of the operation. The compiler can attempt the simplification because
the type checking code is in the data base in a form that is easily dealt with. If enough
simplification is possible, a tailored version of the operation is generated in line. This
tailored  version  includes  the  simplified  type  checking  code,  if  there  is  any left.  For
detailed code that has not been eliminated by the simplification, the tailored version also
includes  the  C  code  from  inline  statements  and  includes  calls  to  the  functions  that
implement the code in body statements. The process of producing tailored versions of
built-in operations is described in more detail in a later chapter. 

Ideally, when unique types can be inferred for the operands of an operation, the compiler
should either produce a small piece of type-specific in-line C code or produce a call to a
type-specific C function implementing the operation. It is possible to code operations in
the implementation language such that the compiler can do this. In addition, this is the
natural  way  to  code  most  operations.  For  the  few  exceptions,  there  are  reasonable
compromises  between ideal  generated code and elegant  coding in  the implementation
language. This demonstrates that the design and implementation of the run-time system
and its communication with the compiler is successful. 
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Chapter 18: Organization of Iconc
The Icon compiler, iconc, takes as input the source code for an Icon program and, with
the help of a C compiler and linker, produces an executable file. The source code may be
contained in several files, but iconc does not support separate compilation. It processes an
entire  program  at  once.  This  requirement  simplifies  several  of  the  analyses,  while
allowing them to compute more accurate information. Without the entire program being
available, the effects of procedures in other files is unknown. In fact, it is not possible to
distinguish  built-in  functions  from  missing  procedures.  Type  inferencing  would  be
particularly weakened. It would have to assume that any call to an undeclared variable
could have any side effect on global variables (including procedure variables) and on any
data structure reachable through global variables or parameters. 

18.1 Compiler Phases
Iconc is organized into a number of phases. These are illustrated in the diagram on the
following page.

The  initialization  phase  includes  reading  a  data  base  of  information  about  run-time
routines into internal tables. This information is used in many of the other phases.

The source analysis phase consists of a lexical analyzer and parser. These are adapted
from those used in the interpreter system. The parser generates abstract syntax trees and
symbol  tables  for  all  procedures  before  subsequent  phases  are  invoked.  The  symbol
resolution phase determines the scope of variables that are not declared in the procedures
where they are used. This resolution can only be done completely after all source files for
the program are read. If a variable does not have a local declaration, the compiler checks
to  see  whether  the  variable  is  declared  global  (possibly  as  a  procedure  or  record
constructor) in one of the source files. If not, the compiler checks to see whether the
variable name matches that of a built-in function. If the name is still not resolved, it is
considered to be a local variable.
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18.2 Naive Optimizations
Naive optimizations involve invocation and assignment.  These optimizations are done
before type inferencing to aid that analysis. Certain ``debugging features'' of Icon such as
the variable  function interfere with these optimizations.  By default,  these features are
disabled.  If the user of iconc requests  the debugging features, these optimizations are
bypassed.  While  these  optimizations  are  being  done,  information  is  gathered  about
whether procedures suspend, return, or fail. This information is used in several places in
the compiler.

The invocation optimization replaces general invocation by a direct form of invocation to
a  procedure,  a  built-in  function,  or  a  record  constructor.  This  optimization  involves
modifying nodes in the syntax tree. It only applies to invocations where the expression
being invoked is a global variable initialized to a value in one of the three classes of
procedure values. First, the Icon program is analyzed to determine which variables of this
type appear only as the immediate  operands of invocations.  No such variable  is  ever
assigned to, so it retains its initial value throughout the program (a more exact analysis
could be done to determine the variables that are not assigned to, but this would seldom
yield better results in real Icon programs because these programs seldom do anything with



229

procedure  values  other  that  invoke  them).  This  means  that  all  invocations  of  these
variables can be replaced by direct invocations. In addition, the variables themselves can
be discarded as they are no longer referenced.

The  invocation  optimization  improves  the  speed  of  type  inferencing  in  two  ways,
although  it  does  nothing  to  improve  the  accuracy  of  the  information  produced.
Performing type inferencing on direct invocations is faster than performing it on general
invocations.  In  addition,  type  inferencing  has  fewer  variables  to  handle,  which  also
speeds it up.

The invocation optimization does improve code generated by the compiler. In theory, the
optimization could be done better after type inferencing using the information from that
analysis,  but  in  practice  this  would seldom produce better  results.  On most  real  Icon
programs, this optimization using the naive analysis replaces all general invocations with
direct ones. 

As noted in Chapter 3, it is important for type inferencing to distinguish strong updates
from weak updates. The data base contains a general description of assignment, but it
would be difficult for a type inferencing system to use the description in recognizing that
a simple assignment or an augmented assignment to a named variable is a strong update.
It is  much easier to  change general assignments  where the left  hand side is  a named
variable  to  a  special  assignment  and  have  type  inferencing  know  that  the  special
assignment  is  a  strong  update.  Special-casing  assignment  to  named  variables  is  also
important  for  code  generation.  General  optimizations  to  run-time  routines  are  not
adequate  to  produce  the  desired  code  for  these  assignments.  The  optimizations  to
assignment are described in Chapter 22.

The details of type inferencing are described in other chapters. Producing code for the C
main function, global variables, constants, and record constructors is straightforward. C
code is written to two files for organizational purposes; it allows definitions and code to
be written in parallel. 

18.3 Code Generation for Procedures
Producing code for procedures involves several sub-phases. The sub-phases are liveness
analysis, basic code generation, fix-up and peephole optimization, and output. During this
phase of code generation, procedures are processed one at at time.

These sub-phases are described in later chapters. The code fix-up phase and peephole
optimization are performed during the same pass over the internal representation of the C
code. Some clean-up from peephole optimization is performed when the code is written.
The  logical  organization  of  the  compiler  places  the  fix-up  phase  as  a  pass  in  code
generation with peephole optimization being a separate phase. The organization of this
dissertation  reflects  the  logical  organization  of  the  compiler  rather  than  its  physical
organization.

The physical organization of this phase is shown in the following diagram.
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Chapter 19: The Implementation of Type 
Inferencing
Chapter 15 develops a theoretical type inferencing model for Icon, called Model 3. The
purpose of that chapter is to explain the relationship between type inferencing and the
semantics  of  Icon;  for  simplicity,  some  features  of  the  language  along  with  certain
questions of practical importance are ignored in that chapter. This chapter describes the
implementation  of  the  type  inferencing  system  used  in  the  Icon  compiler.  The
implementation is based on Model 3. This chapter describes solutions to those issues that
must  be  addressed  in  developing  a  complete  practical  type  inferencing  system  from
Model 3. The issues include: 

• the representation of types and stores 

• the development of a type system for the full Icon language 

• the handing of procedure calls and co-expression activation 

• the determination of edges in the flow graph 

• the computation of a fixed point for type information 

In addition, performance of the abstract interpretation must be considered. This includes
both speed and memory usage. 

19.1 The Representation of Types and Stores
A type consists of a set of basic types (technically, it is a union of basic types, but the
constituents of the basic types are not explicitly represented). The operations needed for
these sets are: add a basic type to a set, form the union of two sets, form the intersection
of two sets, test for membership in a set, and generate members of a subrange of basic
types (for example, generate all members that are list types). A bit vector is used for the
set representation, with a basic type represented by an integer index into the vector. The
required  operations  are  simple  and  efficient  to  implement  using  this  representation.
Unless the sets are large and sparse, this representation is also space efficient. While the
sets of types are often sparse, for typical programs, they are not large. 

A store is implemented as an array of pointers to types. A mapping is established from
variable  references  to  indexes  in  the  store.  In  the  type  inferencing  model,  Model  3,
presented in Chapter 3, there is one kind of store that contains all variables. In the actual
implementation, temporary variables need not be kept in this store. The purpose of this
store is to propagate a change to a variable to the program points affected by the change.
A temporary variable is set in one place in the program and used in one place; there is
nothing to determine dynamically. It is both effective and efficient to store the type of a
temporary variable in the corresponding node of the syntax tree.

Another  level  of  abstraction  can  be  developed  that  requires  much  less  memory than
Model 3, but it must be modified to produce good results. This abstraction abandons the
practice of a store for every edge in the flow graph. Instead it has a single store that is a
merger of all the stores in Model 3 (the type associated with a variable in a merged store
is the union of the types obtained for that variable from each store being merged). For
variables that  are truly of one type throughout execution,  this  abstraction works well.
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Named variables do not have this property. They have an initial null value and usually are
assigned  a  value  of  another  type  during  execution.  Because  assignments  to  named
variables are treated as strong updates, Model 3 can often deduce that a variable does not
contain the null type at specific points in the flow graph.

For structure variables this further abstraction does work well in practice. These variables
are initialized to the empty type (that is, no instances of these variables exist at the start of
program execution), so the problem of the initial null type does not occur. Sometimes
instances of these variables are created with the null type and later changed. However, the
fact that assignments to these variables must be treated as weak updates means that type
inferencing must assume that these variables can always retain their earlier type after an
assignment.  Propagating type information about structure variables through the syntax
tree does not help much in these circumstances. While it is possible to construct example
programs where Model 3 works better for structure variables than this further abstraction,
experiments  with prototype type inferencing systems indicate  that  the original  system
seldom gives better information for real programs [.tr88-25.]. 

Type inferencing in the compiler is implemented with two kinds of stores: local stores
that are associated with edges in the flow graph and contain named variables (both local
and  global  variables)  and  a  global  store  that  contains  structure  variables  (in  the
implementation,  the  global  store is  actually broken up by structure-variable  type into
several arrays). 

19.2 A Full Type System
Model 3 from Chapter 3 includes no structure type other than lists, nor does it consider
how to  handle  types  for  procedure  and  co-expression  values  to  allow  effective  type
inferencing in their presence. This section develops a complete and effective type system
for Icon.

Most of the structure types of Icon are assigned several subtypes in the type inferencing
system.  As  explained  for  lists  in  Chapter  3,  these  subtypes  are  associated  with  the
program points where values of the type are created. The exception to this approach is
records.  One  type  is  created  per  record  declaration.  While  it  is  possible  to  assign  a
subtype to each use of a record constructor, in practice a given kind of record usually is
used consistently with respect to the types of its fields throughout a program. The extra
subtypes  would  require  more  storage  while  seldom  improving  the  resulting  type
information.

For efficiency, the size of the bit vectors representing types and the size of the stores need
to  remain  fixed  during  abstract  interpretation.  This  means  that  all  subtypes  must  be
determined as part of the initialization of the type inferencing system. In order to avoid
excessive storage usage,  it  is  important  to avoid creating many subtypes for program
points where structures are not created. The invocation optimization described in Chapter
6 helps determine where structures can and cannot be created by determining for most
invocations  what  operation  is  used.  The  type  inferencing  system  determines  what
structures an operation can create by examining the abstract type computations associated
with  the  operation  in  the  data  base.  A  new  clause  in  an  abstract  type  computation
indicates  that  a  structure  can  be  created.  The following example  is  the  abstract  type
computation  from the  built-in  function  list.  It  indicates  the  the  function  creates  and
returns a new list with elements whose type is the same as that of the parameter x (the
second parameter). 
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   abstract {
      return new list(type(x))
      }

This is the clause as written by the programmer developing the run-time library; it  is
translated into an internal form for storage in the data base. 

Invocation  optimizations  may  not  identify  the  operation  associated  with  some
invocations.  The initialization phase of type inferencing skips these invocations.  Type
inferencing may later discover that one of these invocations can create a structure. Each
structure type is given one subtype that is used for all of these later discoveries. While it
is possible for there to be several of these creation points representing logically distinct
subtypes, this seldom occurs in practice. If it does happen, type inferencing produces a
correct, but less precise, result. 

The type system contains representations for all run-time values that must be modeled in
the abstract interpretation.  These run-time values can be divided into three categories,
each of which is a superset of the previous category: 

• the first-class Icon values 

• the intermediate values of expression evaluation 

• the values used internally by Icon operations 

Just  as  these  categories  appear  in  different  places  during  the  execution  of  an  Icon
program, the corresponding types appear in different places during abstract interpretation.
If certain types cannot appear as the result  of a particular  type computation,  it  is  not
necessary to have elements in the bit vector produced by the computation to represent
those types. It is particularly important to minimize the memory used for stores associated
with edges of the flow graph (this is discussed more in the last section of this chapter).
These stores contain only the types of the smallest set listed above: the first-class values.

Types (or subtypes) are allocated bit vector indexes. The first-class types may appear as
the result of any of the three classes of computation. They are allocated indexes at the
front  of  the  bit  vectors.  If  they  are  the  only  types  that  can  result  from  an  abstract
computation, the bit vector for the result has no elements beyond that of the last first-class
types. The first-class types are: 

• null 

• string 

• cset 

• integer 

• real 

• file 

• list subtypes 

• set subtypes 

• table subtypes 

• record subtypes 
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• procedure subtypes 

• co-expression subtypes 

The list subtypes are allocated with 

• one for the argument to the main procedure 

• one for each easily recognized creation point 

• one representing all other lists 

The set subtypes are allocated with 

• one for each easily recognized creation point 

• one representing all other sets 

The table subtypes are allocated with 

• one for each easily recognized creation point 

• one representing all other tables 

The record subtypes are allocated with one for each record declaration. The procedure
subtypes are allocated with 

• one for each procedure 

• one for each record constructor 

• one for each built-in function 

• one representing operators available for string invocation 

Note that procedure subtypes are allocated after most procedure and function values have
been eliminated by invocation optimizations (the procedures and functions are still there,
they are just not Icon values). Therefore, few of these subtypes are actually allocated. The
co-expression subtypes are allocated with 

• one for the main co-expression 

• one for each create expression 

The bit vectors used to hold the intermediate results of performing abstract interpretation
on expressions must be able to represent the basic types plus the variable reference types.
Variable  reference types are allocated bit  vector indexes  following those of the basic
types. The bit vectors for intermediate results are just long enough to contain these two
classifications of types. The variable reference types are 

• integer keyword variable types 

• &pos 

• &subject 

• substring trapped variable types 

• table-element trapped variable types 
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• list-element reference types 

• table assigned-value reference types 

• field reference types 

• global variable reference types 

• local variable reference types 

&random and &trace behave the same way from the perspective of the type inferencing
system, so they are grouped under one type as integer keyword variables. The fact that
&pos can cause assignment to fail  is reflected in the type inferencing system, so it  is
given a separate type. &subject is the only string keyword variable so it is in a type by
itself.

Substring trapped variables and table-element trapped variables are ``hidden'' structures in
the implementation of Icon. They appear as intermediate results, but are only indirectly
observable  in  the  semantics  of  Icon.  In  order  to  reflect  these  semantics  in  the  type
inferencing system, there are substring trapped variable types and table-element trapped
variable types. These are structure types similar to sets, but are variable reference types
rather than first-class types. The substring trapped variable types are allocated with 

• one for each easily recognized creation point 

• one representing all other substring trapped variables 

The table-element trapped variable types are allocated with 

• one for each easily recognized creation point 

• one representing all other table-element trapped variables 

List elements, table assigned-values, and record fields are all variables that can appear as
the  intermediate  results  of  expression  evaluation.  The type  system has  corresponding
variable reference types to represent them. The list-element reference types are allocated
with one for each list types. The table assigned-value reference types are allocated with
one for each table type. The field reference types are allocated with one for each record
field declaration. 

Identifiers are variables and are reflected in the type system. The global variable reference
types are allocated with 

• one  for  each  global  variable  (except  those  eliminated  by  invocation
optimizations). 

• one for each static variable 

The local variable reference types are allocated with one for each local variable, but the
bit  vector indexes and store indexes are reused between procedures. The next section
describes why this reuse is possible.

Icon's  operators  use  a  number  of  internal  values  that  never  ``escape''  as  intermediate
results. Some of these internal values are reflected in the type system in order to describe
the semantics of the operations in the abstract interpretation. The full set of types that can
be  used  to  express  these  semantics  are  presented  in  the  syntax  of  the  abstract  type
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computations of the run-time implementation language; see Appendix A. In addition to
the types of intermediate results, these types include 

• set-element reference types 

• table key reference types 

• table default value reference types 

• references to the fields within substring trapped variables that reference variables 

• references to fields within table-element trapped variables that reference tables 

These types are allocated bit vector indexes at the end of the type system. The only bit
vectors  large  enough  to  contain  them  are  the  temporary  bit  vectors  used  during
interpretation of the abstract type computations of built-in operations.

Set elements, table keys, and table default values do not appear as variable references in
the results of expression evaluation. However, it is necessary to refer to them in order to
describe the effects of certain Icon operations. For this reason, they are included in the
type system. The set-element reference types are allocated with one for each set type. The
table key reference types are allocated with one for each table type. The table default
value reference types are allocated with one for each table type.

Substring trapped variable types contain references to the variable types being trapped
and table-element trapped variable types contain references to the table types containing
the element being trapped. These references are fields within these trapped variable types.
There is one field reference type for each trapped variable type. 

19.3 Procedure Calls and Co-Expression Activations
A type inferencing system for the full  Icon language must  handle procedures and co-
expressions. As noted above, each procedure and each create expression is given its own
type. This allows the type inferencing system to accurately determine which procedures
are invoked and what co-expressions might be activated by a particular expression.

The standard semantics  for  procedures  and co-expressions  can be implemented  using
stacks of procedure activation frames, with one stack per co-expression. The first frame,
on every stack except  that  of the main  co-expression,  is  a copy of the frame for the
procedure that created the co-expression. The local variables in this frame are used for
evaluating  the  code  of  the  co-expression.  The  type  inferencing  system uses  a  trivial
abstraction  of  these procedure frame stacks,  while  capturing the possible  transfers  of
control induced by procedure calls and co-expression activations.

The  type  inferencing  system,  in  effect,  uses  an  environment  that  has  one  frame  per
procedure, where that frame is a summary of all frames for the procedure that could occur
in a corresponding environment  of an implementation  of the standard semantics.  The
frame is  simply a portion of the store that  contains local variables.  Because no other
procedure can alter a local variable, it is unnecessary to pass the types of local variables
into procedure calls. If the called procedure returns control via a return, suspend, or fail,
the types are unchanged, so they can be passed directly across the call. This allows the
type inferencing system to keep only the local variables of a procedure in the stores on the
edges of the flow graph for the procedure, rather than keeping the local variables of all
procedures. Global variables must be passed into and out of procedure calls.  Because
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static variables may be altered in recursive calls, they must also be passed into and out of
procedure calls. 

A flow graph for an entire program is constructed from the flow graphs for its individual
procedures and co-expressions. An edge is added from every invocation of a procedure to
the head of that procedure and edges are added from every return, suspend, and fail back
to the invocation. In addition, edges must be added from an invocation of a procedure to
all  the suspends in the procedure to  represent resumption.  When it  is not  possible  to
predetermine which procedure is  being invoked, edges are effectively added from the
invocation to all procedures whose invocation cannot be ruled out based on the naive
invocation optimizations. Edges are effectively added between all co-expressions and all
activations, and between all activations. Information is propagated along an edge when
type  inferencing  deduces  that  the  corresponding  procedure  call  or  co-expression
activation might actually occur. The representation of edges in the flow graph is discussed
below.

Type inferencing must reflect the initializations performed when a procedure is invoked.
Local variables are initialized to the null value. On the first call to the procedure, static
variables are also initialized to the null  value. The initialization code for the standard
semantics is similar to 
   initialize locals
   if (first_call) {
      initialize statics
      user initialization code
      }

In type inferencing, the variables are initialized to the null type and the condition on the if
is ignored. Type inferencing simply knows that the first-call code is executed sometimes
and not others. Before entering the main procedure, global variables are set to the null
type and all  static variables are set to the empty type. In some sense, the empty type
represents an impossible execution path. Type inferencing sees paths in the flow graph
from the start  of the program to the body of a procedure that never pass through the
initialization code. However, static variables have an empty type along this path and no
operation on them is valid. Invalid operations contribute nothing to type information. 

19.4 The Flow Graph and Type Computations
In order  to  determine  the  types  of  variables  at  the  points  where  they are  used,  type
inferencing  must  compute  the  contents  of  the  stores  along edges  in  the  flow graph.
Permanently allocating the store on each edge can use a large amount of memory. The
usage is 
   M = E (G + S + L) T / 8

where 
   M = total memory, expressed in bytes, used by stores
   E = the number of edges in the program flow graph
   G = the number of global variables in the program
   S = the number of static variables in the program
   L = the maximum number of local variables in any procedure
   T = the number of types in the type system

Large programs with many structure creation  points  can produce thousands of  edges,
dozens of variables, and hundreds of types, requiring megabytes of memory to represent
the stores.
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The code generation phase of the compiler just needs the (possibly dereferenced) types of
operands, not the stores. If dereferenced types are kept at the expressions where they are
needed, it is not necessary to keep a store with each edge of the flow graph.

Consider a section of straight-line code with no backtracking. Abstract interpretation can
be performed on the graph starting with the initial store at the initial node and proceeding
in execution order.  At each node,  the store on the edge entering the node is  used to
dereference variables and to compute the next store if there are side effects. Once the
computations at a node are done, the store on the edge entering the node is no longer
needed. If updates are done carefully, they can be done in-place, so that the same memory
can be used for both the store entering a node and the one leaving it.

In the case of branching control paths (as in a case expression), abstract interpretation
must proceed along one path at a time. The store at the start the branching of paths must
be saved for use with each path. However, it need only be saved until the last path is
interpreted. At that point, the memory for the store can be reused. When paths join, the
stores  along  each  path  must  be  merged.  The  merging  can  be  done  as  each  path  is
completed; the store from the path can then be reused in interpreting other paths. When
all paths have been interpreted, the merged store becomes the current store for the node at
the join point. 

The start of a loop is a point where control paths join. Unlike abstract interpretation for
the joining of simple branching paths, abstract interpretation for the joining of back edges
is not just a matter of interpreting all paths leading to the join point before proceeding.
The edge leaving the start of the loop is itself on a path leading to the start of the loop.
Circular dependencies among stores are handled by repeatedly performing the abstract
interpretation  until  a  fixed  point  is  reached.  In this  type  inferencing system,  abstract
interpretation is performed in iterations, with each node in the flow graph visited once per
iteration. The nodes are visited in execution order. For back edges, the store from the
previous iteration is used in the interpretation. The stores on these edges must be kept
throughout the interpretation. These stores are initialized to map all variables to the empty
type.  This  represents  the  fact  that  the  abstract  interpretation  has  not  yet  proven  that
execution can reach the corresponding edge.

The type inferencing system never explicitly represents the edges of the flow graph in a
data structure. Icon is a structured programming language. Many edges are implicit in a
tree walk performed in forward execution order -- the order in which type inferencing is
performed. The location of back edges must be predetermined in order to allocate stores
for them,  but  the edges themselves  are effectively recomputed as part  of the abstract
interpretation.

There are two kinds of back edges. The back edges caused by looping control structures
can be trivially deduced from the syntax tree. A store for such an edge is kept in the node
for the control structure. Other back edges are induced by goal-directed evaluation. These
edges are determined with the same techniques used in liveness analysis. A store for such
an edge is kept in the node of the suspending operation that forms the start of the loop.
Because the node can be the start of several nested loops, this store is actually the merged
store for the stores that theoretically exist on each back edge.

At any point in abstract interpretation, three stores are of interest. The current store is the
store entering the node on which abstract interpretation is currently being performed. It is
created  by merging the  stores  on  the  incoming edges.  The  success  store is  the  store
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representing the state of computations when the operation succeeds. It is usually created
by modifying the current store. The  failure store is the store representing the state of
computations when the operation fails.

In the presence of a suspended operation, the failure store is the store kept at the node for
that  operation.  A new failure  store  is  established  whenever  a  resumable  operation  is
encountered.  This  works  because  abstract  interpretation  is  performed  in  forward
execution order and resumption is LIFO. Control structures, such as if-then-else, with
branching and joining paths of execution, cause difficulties because there may be more
than one possible suspended operation when execution leaves the control structure. This
results in more than one failure store during abstract interpretation. Rather than keeping
multiple  failure  stores  when  such  a  control  structure  has  operations  that  suspend  on
multiple paths, type inferencing pretends that the control structure ends with an operation
that does nothing other than suspend and then fail. It allocates a store for this operation in
the node for the control structure. When later operations that fail are encountered, this
store is updated. The failure of this imaginary operation is the only failure seen by paths
created by the control structure and the information needed to update the failure stores for
these  paths  is  that  in  the  store for  this  imaginary operation.  This  works  because  the
imaginary operation just passes along failure without modifying the store.

In the case where a control structure transforms failure into forward execution, as in the
first subexpression of a compound expression, the failure store is allocated (with empty
types) when the control structure is  encountered and deallocated when it  is  no longer
needed. If no failure can occur, no failure store need be allocated. The lack of possible
failure  is  noted  while  the  location  of  back  edges  is  being  computed  during  the
initialization  of  type  inferencing.  Because  a  failure  store  may be  updated  at  several
operations that can fail, these are weak updates. Typically, a failure store is updated by
merging the current store into it.

The  interprocedural  flow  graph  described  earlier  in  this  chapter  has  edges  between
invocations and returns, suspends, and fails. Type inferencing does not maintain separate
stores for these theoretical edges. Instead it maintains three stores per procedure that are
mergers of stores on several edges.  One store is  the merger of all  stores entering the
procedure because of invocation; this store contains parameter types in addition to the
types of global and static variables. Another store is the merger of all stores entering the
procedure because of resumption. The third store is the merger of all stores leaving the
procedure because of returns, suspends, and fails. There is also a result type associated
with  the  procedure.  It  is  updated  when abstract  interpretation  encounters  returns  and
suspends.

Two  stores  are  associated  with  each  co-expression.  One  is  the  merger  of  all  stores
entering  the  co-expression  and  the  other  is  the  merger  of  all  stores  leaving  the  co-
expression. Execution can not only leave through an activation operator, it can also re-
enter through the activation. The store entering the activation is a merger of the stores
entering  all  co-expressions  in  which  the  activation  can  occur.  Because  a  procedure
containing an activation may be called from several co-expressions,  it  is  necessary to
keep  track  of  those  co-expressions.  A  set  of  co-expressions  is  associated  with  each
procedure  for  this  purpose.  Each  co-expression  also  contains  a  type  for  the  values
transmitted to it.  The result  type of an activation includes the result  types for all  co-
expressions that might be activated and the types of all values that can be transmitted to a
co-expression that the activation might be executed in.
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When  type  inferencing encounters  the  invocation  of  a  built-in  operation,  it  performs
abstract interpretation on the representation of the operation in the data base. It interprets
the  type-checking code to  see what  paths  might  be taken through the operation.  The
interpretation uses the abstract type computations and ignores the detailed C code when
determining the side effects and result type of the operation. Because the code at this level
of detail contains no loops, it is not necessary to save stores internal to operations. An
operation is re-interpreted at each invocation.  This allows type inferencing to produce
good results  for  polymorphous operations.  At  this  level,  the code for an operation is
simple enough that the cost of re-interpretation is not prohibitive. All side effects within
these operations are treated as weak updates; the only strong updates recognized by type
inferencing are the optimized assignments to named variables (see Chapter 6). 

The abstract semantics of control structures are hard-coded within the type inferencing
system. The system combines all the elements described in this chapter to perform the
abstract interpretation. A global flag is set any time an update changes type information
that is used in the next iteration of abstract interpretation. The flag is cleared between
iterations. If the flag is not set during an iteration, a fixed point has been reached and the
interpretation halts. 
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Chapter 20: Code Generation

This  chapter  describes  the  code generation  process.  The examples  of  generated  code
presented here are produced by the compiler, but some cosmetic changes have been made
to enhance readability.outer function for the procedure. This is the function that is seen as
implementing  the  procedure.  In  addition  to  the  outer  function,  there  may be  several
functions for success continuations that are used to implement generative expressions.

The outer function of a procedure must have features that support the semantics of an
Icon  call,  just  as  a  function  implementing  a  run-time  operation  does.  In  general,  a
procedure must have a procedure block at run time. This procedure block references the
outer function. All functions referenced through a procedure block must conform to the
compiler  system's  standard  calling  conventions.  However,  invocation  optimizations
usually eliminate the need for procedure variables and their associated procedure blocks.
When this happens, the calling conventions for the outer function can be tailored to the
needs of the procedure.

As explained in Chapter 2, the standard calling convention requires four parameters: the
number of arguments, a pointer to the beginning of an array of descriptors holding the
arguments, a pointer to a result location, and a success continuation to use for suspension.
The function itself is responsible for dereferencing and argument list  adjustment.  In a
tailored calling convention for an outer function of a procedure, any dereferencing and
argument list adjustment is done at the call site. This includes creating an Icon list for the
end of  a  variable-sized  argument  list.  The  compiler  produces  code to  do this  that  is
optimized  to  the  particular  call.  An  example  of  an  optimization  is  eliminating
dereferencing when type inferencing determines that an argument cannot be a variable
reference.

The number of arguments is never needed in these tailored calling conventions because
the number is fixed for the procedure. Arguments are still passed via a pointer to an array
of descriptors, but if there are no arguments, no pointer is needed. If the procedure returns
no value,  no result  location is  needed. If the procedure does not  suspend, no success
continuation is needed.

In addition to providing a calling interface for the rest of the program, the outer function
must  provide  local  variables  for  use  by the  code generated for  the  procedure.  These
variables,  along with  several  other  items,  are  located  in  a  procedure frame.  An Icon
procedure frame is implemented as a C structure embedded within the frame of its outer
C function (that is, as a local struct definition). Code within the outer function can access
the procedure frame directly. However, continuations must use a pointer to the frame. A
global  C variable,  pfp,  points  to  the frame of  the currently executing procedure.  For
efficiency, continuations load this pointer into a local register variable. The frame for a
main procedure might have the following declaration. 
   struct PF00_main {
      struct p_frame old_pfp;
      dptr old_argp;
      dptr rslt;
      continuation succ_cont;
      struct {
         struct tend_desc *previous;
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         int num;
         struct descrip d[5];
         } tend;
      };

with the definition 
   struct PF00_main frame;

in the procedure's outer function. A procedure frame always contains the following five
items: a pointer to the frame of the caller, a pointer to the argument list of the caller, a
pointer to the result location of this call, a pointer to the success continuation of this call,
and an  array of  tended descriptors  for  this  procedure.  It  may also  contain  C  integer
variables, C double variables, and string and cset buffers for use in converting values. If
debugging is enabled, additional information is stored in the frame. The structure p_frame
is a generic procedure frame containing a single tended descriptor. It is used to define the
pointer old_pfp because the caller can be any procedure.

The  argument  pointer,  result  location,  and  success  continuation  of  the  call  must  be
available to the success continuations of the procedure. A global C variable, argp, points
the argument list for the current call. This current argument list pointer could have been
put in the procedure frame, but it is desirable to have quick access to it. Quick access to
the result location and the success continuation of the call is less important, so they are
accessed indirectly through the procedure frame.

The array of descriptors is linked onto the chain used by the garbage collector to locate
tended descriptors. These descriptors are used for Icon variables local to the procedure
and for temporary variables that hold intermediate results. If the function is responsible
for dereferencing and argument  list  adjustment  (that  is,  if  it  does not have a tailored
calling  convention),  the  modified  argument  list  is  constructed  in  a  section  of  these
descriptors.

The final thing provided by the outer function is a  control environment in which code
generation starts. In particular, it provides the bounding environment for the body of the
procedure and the implicit failure at the end of the procedure. The following C function is
the tailored outer function for a procedure named p. The procedure has arguments and
returns a result. However, it does not suspend, so it needs no success continuation. 
   static int P01_p(args, rslt)
   dptr args;
   dptr rslt;
   {
      struct PF01_p frame;
      register int signal;
      int i;
      frame.old_pfp = pfp;
      pfp = (struct p_frame )&frame;
      frame.old_argp = argp;
      frame.rslt = rslt;
      frame.succ_cont = NULL;

      for (i = 0; i < 3; ++i)
         frame.tend.d[i].dword = D_Null;
      argp = args;
      frame.tend.num = 3;
      frame.tend.previous = tend;
      tend = (struct tend_desc )&frame.tend;
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      translation of the body of procedure p

   L10: /* bound */
   L4: /* proc fail */
      tend = frame.tend.previous;
      pfp = frame.old_pfp;
      argp = frame.old_argp;
      return A_Resume;
   L8: /* proc return */
      tend = frame.tend.previous;
      pfp = frame.old_pfp;
      argp = frame.old_argp;
      return A_Continue;
      }

The initialization code reflects the fact that this function has three tended descriptors to
use for local variables and intermediate results. L10 is both the bounding label and the
failure label for the body of the procedure. Code to handle procedure failure and return
(except for setting the result value) is at the end of the outer function. As with bounding
labels, the labels for these pieces of code have associated signals. If a procedure fail or
return occurs in a success continuation, the continuation returns the corresponding signal
which is propagated to the outer function where it is converted into a goto. The code for
procedure failure is located after the body of the procedure, automatically implementing
the implicit failure at the end of the procedure. 

20.1 Translating Icon Expressions
Icon's goal-directed evaluation makes the implementation of control flow an important
issue during code generation.  Code for  an expression  is  generated while  walking the
expression's  syntax  tree  in  forward  execution  order.  During  code  generation  there  is
always a  current failure action. This action is either ``branch to a label'' or ``return a
signal''. When the translation of a procedure starts, the failure action is to branch to the
bounding  label  of  the  procedure  body.  The  action  is  changed  when  generators  are
encountered or while control structures that use failure are being translated.

The allocation of temporary variables to intermediate results is discussed in more detail
later.  However,  some  aspects  of  it  will  be  addressed  before  presenting  examples  of
generated  code.  The result  location  of  a  subexpression  may be determined  when the
parent  operation  is  encountered  on  the  way down the  syntax  tree.  This  is  usually a
temporary variable, but does not have to be. If no location has been assigned by the time
the code generator needs to use it, a temporary variable is allocated for it. This temporary
variable is used in the code for the parent operation.

The code generation process is  illustrated below with examples  that  use a number of
control structures and operations. Code generation for other features of the language is
similar.

Consider the process of translating the following Icon expression: 
      return if a = (1 | 2) then "yes" else "no"

When this  expression  is  encountered,  there  is  some current  failure  action,  perhaps  a
branch to a bounding label. The return expression produces no value, so whether a result
location has been assigned to it is of no consequence. If the argument of a return fails, the
procedure fails. To handle this possibility, the current failure action is set to branch to the
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label for procedure failure before translating the argument (in this example, that action is
not used). The code for the argument is then generated with its result location set to the
result  location  of  the  procedure itself.  Finally the  result  location  is  dereferenced and
control is  transferred to the procedure return label.  The dereferencing function,  deref,
takes  two arguments:  a  pointer  to  a  source  descriptor  and a  pointer  to  a  destination
descriptor. 
      code for the if expression 
      deref(rslt, rslt);
      goto L7 /* proc return */;

The control clause of the if expression must be bounded. The code implementing the then
clause must be generated following the bounding label for the control clause. A label
must also be set up for the else clause with a branch to this label used as the failure action
for the control clause. Note that the result location of each branch is the result location of
the if expression which is in turn the result location of the procedure. Because neither
branch of the if expression contains operations that suspend, the two control paths can be
brought together with branch to a label. 
      code for control clause
   L4: /* bound */
      rslt->vword.sptr = "yes";
      rslt->dword = 3;
      goto L6 /* end if */;
   L5: /* else */
      rslt->vword.sptr = "no";
      rslt->dword = 2;
   L6: /* end if */

Using a branch and a label to bring together the two control paths of the if expression is
an  optimization.  If  the  then  or  the  else  clauses  contain  operations  that  suspend,  the
general  continuation  model  must  be  used.  In  this  model,  the  code  following  the  if
expression is put in a success continuation, which is then called at the end of both the
code for the then clause and the code for the else clause. 

Next  consider the translation of the control  clause.  The numeric  comparison operator
takes two operands. In this translation, the standard calling conventions are used for the
library routine implementing the operator. Therefore, the operands must be in an array of
descriptors.  This  array  is  allocated  as  a  sub-array  of  the  tended  descriptors  for  the
procedure. In this example, tended location 0 is occupied by the local variable, a. Tended
locations 1 and 2 are free to be allocated as the arguments to the comparison operator.
The code for the first operand simply builds a variable reference. 
   frame.tend.d[1].dword = D_Var;
   frame.tend.d[1].vword.descptr = &frame.tend.d[0] /* a */;

However, the second operand is alternation. This is a generator and requires a success
continuation.  In this  example,  the continuation is given the name P02_main (the Icon
expression is part of the main procedure). The continuation contains the invocation of the
run-time  function  implementing the comparison operator  and the end of  the bounded
expression  for  the control  clause of  the  if.  The function  O0o_numeq implements  the
comparison  operator.  The  if  expression  discards  the  operator's  result.  This  is
accomplished  by using  the  variable  trashcan  as  the  result  location  for  the  call.  The
compiler knows that this operation does not suspend, so it passes a null continuation to
the function. The end of the bounded expression consists of a transfer of control to the
bounding label. This is accomplished by returning a signal. The continuation is 
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   static int P02_main()
   {
   register struct PF00_main *rpfp;

   rpfp = (struct PF00_main *)pfp;
   switch (O0o_numeq(2, &(rpfp->tend.d[1]), &trashcan, 
(continuation)NULL))
      {
      case A_Continue:
         break;
      case A_Resume:
         return A_Resume;
      }
    return 4; /* bound */
    }

Each alternative of the alternation must compute the value of its subexpression and call
the success continuation. The failure action for the first alternative is to branch to the
second alternative. The failure action of the second alternative is the failure action of the
entire alternation expression. In this example, the failure action is to branch to the else
label of the if expression. In each alterative, a bounding signal from the continuation must
be converted into a branch to the bounding label. Note that this bounding signal indicates
that the control expression succeeded. 
   frame.tend.d[2].dword = D_Integer;
   frame.tend.d[2].vword.integr = 1;
   switch (P02_main()) {
      case A_Resume:
         goto L2 /* alt */;
      case 4 /* bound */:
         goto L4 /* bound */;
      }
   L2: /* alt */
      frame.tend.d[2].dword = D_Integer;
      frame.tend.d[2].vword.integr = 2;
      switch (P02_main()) {
         case A_Resume:
            goto L5 /* else */;
         case 4 /* bound */:
            goto L4 /* bound */;
         }

The code for the entire return expression is obtained by putting together all the pieces.
The result is the following code (the code for P02_main is not repeated). 
   frame.tend.d[1].dword = D_Var;
   frame.tend.d[1].vword.descptr = &frame.tend.d[0] /* a */;
   frame.tend.d[2].dword = D_Integer;
   frame.tend.d[2].vword.integr = 1;
   switch (P02_main()) {
      case A_Resume:
         goto L2 /* alt */;
      case 4 /* bound */:
         goto L4 /* bound */;
      }
   L2: /* alt */
      frame.tend.d[2].dword = D_Integer;
      frame.tend.d[2].vword.integr = 2;
      switch (P02_main()) {
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         case A_Resume:
            goto L5 /* else */;
         case 4 /* bound */:
            goto L4 /* bound */;
         }
   L4: /* bound */
      rslt->vword.sptr = yes;
      rslt->dword = 3;
      goto L6 /* end if */;

   L5: /* else */
      rslt->vword.sptr = no;
      rslt->dword = 2;
   L6: /* end if */
      deref(rslt, rslt);
      goto L7 /* proc return */;

20.2 Signal Handling
In order to produce signal handling code, the code generator must know what signals may
be returned from a call. These signals may be either directly produced by the operation (or
procedure) being called or they may originate from a success continuation.  Note that
either the operation or the continuation may be missing from a call, but not both. The
signals produced directly by an operation are A_Resume, A_Continue, and A_FallThru
(this last signal is only used internally within in-line code).

The  signals  produced  by  a  success  continuation  belong  to  one  of  three  categories:
A_Resume, signals corresponding to labels within the procedure the continuation belongs
to, and signals corresponding to labels in procedures farther down in the call chain. The
last category only occurs when the procedure suspends. The success continuation for the
procedure  call  may  return  a  signal  belonging  to  the  calling  procedure.  This  is
demonstrated in the following example (the generated code has been ``cleaned-up'' a little
to make it easier to follow). The Icon program being translated is 
   procedure main()
      write(p())
   end
   procedure p()
      suspend 1 to 10
   end

The generative procedure p is called in a bounded context. The code generated for the call
is 
   switch (P01_p(&frame.tend.d[0], P05_main)) {
      case 7 /* bound */:
         goto L7 /* bound */;
      case A_Resume:
         goto L7 /* bound */;
      }
   L7: /* bound */

This call uses the following success continuation. The continuation writes the result of
the call to p then signals the end of the bounded expression. 
   static int P05_main() {
      register struct PF00_main *rpfp;

      rpfp = (struct PF00_main )pfp;
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      F0c_write(1, &rpfp->tend.d[0], &trashcan, 
(continuation)NULL);
      return 7; /* bound */
   }

The to operator in procedure p needs a success continuation that implements procedure
suspension. Suspension is implemented by switching to the old procedure frame pointer
and old argument  pointer,  then calling the success continuation for the call  to p. The
success continuation is accessed with the expression rpfp->succ_cont. In this example,
the continuation will only be the function P05_main. The suspend must check the signal
returned by the procedure call's success continuation. However, the code generator does
not try to determine exactly what signals might be returned by a continuation belonging to
another  procedure.  Such  a  continuation  may return  an  A_Resume  signal  or  a  signal
belonging to some procedure farther down in the call chain. In this example, bounding
signal 7 will be returned and it belongs to main.

If the call's  success continuation  returns  A_Resume,  the procedure frame pointer  and
argument pointer must be restored, and the current failure action must be executed. In this
case, that action is to return an A_Resume signal to the to operator. If the call's success
continuation returns any other signal, that signal must be propagated back through the
procedure call. The following function is the success continuation for the to operator. 
   static int P03_p()
   {
   register int signal;
   register struct PF01_p *rpfp;

   rpfp = (struct PF01_p *)pfp;
   deref(rpfp->rslt, rpfp->rslt);
   pfp = rpfp->old_pfp;
   argp = rpfp->old_argp;

   signal = (*rpfp->succ_cont)();
   if (signal != A_Resume) {
      return signal;
      }
   pfp = (struct p_frame *)rpfp;
   argp = NULL;
   return A_Resume;
   }

The following code implements  the call  to  the to  operator.  The signal handling code
associated with the call  must  pass along any signal from the procedure call's  success
continuation. These signals are recognized by the fact that the procedure frame for the
calling  procedure  is  still  in  effect.  At  this  point,  the  signal  is  propagated  out  of  the
procedure p. Because the procedure frame is about to be removed from the C stack, the
descriptors it contains must be removed from the tended list. 
   frame.tend.d[0].dword = D_Integer;
   frame.tend.d[0].vword.integr = 1;
   frame.tend.d[1].dword = D_Integer;
   frame.tend.d[1].vword.integr = 10;
   signal = O0k_to(2, &frame.tend.d[0], rslt, P03_p);
   if (pfp != (struct p_frame )&frame) {
      tend = frame.tend.previous;
      return signal;
      }
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   switch (signal) {
      case A_Resume:
         goto L2 /* bound */;
      }
   L2: /* bound */

So  far,  this  discussion  has  not  addressed  the  question  of  how  the  code  generator
determines  what  signals  might  be returned from a call.  Because code is  generated in
execution order, a call involving a success continuation is generated before the code in
the continuation is generated. This makes it difficult to know what signals might originate
from  the  success  continuation.  This  problem  exists  for  direct  calls  to  a  success
continuation and for calls to an operation that uses a success continuation.

The problem is solved by doing code generation in two parts. The first part produces
incomplete  signal  handling  code.  At  this  time,  code  to  handle  the  signals  produced
directly by an operation is generated. The second part of code generation is a fix-up pass
that completes the signal handling code by determining what signals might be produced
by success continuations.

The code generator constructs a call graph of the continuations for a procedure. Some of
these calls are indirect calls to a continuation through an operation. However, the only
effect of an operation on signals returned by a continuation is to intercept A_Resume
signals. All other signals are just passed along. This is true even if the operation is a
procedure. This call graph of continuations does not contain the procedure call graph nor
does it contain continuations from other procedures.

Forward execution order imposes a partial order on continuations. A continuation only
calls continuations strictly greater in forward execution order than itself. Therefore the
continuation call graph is a DAG. 

The fix-up pass is done with a bottom-up walk of the continuation call DAG. This pass
determines what signals are returned by each continuation in the DAG. While processing
a continuation, the fix-up pass examines each continuation call in that continuation. At
the point it  processes a call,  it  has determined what signals might be returned by the
called  continuation.  It  uses  this  information  to  complete  the  signal  handling  code
associated  with  the  call  and  to  determine  what  signals  might  be  passed  along  to
continuations higher up the DAG. If a continuation contains code for a suspend, the fix-
up pass  notes  that  the continuation  may return a  foreign signal  belonging to  another
procedure call.  As explained  above,  foreign  signals  are  handled  by special  code  that
checks the procedure frame pointer. 

20.3 Temporary Variable Allocation
The  code  generator  uses  the  liveness  information  for  an  intermediate  value  when
allocating  a  temporary  variable  to  hold  the  value.  As  explained  in  Chapter  4,  this
information consists of the furthest program point, represented as a node in the syntax
tree, through which the intermediate value must be retained. When a temporary variable
is allocated to a value, that variable is placed on a  deallocation list associated with the
node beyond which its value is not needed. When the code generator passes a node, all
the temporary variables on the node's deallocation list are deallocated.

The code generator maintains a status array for temporary variables while it is processing
a  procedure.  The  array  contains  one  element  per  temporary  variable.  This  array  is
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expandable, allowing a procedure to use an arbitrary number of temporary variables. In a
simple allocation scheme, the status of a temporary variable is either free or in-use. The
entry for  a  temporary variable  is  initially marked free,  it  is  marked in-use  when the
variable is allocated, and it is marked free again when the variable is deallocated.

The simple scheme works well when temporary variables are allocated independently. It
does not work well when arrays of contiguous temporary variables are allocated. This
occurs when temporary variables are allocated to the arguments of a procedure invocation
or  any  invocation  conforming  to  the  standard  calling  conventions;  under  these
circumstances,  the  argument  list  is  implemented  as  an  array.  All  of  the  contiguous
temporary variables  must  be reserved before the first  one is  used,  even though many
operations may be performed before the last one is needed. Rather than mark a temporary
variable  in-use  before  it  actually  is,  the  compiler  uses  the  program point  where  the
temporary variable will be used to mark the temporary variable's entry in the status array
as reserved. A contiguous array of temporary variables are marked reserved at the same
time, with each having a different reservation point. A reserved temporary variable may
be allocated  to  other  intermediate  values  as  long as  it  will  be deallocated  before the
reservation point. In this scheme, an entry in a deallocation list must include the previous
status of the temporary variable as it might be a reserved status.

The compiler allocates a contiguous subarray of temporary variables for the arguments of
an invocation when it encounters the invocation on the way down the syntax tree during
its tree walk. It uses a first-fit algorithm to find a large enough subarray that does not have
a conflicting allocation. Consider the problem of allocating temporary variables to the
expression 
   f1(f2(f3(x, f4())), y)

where f1 can fail  and f4 is  a generator.  The syntax tree for this  expression is  shown
below. Note that invocation nodes show the operation as part of the node label and not as
the first operand to general invocation. This reflects the direct invocation optimization
that is usually performed on invocations. Each node in the graph is given a numeric label.
These labels increase in value in forward execution order.

 

The following figure shows the operations in forward execution order with lines on the
left side of the diagram showing the lifetime of intermediate values. This represents the
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output of the liveness analysis phase of the compiler. Because f4 can be resumed by f1,
the value of the expression x has a lifetime that extends to the invocation of f1. The
extended portion of the lifetime is indicated with a dotted line.

  

The following series of diagrams illustrate the process of allocating intermediate values.
Each diagram includes an annotated syntax tree and a status array for temporary variables.
An arrow in the tree shows the current location of the tree walk. A deallocation list is
located near the upper right of each node. An element in the list consists of a temporary
variable number and the status with which to restore the variable's entry in the status
array. If a temporary variable has been allocated to an intermediate value, the variable's
number appears near the lower right of the corresponding node.

The status array is shown with four elements. The elements are initialized to  F which
indicates that the temporary variables are free. A reserved temporary variable is indicated
by placing the node number of the reservation point in the corresponding element. When
a temporary variable is actually in use, the corresponding element is set to I. 

Temporary variables are reserved while walking down the syntax tree. The tree illustrated
below  on  the  left  shows  the  state  of  allocation  after  temporary variables  have  been
allocated for the operands of f1. Two contiguous variables are needed. All variables are
free, so the first-fit algorithm allocates variables 0 and 1. The status array is updated to
indicate that these variables are reserved for nodes 4 and 5 respectively, and the nodes are
annotated with these variable numbers. The lifetime information in the previous figure
indicates  that  these  variables  should  be  deallocated  after  f1  is  executed,  so  the
deallocation array for node 6 is updated.

The  next  step  is  the  allocation  of  a  temporary  variable  to  the  operand  of  f2.  The
intermediate value has a lifetime extending from node 3 to node 4. This conflicts with the
allocation  of variable  0,  but  not  the allocation  of variable  1.  Therefore,  variable  1 is
allocated to node 3 and the deallocation list for node 4 is updated. This is illustrated in the
tree on the right: 
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The final allocation requires a contiguous pair of variables for nodes 1 and 2. The value
from node  1 has a lifetime that  extends to node  6,  and the value from node  2 has a
lifetime that extends to node 3. The current allocations for variables 0 and 1 conflict with
the lifetime of the intermediate value of node 1, so the variables 2 and 3 are used in this
allocation. This is illustrated in the tree:

 

The remaining actions of the allocator in this example mark temporary variables in-use
when  the  code  generator  uses  them  and  restore  previous  allocated  statuses  when
temporary  variables  are  deallocated.  This  is  done  in  the  six  steps  illustrated  in  the
following diagram. The annotations on the graph do not change. Only the node of interest
is shown for each step. These steps are performed in node-number order.
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In general, the tree walk will alternate up and down the syntax tree. For example, if node
5 had children, the allocation status after the deallocation associated with node 4,

 

is used to allocate temporary variables to those children. If this requires more than four
temporary variables, the status array is extended with elements initialized to F.

This allocation algorithm is not guaranteed to produce an allocation that uses a minimal
number of temporary variables. Indeed, a smaller allocation for the previous example is
illustrated in the tree:

 

While the non-optimality of this algorithm is unlikely to have a measurable effect on the
performance  of  any  practical  program,  the  problem  of  finding  an  efficient  optimal
solution is of theoretical interest. Classical results in the area of register allocation do not
apply. It is possible to allocate a minimum number of registers from expression trees for
conventional languages in polynomial time [.dragon.]. The algorithm to do this depends
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on the fact that registers (temporary variables) are dead as soon as the value they contain
is used. This is not true for Icon temporary variables.

The result of Prabhala and Sethi stating that register allocation is NP-complete even in the
presence of an infinite supply of registers also does not apply [.prabhala subexp.]. Their
complexity result derives from performing register allocation in the presence of common
subexpression  elimination  (that  is,  from performing  register  allocation  on  expression
DAGS rather than trees) on a 2-address-instruction machine with optimality measured as
the minimum number of instructions needed to implement the program. Goal-directed
evaluation imposes more structure on lifetimes than common subexpression elimination,
the machine model used here is the C language, and optimality is being measure as the
minimum number of temporary variables needed.

The Icon temporary variable  allocation  problem is  different  from the Prolog variable
allocation  problem.  Prolog uses  explicit  variables  whose  lifetimes  can  have  arbitrary
overlaps even in the absence of goal-directed evaluation. The Prolog allocation problem
is  equivalent  to  the  classical  graph coloring  problem which  is  NP-complete  [.debray
apr91, dragon.].

If the allocation of a subarray of temporary variables  is  delayed until  the first  one is
actually needed in the generated code, an optimum allocation results for the preceding
example. It is not obvious whether this is true for the general case of expression trees
employing goal-directed evaluation. This problem is left for future work.

In addition to holding intermediate values, temporary variables are used as local tended
variables  within  in-line  code.  This  affects  the  pattern  of  allocations,  but  not  the
underlying allocation technique.
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Chapter 21: Control Flow Optimizations

21.1 Naive Code Generation
Naive  code  generation  does  not  consider  the  effects  and  needs  of  the  immediately
surrounding  program.  The  result  is  often  a  poor  use  of  the  target  language.  Even
sophisticated code generation schemes that consider the effects of relatively large pieces
of  the  program  still  produce  poor  code  at  the  boundaries  between  the  pieces.  This
problem is typically solved by adding a peephole optimizer to the compiler to improve the
generated code [.peep1,Wulf,Tanenbaum peephole,dragon.]. A peephole optimizer looks
at several instructions that are adjacent (in terms of execution) and tries to replace the
instructions  by  better,  usually  fewer,  instructions.  It  typically  analyzes  a  variety  of
properties of the instructions such as addressing modes and control flow.

The  Icon compiler  has  a  peephole  optimizer  that  works  on  the  internal  form of  the
generated C code and deals only with control flow. The previous examples of generated
code contain a number of instances of code where control flow can be handled much
better.  For  example,  it  is  possible  to  entirely eliminate  the  following  code  fragment
generated for the example explaining procedure suspension. 
   switch (signal) {
      case A_Resume:
         goto L2 /* bound */;
      }
    L2: /* bound */

This code is produced because the code generator does not take into account the fact that
the bounding label happens to immediately follow the test. 

21.2 Success Continuations
For the C code in the preceding example, it is quite possible that a C compiler would
produce machine code that its own peephole optimizer could eliminate. However, it is
unlikely that a C compiler would optimize naively generated success continuations. An
earlier example of code generation produced the continuation: 
   static int P02_main()
   {
   register struct PF00_main *rpfp;

   rpfp = (struct PF00_main *)pfp;
   switch (O0o_numeq(2, &(rpfp->tend.d[1]), &trashcan, 
(continuation)NULL)) {
      case A_Continue:
         break;
      case A_Resume:
         return A_Resume;
      }
   return 4; /* bound */
   }

If the statement 
   return 4; /* bound */
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is brought into the switch statement, replacing the break, then P02_main consists of a
simple operation call  (a C call  with associated associated signal handling code).  This
operation call is 
   switch (O0o_numeq(2, &(rpfp->tend.d[1]), &trashcan, 
(continuation)NULL)) {
      case A_Continue:
         return 4; /* bound */
      case A_Resume:
         return A_Resume;
      }

P02_main is called directly in two places in the following code. 
   frame.tend.d[2].dword = D_Integer;
   frame.tend.d[2].vword.integr = 1;
   switch (P02_main()) {
      case A_Resume:
         goto L2 /* alt */;
      case 4 /* bound */:
         goto L4 /* bound */;
      }
   L2: /* alt */
      frame.tend.d[2].dword = D_Integer;
      frame.tend.d[2].vword.integr = 2;
      switch (P02_main()) {
         case A_Resume:
            goto L5 /* else */;
         case 4 /* bound */:
            goto L4 /* bound */;
         }
   L4: /* bound */

A direct call to a trivial function can reasonably be replaced by the body of that function.
When this is done for a continuation, it is necessary to compose the signal handling code
of the body of a continuation with that of the call. This is accomplished by replacing each
return  statement  in  the  body with  the  action  in  the  call  corresponding  to  the  signal
returned. The following table illustrates the signal handling composition for the first call
in the code. The resulting code checks the signal from O0o_numeq and performs the final
action. 

signal from O0o_numeq signal from P02_main final action 

A_Continue
A_Resume 

4
A_Resume 

goto L4;
goto L2; 

The result of in-lining P02_main is 
   frame.tend.d[2].dword = D_Integer;
   frame.tend.d[2].vword.integr = 1;
   switch (O0o_numeq(2, &frame.tend.d[1], &trashcan, 
(continuation)NULL)) {
      case A_Continue:
         goto L4 /* bound */;
      case A_Resume:
         goto L2 /* alt */;
     }
   L2: /* alt */
      frame.tend.d[2].dword = D_Integer;
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      frame.tend.d[2].vword.integr = 2;
      switch (O0o_numeq(2, &frame.tend.d[1], &trashcan,
                        (continuation)NULL)) {
         case A_Continue:
            goto L4 /* bound */;
         case A_Resume:
            goto L5 /* else */;
      }
   L4: /* bound */

With a little more manipulation, the switch statements can be converted into if statements
and the label L2 can be eliminated: 
   frame.tend.d[2].dword = D_Integer;
   frame.tend.d[2].vword.integr = 1;
   if (O0o_numeq(2, &frame.tend.d[1], &trashcan,
                (continuation)NULL) == A_Continue)
      goto L4 /* bound */;
   frame.tend.d[2].dword = D_Integer;
   frame.tend.d[2].vword.integr = 2;
   if (O0o_numeq(2, &frame.tend.d[1], &trashcan,
                (continuation)NULL) == A_Resume)
      goto L5 /* else */;
   L4: /* bound */

The Icon compiler's peephole optimizer recognizes two kinds of trivial continuations. The
kind illustrated in the previous example consists of a single call with associated signal
handling. The other kind simply consists of a single return-signal statement. As in the
above example, continuations do not usually meet this definition of triviality until control
flow optimizations are performed on them. For this reason, the Icon compiler's peephole
optimizer  must  perform  some  optimizations  that  could  otherwise  be  left  to  the  C
compiler. 

21.3 Iconc's Peephole Optimizer
The peephole optimizer performs the following optimizations: 

• elimination of unreachable code 

• elimination of gotos immediately preceding their destinations 

• collapse of branch chains 

• deletion of unused labels 

• collapse of trivial call chains (that is, in-lining trivial continuations) 

• deletion of unused continuations 

• simplification of signal checking 

Unreachable code follows a goto or a return, and it continues to the first referenced label
or to the end of the function. This optimization may eliminate code that returns signals,
thereby reducing the number of signals that must be handled by a continuation call. This
provides another reason for performing this traditional optimization in the Icon compiler
rather than letting the C compiler do it. This code is eliminated when the fix-up pass for
signal  handling is  being performed.  gotos immediately preceding their  labels  also are
eliminated at this time.
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Unused labels  usually are  eliminated  when the  code is  written  out,  but  they may be
deleted as part of a segment of unreachable code. Unused continuations are simply not
written out.

A branch chain is formed when the destination of a goto is another goto or a return. A
break in a switch statement is treated as a goto. There may be several gotos in a chain.
Each goto is replaced by the goto or return at the end of the chain. This may leave some
labels unreferenced and may leave some of the intermediate gotos unreachable. Branch
chains are collapsed during the fix-up pass.

Inter-function optimization is not traditionally considered a peephole optimization. This
is because human beings seldom write trivial functions and most code generators do not
produce continuations. The Icon compiler, however, uses calls to success continuations as
freely  as  it  uses  gotos.  Therefore  collapsing  trivial  call  chains  is  as  important  as
collapsing branch chains.

There are two kinds of calls to trivial continuations: direct calls and indirect calls through
an operation. A direct call always can be replaced by the body of the continuation using
signal handling code that is a composition of that in the continuation and that of the call.
If the continuation consists of just a return statement, this means that the call is replaced
by the action associated with the returned signal: either another return statement or a goto
statement. For continuations consisting of a call, the composition is more complicated, as
demonstrated by the example given earlier in this chapter.

In the case of an indirect call through an operation, the continuation cannot be placed in
line. However, there is an optimization that can be applied. Under some circumstances,
the compiler produces a continuation that simply calls another continuation. For example,
this occurs when compiling the Icon expression 
   every write(!x | end)

The compiler allocates a continuation for the alternation, then compiles the expression !x.
The element generation operator suspends, so the compiler allocates a continuation for it
and  code  generation  proceeds  in  this  continuation.  However,  the  end  of  the  first
alternative  has  been  reached  so  the  only code  for  this  continuation  is  a  call  to  the
continuation for the alternation. The continuation for the alternation contains the code for
the invocation of write and for the end of the every control structure. The code for the
first alternative is 
   frame.tend.d[2].dword = D_Var;
   frame.tend.d[2].vword.descptr = &frame.tend.d[0] /* x */;

   switch (O0e_bang(1, &frame.tend.d[2], &frame.tend.d[1], 
P02_main)) {
      case A_Resume:
         goto L1 /* alt */;
      }
    L1: /* alt */

The code for the two continuations are 
   static int P02_main()
   {
      switch (P03_main()) {
         case A_Resume:
            return A_Resume;
         }
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      }

   static int P03_main()
   {
   register struct PF00_main *rpfp;

   rpfp = (struct PF00_main *)pfp;
   F0c_write(1, &rpfp->tend.d[1], &trashcan, (continuation)NULL);
   return A_Resume;
   }

The call to O0e_bang can be optimized by passing the continuation P03_main in place of
P02_main.

The optimizations that collapse trivial call chains are performed during the fix-up pass for
signal handling.

The final peephole optimization involves simplifying the signal handling code associated
with a call.  In general,  signals are handled with a switch statement  containing a case
clause for each signal. The C compiler does not know that these signals are the only
values that are ever tested by the switch statement, nor is the C compiler likely to notice
that some cases simply pass along to the next function down in the call chain the signal
that  was received.  The Icon compiler  can use this  information  to  optimize  the signal
handling beyond the level to which the C compiler is able to optimize it. The optimizer
may replace the general form of the switch statement with a switch statement utilizing a
default clause or with an if statement. In some cases, the optimizer completely eliminates
signal checking. This optimization is done when the code is written.



259

Chapter 22: Optimizing Invocations

Several optimizations apply to the invocation of procedures and built-in operations. These
include optimizations resulting from the application of information from type inferencing,
optimizations resulting from the application of lifetime information to passing parameters
and returning results, and optimizations involving the generation of in-line code. There
are interactions between the optimizations in these three categories.

A primary motivation in developing the Icon compiler was to explore the optimizations
that are possible using information from type inferencing. These optimizations involve
eliminating type checking and type conversions where type inferencing indicates that they
are  not  needed.  Dereferencing is  not  normally viewed as  a  type  conversion,  because
variable references are not first-class values in Icon. However, variable references occur
as  intermediate  values  and do appear  in  the  type  system used by the  Icon compiler.
Therefore, from the perspective of the compiler, dereferencing is a type conversion.

When a procedure or built-in operation is implemented as a C function conforming to the
standard  calling  conventions  of  the  compiler  system,  that  function  is  responsible  for
performing any type checking and type conversions needed by the procedure or operation.
For  this  reason,  the  checking  and  conversions  can  only be  eliminated  from  tailored
implementations. 

22.1 Invocation of Procedures
As  explained  earlier,  a  procedure  has  one  implementation:  either  a  standard
implementation  or  a  tailored  implementation.  If  the  compiler  decides  to  produce  a
tailored  implementation,  the  caller  of  the  procedure  is  responsible  for  dereferencing.
When  type  inferencing  determines  that  an  operand  is  not  a  variable  reference,  no
dereferencing code is generated. Suppose p is a procedure that takes one argument and
always  fails.  If  P01_p  is  the  tailored  C  function  implementing  p,  then  it  takes  one
argument: a pointer to a descriptor containing the dereferenced Icon argument. Without
using type information, the call p(3) translates into 
   frame.tend.d[0].dword = D_Integer;
   frame.tend.d[0].vword.integr = 3;
   deref(&frame.tend.d[0], &frame.tend.d[0]);
   P01_p(&frame.tend.d[0]);

With the use of type information, the call to deref is eliminated: 
   frame.tend.d[0].dword = D_Integer;
   frame.tend.d[0].vword.integr = 3;
   P01_p(&frame.tend.d[0]);

22.2 Invocation and In-lining of Built-in Operations
Icon's  built-in  operations  present  more  opportunities  for  these  optimizations  than
procedures,  because  they  can  contain  type  checking  and  conversions  beyond
dereferencing.  Built-in  operations  are  treated  differently  than  procedures.  Except  for
keywords,  there  is  always  a  C  function  in  the  run-time  library that  implements  the
operation  using the standard calling conventions.  In addition,  the compiler  can create
several tailored in-line versions of an operation from the information in the data base.
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It is important to keep in mind that there are two levels of in-lining. An in-line version of
an  operation  always  involves  the  type  checking  and  conversions  of  the  operation
(although they may be optimized away during the tailoring process). However, detailed
code is  placed in-line  only if  it  is  specified with  an inline  statement  in  the  run-time
system. If the detailed code is specified with a body statement, the ``in-line'' code is a
function call to a routine in the run-time library. The difference can be seen by comparing
the code produced by compiling the expression ~x to that produced by compiling the
expression  /x.  The  definition  in  the  run-time  implementation  language  of  cset
complement is 
   operator{1} ~ compl(x)
      if !cnv:tmp_cset(x) then
         runerr(104, x)
      abstract { return cset }
      body {
      ...
      }
    end

The conversion to tmp_cset is a conversion to a cset that does not use space in the block
region. Instead the cset is constructed in a temporary local buffer. The data base entry for
the  operation  indicates  that  the  argument  must  be  dereferenced.  The  entry  has  a  C
translation of the type conversion code with a call to the support routine, cnv_tcset, to do
the actual conversion. cnv_tcset takes three arguments: a buffer, a source descriptor, and
a destination descriptor. The entry in the data base has a call to the function O160_compl
in place of the body statement. This function takes as arguments the argument and the
result location of the operation. The code generator ignores the abstract clause. The in-
line code for ~x is 
      frame.tend.d[3].dword = D_Var;
      frame.tend.d[3].vword.descptr = &frame.tend.d[0] /* x */;
      deref(&frame.tend.d[3], &frame.tend.d[3]);
      if (cnv_tcset(&(frame.cbuf[0]), &(frame.tend.d[3]), 
&(frame.tend.d[3])))
         goto L1 /* then: compl */;
      err_msg(104, &(frame.tend.d[3]));
   L1: /* then: compl */
      O160_compl(&(frame.tend.d[3]) , &frame.tend.d[2]);

The following is  the definition of the `/'  operator.  Note that  both undereferenced and
dereferenced versions of the argument are used. 
operator{0,1} / null(underef x -> dx)
   abstract {
      return type(x)
      }
   if is:null(dx) then
      inline {
         return x;
         }
   else inline {
      fail;
      }
end

In this operation, all detailed code is specified with inline statements. The generated code
for /x follows. Note that the order of the then and else clauses is reversed to simplify the
test. L3 is the failure label of the expression. The return is implemented as an assignment
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to the result location, frame.tend.d[2], with execution falling off the end of the in-line
code. 
      frame.tend.d[3].dword = D_Var;
      frame.tend.d[3].vword.descptr = &frame.tend.d[0] /* x */;
      deref(&frame.tend.d[3], &frame.tend.d[4]);
      if (frame.tend.d[4].dword == D_Null)
         goto L2 /* then: null */;
      goto L3 /* bound */;
   L2: /* then: null */
      frame.tend.d[2] = frame.tend.d[3];

If type inferencing determines a unique type for x in each of these expressions, the type
checking is eliminated from the code. Suppose type inferencing determines that x can
only be of type cset in the expression 

   a := ~x

If  parameter  passing  and  assignment  optimizations  (these  are  explained  below)  are
combined with the elimination of type checking, the resulting code is 
   O160_compl(&(frame.tend.d[0] /* x */), &frame.tend.d[1] /* a 
*/);

The form of this translated code meets the goals of the compiler design for the invocation
of a complicated operation: a simple call to a type-specific C function with minimum
parameter  passing.  The implementation language for run-time operations  requires that
type conversions be specified in the control clause of an if statement.  However, some
conversions, such as converting a string to a cset, are guaranteed to succeed. If the code
generator recognizes one of these conversions, it  eliminates the if statement. The only
code  generated  is  the  conversion  and  the  code  to  be  executed  when  the  conversion
succeeds. Suppose type inferencing determines that x in the preceding example can only
be a string. Then the generated code for the example is 
   frame.tend.d[2] = frame.tend.d[0] /* x */;
   cnv_tcset(&(frame.cbuf[0]), &(frame.tend.d[2]), 
&(frame.tend.d[2]));
   O160_compl(&(frame.tend.d[2]) , &frame.tend.d[1] / a /);

22.3 Heuristic for Deciding to In-line
The  in-line  code  for  the  operators  shown  so  far  in  the  section  is  relatively  small.
However,  the  untailored  in-line  code  for  operations  like  the  element  generation
operator, !, is large. If tailoring the code does not produce a large reduction in size, it is
better to generate a call to the C function in the run-time library that uses the standard
calling conventions. A heuristic is needed for deciding when to use in-line code and when
to call the standard C function.

A simple heuristic is to use in-line code only when all type checking and conversions can
be eliminated. However, this precludes the generation of in-lining code in some important
situations. The operator / is used to direct control flow. It should always be used with an
operand whose type can vary at run time, and the generated code should always be in-
lined. Consider the Icon expression 
   if /x then x := 

The compiler applies parameter-passing optimizations to the sub-expression /x.  It also
eliminates  the  return  value  of  the  operator,  because  the  value  is  discarded.  An
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implementation convention for operations allows the compiler to discard the expression
that computes the return value. The convention requires that a return expression of an
operation not contain user-visible side effects (storage allocation is an exception to the
rule; it is visible, but the language makes no guarantees as to when it will occur). The
code for /x is reduced to a simple type check. The code generated for the if expression is 
      if ((frame.tend.d[0] /* x */).dword == D_Null)
         goto L2 /* bound */;
      goto L3 /* bound */;
   L2: /* bound */
      frame.tend.d[0] /* x */.vword.sptr = ;
      frame.tend.d[0] /* x */.dword = 0;
   L3: /* bound */

To accommodate expressions like those in the preceding example, the heuristic used in
the compiler is to produce tailored in-line code when that code contains no more than one
type check. Only conversions retaining their if statements are counted as a type checks.
This simple heuristic produces reasonable code. Future work includes examining more
sophisticated heuristics. 

22.4 In-lining Success Continuations
Suspension  in  in-line  code  provides  further  opportunity for  optimization.  In  general,
suspension is implemented as a call to a success continuation. However, if there is only
one call to the continuation, it is better not to put the code in a continuation. The code
should be generated at the site of the suspension. Consider the expression 
   every p(1 to 10)

The implementation of the to operator is 
   operator{} ... to(from, to)
      /*
       * arguments must be integers.
       */
      if !cnv:C_integer(from) then
         runerr(101, from)
      if !cnv:C_integer(to) then
         runerr(101, to)
      abstract {
         return integer
         }
      inline {
         for ( ; from <= to; ++from) {
            suspend C_integer from;
            }
         fail;
         }
   end

The arguments are known to be integers, so the tailored version consists of just the code
in the inline statement. The for statement is converted to gotos and conditional gotos, so
the control flow optimizer can handle it (this conversion is done by rtt before putting the
code in the data base). The suspend is translated into code to set the result value and a
failure  label  used  for  the  code  of  the  rest  of  the  bounded  expression.  This  code  is
generated  before  the  label  and  consists  of  a  call  to  the  procedure  p  and  the  failure
introduced by the every expression. The generated code follows. The failure for the every
expression is  translated into goto L4, where L4 is  the failure label  introduced by the
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suspend.  The  control  flow optimizer  removes  both  the  goto  and the  label.  They are
retained here to elucidate the code generation process. 
      frame.tend.d[1].dword = D_Integer;
      frame.tend.d[1].vword.integr = 1;
      frame.tend.d[2].dword = D_Integer;
      frame.tend.d[2].vword.integr = 10;

   L1: /* within: to */
      if (!(frame.tend.d[1].vword.integr <= 
frame.tend.d[2].vword.integr) )
         goto L2 /* bound */;
      frame.tend.d[0].vword.integr = 
frame.tend.d[1].vword.integr;
      frame.tend.d[0].dword = D_Integer;
      P01_p(&frame.tend.d[0]);
      goto L4 /* end suspend: to */;
   L4: /* end suspend: to */
      ++frame.tend.d[1].vword.integr;
      goto L1 /* within: to */;
   L2: /* bound */

This is an example of a generator within an every expression being converted into an in-
line loop. Except for the fact that descriptors are being used instead of C integers, this is
nearly as good as the C code 
   for (i = 1; i <= 10; ++i)
      p(i);

22.5 Parameter Passing Optimizations
As mentioned above, parameter-passing optimizations are used to improved the generated
code.  These  optimizations  involve  eliminating  unneeded  argument  computations  and
eliminating unnecessary copying. These optimizations are applied to tailored in-line code.
They must take into account how a parameter is used and whether the corresponding
argument value has an extended lifetime. 

In some situations, a parameter is not used in the tailored code. There are two common
circumstances in which this happens. One is for the first operand of conjunction.  The
other occurs with a polymorphous operation that has a type-specific optional parameter. If
a  different  type is  being operated on,  the optional  parameter  is  not  referenced in  the
tailored code. If a tailored operation has an unreferenced parameter and the invocation has
a corresponding argument  expression,  the compiler  notes that  the expression result  is
discarded.  Earlier  in  this  chapter  there  are  examples  of  optimizations  possible  when
expression results are discarded. If the corresponding argument is missing, the compiler
refrains from supplying a null value for it. Consider the invocation 
   insert(x, 3)

insert takes three arguments. If x is a table, the third argument is used as the entry value
and must be supplied in the generated code. In the following generated code, the default
value for the third argument is computed into frame.tend.d[2].dword: 
   frame.tend.d[1].dword = D_Integer;
   frame.tend.d[1].vword.integr = 3;
   frame.tend.d[2].dword = D_Null;
   frame.tend.d[3] = frame.tend.d[0] /* x */;
   F1o0_insert(&(frame.tend.d[2]), &(frame.tend.d[1]), 
&(frame.tend.d[3]),
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      &trashcan);

Because  F1o0_insert  uses  a  tailored  calling  convention,  its  arguments  can  be  in  a
different order from those of the Icon function. It appears that the argument expression x
is computed in the wrong place in the execution order. However, this  is not true; the
expression is not computed at all.  If it  were, the result would be a variable reference.
Instead, the assignment of the value in x to the temporary variable is a form of optimized
dereferencing. Therefore,  it  must  be done as part  of the operation,  not  as part  of the
argument computations. This is explained below. 

If the value of x in this expression is a set instead of a table, the entry value is not used.
This is illustrated by the following code. Note that a different C function is called for a set
than for a table; this is because a different body statement is selected. 
   frame.tend.d[1].dword = D_Integer;
   frame.tend.d[1].vword.integr = 3;
   frame.tend.d[2] = frame.tend.d[0] /* x */;
   F1o1_insert(&(frame.tend.d[1]) , &(frame.tend.d[2]) , 
&trashcan);

In general, an operation must copy its argument to a new descriptor before using it. This
is because an operation is allowed to modify the argument. Modification of the original
argument location is not safe in the presence of goal-directed evaluation. The operation
could be re-executed without recomputing the argument.  Therefore, the original value
must be available. This is demonstrated with the following expression. 
   every p(0 to (1 to 3))

This  is  a  double loop.  The outer  to  expression  is  the  inner  loop,  while  the  inner  to
expression is the outer loop. to modifies its first argument while counting. However, the
first argument to the outer to has an extended lifetime due to the fact that the second
argument  is  a  generator.  Therefore,  this  to  operator  must  make  a  copy  of  its  first
argument. The generated code for this every expression is 
      frame.tend.d[2].dword = D_Integer;
      frame.tend.d[2].vword.integr = 0;
      frame.tend.d[4].dword = D_Integer;
      frame.tend.d[4].vword.integr = 1;
      frame.tend.d[5].dword = D_Integer;
      frame.tend.d[5].vword.integr = 3;
   L1: /* within: to */
      if (!(frame.tend.d[4].vword.integr <= 
frame.tend.d[5].vword.integr))
         goto L2 /* bound */;
      frame.tend.d[3].vword.integr = 
frame.tend.d[4].vword.integr;
      frame.tend.d[3].dword = D_Integer;
      frame.tend.d[6] = frame.tend.d[2];
   L3: /* within: to */
      if (!(frame.tend.d[6].vword.integr <= 
frame.tend.d[3].vword.integr))
         goto L4 /* end suspend: to */;
      frame.tend.d[1].vword.integr = 
frame.tend.d[6].vword.integr;
      frame.tend.d[1].dword = D_Integer;
      P01_p(&frame.tend.d[1]);
      ++frame.tend.d[6].vword.integr;
      goto L3 /* within: to */;
   L4: /* end suspend: to */
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      ++frame.tend.d[4].vword.integr;
      goto L1 /* within: to */;
   L2: /* bound */

The first argument to the outer to is copied with the statement 
   frame.tend.d[6] = frame.tend.d[2];

The copying of the other arguments has been eliminated because of two observations: the
second argument of to is never modified and the first argument of the inner to (outer
loop) is never reused without being recomputed. This second fact is determined while the
lifetime information  is  being calculated.  There is  no generator  occurring between the
computation of the argument and the execution of the operator. Even if there were, it
would  only necessitate  copying if  the  generator  could  be  resumed  after  the  operator
started executing.

As noted above, another set of optimizations involves deferencing named variables. If an
operation  needs  only  the  dereferenced  value  of  an  argument  and  type  inferencing
determines that the argument is a specific named variable (recall that each named variable
is given a distinct variable reference type), the code generator does not need to generate
code to compute the variable reference, because it knows what it is. That is, it does not
need the value of the argument. If the argument is a simple identifier, no code at all is
generated for the argument.

As shown in the code presented above for 
   insert(x, 3)

dereferencing can be implemented as simple assignment rather than a call to the deref
function: 
   frame.tend.d[3] = frame.tend.d[0] /* x */;

In  fact,  unless  certain  conditions  interfere,  the  variable  can  be  used  directly  as  the
argument descriptor and no copying is needed. This is reflected in the code generated in a
previous example: 
   if /x then ...

x is used directly in the in-line code for /: 
   if ((frame.tend.d[0] /* x */).dword == D_Null)
      goto L2 /* bound */;

This optimization cannot be performed if the operation modifies the argument, nor can it
be  performed  if  the  variable's  value  might  change  while  the  operation  is  executing.
Performing the optimization in the presence of the second condition would violate the
semantics of argument dereferencing. The compiler does two simple tests to determine if
the  second  condition  might  be  true.  If  the  operation  has  a  side  effect,  the  compiler
assumes that the side-effect might involve the named variable. Side effects are explicitly
coded in the abstract type computations of the operation. The second test is to see if the
argument  has an extended lifetime.  The compiler  assumes  that  the variable  might  be
changed by another operation during the extended lifetime (that is, while the operation is
suspended). 

22.6 Assignment Optimizations
The final set of invocation optimizations involves assignments to named variables. These
includes simple assignment and augmented assignments. Optimizing these assignments is
important and optimizations are possible beyond those that can easily be done working
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from the definition in the data base; assignments to named variables are treated as special
cases.  The  optimizations  are  divided  into  the  cases  where  the  right-hand-side  might
produce a variable reference and those where it produces a simple Icon value.

There are two cases when the right-hand-side of the assignment evaluates to a variable
reference. If the right-hand-side is a named variable, a dereferencing optimization can be
used. Consider 
   s := s1

This Icon expression is translated into 
   frame.tend.d[0] /* s */ = frame.tend.d[1] /* s1 */;

This is the ideal translation of this expression. For other situations, the deref function
must be used. For example the expression 
   s := ?x

is translated into 
   if (O0f2_random(&(frame.tend.d[0] /* x */), &frame.tend.d[2]) 
== A_Resume)
      goto L1 /* bound */;
   deref(&frame.tend.d[2], &frame.tend.d[1] /* s */);

When the right-hand-side computes to a simple Icon value, the named variable on the
left-hand-side can often  be used directly as  the result  location  of  the  operation.  This
occurs in the earlier example 
   a := ~x

which translates into 
   O160_compl(&(frame.tend.d[0] /* x */), &frame.tend.d[1] /* a 
*/);

This  optimization  is  safe  as  long  as  setting  the  result  location  is  the  last  thing  the
operation does. If the operation uses the result location as a work area and the variable
were used as the result  location,  the operation might see the premature change to the
variable. In this case, a separate result location must be allocated and the Icon assignment
implemented as a C assignment. String concatenation is an example of an operation that
uses its result location as a work area. The expression 
   s := s1 || s

is translated into 
      if (StrLoc(frame.tend.d[1] /* s1 */) + 
StrLen(frame.tend.d[1] /* s1 */)
         == strfree )
         goto L1 /* within: cater */;
      StrLoc(frame.tend.d[2]) = alcstr(StrLoc(frame.tend.d[1] /* 
s1 */),
         StrLen(frame.tend.d[1] /* s1 */));
      StrLen(frame.tend.d[2]) = StrLen(frame.tend.d[1] /* s1 */);
      goto L2 /* within: cater */;
   L1: /* within: cater */
      frame.tend.d[2] = frame.tend.d[1] /* s1 */;
   L2: /* within: cater */
      alcstr(StrLoc(frame.tend.d[0] /* s */), 
StrLen(frame.tend.d[0] /* s */));
      StrLen(frame.tend.d[2]) = StrLen(frame.tend.d[1] /* s1 */) 
+
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         StrLen(frame.tend.d[0] /* s */);

      frame.tend.d[0] /* s */ = frame.tend.d[2];

frame.tend.d[2] is the result location. If frame.tend.d[0] (the variable s) were used instead,
the code would be wrong. 

There are still some optimizations falling under the category covered by this chapter to be
explored as future work. For example, as shown earlier, 
      a := ~x

is translated into 
      frame.tend.d[2] = frame.tend.d[0] /* x */;
      cnv_tcset(&(frame.cbuf[0]), &(frame.tend.d[2]), 
&(frame.tend.d[2]));
      O160_compl(&(frame.tend.d[2]) , &frame.tend.d[1] /* a */);

when  x  is  a  string.  The  assignment  to  frame.tend.d[2]  can  be  combined  with  the
conversion to produce the code 
      cnv_tcset(&(frame.cbuf[0]), &(frame.tend.d[0] /* x */), 
&(frame.tend.d[2]));
      O160_compl(&(frame.tend.d[2]) , &frame.tend.d[1] /* a */);

There is, of course, always room for improvement in code generation for specific cases.
However,  the  optimizations  in  this  chapter  combine  to  produce  good  code  for  most
expressions. This is reflected in the performance data presented in Chapter 23.
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Chapter 23: Performance of Compiled Code

The performance of compiled code is affected by the various optimizations performed by
the  compiler.  This  chapter  demonstrates  the  effects  of  these  optimizations  on  the
execution speed of Icon expressions. It also presents speed improvements and memory
usage for compiled code versus interpreted code for a set of complete Icon programs. All
timing results used in this chapter were obtained on a Sun 4/490 and are the average of
the results from three runs. 

23.1 Expression Optimizations
The effects of four categories of optimization are demonstrated. These are assignment
optimizations,  invocation  optimizations,  control  flow optimizations,  and optimizations
using information from type inferencing. Expression timings for the first three categories
were made using techniques  described in  the August  1990 issue of  The Icon Analyst
[.ianl1.]. The following program skeleton is used to construct the programs to perform
these timings. 
   procedure main()
      local x, start, overhead, iters
      iters := 1000000
      start := &time
      every 1 to iters do {
         }
      overhead := &time - start
      x := 0
      start := &time
      every 1 to iters do {
         expression to be timed (may use x)
         }
      write(&time - start - overhead)
   end

The timings  are  performed both  with  and without  the  desired  optimizations,  and the
results are compared by computing the ratio of the time without optimization to the time
with optimization.

The assignment optimizations are described in Chapter 10. The effect of the assignment
optimizations on the expression 
   x := &null

is measured using the program outlined above. The analysis that produces the assignment
optimization is disabled by enabling debugging features in the generated code. The only
other effect this  has on the assignment expression is to insert code to update the line
number of the expression being executed. In this test, the line number code is removed
before the C code is compiled, insuring that the assignment optimization is the only thing
measured. The timing results for this test produce 

Assignment Test
Time in Milliseconds Averaged over Three Runs

Unoptimized Optimized Ratio
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1122 478 2.3 

The  tests  were  performed  with  type  inferencing  enabled.  Therefore,  even  the
"unoptimized" version of the assignment has the standard operation optimizations applied
to it.  This test demonstrates the importance of performing the special-case assignment
optimizations.

The next category of optimization measured is invocation optimization. This results in the
direct invocation of the C functions implementing operations, or in some cases results in
the operations being generated in line. The execution time for the expression 
       tab(0)

is  measured  with  and  without  invocation  optimizations.  As  with  the  assignment
optimizations,  these  optimizations  are  disabled  by enabling  debugging features.  Once
again  the  line  number  code  is  removed  before  the  C  code  is  compiled.  These
optimizations interact with the optimizations that use information from type inferencing.
The measurements are made with type inferencing disabled. Therefore, no type checking
simplifications are performed. Without the invocation optimizations, the generated code
consists of an indirect invocation through the global variable tab. With the invocation
optimizations,  the  generated  code  consists  of  type  checking/conversion  code  for  the
argument to tab and a call to the function implementing the body statement of tab. The
timing results for tab(0) produce 

Invocation Test
Time in Milliseconds Averaged over Three Runs

Unoptimized Optimized Ratio

8394 4321 1.9 

The third category of optimization is control flow optimization. As explained in Chapter
9, these optimizations only perform improvements that a C compiler will not perform
when the code contains trivial call chains. One situation that produces trivial call chains is
nested alternation. The execution time for the expression 
      every x := ixor(x, 1 | 2 | 3 | 4 | 5)

is measured with and without control flow optimizations. The timing results for this every
loop produce 

Control Flow Test
Time in Milliseconds Averaged over Three Runs

Unoptimized Optimized Ratio

6384 4184 1.5 

The final category of optimization results from type inferencing. The speed improvements
result  from  generating  operations  in  line,  eliminating  type  checking,  and  generating
success continuations in line. Use of the to operation is a good example of where these
optimizations can be applied. This is demonstrated by measuring the speed of an every
loop using the to operation. The program that performs the measurement is 
   procedure main()
      local x, start
      start := &time
      every x := 1 to 5000000
      write(&time - start)



270

   end

The timing results for this program produce 

Type Inference Test
Time in Milliseconds Averaged over Three Runs

Unoptimized Optimized Ratio

9233 2721 3.3 

Another approach to determining the effectiveness of type inferencing is to measure how
small  a set it  deduces for the possible types of operands to operations.  This indicates
whether future work should concentrate on improving type inferencing itself or simply
concentrate  on  using  type  information  more  effectively in  code generation.  A simple
measure is used here: the percentage of operands for which type inferencing deduces a
unique Icon type. Measurements are made for operands of all operators, except optimized
assignment, and for operands of all built-in functions appearing in optimized invocations.
For  the  most  part,  these  are  the  operations  where  the  code  generator  can  use  type
information.  Measurements  were  made  for  a  set  of  14  programs  (described  below).
Unique operand types within each program range from 63 percent to 100 percent of all
operands,  with  an  overall  figure  for  the  tests  suite  of  80  percent  (this  is  a  straight
unweighted figure obtained by considering all operands in the test suite without regard to
what program they belong to); even a perfect type inferencing system will not deduce
unique types for 100 percent of all operands, because not all operands have unique types.
This suggests that an improved type inferencing system may benefit some programs, but
will have only a small overall impact. Future work should give priority to making better
use of the type information rather than to increasing the accuracy of type inferencing. 

23.2 Program Execution Speed
It has been demonstrated that the compiler optimizations are effective at improving the
kinds  of  expressions  they  are  directed  toward.  The  question  remains:  How  fast  is
compiled code (with and without optimizations) for complete programs as compared to
interpreted  code  for  the  same  programs?  For  some  expressions,  optimizations  may
interact  to  create  significant  cumulative  speed  improvements.  For  example,  the  fully
optimized code for the every loop in the previous example is 30 times faster than the
interpreted code; the improvement of 3.3 from type inferencing contributes one factor in
the total improvement. Other expressions may spend so much time in the run-time system
(which is unaffected by compiler optimizations) that no measurable improvements are
produced. 

A set of 14 programs was selected mostly from contributions to the Icon program library
[.tr90-7.] for testing the performance of the compiler. These programs were selected to
represent a variety of applications and programming styles (an additional requirement is
that they run long enough to obtain good timing results).

The following table shows the speed improvements for the compiled code as compared to
interpreted code. The compiler and interpreter used for the measurements both implement
Version 8 of Icon. The execution time used to compute the speed improvements is the
cpu time measured using the Bourne shell's time command. The first column in the table
shows the execution time under the interpreter. The second column is for compiled code
with debugging features enabled and optimizations disabled. This code is still better than
what would be obtained by just removing the interpreter loop, because intelligent code
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generation is performed, especially for bounded expressions, and keywords are generated
in  line.  The  third  column  is  for  code  with  debugging  features  disabled  and  full
optimization enabled. 

Execution Time in Seconds Averaged over Three Runs

Program Interpreter
Compiler 
Unoptimized

Compiler 
Optimized

cksol 49.9 33.5 (1.48) 22.5 (2.21)

concord 31.1 18.5 (1.68) 9.8 (3.17) 

iidecode 60.3 34.0 (1.77) 12.9 (4.67)

iiencode 50.4 34.4 (1.46) 10.5 (4.80)

impress 44.6 24.8 (1.79) 14.0 (3.18)

list 43.1 24.5 (1.75) 13.6 (3.16)

memfiltr 60.8 34.3 (1.77) 15.3 (3.97)

mf 30.1 18.7 (1.60) 14.7 (2.04)

pssplit 64.0 39.0 (1.64) 26.6 (2.40)

roffcmds 32.9 18.1 (1.81) 12.0 (2.74)

sentence 34.3 23.9 (1.43) 16.2 (2.11)

spandex 36.8 23.3 (1.57) 14.7 (2.50)

textcnt 36.2 18.4 (1.96) 9.9 (3.65) 

wrapper 27.3 15.9 (1.71) 9.4 (2.90) 

The numbers  in  parentheses  are  speed-up factors  obtained by dividing the interpreter
execution time by the execution time of compiled code. 

23.3 Code Size
One advantage the compiler has over the interpreter is that, unless a program is compiled
with full string invocation enabled, the executable code for a program need not include
the full  run-time system.  For systems with limited  memory,  this  can be a  significant
advantage.

The sizes of executable code presented here are obtained from file sizes. All executable
files have had debugging information stripped from them. The size of the executable code
in the interpreter system is taken to be the size of the interpreter (278,528 bytes) plus the
size of the icode for the program being measured (under Unix systems, the size of the
executable header, 12,800 bytes for the Sun 4, is subtracted from the size of the icode file,
because it is not present during interpretation). Measurements for the 14 test programs
are: 

Program Sizes in Bytes

Program Interpreter Compiler Ratio

cksol 282,153 81,920 0.29 

concord 284,416 90,112 0.31 
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iidecode 285,525 98,304 0.34 

iiencode 283,567 81,920 0.28 

impress 295,656 114,688 0.38 

list 287,376 98,304 0.34 

memfiltr 296,082 114,688 0.38 

mf 282,739 81,920 0.28 

pssplit 279,709 73,728 0.26 

roffcmds 280,797 81,920 0.29 

sentence 283,249 81,920 0.28 

spandex 281,843 81,920 0.29 

textcnt 280,397 73,728 0.26 

wrapper 279,780 73,728 0.26 

Other factors create differences in memory usage between the interpreter and compiled
code. For example, the interpreter allocates a stack for expression evaluation. On the Sun
4, this stack is 40,000 bytes. The compiler, on the other hand, allocates work areas on a
per-procedure  basis  and  only allocates  the  maximum  needed  at  any execution  point
within the procedure.
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Chapter 24: Future Work on the Compiler

24.1 Summary
The underlying ideas used in type inferencing, liveness analysis, and temporary variable
allocation  were  explored  using  prototype  systems  before  work  was  started  on  the
compiler described in this dissertation. The fundamental reasons for creating the compiler
were  to  prove  that  these  ideas  could  be  incorporated  into  a  complete  and  practical
compiler for Icon, to explore optimizations that are possible using the information from
type inferencing, and to determine how well those optimizations perform. The goal of
proving the usefulness of ideas continues a long tradition in the Icon language project and
in the SNOBOL language project before it.

The prototype type inferencing system demonstrates that a naive implementation uses too
much memory; implementation techniques were developed for the compiler to greatly
reduce this memory usage. As the design and implementation of the compiler progressed,
other problems presented themselves, both large and small, and solutions were developed
to solve them. These problems include how to elegantly produce code either with or
without  type  checking,  how  to  generate  good  code  for  simple  assignments  (a  very
important kind of expression in most Icon programs), how to generate code that uses the
continuation-passing techniques chosen for the compilation model, and how to perform
peephole optimizations in the presence of success continuations.

This dissertation describes the problems addressed by the Icon compiler and why they are
important to the compiler, along with innovative solutions. It presents a complete set of
techniques  used  to  implement  the  optimizing  compiler.  Performance  measurements
demonstrate  the improvements  brought about  by the various optimizations.  They also
demonstrate that, for most programs, compiled code runs much faster than interpreted
code. Previous work has shown that simply eliminating the interpreter loop is not enough
to  produce  large  performance  improvements  [.tr88-31.].  Therefore,  the  measurements
show that the set of techniques, in addition to being complete, is also effective. 

24.2 Future Work
The Icon compiler builds upon and adds to a large body of work done previously by the
Icon project. There are many problems and ideas relating to the implementation of Icon
that remain to be explored in the future. Several are presented in earlier chapters. Others
are described in the following list. 

• The quality of type inferencing can be improved. For example, if 
 x ||| y

is successfully executed, both x and y must contain lists. The current version of
type inferencing in the compiler does not use this information; it updates the store
based on result types and side effects, but not based on the argument types that
must exist for successful execution without run-time error termination. Another
improvement  is  to  extend  the  type  system  to  include  constants  and  thereby
perform constant propagation automatically as part of type inferencing. The type
system can also be extended to distinguish between values created in allocated
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storage  and  those  that  are  constant  and do  not  reside  in  allocated  storage.  A
descriptor that never contains values from allocated storage does not need to be
reachable by garbage collection. 

• In spite of large improvements  in the storage requirements of type inferencing
over the prototype system, this  analysis  requires large amounts of memory for
some programs. A suggestion by John Kececioglu [.johnk.] is to explore the use of
applicative data structures that share structure with their predecessors. 

• Type inferencing provides information about values that do not need run-time type
information  associated  with  them.  In  the  case  of  integers  and  reals,  this
information along with information from the data base about run-time operations
can  be  used  to  perform  computations  on  pure  C  values  and  to  demote  Icon
descriptor  variables  to  simple  C  integer  and  double  variables.  The  current
compiler makes little use of these opportunities for optimization. Numerous other
optimizations  using the information from type inferencing are possible  beyond
what is currently being done. One of them is to choose the representation of a data
structure based on how the data structure is used. 

• Translating  constant  expressions  involving  integer  and  real  values  into  the
corresponding C expressions  would  allow the C compiler  to  perform constant
folding on them. For other Icon types, constant folding must be performed by the
Icon compiler. This is particularly important for csets, but is not presently being
done. 

• O'Bagy's prototype compiler performs two kinds of control flow optimizations. It
eliminates unnecessary bounding and demotes generators that can not be resumed.
The code generation techniques used in this compiler combined with the peephole
optimizer automatically eliminate unnecessary bounding. The peephole optimizer
also automatically demotes generators that are placed in-line. Enhancements to the
peephole optimizer could effect the demotion of generators that are not placed in-
line. 

• The compiler uses a simple heuristic to decide when to use the in-line version of
an operation and when to call the function implementing the operation using the
standard calling conventions. More sophisticated heuristics should be explored. 

• Temporary variables can retain pointers into allocated storage beyond the time
that  those  pointers  are  needed.  This  reduces  the  effectiveness  of  garbage
collection. Because garbage collection does not know which temporary variables
are  active  and  which  are  not,  it  retains  all  values  pointed  to  by  temporary
variables. This problem can be solved by assigning the null value to temporary
variables that are no longer active. However, this incurs significant overhead. The
trade off between assigning null values and the reduced effectiveness of garbage
collection should be explored. 

• The Icon compiler generates C code. If it generated assembly language code, it
could make use of machine registers for state variables, such as the procedure
frame  pointer,  and  for  holding  intermediate  results.  This  should  result  in  a
significant improvement in performance (at the cost of a less portable compiler
and one that must deal with low-level details of code generation). 
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• Several of the analyses in the compiler rely on having the entire Icon program
available. Separate compilation is very useful, but raises problems. On possible
solution is to change the analyses to account for incomplete information.  They
could assume that undeclared variables can be either local or global and possibly
initialized to a built-in function or unknown procedures, and that calls to unknown
operations can fail, or return or suspend any value and perform any side-effect on
any globally accessible variable. This would significantly reduce the effectiveness
of some analyses. Another approach is to do incremental analyses, storing partial
or tentative results in a data base. This is a much harder approach, but can produce
results as good as compiling the program at one time. 

• Enhancements to the compiler can be complemented with improvements to the
run-time system. One area that can use further exploration is storage management.
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Chapter 25: Optimizing the Icon Compiler
This  chapter  details  a  set  of  optimizations  that  were  made  to  the  Icon  compiler  by
Anthony Jones in 1996. Several optimizations are implemented to the type inferencing
system and the intermediate code generation with the goals of improving execution time
of the generated executable and lower memory requirements.

25.1 Introduction
Compiler optimizations is a difficult but exciting subject.  There are a wide variety of
ways a compiler could be optimized.  There are also different levels that optimizations
may be performed on. For example, one level of optimization deals with the front end and
intermediate code generation.  Some examples of these optimizations include common
subexpression  elimination,  copy propagation,  dead-code elimination,  constant  folding,
loop unrolling, and strength reduction.

Another level of optimiztion is machine specific, which might include efficient use of
register assignments, using platform specific instructions that offer greater performance,
or doing peephole transformations [ASU86].  However, the optimizations proposed for
the  Icon  compiler  are  not  platform  specific  because  of  the  way  the  Icon  compiler
generates code.  The Icon compiler's intermediate code is actually C.  This means that
Iconc translates Icon code into C code which then calls the native C compiler to finish the
job.  

Another  way a  compiler  can  be  optimized  is  by improving  the  performance  of  the
compiler  itself  and  not  the  generated  code.  These  optimizations  include  improving
memory usage or making internal data structures more efficient.

The optimizations proposed for the Icon compiler deal exclusively with the front end and
intermediate code stages of compilation and improving the performance of the compiler
itself.

Specifically,  one of the main motivations behind this project was to make the compiler
more effective by improving the memory usage for the type inferencing system because
the Icon compiler was running out of memory compiling medium-large length programs.
The  next  concern  was  the  intermediate  code  generation.   An  examination  of  the
intermediate  code provided  many areas  of  improvement.   Some of  the  optimizations
possible  were  eliminating  redundant  Icon system calls,  replacing Icon literals  with  C
literals, and eliminating unnecessary logic in variable initialization blocks. 

Areas Where Iconc Can Be Improved

The advantage of iconc's compiled code is that it is many times faster than interpreted
code. Unfortunately, Iconc contains some major problems that prevents the compiler from
being  widely used.   The  next  few  sections  describe  the  components  of  the  existing
compiler that were optimizated in this project, and each section details the reasons for
improvement.

All  optimizations  were  peformed  on  the  Iconc source  from Icon Version  9,  and  the
optimized version of the compiler will be referred to as UTSA Iconc.
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Type Inference

Variables in Icon are implicitly typed and do not require a declaration of a specific type
cite{Walker91a}.  All  type conversions  are implicit  in assignments  and computations
cite{Walker92a}.  In order to avoid type checks at run-time, the Icon compiler keeps
track of the type of each variable and infers the types that each variable may hold.  The
language has all the ``normal'' types such as integers, floating point numbers, strings, and
other common types, but it also has complex structure types such as character sets, lists,
tables, and records.  The type inferencing model allocates a unique type to each source
location at which heterogeneous structure types such as  lists or records are created.  The
Icon compiler  represents  all  the possible  types  as  a  bit  vector  with each bit  position
representing a specific type.   In the course of compiling a large program, the number of
total types, and therefore the size of the bit vectors, can skyrocket.

Redundant Function Calls

Icon has a function named Poll which is called every so often to handle certain system
events  such  as  processing  window  system  events.  The  current  compiler  does  an
inefficient job of placing these function calls in the generated code. Often there will be
two calls to  Poll one right after the other or a simple assignment between two calls.
The objective of this part is to  remove the redundancy and let a reasonable number of
calls remain.

Constant Propagation

Simple  literals  appearing  in  Icon  source  code  are  assigned  into  the  local  variable
descriptor  table  within  a procedure.   This  descriptor  table  is  an array of compilcated
structures and pointers that incurs many memory references simply for a constant.  It is
doubtful that even the most robust C compilers would be able to recognize these values as
constants and propagate them accordingly.  The objective is to remove assignments of
constants into the descriptor  table and replace references to those descriptor  locations
with constant values.

Variable Initialization

At the beginning of every intermediate procedure there are several loops that initialize
local  variables  and  parameters.  Sometimes  these  loops  initialize  only  one  or  two
variables. In certain situations the loop will not be executed at all, but the code for the
loop is still generated, requiring a comparison when the program executes.  The object of
this part is to simplify the initialization loops and to remove loops that have no effect.

Changes to the Compiler Source

All the changes made to the Icon compiler in order to implement these optimizations
were done with C compiler directives so that each optimization can be turned on or off
during compilation.

All  directives  are  included  in  src/c/define.h.  The  following  code  turns  on  all
optimizations  which  are  type,  redundant  functions,  literal  propagation,  and  loop
optimizations respectively.

#ifndef OptimizeType
#define OptimizeType
#endif
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#ifndef OptimizePoll
#define OptimizePoll
#endif

#ifndef OptimizeLit
#define OptimizeLit
#endif

#ifndef OptimizeLoop
#define OptimizeLoop
#define LoopThreshold  6
#endif

In the last directive, LoopThreshold is declared to have the value of 6.  This constant
is used in the loop unrolling optimizations and is present so that the user can control this
value.  It simply is  a limit  on the number of  entries  that  may be unrolled in  variable
initialization loops.

25.2 Optimizing the Type Representation
The first area of optimization is the representation of types. Iconc maintains a structure
for each variable that contains information about that variable, including a bit vector with
each bit representing a particular type used in the program. When a bit vector is allocated
it is one of three possible sizes.  The first size is composed of first class types which are
those built in types plus user defined types that are utilized.  The second size consists of
the first class types plus intermediate value types.  Lastly, there is the number of total
types in the database.  The database refers to the collection of all builtin operations, their
number of parameters and types, and the type for the return value. 

Data was gathered from Ctree, a circular tree visualization tool. This program consists of
~500  lines  of  source  code.   The  number  of  possible  first  class  types  is  209  which
translates to a 28 byte bit vector.  Note that bit vectors are allocated in multiples of a
word (4 bytes). During the course of the compilation, 137,946 bit vectors are allocated.
The number of first class types plus types for intermediate values is 1,012, resulting in a
128 byte bit vector, and 18,925 vectors of this size are allocated.  Lastly, the number of
database types is 1,369 types, using a 172 byte bit vector with only 121 allocations of this
size.  The  total  memory  requirement  for  the  bit  vectors  is  6.22  megabytes.   This
information is summarized in Figure 25-1.

Vector Type Number of Types Number Allocated Required  Memory
(MB)

first class 209 137946 3.8

intermediate class 1012 18925 2.4

database class 1369 121 0.02

Figure 25-1: Bit Vector Sizes

Figure 25-2 is an example of what a bit vector from Ctree might look like. This example
shows the division between the three type classes. Within the partition for first class types
is bit 0 which represents an integer and bit 6 which is a real. Within the intermediate
types partition, bit 209 represents an instance of a cnode record and an instance of a list
variable, and bit 232 is an instance of a variable that is of the list type. Every instance of a



280

list or an aggregate type such as a record results in a new type that gets its own bit in the
bit vector. 

Lastly, within the database class are builtin operations.  The functions for random number
(O0z7_random)  and  subtraction  (O114_subc)  are  assigned  bits  1,012  and  1,368
respectively.  The functions are builtin to the Icon compiler and are assigned their own
types in the bit vector.

Figure 25-2: Sample Bit Vector

Additional tests were run on a 25,000 line Icon program called Freedom in  the Galaxy,
which  was  a  semester  long  effort  by Dr.  Jeffery's  Software  Engineering  class.   The
program has hundreds of variables,  but in the process of the execution,  Icon requires
many  intermediate  variables  which  dramatically  increases  the  number  of  bit  vectors
allocated during compilation.  Freedom in the Galaxy has 12,591 different distinct types
including builtin, intermediate, and database types.  This is an example of a program that
runs out of memory during compilation.

New Type Representation

The first order of business was to develop a new way to represent type information.  The
first idea was to utilize the pointers to a type vector.  All type vectors are pointers to
arrays of integers, and the initial plan was to change a type vector's pointer to be not
aligned on a 4 byte boundary in the case that the type vector only represents a simple
integer. 

Unfortunately, it was discovered that several different locations referenced the same type
vector, and any change to one would not be apparent to the other.  The second plan which
was actually adopted was to create a structure that could contain a packed representation
or a pointer to a full length type vector.  This allowed multiple variables to reference the
same structure which would always be current since only the fields of a structure were
being modified. The following structure is the new type vector.
   struct typinfo {
      unsigned int *bits;
      unsigned int packed;
      };

The  bits field is a pointer to an array of unsigned integers which hold the full type
representation of the variable. The packed field serves two purposes. First, the lower 24
bits of the integer are reserved for the length of this type vector which corresponds to
either  the  first  class,  intermediate  class,  or  database  class  type.   This  information  is
required in case a full length vector needs to be allocated.  Secondly, the upper 8 bits will
contain the packed representation of the type vector.  These bits are set by ORing the field
with enumerated constants.  Figure 25-3 lists the possible values of this field.

Type Value Description

NULL_T 1 Null type

REAL_T 2 Real type

INT_T 4 Integer type

CSET_T 8 C Set type
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Type Value Description

STR_T 16 String type

Figure 25-3: Valid Packed Types

The typinfo structure and defined constants for builtin types were added to csym.h.

How Type Allocation Works

The new scheme for the type representation is actually rather straightforward. Similar to
the old method, a call to alloc_typ is made that returns a new type vector.  The old
method simply returned a pointer of type  unsigned int to a portion of memory of
sufficient size to hold the requested number of types while the new method returns a
pointer to  struct typinfo.  This structure contains a packed representation of the
type  information  which  holds  the  most  frequently used  types  such as  integers,  reals,
strings, C sets, and the null value.  This requires only an integer which is four bytes.  The
size of each bit vector is also encoded in this integer as explained earlier. The structure
also has the capacity to hold a pointer to a region of memory that can contain an entire
type vector in the event that this type vector needs to represent more than the builtin five
types.  The entire structure occupies only eight bytes.

In reality,  alloc_typ does not allocate  struct typinfo structures one at a time.
Because an enormous number of these structures are allocated during the compilation of a
program,  alloc_typ allocates a large number of these structures at once.  Currently,
these structures are allocated in blocks of 400,000.  This is done to reduce the overhead
that malloc requires when allocated blocks of memory. Every time memory is allocated
malloc needs extra memory (usually around 2-4 bytes) for bookkeeping purposes.  As
you can see, over 800,000 bytes are saved by allocating this large block of structures.
Additionally, malloc is generally slow so this change will improve upon compile time.

The five types that were chosen to be represented were integers, reals, strings, csets, and
null.  This is because the Icon compiler keeps a global variable for each one of these types
that specifies which bit position it is kept in for all bit vectors. Other types such as lists or
tables were not suitable because the compiler assigns them a unique type and bit position
for each occurrence of the variable.

During normal execution, all requests for a type vector return the new type vector with
the  packed field initialized to zero.  It is important to note that the null data type is
distinct from having no type at all. Through the course of the compilation, the compiler
will either call a function to set bits in the vector or check to see if a particular bit is set
that corresponds to some type.  When the compiler is checking for the presence of a type,
the type structure is checked for either a compact or full representation.  Once that is
known, a simple mask is created to see if the requested type is present.  However, the
process becomes somewhat more complicated when the compiler requests that a bit is to
be  set.   First,  a  check is  made  to  determine  whether  the  type  structure  contains  the
compact or full type vector. If the requested type is an integer, real, string, character sets
or the null value and the type structure uses the compact vector, then the appropriate bit is
set in the compact vector. On the other hand, if the requested type is not one of the special
five types, a full length vector must be allocated, the compact types must be copied into
it, and the new type must also be set. The last possible situation is if the full type vector
already exists  in the type structure which simply means the requested type can be set
without any special actions or additional tests.
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In order to accomplish this, several functions that manipulate the type vectors had to be
changed to accomodate the new representation.  The following sections detail the changes
and/or reorganization that was made to the Icon compiler.

Reorganizing the Code

After  analyzing  the  functions  that  manipulate  type  information,  those  functions  that
inspect, modify, or delete type bits were isolated. These functions required modification
so  that  they  could  handle  the  packed  type  representation.  In  order  to  facilitate  the
understanding of these changes, these functions and macros that manipulate type vectors
moved from typinfer.c to a new file called types.c. The following macros were
modified or moved to types.c.

NumInts(n_bits)
ClrTyp (size, typ)
CpyTyp (nsize, src, dest)
MrgTyp (nsize, src, dest)
ChkMrgTyp(nsize, src, dest)

ClrTyp, CpyTyp, MrgTyp, and ChkMrgTyp were modified to handle the compact vectors
while NumInts moved for the sake of consistency.  The functionality of these macros has
not changed.

The following functions were also modifed or moved to types.c.
struct typinfo *alloc_typ(unsigned int n_types);
novalue set_typ(struct typinfo *type, unsigned int bit);
novalue clr_typ(struct typinfo *type, unsigned int bit);
int has_type(struct typinfo *type, int typcd, int clear);
int other_type(struct typinfo *type, int typcd);
int bitset(struct typinfo *type, int bit);
int is_empty(struct typinfo *type);
novalue bitrange(int typcd, int *frst_bit, int *last_bit);
novalue typecd_bits(int typcd, struct type *type);

All the above functions required modification for the new type representation except for
bitrange and typecd.

New Functions

The following functions  were added to support  the new type representation and were
placed in types.c. A description of the purpose of each function is provided after the
prototypes.
unsigned int *alloc_mem_type(int unsigned int n_ntypes)

Allocates an actual bit vector large enough to hold n_types number of bits. The pointer
to the unsigned int array is returned.  
novalue xfer_packed_types(struct typinfo *type)

Transfers the types in the packed representation to the full length bit vector in the same
struct typinfo variable.  It assumes that the bits field of the struct typinfo
is  valid.   The transfer  is  done by finding the  appropriate  word in  the  array where a
specific bit is supposed to be and creating a mask that is ANDed to that position in the
array.
int xfer_packed_to_bits(struct typinfo *src, struct typinfo 
*dest, int nsize)
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Transfers the types in the packed representation from  src to a full  length bit  vector,
dest, of type struct typinfo upto a certain type (bit) in the vector represented by
nsize.
novalue and_bits_to_packed(struct typinfo *src, struct typinfo 
*dest, int nsize)

Performs a bitwise AND on two type vectors.  Appropriate measures will be taken for
both packed and full type representation.
unsigned int get_bit_vector(struct typinfo *src, int pos)

Builds a slice (selected word) of a full length bit vector from a compact type form.
novalue clr_packed(struct typinfo *src, int nsize)

Zeros out the bits of the packed representation.
novalue cpy_packed_to_packed(struct typinfo *src, struct typinfo 
*dest, int nsize)

Copies  the  packed  vector  from one  variable  to  the  packed  representation  of  another
variable. That is, the source variable's types are copied into the destination if the type is
within the first nsize types.
int mrg_packed_to_packed(struct typinfo *src, struct typinfo 
*dest, int nsize)

Merges two packed vectors into one.  This performs a logical AND of all types within the
first nsize types.

Other Changes

Other  significant  changes  had  to  accompany  the  switch  over  to  the  new  type
representation.  All pointer variables of type unsigned int that referred to a type had
to be changed to a pointer to type  struct typinfo. This included changes in the
following compiler source files:  cproto.h,  csym.h,  ctree.h, and  typinfer.c.
Note that this also includes function parameters. Additionally, there were functions that
had code embedded in them to manipulate the bits of a type vector manually.  In these
places,  the  code required  reworking either  to  call  the  functions  that  encapsulated  bit
manipulations  or  rewriting  in  order  to  take  advantage  of  the  compact  types.   These
functions are listed in the following list followed by a list of brief explanations of the
modifications.
novalue typinfer(void)

Allocates  a  special  variable  with  all  the  bits  on.   This  required  a  call  to
alloc_mem_type in order to allocate a full length type vector. All the bits were then
set to on.
struct store *alloc_stor(int store_sz, int n_types)

Allocates a store which includes type information. This required changing the alloc call
to allocate struct typinfo instead of unsigned int.
struct symtyps *symtyps(int n_syms)

Allocates  symbol  tables.   This  also  required  changing  the  alloc call  to  allocate
struct typinfo instead of unsigned int.
novalue typ_deref(struct typinfo *src, struct typinfo *dest, int 
chk)
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Before  the  type  dereferencing  is  performed  the  src was  merged  with  the  dest
parameters.  This required checking for packed or full type vectors and handling them
appropriately. Also, if the boundary between first class and intermediate types falls in the
middle of a word, those intermediate types on the boundary word are zeroed out.
novalue abstr_typ(struct il_code *il, struct type *typ)

In one of the cases of a switch statement two type vectors are ANDed together.  This
requires  placing a  function  call  to  and_bits_to_packed in  place of  the  existing
code.
int eval_cnv(int type_cd, int index, int def, int *cnv_flags)

This function determines if a type conversion on a type will succeed. To do this, a type
vector is ANDed with several different bit masks. This required checking for packed or
full  bit  vectors  and handling them appropriately.  In the  case of  a  packed vector,  the
function get_vector is called to build a word with the appropriate type bits set if they
fall in the selected word of the type vector.
struct argtyps *get_argtyp(void)

Allocates an argument list.  This required changing the alloc call to allocate struct
typinfo instead of unsigned int.

Results of Type Optimization

After the new type representation was implemented, tests were run again on Ctree. The
results  showed a  dramatic  decrease  in  the  required amount  of  memory necessary for
compilation.  UTSA Iconc required one third the amount of memory of the old compiler.
The program  Freedom in the Galaxy even compiled under this optimization. Although
Freedom in the Galaxy still needed a substantial amount of memory, the important fact is
that it compiled.  Section 25.4 provides detailed results of the memory usages for both
Ctree and Freedom in the Galaxy.

25.3 Optimizing the Generated Code
The other area of optimization is  the efficiency of the C code generated by the Icon
compiler.   The  optimizations  undertaken  were  to  remove  redundant  calls  to  system
functions,  constant  propagation,  and  variable  initialization.  These  optimizations  were
obvious  from  a  cursory  examination  of  the  C  code  generated.  The  goals  of  these
optimizations are to make the intermediate code as small as possible and to speed up the
resulting executable.  First a brief summary of the internal representation of the C code is
provided. This is necessary because most of these optimizations rely heavily on analyzing
the internal C code. Following this, the individual optimizations are discussed in detail.

Intermediate Code Representation

This section briefly describes how the intermediate C code is represented and generated
internally by the Icon compiler.  The majority of the functions that generate this internal
representation and print it to a file are contained in the following compiler source files:
ccode.c, codegen.c, and inline.c.

How Code is Generated

Once  the  source  code  is  parsed  and  evaluated,  the  intermediate  C  code  needs  to  be
generated and output to a file for compilation by the native C compiler. First the compiler
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builds a syntax tree plus symbol tables and other necessary structures.  Then, the header
file is  created.  This includes standard definitions  necessary for all  Icon programs and
structures and variables specific to the program being compiled. Next, the  proccode
function is called for each function in the tree. This outputs the function definition and
variable in initialization code, and then steps through the syntax tree and creates C code
to  represent  the  body of  the  function.  After  all  the  code for  the  body of  the  current
procedure is generated internally, the code is then written to the file.

The internal C code is represented through a C structure called  struct code which is
shown below.
struct code {
   int cd_id;
   struct code *next;
   struct code *prev;
   union  cd_fld  fld[1];
   };

The  cd_id field is an identifier signaling what type of code is held in this structure.
This field may be set to one of the following enumerated values. Each value corresponds
to a type of code that can be written to the intermediate C code.  The table in Figure 25-4
contains the enumerated name along with its integer value and a short description.

Code Type Value Description

C_Null 0 No code in this struct

C_CallSig 1 Call a signal (function)

C_RetSig 2 Return a signal

C_NamedVar 3 Reference a variable

C_Goto 4 Goto statement

C_Label 5 Label statement

C_Lit 6 Literal value

C_Resume 7 Resume signal

C_Continue 8 Continue signal

C_FallThru 9 Fall through signal

C_PFail 10 Procedure failure

C_PRet 11 Procedure return

C_PSusp 12 Procedure suspend

C_Break 13 Break out of signal handling switch

C_LBrack 14 Start of a new C block

C_RBrack 15 End of a C block

C_Create 16 Call create() for a create expression
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Code Type Value Description

C_If 17 If statement

C_SrcLoc 18 Source file name

C_CdAry 19 Array of code pieces

Figure 25-4: Code Types

The  fld field is  important  and is  directly linked to  what  type of  code the  struct
code is defined as.  For example, if a struct code is defined as C_If then fld[0]
is a pointer to another struct code that corresponds to the if portion of the statement,
and fld[1] is another pointer to a struct code representing the then portion of the
statement.  In fact there are two macros for extracting each pointer.  These macros plus
macros for all the other code types are found in the  ccode.h header file.  However,
there is one special case that requires some explanation. If the cd_id is C_CdAry then
the fld element is an unspecified length of cd_fld unions.  In this case all even indices
into the array are tags describing the contents of the following array element. There is a
special  marker,  A_End,  that  signifies  the  end  of  the  array.
Figure~\ref{fig:struct_code_assign_full}  shows  these  field  identifiers  along  with  their
corresponding fields for an assignment statement. It is important to note that only when
the  cd_id is  C_CdAry will  the  field  identifiers  be  present.  Figure  25-5  gives  the
possible values for these tags.

Element Type Value Description

A_Str 0 Pointer to a string

A_ValLoc 1 Pointer to a struct val_loc

A_Intgr 2 Integer value

A_ProcCont 3 Procedure continuation

A_SBuf 4 String buffer

A_CBuf 5 Cset buffer

A_Ary 6 Pointer to a subarray of struct code structures

A_End 7 Marker for end of array

Figure 25-5: Element Types

For the most part the C_CdAry is used for miscellaneous code that is not covered by the
other  19 code types.   Most  simple  assignments  fall  into this  category.   The last  two
elements of a  struct code,  next  and  prev,  are links to the next and previous
struct code structures in the chain.

Figure 25-6: Literal
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Redundant Function Calls

An example  of  this  type  of  optimization  are  several  function  calls  needed to  handle
certain run-time system activities in Icon that are included in the generated C code.  For
example, throughout the code Icon places a call to the function Poll which checks for
pending events such as window redraws. In some cases there is a call to Poll followed
by an assignment and another call to Poll which is far too frequent. The placement of
these function calls can be analyzed to determine when they are necessary.

Analyzing Function Call Placement

The solution to this problem entails analyzing where the calls to Poll were being placed.
The Poll function is inserted into the generated code by the function setloc which is
located in the file  ccode.c of the compiler source.  The old method for determining
when to insert a call to this function is somewhat confusing.  Also setloc does more
than insert these function calls so there was no change in the way it determined when to
put a call in.  Instead, a call to analyze_poll is made that determines if it is safe to
remove the previous occurrence of the  Poll function.   To accomplish this,  a global
variable is kept, called lastpoll, which is a pointer of type struct code, and it is
always  assigned  to   the  location  of  the  last  Poll function.   Of  course,   initially
lastpoll is NULL.  The global variable is declared in ccode.c.  The prototypes for
the two new functions are as follows:
int analyze_poll(void)

This function analyzes the code between the last occurence of the Poll function and the
current  position.   If  there  are  no  function  calls  (C_CallSig),  return  signals
(C_RetSig),  C  code  blocks  (C_LBrack or  C_RBrack),  return  calls  (C_PRet),
procedure  suspends  (C_PSusp),  or  break  (C_Break),  then  the  previous  instance  of
Poll will be removed; otherwise, it will be left in place.  

The reason why the above code types are restricted is because they all involve calling
other functions.  If it were known that these functions were short and did not call other
functions, then the call to Poll could be removed without worry; however, this kind of
detailed analysis is not performed and is inhibited by the fact that some of these functions
represented by C_CallSig may be library functions and these are linked at C compile
time.

Also, regardless of whether the previous instance of a call to Poll is removed the new
call to Poll is added to the code list and the lastpoll variable is updated. 
novalue remove_poll(void)

This  function  actually  removes  the  call  to  Poll by setting  the  cd_id field  in  the
struct code structure to  C_Null. It is important to note that the  struct code
that represents the call to  Poll is not physically deallocated from the list.  It's  cd_id
field is  simply set  to  C_Null because removing it  introduces  side effects  which are
either errors during C compilation or the misplacement of goto labels which affects the
flow of execution and unpredictable results.  This occurs because a  struct code of
type C_Goto may reference the removed node. 

Icon Literals and Constant Propagation

Constant progagation was the second most difficult optimization to implement next to the
new type representation because the Icon compiler generates a complex data structure that
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contains Icon values, including literals.  These Icon literals are assigned into this tended
descriptor  table even though these values are constants.   There are several reasons to
improve the representation of these constants. 

First,  by  changing  these  complicated  Icon  literals  to  simple  C  literals,  the  resulting
executable code will be smaller. Secondly, there is the issue of constant propagation. In
many cases, an index into the descriptor table is passed to a function or assigned to a
variable.  The question that arises is whether the C compiler can detect that the descriptor
table  value being passed is  a constant  that  can be propagated to all  places where the
descriptor table is used.  For example, the following code fragment is fairly common:
   r_frame.tend.d[4].dword = D_Integer;
   r_frame.tend.d[4].vword.integr = 1;
   irslt = sub(argp[0].vword.integr,
               r_frame.tend.d[4].vword.integr);

In  this  section  of  code,  the  structure  r_frame.tend.d[4].vword.integr is
assigned a value and then immediately used. This code can be simplified to:
   irslt = sub(argp[0].vword.integr, 1);

Note  that  the  assignment  of  the  literal  into  the  descriptor  table  may  no  longer  be
necessary;  time  savings  on  this  initialization  may be  as  great  as  the  savings  for  the
simplified reference.

Tended Descriptor Tables

Most functions contain a tended descriptor table.  This is an array of descriptor structures
which contain either an integer, pointer to a string, pointer to a block, or a pointer to
another  descriptor  location.   A named variable   is  assigned a  specific  index into  the
descriptor  table while  temporary variables are assigned an index,  but other temporary
variables can be assigned into the same cell many times over.  Named variables are all
those that are explicitly used in the Icon source code such as loop control variables, and
temporary variables are constants values (regardless of type).  For example, in the first
Icon code example the value 2.4 is assigned its own location into the descriptor table.
The same thing holds true for the second example. The string "foo" is assigned its own
location.  Because both these values are only literals  in  the Icon code,  they are given
temporary locations in the tended desciptor table that may be used over again.
   if (x_val = 2.4) then
      do_something(x_val)
   ...
   ...
   if (str_val == "foo") then
      do_something(str_val)

For example, if the constant 2.4 is not used after the second code fragment then "foo"
may be assigned into the location previously occupied by 2.4. 

Analyzing Literal Assignments

Several new functions were introduced in order to analyze all constants and their use.
Inside the function  proccode before the internal C code is written to a file, a call to
analyze_literals and  propagate_literals is  made  which  does  the
propagation.  The  analyze_literals function  builds  a  table  which  contains
information such as the scope of a descriptor entry,  whether it  is  safe to propagate a
literal, and the literal value. The table structure is given below.
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struct lit_tbl {
int    modified;
int    index;
int    safe;
struct code    *initial;
struct code    *end;
struct val_loc *vloc;
struct centry  *csym;
struct lit_tbl *prev;
struct lit_tbl *next;
};

The field modified is a flag which can be set to one of the enumerated types in Figure
25-7.

Name Value Description

NO_LIMIT 0 Descriptor never changes

LIMITED 1 Descriptor value does change, propagate any type

LIMITED_TO_INT 2 Descriptor value does change, propagate only if integer

NO_TOUCH 3 Descriptor value should not be propagated

Figure 25-7: Modify Flags

The NO_LIMIT value refers to those descriptor locations that always contain the same
constant.   That is,  no other value shares the same descriptor  location,  and it  may be
propagated  freely without  conflicts.   The  LIMITED value  refers  to  those  descriptor
locations that are either reused at some point or are modified is some way.  The value
LIMITED_TO_INT is similar except that special care must be taken when propagating
this  constant.   For  example,  a  constant  such  as  a  string  should  not  be  propagated
everywhere an interger may be propagated.

Lastly, the value NO_TOUCH refers to descriptor locations that should not be propagated.
These  descriptor  locations  often  contain  loop  control  variables  which  are  marked  as
temporary but should under no circumstances be replaced with their initial values. For
example, the first code fragment shows unoptimized code, and the second fragment is the
same code but with constants propagated.  Descriptor location 6 should not be touched
because it serves as a loop control variable while the use of location 7 may be replaced
with its constant value 10 even though the same location is assigned a new value later on
after label L9.
   r_frame.tend.d[6].dword = D_Integer;
   r_frame.tend.d[6].vword.integr = 1;
   r_frame.tend.d[7].dword = D_Integer;
   r_frame.tend.d[7].vword.integr = 10;
L8:
   if (!(r_frame.tend.d[6].vword.integr <=
            r_frame.tend.d[7].vword.integr) )

goto L9;
   ...
   ++r_frame.tend.d[6].vword.integr;
   goto L8;
L9:
   r_frame.tend.d[7].dword = D_Integer;
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   r_frame.tend.d[7].vword.integr = 7;
____________________________________________

   r_frame.tend.d[6].dword = D_Integer;
   r_frame.tend.d[6].vword.integr = 1;
L8:
   if (!(r_frame.tend.d[6].vword.integr$<=$ 10) )
      goto L9;
   ...
   ++r_frame.tend.d[6].vword.integr;
   goto L8;
L9:
   r_frame.tend.d[7].dword = D_Integer;
   r_frame.tend.d[7].vword.integr = 7;

The field index is the index into the descriptor table for each constant.

The field  safe refers to whether or not it is safe to modify the  end field.  This field
refers to the point in the intermediate code beyond which it is no longer safe to propagate
this  value. The  end field is  sometimes modified when inserting a new entry into the
literal table. This is described in detail under the tbl_add function presented shortly.

The fields initial and end refer to the scope where it is safe to propagate the current
literal between.  If end is NULL  then it is safe to propagate to the end of the function.

The fields  vloc and  csym are pointers to either a  struct val_loc or a  struct
centry which  contain  the  constant  value  of  the  current  descriptor.  The  struct
centry member  points  to  the  corresponding location  in  the  global  symbol  table  of
constant values maintained by the Icon compiler.

The fields prev and next are necessary to make the table doubly linked. 

Also, it  should be noted that the number of entries in the literal  table is  fairly small.
During compilation of Ctree, the largest literal table used contained 15 entries.

The  analysis  phase  consists  of  stepping  through  the  struct code chain  for  each
function  looking  for  each  instance  of  a  literal.  Figure  25-8  shows  how  a  literal  is
contained within a  struct code structure. At this point, a new entry into the literal
table is created that keeps track of where in the code the literal  is   assigned into the
descriptor table and a pointer to the struct centry structure where the literal value is
kept.  This phase also attempts to find the point at which descriptor entries are assigned
new values. Thus a scope is defined which the constant may only be propagated between.

Figure 25-8: Literal

Once  the  analysis  is  complete  and  the  literal  table  is  built  then  the  function
propagate_literals is called which goes through each entry in the literal table and
examines  the  code  beginning  at  the  initial field  until  the  struct  code
referenced by the end field is encountered.  If a struct code is found that references
the descriptor containing the current literal then that reference is replaced by the literal
itself.  Figure 25-6 illustrates a fragment of code that does an assignment, and Figure 25-9
shows the same fragment with the second descriptor replaced with its literal (assuming
that descriptor location 8 was previously initialized to 27). It is important to note that only
the struct val_loc on the right side of the equal sign will be replaced by its literal.
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Figure 25-9: Assignment

New Functions

The following functions were created to support the contant propagation optimization.
All these functions are placed in the compiler source file ccode.c.  Each function used
in the constant propagation is prototyped and described below.
struct lit_tbl *alc_tbl(void)

This function allocates a  struct lit_tbl entry that contains information about a
literal and its usage. It first checks a global pointer called free_lit_tbl to see if there
are any free table structures that may be reused. If there are no free structures in this list
then a new structure is allocated. Lastly, the fields are initialized to predefined values.
novalue free_tbl(void)

This function frees the memory used for the current table by attaching the current table to
the list of free table structures (free_lit_tbl).
novalue tbl_add(struct lit_tbl *add)

This function adds a new struct lit_tbl structure into the current table. The insertion is to
the end of the table plus it checks for the previous use of the descriptor location used in
the element being added. For the previous use of the same element, that location's  end
pointer is set to the initial pointer of the element being added.  In essence, this defines a
scope for each descriptor location. Once  end is set for the first time, it should not be
changed later.
int substr(const char *str, const char *sub)

This function is used to scan strings for logical operators (==,  !=,  >=,  <=, etc).  If the
string represented by  sub is found in  str then  TRUE is returned.  It is necessary to
identify these  operators  so  a  string  is  not  propagated  as  an  operand to  one  of  these
operators which is not valid C syntax.
int instr(const char *str, int chr)

This  function  is  used to  determine if  a string contains  an assignment  operator.   This
function will return TRUE if the string str contains any type of assignment (=, +=, -=,
*=, /=, or %=).
novalue invalidate(struct val_loc *v, struct code *end, int code)

This function sets values for an element in the literal table. For all literal table entries that
point to the struct val_loc represented by v the end field is set to  end with the
modified field set to  code.  code can be one of the following enumerated values:
NO_LIMIT, LIMITED, LIMITED_TO_INT, or NO_TOUCH.
novalue analyze_literals(struct code *start, struct code *top, 
int lvl)

This  function steps through the  struct code list  for each function,  building up a
literal table, and analyzing the scope between which each literal can be safely propagated.
It  checks  for  loop  control  variables,  when  and  if  the  value  of  a  constant  descriptor
location changes, and checks to see if a descriptor location is passed by reference to any
functions.
novalue propagate_literals(void)
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This function steps through each entry in the literal table and begins to replace occurences
of the descriptor location with the literal between the struct code structures from the
initial field to the  end field. The function  eval_code is called to do the actual
propagation. 
int eval_code(struct code *cd, struct lit_tbl *cur)

This  function  first  checks  to  see  if  the  descriptor  index  of  the  code  currently being
examined  matches  that  of  the  current  literal  table  entry.  If  the  current  descriptor  is
accessed as an integer or a string then the descriptor is replaced with the literal value.
Also, the modified is checked to see if there are any restrictions on replacement.  The
table in Figure 25-10 lists the restrictions for each possible value of modified.

Name Replacement Restrictions

NO_LIMIT Always replace

LIMITED Always replace within initial and end

LIMITED_TO_INT Only replace if used as int, also limited by scope

NO_TOUCH Never replace

Figure 25-10: Replacement Policy

The actual replacement of a descriptor reference to a literal is accomplished by setting the
current index into the  fld array to the  A_Str type and allocating a string where the
literal is copied into. Figure 25-6 and Figure 25-9 illustrate an occurrence of this. 

Variable Initialization

Another  issue  is  the  initialization  of  the  descriptor  tables  in  each C function  that  is
generated by the Icon compiler.  Many of the generated functions  contain a loop that
initializes all the entries of the local descriptor table to the null descriptor.  This is rather
cumbersome and generates a great deal of overhead.   

Eliminating Dead Code

The first optimization to the variable initialization was to eliminate ``dead'' code, which is
code that is never executed.  In some cases the loops that initialize the descriptor tables
resembled this:
   for (i = 0; i < 0; ++i)
      r_frame.tend.d[i] = nulldesc;

This code is generated for Icon library functions in the function  outerfnc located in
codegen.c.  There  is  a  separate  function  that  outputs  similar  code  for  user  written
functions which does check to see if the loop will ever execute. Both functions contain a
variable ntend which hold the number of descriptor entries.  A simple check for equality
with  zero was added. 

Loop Unrolling

Every  user  function  initializes  all  tended  descriptor  entries  to  the  value  of  the  null
descriptor nulldesc at the beginning of the function. It is a simple one-line for loop
similar to the following code fragment.
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   for (i = 0; i < 3; ++i)
      r_frame.tend.d[i] = nulldesc;

Also,  upon  examining  the  C  code  generated  from  several  programs,  the  number  of
descriptor entries per procedure rarely exceeds ten.  Because this  is a relatively small
number, these loops can be unrolled into a series of assignments, and the loop may be
removed.  The following code is the above loop unrolled.
   r_frame.tend.d[0] = nulldesc;
   r_frame.tend.d[1] = nulldesc;
   r_frame.tend.d[2] = nulldesc;

While this will increase the size of the generated code, the loop overhead is eliminated.
There is a limit placed on the number of loop iterations that will be unrolled which is
defined in  define.h. Currently, this value,  LoopThreshold,  is set to 6. Because
this number and the number of descriptor table entries is small, the number of unrolled
elements is reasonable, and the code size is not greatly affected.

The code that unrolls these loops is in the function outerfnc in the file codegen.c.
Because this  change is  only several lines,  the code that  implements  loop unrolling is
included below.
   #ifdef OptimizeLoop
   if (ntend > 0)           /* Check for dead code */
      for (i=0; i < ntend ;i++)
         fprintf(codefile,
                 "   r_frame.tend.d[%d] = nulldesc; \n", i);
   #else
   fprintf(codefile, "for (i=0; i < %d ;i++) \n", ntend);
   fprintf(codefile, "   f_frame.tend.d[i] = nulldesc;\n;");
   #endif

Results of Code Generation Optimizations

Several  tests  were  run  to  determine  whether  the  code  generation  optimizations  were
effective.   These  optimizations  were  performed  in  hopes  of  improving the  execution
speed  of  the  compiled  program,  reducing  the  size  of  the  intermediate  code  and  the
resulting executable, and the compilation time. A brief description of the results follows;
however, a more detailed analysis of the optimizations is given in Chapter 4.

Overall,  the  optimizations  improved  the  execution  speed  by  a  modest  amount.  The
improvement is roughly between 6-8.25%.  While this is not a great as was hoped, it still
is  an  improvement.   The  code size  of  both  the  intermediate  code and the  generated
executable  are  suprisingly  smaller.   The  loop  unrolling  seemed  to  be  offset  by  the
constant progagation which eliminated unnecessary assigments and references. The size
of the executables were reduced by approximately 4-8% for large programs, but there was
no change in executable size for small programs (20 lines).  The size of the generated C
file was consistently around 3% smaller than before the optimizations.

Also, on average around half of all calls to  Poll were removed, and in one case, two
thirds  were  eliminated.  The  largest  improvement  was  to  compilation  time.   The
optimizations improved compile time by 24-31% on large programs and 13% on small
programs; however, it should be noted that all of the tests for this section were performed
with all the optimizations on, including the type representation optimization.
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25.4 Results
This chapter presents detailed information on the results of each optimization discussed
in this paper.  The first section discusses the improvements in memory usage resulting
from the type representation optimizations while the second sections presents the results
from  removing  redundant  function  calls,  unrolling  loops,  removing  dead  code,  and
propagating literals. 

Type Representation

Tests were performed on Ctree and Freedom in the Galaxy to determine the new memory
requirements of UTSA Iconc.  These tests were run with only the type representation
optimizations  and no other optimizations  that were covered in Chapter 3. The results
show a substantial decrease in the memory required to compile the program.  For Ctree,
there were 156,992 packed type structures allocated which is the total number of all type
vectors from the first test.  Once the packed structure was allocated only 11,653 needed
an actual  first  class  vector  allocated.   Of the  intermediate  class,  only 5,172 full-size
vectors needed to be allocated.  However, all 121 of the database class variables needed
the  full  sized  vector.  Overall,  the  total  memory usage for  type representation  is  2.17
megabytes which is  35% of the memory required by the old type representation.  The
results are summarized in Figure 25-11.

Vector Type Number of Types Number Allocated Required Memory (MB)

packed class 5 156992 1.25

first class 209 11653 0.3

intermediate class 1012 5172 0.6

database class 1369 121 0.02

Figure 25-11: Memory Usage (Ctree)

Unfortunately, the improvement in memory usage was not great enough for Freedom in
the Galaxy to compile on the same machine that the tests on Ctree were run; however, the
program did compile on a Sparc 10 with 128MB of memory with no one else logged on at
the time. The Figure 25-12 contains the memory requirements for each of the classes of
vectors.

Vector Type Number of Types Number Allocated Required Memory (MB)

packed class 5 4294822 34.36

first class 1425 119468 21.5

intermediate class 8508 24349 25.91

database class 12591 7 0.01

Figure 25-12: Memory Usage (Freedom in the Galaxy)

Even  with  the  optimization,  Freedom  in  the  Galaxy requires  over  81  megabytes  of
memory for the type inferencing alone.  Because Freedom in the Galaxy could not be
compiled  before the  type  optimization,  there  are  no numbers  to  compare  these with.
However,  considering that  the type optimization  reduce the memory requirements  for
Ctree by one third, then a good estimate for the memory requirements would be around
240 megabytes!
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While the new type representation drastically reduces the amount of memory used during
compilation, it still uses too much memory to be of use when compiling large programs
on  anything  but  an  expensive  workstation  with   a  substantial  amount  of  memory.
However, UTSA Iconc still offers the user the advantage of compiled code, and the new
type representation makes UTSA Iconc practical on many programs that could not be
compiled because of memory requirements of the old Icon compiler. 

Code Generation

This  section  details  the  results  of  the  code  generation  optimizations  in  the  area  of
execution  speed,  code  size,  and  compilation  time.  These  tests  were  run  on  several
programs.   The first  program,  Beards, generates  production  grammars,  non-terminals,
terminals, and epsilon sets from an input grammar. The second program,  Yhcheng, is a
line editor similar to  ed which also has revision control capabilities.  For the code size
and compilation time tests, two other programs,  Ctree and  Sphere, were used for tests.
Beards, Yhcheng, and Ctree are all large programs while Sphere is included because it is
a very small program (less than 25 lines).  All timings performed used the Unix or Linux
time utility.  Also note that these timings were performed with all optimizations turned
on including the type representation optimization.

Execution Speed

Each program was run 10 times with sample input and averages were computed. Figure
25-13 summarizes the execution times for Beards and Yhcheng.

Program Version User System Elapsed

Optimized
0.5 0.12 00:01.17

Beards Unoptimized 0.52 0.13 00:01.27

Improvement
4.97% 9.09% 8.25%

Optimized
0.59 1.11 00:01.99

Yhcheng Unoptimized 0.62 1.27 00:02.14

Improvement
4.21% 12.91% 6.79%

Figure 25-13: Execution Times

Code Size

Tests were run on the same two programs to determine if there was an improvement in
either the intermediate code size or the size of the resulting executable.  Figure 25-14
displays the code sizes for Beards, Yhcheng, Ctree, and Sphere. The first three programs
are large (500-1800 lines) while Sphere is small (20 lines).

Program Version C File H File Executable

Optimized
246159 12967 204800

Beards Unoptimized 252041 12967 212992

Improvement
2.33% 0.00% 3.85%
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Program Version C File H File Executable

Optimized
554014 46168 294912

Yhcheng Unoptimized 568118 46168 319488

Improvement
2.48% 0.00% 7.70%

Optimized
290536 61545 225280

Ctree Unoptimized 298813 61545 237568

Improvement
2.77% 0.00% 5.17%

Optimized
82289 49755 159744

Sphere Unoptimized 84972 49755 159744

Improvement
3.16% 0.00% 0.00%

Figure 25-14: Code Sizes

Much of the reduction in code size can be attributed to the removal of redundant calls to
Poll, and it is this reduction that offsets the loop unrolling. Improvements on Beards,
Yhcheng, and  Sphere show that almost one half of all calls to  Poll were eliminated;
however, Ctree shows almost a two thirds reduction.   Figure 25-15 shows the number of
calls to Poll for each program before and after the optimization.

Test Program No. Before No. After

Beards 810 481

Yhcheng 2144 1135

Ctree 745 293

Sphere 40 22

Figure 25-15: Number of Redundant Functions Removed

Compilation Time

Lastly,  the  compilation  times  for  the  sample  programs  are  given.  Each program was
compiled five times with the results averaged. Again, results for the  Beards,  Yhcheng,
Ctree, and Sphere are in Figure 25-16.

Program Version User System Elapsed

Optimized
43.57 1.77 00:47.40

Beards Unoptimized 60.93 1.65 01:02.93

Improvement
28.49% -7.27% 24.68%

Optimized
116.97 2.76 02:04.14

Yhcheng Unoptimized 163.37 2.86 02:49.71
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Program Version User System Elapsed

Improvement
28.40% 3.50% 26.85%

Optimized
65.26 2.54 01:13.44

Ctree Unoptimized 92.25 2.88 01:47.44

Improvement
29.26% 11.81% 31.65%

Optimized
11.98 1.83 00:16.36

Sphere Unoptimized 13.62 2.22 00:18.85

Improvement
12.04% 17.57% 13.21%

Figure 25-16: Compile Times

Analysis of Intermediate Code Optimizations

The gains in execution speed and code size were modest but not startling.  For the most
part,  improvement was less than 10%.  However, the results for compilation time are
more promising. The speedup was between 24% and 31% for large programs, which is
between a 15 and 45 second improvement.

The eliminated functions calls most likely have a negligible effect on  execution speed
but greatly contributed to the reduction in code size. For example, on a large program like
Yhcheng which  contained  more  than  18,600  lines  of  C  code,  approximately  450
redundant calls were removed. It was not expected that eliminating ``dead'' initialization
loop  would  have  much  effect  on  execution  speed.   Constant  propagation  and  loop
unrolling probably accounted for the improved execution times.  However, more of an
improvement  was expected from the constant  propagation optimization.  Two possible
explanations could be that the native C compiler is able to reduce the complex structure
lookup to its literal value or that the compiler has so much other baggage slowing down
execution that the constant propagation improvement was not enough to make a great
difference. The second explanation seems more likely.

The size of the intermediate code and executable code were also modestly improved.  The
elimination of redundant function calls offset the addition of code due to loop unrolling.
Also, eliminating unnecessary initializations for literals that were propagated contributed
to the smaller code sizes. It is important to note that as it is, the compiler generates an
enormous amount of code for procedure continuations and suspensions so that 25-30% of
the intermediate code are these functions and the rest is user code.  

Lastly, the speed of compilation was a pleasant surprise; however, I do believe that this
improvement  is  due  to  the  type  inferencing  optimization  because  the  current
optimizations  being  discussed  only  add  extra  logic  to  improve  the  generated  code.
Another  significant  factor  is  that  less  memory is  being  used  by the  type  inferencing
system, which therefore causes less access to virtual memory.  I should note that all the
tests  were  run  with  that  optimization  on,  and  the  improvement  to  type  inferencing
simplifies the type system in many ways.  To determine if a specific bit is set, the old
system had to create a mask and find the appropriate index into a long bit vector.   The
new system requires a single comparison in the case of the five builtin types.
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Conclusion

All of the optimizations discussed in this chapter have been implemented. Some of the
optimizations performed extremely well while others did not have much effect. The type
representation change provided a substantial improvement on the memory usage required
by the type inferencing system.  As was stated early, the compiler still  uses too much
memory to be of much use to the average Icon programmer but is much better suited to
offering the added speedup of compiled code when occasionally necessary.

The intermediate  code optimizations  were really just  the tip  of  the iceberg of all  the
possible improvements to this area.  The removal of redundant calls to system calls was a
small improvement.  Literal propagation was probably the most significant improvement
along with loop unrolling. Further optimizations in this area are likely to yield the best
improvements to performance.

Future Optimizations

After studying the generated code, several other optimizations were identified that may
offer  additional  improvements  to  both  the  speed  of  execution  and  the  size  of  the
intermediate  and  executable  code.  The  next  few  paragraphs  describe  additional
optimizations and are organized in the order of the easiest to hardest to implement.

1. For  the  unrolled  descriptor  initializations  change  the  indexing  array  to  pointer
arithmetic which is faster. For example the following code fragment is modified as
follows: 

   r_frame.tend.d[0] = nulldesc;
   r_frame.tend.d[1] = nulldesc;
   _____________________________

   register dptr p;
   p = r_frame.tend.d;
   (p++)->dword = nulldesc;
   (p++)->dword = nulldesc;

2. Analyze the logic of loops and also unroll smaller ones. For example, the following
loop appears at the beginning of most functions.

   for (i = 0; i < r_nargs ; ++i)
      deref(&r_args[i], &r_frame.tend.d[i + 0]);
   for(i = r_nargs; i < 2 ; ++i)
      r_frame.tend.d[i + 0] = nulldesc;

In this case r_nargs cannot be greater than two because it was earlier declared to have
only two entries. It would be necessary to  guarantee that r_nargs can never be more
than two, but if it  is certain that there are exactly two elements then we can write the
initialization loop as follows:
   if(r_nargs > 0) {
      deref(&r_args[0], &r_frame.tend.d[0]);
      if (r_nargs > 1)
         deref(&r_args[1], &r_frame.tend.d[1]);
      else
         tend.d[1].dword = D_Null;
      }
   else
      tend.d[0].dword = D_Null;
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This optimization could lead to a gain in execution speed.  For example, if the unrolling
is performed on descriptors with array sizes of one or two, approximately 40% of these
loops would be unrolled.

3.  An easy and obvious solution  would be to simplify expressions  like i  + 0 which
commonly occur. This will not improve execution time because the C compiler will
catch this, but by removing it before writing the statement to the intermediate file, the
compile time of the C compiler will be improved.

4.  Another easy optimization would be to shorten variable names. This causes a penalty
by having to write long names such as {\tt{r_frame.tend.d}} to file and then having the
C compiler read it back in.  This could be changed to {\tt{r_f.t.d}}.  While this makes
the  intermediate  C  code  hard  to  read,  the  intermediate  code  is  not  meant  to  be
inspected by the user and will result in faster compilations.

5.  For the initialization loops present in all functions, remove the initialization of the
loop control variable when unnecessary.  Consider the following loop:

   for (i = 0; i < r_nargs ; ++i)
      deref(&r_args[i], &r_frame.tend.d[i + 0]);
   for(i = r_nargs; i < 2 ; ++i)
      r_frame.tend.d[i + 0] = nulldesc;

The variable i in the second loop does not need to be initialized since it is already at the
value that it is supposed to be for the second loop.  The next fragment of code illustrates
this change.
   for (i = 0; i < r_nargs ; ++i)
      deref(&r_args[i], &r_frame.tend.d[i + 0]);
   for( ; i < 2 ; ++i)
      r_frame.tend.d[i + 0] = nulldesc;

While this change is very easy, it  is questionable whether this will provide noticeable
improvement in execution except in large programs where these loops are very common.

6.  Assignments of the  r_frame.tend.d structures may be simplified. Consider the
following assignment:

   r_frame.tend.d[2] /* i */.vword.integr =
      r_frame.tend.d[4].vword.integr;
   r_frame.tend.d[2] /* i */.dword = D_Integer;

This could be changed into a single assignment as follows:
r_frame.tend.d[2] = r_frame.tend.d[4];

This optimization would require more work than the previously described ones.  Each
struct val_loc structure  would  have  to  be  examined,  including  the  context  in
which it is used in order to catch assignments such as this; however, these assignments
are very common and could lead to substantial gains in execution speed.

7.  Similarly,  perform the same simplified descriptor assignment  on global descriptor
locations. A method needs to be created for changing global assignments such as:

   globals[63] /* rnode */.dword = D_Integer;
   globals[63] /* rnode */.vword.integr = 1;

into
   globals[63] /* rnode */ = onedesc;
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where onedesc is a single descriptor that already contains the values of the dword and
vword being assigned. This could be performed by creating several constant decriptors
for the common values such as 0 or 1. Like the previous optimization, this change will
offer a smaller improvement to execution speed because global descriptor assignments
occur much less frequently.

8.  When a variable is dereferenced, it is often the case that the variable location is passed
in for both parameters to the  deref function.  For example,  in the following code
example,  r_frame.tend.d[7] is the variable being derefenced and the location
where  the  dereferenced  value  is  to  be  placed.  This  can  be  simplified  by creating
another version of  deref,  perhaps named  deref1,  that  takes a single argument,
dereferences it, and places the dereferenced value into the parameter location.

   deref(&r_frame.tend.d[7], &r_frame.tend.d[7]);

9.  Another issue is redundant constant initializations. Consider the following code:
   r_frame.tend.d[8].dword = D_Integer;
   r_frame.tend.d[8].vword.integr = 1;
   if (!(argp[1] /* level */.vword.integr== 1) )
      goto L19 /* bound */;
   r_frame.tend.d[8].dword = D_Integer;
   r_frame.tend.d[8].vword.integr = 1;

The descriptor location 8 is assigned the value of 1 and then a conditional statement is
performed which is followed by a possible  goto. If the jump does not occur then the
same  descriptor  location  is  assigned  the  same  value  over  again.  Clearly  the  second
assignment  is wasteful and needs to be eliminated.  This would require fairly aggressive
analysis of the intermediate code in order to catch these code sequences, but does offer
the benefits of increased execution speed and smaller code size.

A  more  difficult  optimization  that  offers  a  substantial  reduction  in  the  size  of  the
intermediate  and  executable  code  deals  with   the  initialization  functions  that  set  up
frames.  In  the  case  of  Ctree,  over  30%  of  the  generated  C  code  consists  of  these
functions.  For  example,  in  Ctree there  are  two  functions  named
P06i_set_value_Vtext and  P03n_unset_Vbool_coupler which  are
identical  except  for  their  frame  structures,  similarly  defined  as
PF06i_set_value_Vtext and  PF03n_unset_Vbool_coupler;  however,
these structures are identical.  A possible solution would be to write out one copy of each
unique frame structure along with its corresponding function that would initialize that
frame.  In addition to the reduction of code size this would result in faster compilations
and faster loading of the resulting executable.  This last optimizations is the most difficult
and  would  require  extensive  changes;  however,  this  optimization  offers  the  best
improvements in code size, execution time, and compile time.
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Part III: The Implementation of Unicon
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Chapter 26: The Unicon Translator
Unicon  is  implemented  as  a  minimal  addition  to  Icon.  Most  of  its  features  are
implemented by extending existing functions with new semantics, and by the addition of
new functions and keywords with no new syntax. Originally, the object-oriented facilities
were implemented  as  a  preprocessor  named  Idol  (Icon-drived object  language).  After
several years of experience and evolution, Idol became a part of Unicon. Concurrently
with this name change, thanks to Ray Pereda developing a version of Berkeley YACC for
Icon and Unicon, the Unicon translator was substantially modified from a line-oriented
preprocessor to a full parser that generates code by traversing the syntax tree. At this
point it is still reasonable to call the Unicon translator a preprocessor, but it has many of
the traits of a compiler.

26.1 Overview
The Unicon translator lives in uni/unicon/. In addition to many Unicon source files, it
uses the external tools iyacc and merr to generate its parser and syntax error message
tables, which depend on files unigram.y and meta.err, respectively. Unicon is written in
Unicon, creating a bootstrapping problem. When building from sources, some of the .icn
files can be translated by icont (the Icon translator, a C program). Those files that require
Unicon itself in order to compile are included in precompiled object format (in .u files) in
order to solve the bootstrapping problem.

26.2 Lexical Analysis
Unicon's lexical analyzer is written by hand, in Unicon, using a lex-compatible interface.
Some of its design is borrowed from the Icon lexical analyzer (which is handwritten C
code).  It  would  be  interesting  to  replace  Unicon's  lexical  analyzer  with  a  machine
generated lexical  analyzer  to  reduce the amount  of compiler  source code we have to
maintain.  The  lexical  analyzer  consists  of  a  function  yylex()  located  in
unicon/uni/unicon/unilex.icn, about 500 lines of code. 

Globals Comprising the Lex-compatible Public API 

The global declarations that exist in order to provide a Lex-compatible API include: 
$include "ytab_h.icn"                   # yacc's token categories
global yytext                           # lexeme
global yyin                             # source file we are 
reading
global yytoken                          # token (a record)
global yylineno, yycolno, yyfilename    # source location

Character Categories 

The lexical analyzer uses several csets for different character categories beyond the built-
in ones: 
global O, D, L, H, R, FS, IS, W, idchars

procedure init_csets()
   O  := '01234567'
   D  := &digits
   L  := tters ++ '_'≤
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   H  := &digits ++ 'abcdefABCDEF'
   R  := &digits ++ tters≤
   FS := 'fFlL'
   IS := 'uUlL'
   W  := ' \t\v'
   idchars := L ++ D
end

The Token Type 

The  record  type  storing  each  token's  information  just  bundles  together  the  syntactic
category (an integer), lexeme (a string), and location at which the token occurred. This is
pretty minimalist. 
record token(tok, s, line, column, filename)

Global Variables for Error Handling and Debugging 

Several Remaining global variables are mainly used for error handling, and for debugging
the lexical analyzer itself. 

Reserved Words 

Global reswords() creates and becomes a table holding the Unicon reserved words. For
each word, a pair of integers [tokenflags, category] is kept. Language design note: tables
in this language need a "literal" format. 
procedure reswords()
static t
initial {
   t := table([Beginner+Ender, IDENT])

   t["abstract"] := [0, ABSTRACT]
   t["break"] := [Beginner+Ender, BREAK]
   t["by"] := [0, BY]
   t["case"] := [Beginner, CASE]
   t["class"] := [0, CLASS]
   t["create"] := [Beginner, CREATE]
   t["default"] := [Beginner, DEFAULT]
   t["do"] := [0, DO]
   t["else"] := [0, ELSE]
   t["end"] := [Beginner, END]
   t["every"] := [Beginner, EVERY]
   t["fail"] := [Beginner+Ender, FAIL]
   t["global"] := [0, GLOBAL]
   t["if"] := [Beginner, IF]
   t["import"] := [0, IMPORT]
   t["initial"] := [Beginner, iconINITIAL]
   t["initially"] := [Ender, INITIALLY]
   t["invocable"] := [0, INVOCABLE]
   t["link"] := [0, LINK]
   t["local"] := [Beginner, LOCAL]
   t["method"] := [0, METHOD]
   t["next"] := [Beginner+Ender, NEXT]
   t["not"] := [Beginner, NOT]
   t["of"] := [0, OF]
   t["package"] := [0, PACKAGE]
   t["procedure"] := [0, PROCEDURE]
   t["record"] := [0, RECORD]
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   t["repeat"] := [Beginner, REPEAT]
   t["return"] := [Beginner+Ender, RETURN]
   t["static"] := [Beginner, STATIC]
   t["suspend"] := [Beginner+Ender, SUSPEND]
   t["then"] := [0, THEN]
   t["to"] := [0, TO]
   t["until"] := [Beginner, UNTIL]
   t["while"] := [Beginner, WHILE]
}
   return t
end

Lexical Analyzer Initialization and the Big Inhale 

A function, yylex_reinit() is called the first time yylex() is called, along with each time
the  compiler  moves  to  process  a  new file  named  on the  command  line.  Along with
initializing the public  API variables,  this  function reads in the entire file,  in a single
global string variable, named "buffer". This allows extremely fast subsequent processing,
which does not file I/O for each token, while avoiding complex buffering sometimes done
to reduce file I/O costs in compilers. 

This "big-inhale" model did not work well on original 128K PDP-11 UNIX computers,
but works well in this century. At present, the code assumes Unicon source files are less
than  a  megabyte  --  a  lazy programmer's  error.  Although Unicon  programs  are  much
shorter than C programs, an upper limit of 1MB is bound to be reached someday. 
procedure yylex_reinit()
   yytext := ""
   yylineno := 0
   yycolno := 1
   lastchar := ""
   if type(yyin) == "file" then
      buffer := reads(yyin, 1000000)
   else
      buffer := yyin
   tokflags := 0
end

Semicolon Insertion 

Icon and Unicon insert semicolons for you automatically. This is an easy lexical analyzer
trick. The lexical analyzer requires one token of lookahead. Between each two tokens, it
asks:  was  there  a  newline?  If  yes,  was  the  token  before  the  newline  one  that  could
conceivably be the end of an expression, and was the token at the start of the new line one
that could conceivably start a new expression? If it would be legal to do so, it saves the
new token and returns a semicolon instead. 

This little procedure is entirely hidden from the regular lexical analyzer code by writing
that regular code in a helper function yylex2(), and writing the semicolon insertion logic
in a yylex() function that calls yylex2 when it needs a new token. 

Initialization for the yylex() function shows the static variables used to implement the one
token of lookahead. If the global variable buffer doesn't hold a string anymore, /buffer
will succeed and it must be that we are at end-of-file and should return 0. 
procedure yylex()
  static saved_tok, saved_yytext
  local rv, ender
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  initial {
      if /buffer then
          yylex_reinit()
     }
   if /buffer then {
      if \debuglex then
         write("yylex() : 0")
      return 0
      }

If we inserted a semicolon last time we were called, the saved_tok will be the first token
of the next line; we should return it. 
  if \saved_tok then {
    rv := saved_tok
    saved_tok := llν
    yytext := saved_yytext
    yylval := yytoken := token(rv, yytext, yylineno, yycolno, 
yyfilename)
    if \debuglex then
      write("yylex() : ",tokenstr(rv), "\t", image(yytext))
    return rv
  }

Otherwise, we should obtain the next token by calling yylex2(). We have to check for end
of file, remember if the last  token could end an expression,  call  yylex2(), and update
buffer to be the smaller string remaining after the token. 
  ender := iand(tokflags, Ender)
  tokflags := 0
  if *buffer=0 then {
      buffer := llν
      if \debuglex then
          write("yylex() : EOFX")
      return EOFX
     }
  buffer ? {
      if rv := yylex2() then {
          buffer := tab(0)
      }
      else {
         buffer := llν
         yytext := ""
         if \debuglex then
             write("yylex() : EOFX")
         return EOFX
      }
  }

After fetching a new token, we have to decide whether to insert a semicolon or not. This
is based on global variable ender (whether the previous token could end an expression)
and global variable tokflags (which holds both whether the current token could begin an
expression, and whether a newline occurred between the last token and the current token.
iand() is a bitwise AND, equivalen to C language & operator, used to pick bits out of a set
of boolean flags encoded as bits within an integer. 
  if ender~=0 & iand(tokflags, Beginner)~=0 & iand(tokflags, 
Newline)~=0 then {
    saved_tok := rv
    saved_yytext := yytext
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    yytext := ";"
    rv := SEMICOL
    }

Returning a token requires allocation of a token() record instance, which is stored in a
global variable. 
   yylval := yytoken := token(rv, yytext, yylineno, yycolno, 
yyfilename)
   if \debuglex then
      write("yylex() : ", tokenstr(rv), "\t", image(yytext))
   return rv
end

The Real Lexical Analyzer Function, yylex2()

This function maintains a table of functions, calling a helper function depending on what
the first character in the token is. 
procedure yylex2()
static punc_table
initial {
   init_csets()
   reswords := reswords()
   punc_table := table(uni_error)
   punc_table["'"] := do_literal
   punc_table["\""] := do_literal
   punc_table["!"] := do_bang
   punc_table["%"] := do_mod
   punc_table["&"] := do_and
   punc_table["*"] := do_star
   punc_table["+"] := do_plus
   punc_table["-"] := do_minus
   punc_table["."] := do_dot
   punc_table["/"] := do_slash
   punc_table[":"] := do_colon
   punc_table["<"] := do_less
   punc_table["="] := do_equal
   punc_table[">"] := do_greater
   punc_table["?"] := do_qmark
   punc_table["@"] := do_at
   punc_table["\\"] := do_backslash
   punc_table["^"] := do_caret
   punc_table["|"] := do_or
   punc_table["~"] := do_tilde
   punc_table["("] := do_lparen
   punc_table[")"] := do_rparen
   punc_table["["] := do_lbrack
   punc_table["]"] := do_rbrack
   punc_table["{"] := do_lbrace
   punc_table["}"] := do_rbrace
   punc_table[","] := do_comma
   punc_table[";"] := do_semi
   punc_table["$"] := do_dollar
   every punc_table[!&digits] := do_digits
   every punc_table["_" | ! tters] := do_letters≤
   }
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The main lexical analyzer code strips comments and whitespace, and calls the function
table for the first non-whitespace character it finds. Note support for #line directives, and
the use of string scanning. 
   yycolno +:= *yytext

   repeat {
       if pos(0) then fail
       if 
           ="#" then {
               if ="line " then {
                   if yylineno := integer(tab(many(&digits))) 
then {
                       =" \""
                       yyfilename := tab(find("\"")|0)
                   }
               }
               tab(find("\n") | 0)
               next
           }
       if ="\n" then {
           yylineno +:= 1
           yycolno := 1
           if tokflags < Newline then
               tokflags +:= Newline
           next
       }
       if tab(any(' ')) then { yycolno +:= 1; next }
       if tab(any('\v\^l')) then { next }
       if tab(any('\t')) then {
           yycolno +:= 1
           while (yycolno-1) % 8 ~= 0 do yycolno +:= 1
           next
       }

       yytext := move(1)
       return punc_table[yytext]()
   }
end

The functions  in  the punctuation  table  select  integer  codes and match  the rest  of  the
lexeme.  do_comma()  illustrates  an  unambiguous  token  selection,  while  do_plus()
illustrates a more common case where the "+" character could start any of 5 different
tokens depending on the character(s)  that  follow it.  Tokens starting with "letters" are
looked  up in  a  reserved words  table,  which  tells  whether  they are  special,  or  just  a
variable name. 
procedure do_comma()
   return COMMA
end

procedure do_plus()
   if yytext ||:= =":" then {
      if yytext ||:= ="=" then { return AUGPLUS }
         return PCOLON
      }
   if yytext ||:= ="+" then {
      if yytext ||:= =":=" then {return AUGUNION}



310

         return UNION
      }
   tokflags +:= Beginner
   return PLUS
end

procedure do_letters()
   yytext ||:= tab(many(idchars))
   x := reswords[yytext]
   tokflags +:= x[1]
   return x[2]
end

26.3 The Unicon Parser
Unicon's  parser  is  written  using  a  YACC grammar;  a  graduate  student  (Ray Pereda)
modified Berkeley's public domain version of YACC (byacc) to generate Unicon code,
following in the footsteps of someone who had earlier modified it to generate Java. The
Unicon parser lives in uni/unicon/unigram.y in the source distribution (22kB, 700 lines,
119 terminals, 71 nonterminals). Unicon's YACC grammar was obtained by copying the
Icon grammar, and adding Unicon syntax constructs. Prior to this time the object-oriented
dialect of Icon was called Idol and really was a line-oriented preprocessor instead of a
compiler. 

The start  symbol for the grammar is  named  program,  and the semantic action code
fragment for this nonterminal calls the rest of the compiler (semantic analysis and code
generation)  directly on  the  root  of  the  syntax  tree,  rather  than  storing  it  in  a  global
variable for the main() procedure to examine. 
program : decls EOFX { Progend($1);} ;

Many context free grammar rules are recursive, with an empty production to terminate the
recursion. The rule for declarations is typical: 
decls   : { $$ := EmptyNode }
        | decls decl {
           if yynerrs = 0 then iwrites(&errout,".")
           $$ := node("decls", $1, $2)
           } ;

The "semantic action" (code fragment) for every production rule builds a syntax tree node
and assigns it to $$ for the nonterminal left-hand side of the rule.

Another  common  grammar  pattern  is  a  production  rule  that  has  many  different
alternatives, such as the one for individual declarations: 
decl    : record
        | proc
        | global
        | link
        | package
        | import
        | invocable
        | cl
        ;

For such "unary" productions, child's syntax tree node suffices for the parent, no new tree
node is needed. 



311

Some nonterminals mostly correspond to a specific sequence of terminals, as is the case
for package references: 
packageref : IDENT COLONCOLON IDENT { $$ := node("packageref", 
$1,$2,$3) } 
   | COLONCOLON IDENT { $$ := node("packageref", $1,$2) }  
   ;

The lexical analyzer has already constructed a valid "leaf" for each terminal symbol, so if
a production rule has only one terminal symbol in it, for a syntax tree we can simply use
the leaf for that nonterminal (for a parse tree, we would need to allocate an extra unary
internal node): 
lnkfile : IDENT ;
        | STRINGLIT ;

The expressions (which comprise about half of the grammar) use a separate nonterminal
for  each level  of  precedence  intead  of  YACC's  declarations  for  handling  precedence
(%left, %right, etc). The Icon and Unicon grammars approach 20 levels of nonterminals.
A typical rule looks like: 
expr6   : expr7 ;
        | expr6 PLUS expr7 { $$ := node("Bplus", $1,$2,$3);} ;
        | expr6 DIFF expr7 { $$ := node("Bdiff", $1,$2,$3);} ;
        | expr6 UNION expr7 { $$ := node("Bunion", $1,$2,$3);} ;
        | expr6 MINUS expr7 { $$ := node("Bminus", $1,$2,$3);} ;

The "B" stands for "binary", to distinguish these operators from their unary brethren. The
20 levels of nonterminals approach is inherited from Icon and probably makes the parser
larger than it has to be, but taking these nonterminals out doesn't seem to help much.

Syntax Error Handling 

Icon employed a relatively clever approach to doing syntax error messages with YACC --
the parse state at the time of error is enough to do fairly good diagnoses. But, every time
the  grammar  changed,  the  parse  state  numbers  could  change  wildly.  For  Unicon  I
developed  the  Merr  tool,  which  associates  parse  error  example  fragments  with  the
corresponding  diagnostic  error  message,  and  detects/infers  the  parse  state  for  you,
reducing the maintenance problem when changing the grammar. Merr also considers the
current input token in deciding what error message to emit, making it fundamentally more
precise than Icon's approach. 

26.4 The Unicon Preprocessor
The Icon language originally did not include any preprocessor, but eventually, a simple
one was introduced, with ability to include headers, define symbolic constants (macros
without  parameters),  and  handle  conditional  compilation  (ifdef).  The  preprocessor
implementation in Unicon was written by Bob Alexander, and came to Unicon by way of
Jcon, an Icon-to-JVM translator. This preprocessor is written in a single 600+ line file,
uni/unicon/preproce.icn.

The external public interface of the preprocessor is line-oriented, consisting of a generator
preproc(filename,  predefinedsyms)  which  suspends  each  line  of  the  output,  one  after
another. Its invocation from the main() procedure looks like: 
   yyin := ""
   every yyin ||:= preprocessor(fName, uni_predefs) do
      yyin ||:= "\n"
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Since the preprocessor outputs line-by-line, there is a mismatch between it and the lexical
analyzer's big-inhale model.  The preprocessor could be modified to fit better with the
lexical analyzer or vice versa. 

The  preprocessor  function  takes  the  filename  to  read  from,  along  with  a  table  of
predefined symbols which allows the preprocessor to respond to lines like 
$ifdef _SQL

based on what libraries are available and how Unicon was built on a given platform. 

The preprocessor() function itself starts each call off with initializations: 
    static nonpunctuation
    initial {
        nonpunctuation := &letters ++ &digits ++ ' \t\f\r'≤
    }

    preproc_new(fname,predefined_syms)

The initialization code opens fname, creates empty stacks to keep track of nested $ifdef's
and $include's, initializes counters to 0 and so forth. 

The preprocessor is line-oriented. For each line, it looks for a preprocessor directive, and
if it does not find one, it just scans for symbols to replace and returns the line. The main
loop looks like 
   while line := preproc_read() do line ? {
      preproc_space()       # eat whitespace
      if (="#" & match("line")) | (="$" & any(nonpunctuation)) 
then {
         suspend preproc_scan_directive()
         }
      else {
         &pos := 1
         suspend preproc_scan_text()
         }
      }

The procedures preproc_scan_directive() and preproc_scan_text()  work on special  and
ordinary lines, respectively. The line is not a parameter because it is held in the current
string  scanning  environment.  The  preproc_scan_directive()  starts  by  discardign
whitespace and identifying the first word on the line (which must be a valid preprocessor
directive). A case expression handles the various directives (define, undef, ifdef, etc.).
Defined symbols  are stored in  a table.  $ifdef and $ifndef  are  handled using a global
variable  preproc_if_state  to  track  the  boolean  conditions.  A  count  of  $ifdef's  is
maintained, in order to handle matching endif's. 

Include files  are  handled using a  stack,  but  an additional  set  of  filenames  is  kept  to
prevent infinite recursion when files include each other. When a new include directive is
encountered it is checked against the preproc_include_set and if OK, it is opened. The
including  file  (and  its  associated  name,  line,  etc)  are  pushed  onto  a  list  named
preproc_file_stack. It is possible to run out of open files under this model, although this is
not easy under modern operating systems. 

Include files are searched on an include file path, consisting of a list of directories given
on an optional environment variable (LPATH) followed by a list of standard directories.
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The standard directories are expected to be found relative to the location of the virtual
machine binaries. 

The procedure preproc_scan_text has the relatively simple job of replacing any symbols
by their definitions within an ordinary source line. Since macros do not have parameters,
it is vastly simpler than in a C preprocessor. The main challenges are to avoid macro
substitutions when a symbol is in a comment or within quotes (string or cset literals). An
additional issue is to handle multiline string literals, which occur in Icon when a string
literal is not closed on a line, and instead the line ends with an underscore indicating that
it is continued on the next line. Skipping over quoted text sounds simple, but is trickier
than it looks. Escape characters mean you can't just look for the closing quote without
considering what comes before it, and you can't just look at the preceding character since
it might have been escaped, as in "\\". The code looks similar to: 
repeat {
   while tab(upto('"\\')) do {
      case move(1) of {
         "\\": move(1)
         default: {
            break break
            }
         }
      }
   # ...
   if not match("_",,-1) then
      break
   &subject := preproc_read() | fail⊂
   # ...
   }

The code in preproc_read() for reading a line does a regular Icon read(); end of file causes
the preprocessor file_stack to be popped for the previous file's information. Performance
has not been perceived as a significant  problem, it  it  would be interesting to convert
preproc_read()  to  use a  big-inhale  model  to  see  if  any statistical  difference could  be
observed.  When  an include  is  encountered  under  a  big-inhale,  the  saved state  would
contain the string of remaining file contents, instead of the open file value. 

26.5 Semantic Analysis
The Unicon translator's semantic analysis is minimal, and revolves mainly around object-
oriented features such as inheritance and package imports. Before we can look at those
things, we need to look at the syntax tree structure.

In conventional YACC, a %union declaration is necessary to handle the varying types of
objects on the value stack including the type used for syntax tree nodes, but iyacc has no
need of this awkward mechanism: the value stack like all structure types can hold any
type of value in each slot. Similarly, tree nodes can hold children of any type, potentially
eliminating any awkwardness of mixing tokens and internal nodes. Of course, you do still
have to check what kind of value you are working with. 

Parse Tree Nodes 

uni/unicon/tree.icn  contains  procedures  to  handle  the  syntax  tree  node  data  type,
including  both  the  following declaration  and the  yyprint()  traversal  function  we'll  be
discussing in today's lecture. 
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record treenode(label, children)

holds one node worth of information. For convenience, a procedure node(label, kids[])
takes an arbitrary number of parameters and constructs the list of children for you. Leaves
have a null children field. 

"Code Generation" in the Unicon Translator 

In a regular preprocessor, there is no code generation, there is a text-filter model in which
the preprocessor writes out (modified) versions of the lines it  reads in. In the Unicon
translator, the code that is written out is produced by a traversal of the syntax tree. The
same technique might be used by a "pretty printer". We will explore this aspect of the
Unicon translator  as the best  available  demonstration of working with Unicon syntax
trees. Later on we will consider more "real" code generation in the virtual machine and
the optimizing compiler. 

Earlier we saw that the start symbol of the Unicon grammar had a semantic action that
called a procedure Progend(). We will cover most of that procedure next week since it is
all about object-orientation, but at the end Progend(), a call to yyprint() performs the tree
traversal for code generation. A classic tree traversal pattern would look like: 
procedure traverse(node)
   if node is an internal node {
      every child := ! node.children do traverse(child)
      generate code for this internal node (postfix)
      }
   else
      generate code for this leaf
end

The code generator traversal yyprint() is a lot more complicated than that, but fits the
general pattern. The main work done at various nodes is to write some text to the output
file, yyout. Most ordinary internal nodes are of type treenode as described above. But
because there are several kinds of internal nodes and several kinds of leaves, the "if node
is an internal node" is implemented as a case expression. Besides a regular treenode, the
other kinds of internal nodes are objects of type declaration, class, and argument list. For
regular treenodes, another case expression on the node's label field is used to determine
what kind of code to generate, if any, besides visiting children and generating their code. 

The default behavior for an internal node is to just visit  the children, generating their
code. For ordinary syntax constructs (if, while, etc.) this works great and a copy of the
code is written out, token by token. But several exceptions occur, mainly for the pieces of
Unicon syntax that extend Icon's repertoire. For example, packages and imports are not in
Icon and require special treatment. 
procedure yyprint(node)
   static lasttok
   case type(node) of {
      "treenode" : {
         case node.label of {
         "package": { } # handled by semantic analysis
         "import": { print_imports(node.children[2]) }
         # implement packages via name mangling
         "packageref": {
             if *node.children = 2 then
                 yyprint(node.children[2]) # ::ident
             else { # ident :: ident
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                yyprint(node.children[1])
                writes(yyout, "__")
                outcol +:= ((* writes(yyout, node.children[3].s))
+ 2)
                }
            }

New syntax constructs such as procedure parameter defaults and type restrictions,  and
variable initializers, are other examples where the default traversal would output things
illegal in Icon. They are implemented by skipping some of the children (assignment and
value) in the regular pass, and adding extra code elsewhere, discussed below. 
         "varlist2"|"stalist2": { yyprint(node.children[1]) }
         "varlist4"|"stalist4": {
            yyprint(node.children[1])
            yyprint(node.children[2])
            yyprint(node.children[3])
            }

Much of this special logic is orchestrated by the code for traversing a procedure; it can
visit its arguments and variable declarations and apply special rules to them. 
         "proc": {
            yyprint(node.children[1])
            every yyprint(node.children[2 to 3])
            if exists_statlists(node.children[3]) then {
               ini := node.children[4]
               yyprint("\ninitial {")
               if ini ~=== EmptyNode then { # append into 
existing initial
                  yyprint(ini.children[2])
                  yyprint(";\n")
                  }
               yystalists(node.children[3])
               yyprint("\n}\n")
               }
            else
               every yyprint(node.children[4])
            (node.children[1].fields).coercions()
            yyvarlists(node.children[3])
            yyprint(node.children[5])
            yyprint(node.children[6])
            }

The default behavior of visiting one's children is very simple, as is the handling of other
kinds of internal nodes, which are objects. For the objects, a method Write() is invoked. 
         "error": fail
         default:
            every yyprint(!node.children)
         }
      "declaration__state" | "Class__state" | "argList__state":
         node.Write(yyout)

The outer case expression of yyprint() continues with various kinds of leaf (token) nodes.
These mainly know how to write their lexemes out. But, a lot of effort is made to try to
keep line and column number information consistent. Variables outline and outcol are
maintained as each token is written out. Integers and string literals found in the syntax
tree are written out as themselves. Since they have no attached lexical attributes, they are
a bit suspect in terms of maintaining debugging consistency. It turns out the reason they
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occur at all, and the reason they have no source lexical attributes, is that artificial syntax
subtrees  are  generated  to  handle  certain  object-oriented  constructs,  and  within  those
subtrees strings and integers may be placed, which do not correspond to anywhere in the
source code. 
      "integer": {
         writes(yyout, node); outcol +:= *string(node)
         }
      "string": {
         node ? {
            while writes(yyout, tab(find("\n")+1)) do {
               outline+:=1; outcol:=1;
               }
            node := tab(0)
            }
         writes(yyout, node); outcol +:= *node
         }

"Normally", tokens are written out at exactly the line and column they appear at in the
source code. But a myriad of constructs may bump them around. If the output falls behind
(in lines,  or columns) extra whitespace can be inserted to stay in sync. If output gets
ahead by lines, a #line directive can back it up, but if output gets ahead by columns, there
is nothing much one can do, except make sure subsequent tokens don't accidentally get
attached/concatenated onto earlier tokens. This occurs, for example, when the output code
for an object-oriented construct in an expression is longer than the source expression,
perhaps due to name mangling. Specific token combinations are checked, but the list here
may be incomplete  (possible  BUG!).  For source tokens,  not  only might  the line  and
column change, the filename could be different as well. 
      "token": {
         if outfilename ~== node.filename | outline > node.line 
then {
            write(yyout,"\n#line ", node.line-1," \"", 
node.filename,"\"")
            outline := node.line
            outcol := 1
            outfilename := node.filename
            }
         while outline < node.line do {
            write(yyout); outline +:= 1; outcol := 1
            }
         if outcol >= node.column then {
            # force space between idents and reserved words, and 
other
            # deadly combinations (need to add some more)
            if ((\lasttok).tok = (IDENT|INTLIT|REALLIT) & 
reswords[node.s][2]~=IDENT)|
                (((\lasttok).tok = NMLT) & (node.tok = MINUS)) |
                ((\lasttok).tok = node.tok = PLUS) |
                ((\lasttok).tok = node.tok = MINUS) |
                ((reswords[(\lasttok).s][2]~=IDENT) & 
(node.tok=(IDENT|INTLIT|REALLIT)))|
                ((reswords[(\lasttok).s][2]~=IDENT) & 
(reswords[node.s][2]~=IDENT))
                   then
               writes(yyout, " ")
            }



317

         else
            while outcol < node.column do { writes(yyout, " "); 
outcol +:= 1 }

Most tokens' lexemes are finally written out by writing node.s: 
         writes(yyout, node.s)
         outcol +:= *node.s
         lasttok := node
         }
      "null": { }
      default: write("its a ", type(node))
      }
end

Keywords 

Besides the large set of interesting reserved words, Icon and Unicon have another set of
predefined special words called keywords. These words are prefixed by an ampersand, for
example, &subject holds the current "subject" string being examined by string scanning.
A procedure Keyword(x1,x2)  semantically checks that an identifier  following a unary
ampersand is one of the valid keyword names. The valid names are kept in a set data
structure. 

26.6 Object Oriented Facilities 
Unicon features classes, packages, and a novel multiple inheritance mechanism. These
items are implemented entirely within the Unicon translator. The Icon virtual machine
thusfar has only the slightest  of extensions  for object-orientation,  specifically,  the dot
operator has been extended to handle objects and method invocation. 

The Unicon OOP facilities were originally prototyped as a semester class project in a
"special topics" graduate course. Writing the prototype in a very high-level language like
Icon, and developing it as a preprocessor with name mangling, allowed the initial class
mechanism to be developed in a single evening, and a fairly full,  usable system with
working inheritance to be developed in the first weekend. By the end of the semester, the
system was robust enough to write it in itself, and it was released to the public shortly
afterwards as a package for Icon called "Idol". Many many improvements were made
after this point, often at the suggestion of users. 

An initial design goal was to make the absolute smallest additions to the language that
were necessary to support object-orientation. Classes were viewed as a version of Icon's
record data type, retaining its syntax for fields (member variables), but appending a set of
associated procedures. Because records have no concept of public and private, neither did
classes. Another graduate student criticized this lack of privacy, and for several versions,
everything was made private unless an explicit public keyword was used. But eventually
support for privacy was dropped on the grounds that it added no positive capabilities and
was un-Iconish. The existence of classes with hundreds of "getter" and "setter" methods
was considered a direct proof that "private" was idiotic in a rapid prototyping language. 

The Code Generation Model for Classes 

"unicon -E foo" will show you what code is generated for Unicon file foo.icn. If foo.icn
contains classes, you can enjoy the code generation model and experiment to see what it
does under various circumstances. As a first example, consider 
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class A(x,y)
   method m()
      write("hello")
   end
end

These five lines generate 25 lines for Icont to translate into virtual machine code. The
first two lines are line directives showing from whence this source code originated: 
#line 0 "/tmp/uni13804206"
#line 0 "a.icn"

Global  declarations  (including procedures)  would  be passed  through the  preprocessor
pretty nearly intact, but for the class, we get a bunch of very different code. Methods are
written out, with names mangled to a classname_methodname format. 
procedure A_m(self)

#line 2 "a.icn"
     write("hello");
end

Two record  types  are  defined,  one  for  the  class  instances  and one  for  the  "methods
vector", or "operation record". The methods vector is instantiated exactly once in a global
variable in classname__oprec format. 
record A__state(__s,__m,x,y)
record A__methods(m)
global A__oprec

The default constructor for a class takes fields as parameters and uses them directly for
initialization purposes. The first time it is called, a methods vector is created. Instances
are given a pointer to themselves in an __s field (mainly for historical reasons) and to the
methods  vector  in  an __m field.  Current  NMSU grad student  Sumant  Tambe did an
independent study project to get rid of __s and __m with partial success, but his work is
not finished or robust enough to be enabled by default. 
procedure A(x,y)
local self,clone
initial {
  if /A__oprec then Ainitialize()
  }
  self := A__state( ll,A__oprec,x,y)ν
  self.__s := self
  return self
end

procedure Ainitialize()
  initial A__oprec := A__methods(A_m)
end

Symbols and Scope Resolution 

One of the basic aspects of semantic analysis is: for each variable, where was it declared,
so we can identify its address, etc. Unicon inherits from Icon the curious convenience that
variables  do  not  have  to  be  declared:  they  are  local  by  default.  This  feature  is
implemented by deferring the local  vs. global decision until  link time,  so the Unicon
translator has no local vs. global issues. Class variables, however, have to be identified,
and  looked  up  relative  to  the  implicit  "self"  variable.  A  family  of  procedures  in
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uni/unicon/tree.icn with names starting "scopecheck" go through the syntax tree looking
for such class variables. Like most tree traversals, this is a recursive process, and since
local and parameter declarations override class variables,  there are helper functions to
walk  through  subtrees  building  mini-symbol  tables  such  as  local_vars  in
scopecheck_proc(node): 
   # Build local_vars from the params and local var expressions.
   local_vars := set()
   extract_identifiers(node.children[1].fields, local_vars)
   extract_identifiers(node.children[3], local_vars)

Eventually, every identifier in every expression is checked against local_vars, and if not
found there, against the class variables stored in a variable self_vars: 
   self_vars := set()
   every insert(self_vars, c.foreachmethod().name)
   every insert(self_vars, c.foreachfield())
   every insert(self_vars, (!c.ifields).ident)
   every insert(self_vars, (!c.imethods).ident)

For an IDENT node, the tests boil down to: 
   if node.tok = IDENT then {
      if not member(\local_vars, node.s) then {
         if member(\self_vars, node.s) then
            node.s := "self." || node.s
         else 
            node.s := mangle_sym(node.s)
      }
   }

Undeclared locals and globals are mangled to include the current package name if there is
one. 

Inheritance 

Inheritance means: creating a class that is similar to an existing class. In object-oriented
literature there is "abstract inheritance" in which a class supports all the same operations
with the same signatures, and there is concrete inheritance in which actual code is shared.
Early object-oriented languages supported only concrete inheritance, while more recent
languages  tend  to  discourage  it.  Unicon  is  not  typed  at  compile  time,  so  abstract
inheritance is not a big deal. There are abstract methods, and classes whose every method
is abstract, but the use of abstract is mainly for documentation: subclass authors must
provide certain methods. Anyhow, the syntax of inheritance in Unicon is 
class subclass : super1 : super2 : ... ( ...fields... )

The semantics of inheritance, and particularly of multiple inheritance, are interesting in
Unicon; the implementation is relatively simple. An example of inheritance is given by
class Class, from uni/unicon/idol.icn 
class declaration(name,fields,tag,lptoken,rptoken)
   ...
end
...
class Class : declaration (supers,
                           methods,
                           text,
                           imethods,
                           ifields,
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                           glob,
                           linkfile,
                           dir,
                           unmangled_name,
                           supers_node)

Unique  perspective  on  inheritance  in  Unicon  comes  from  the  actual  acquisition  of
inherited data fields and methods by the subclass. Some object-oriented languages do this
inheritance "by aggregation", creating a copy of the superclass in the subclass. This is
fine, but it makes "overriding" an anomaly, when overriding the parent with new/different
behavior is entirely routine. Unicon instead inherits by the child looking for things in the
parent (and the parent's parent, etc.) that they don't already have. In the above example,
class declaration effectively appends 5 fields from class declaration onto the end of its
field list. The generated code for instances looks like 
record Class__state(__s,__m,
                    supers,methods,text,imethods,ifields,
                    glob,linkfile,dir,unmangled_name,supers_node,
                    name,fields,tag,lptoken,rptoken)

The inheritance semantics is called "closure based" because the process of looking for
things to add from parent superclasses iterates until no new information can be added,
after which the subclass is said to be closed on its parents. Other forms of closure appear
frequently in CS. 

Implementing Multiple Inheritance in Unicon 

The actual code in the Unicon translator is, by analogy to transitive closure, looking for
things to inherit via a depthfirst traversal of the inheritance graph. Multiple inheritance
can be separated out into two portions: 

1. a  method  transitive_closure()  that  finds  all  superclasses  and  provides  a
linearization  of  them,  flattening  the  graph  into  a  single  ordered  list  of  all
superclasses 

2. a method resolve() that walks the list and looks for classes and fields to add. 

Method transitive_closure() is one of the cleaner demonstrations of why Unicon is a fun
language in which to write complex algorithms. It is walking through a class graph, but
by the way it is not recursive. 
  method transitive_closure()
    count := supers.size()
    while count > 0 do {
        added := taque()
        every sc := supers.foreach() do {
          if /(super := classes.lookup(sc)) then
            halt("class/transitive_closure: _
                  couldn't find superclass ",sc)
          every supersuper := super.foreachsuper() do {
            if / self.supers.lookup(supersuper) &
                 /added.lookup(supersuper) then {
              added.insert(supersuper)
            }
          }
        }
        count := added.size()
        every self.supers.insert(added.foreach())
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    }
  end

Now,  given what  I've said  about  Unicon providing a  depthfirst  inheritance  hierarchy
semantics, what is wrong with this picture? The code is stable and hasn't needed changes
in several years, so I am not fishing for syntax bugs, or claiming that there is a bug. But
there is something odd. A chocolate "peanut butter cup" is available in my office for the
first correct description of the problem. 

The method resolve() within class Class finds the inherited fields and methods from the
linearized list of superclasses. 
  #
  # resolve -- primary inheritance resolution utility
  #
  method resolve()
    #
    # these are lists of [class , ident] records
    #
    self.imethods := []
    self.ifields := []
    ipublics := []
    addedfields := table()
    addedmethods := table()
    every sc := supers.foreach() do {
        if /(superclass := classes.lookup(sc)) then
            halt("class/resolve: couldn't find superclass ",sc)
        every superclassfield := superclass.foreachfield() do {
            if /self.fields.lookup(superclassfield) &
               /addedfields[superclassfield] then {
                addedfields[superclassfield] := superclassfield
                put ( self.ifields , 
classident(sc,superclassfield) )
                if superclass.ispublic(superclassfield) then
                    put( ipublics, classident(sc,superclassfield)
)
            } else if \strict then {
                warn("class/resolve: '",sc,"' field 
'",superclassfield,
                     "' is redeclared in subclass ",self.name)
            }
        }
        every superclassmethod := 
(superclass.foreachmethod()).name() do {
            if /self.methods.lookup(superclassmethod) &
               /addedmethods[superclassmethod] then {
                addedmethods[superclassmethod] := 
superclassmethod
                put ( self.imethods, 
classident(sc,superclassmethod) )
            }
        }
        every public := (!ipublics) do {
            if public.Class == sc then
                put (self.imethods, classident(sc,public.ident))
        }
    }
  end
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Class and Package Specifications 

In the "old days" of  Unicon's  ancestor  Idol,  you could only inherit  from a class that
appeared in the same source file. Anything else poses a librarian's problem of identifying
from what file to inherit. Java, for instances, takes a brute-force approach of one class per
file.

Unicon generates in each source directory an NDBM database (named uniclass.dir and
uniclass.pag) that includes a mapping from class name to: what file the class lives in,
plus,  what  superclasses,  fields,  and  methods  appear  in  that  class.  From  these
specifications, "link" declarations are generated for superclasses within subclass modules,
plus  the  subclass  can  perform  inheritance  resolution.  The  code  to  find  a  class
specification is given in idol.icn's fetchspec(). A key fragment looks like 
   if f := open(dir || "/" || env, "dr") then {
      if s := fetch(f, name) then {
         close(f)
         return db_entry(dir, s)
         }
      close(f)
      }

Unicon  searches  for  "link"  declarations  in  a  particular  order,  given  by  the  current
directory  followed  by  directories  in  an  IPATH  (Icode  path,  or  perhaps  Icon  path)
environment variable, followed by system library directories such as ipl/lib and uni/lib.
This same list of directories is searched for inherited classes. 

The string stored in uniclass.dir and returned from fetch() for class Class is: 
idol.icn
class Class : 
declaration(supers,methods,text,imethods,ifields,glob,linkfile,di
r,unmangled_name,supers_node)
ismethod
isfield
Read
ReadBody
has_initially
ispublic
foreachmethod
foreachsuper
foreachfield
isvarg
transitive_closure
writedecl
WriteSpec
writemethods
Write
resolve
end

Unicon's Progend() revisited 

Having presented scope resolution,  inheritance, and importing packages and inheriting
classes  from  other  files  via  the  uniclass.dir  NDBM  files,  we  can  finally  show  the
complete semantic analysis in the Unicon compiler, prior to writing out the syntax tree as
Icon code: 
procedure Progend(x1)
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   package_level_syms := set()
   package_level_class_syms := set()
   set_package_level_syms(x1)
   scopecheck_superclass_decs(x1)

   outline := 1
   outcol := 1
   #
   # export specifications for each class
   #
   native := set()
   every cl := classes.foreach_t() do {
      cl.WriteSpec()
      insert(native, cl)
      }
   #
   # import class specifications, transitively
   #
   repeat {
      added := 0
      every super := ((classes.foreach_t()).foreachsuper() | !
imports) do {
         if /classes.lookup(super) then {
            added := 1
            readspec(super)
            cl := classes.lookup(super)
            if /cl then halt("can't inherit class '",super,"'")
            iwrite("  inherits ", super, " from ", cl.linkfile)
            writelink(cl.dir, cl.linkfile)
            outline +:= 1
            }
       }
    if added = 0 then break
  }
  #
  # Compute the transitive closure of the superclass graph. Then
  # resolve inheritance for each class, and use it to apply 
scoping rules.
  #
  every (classes.foreach_t()).transitive_closure()
  every (classes.foreach_t()).resolve()

  scopecheck_bodies(x1)

   if \thePackage then {
      every thePackage.insertsym(!package_level_syms)
      }

   #
   # generate output
   #
   yyprint(x1)
   write(yyout)
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Other OOP Issues

The primary mechanisms for object-oriented programming that we have discussed so far
include:  classes,  method invocation,  inheritance.  There were certainly a  few parts  we
glossed over (like how a$super.m() is implemented.) The main way to look for additional
issues we skipped is  to read uni/unicon/idol.icn,  which handles all  the object-oriented
features and comes from the original Idol preprocessor. Here are some thoughts from a
scan of idol.icn: 

• the preprocessor semi-parsed class and method headers in order to do inheritance.
After the real (YACC-based) parser was added, I hoped to remove the parsing
code, but it is retained in order to handle class specifications in the uniclass.dir
NDBM files 

• The classes in idol.icn correspond fairly directly to major syntax constructs; the
compiler itself is object-oriented. 

• Packages are a "virtual syntax construct": no explicit representation in the source,
but stored in the uniclass.dir database 

• There is a curious data structure, a tabular queue, or taque, that combines (hash)
table lookup and preserves (lexical) ordering. 

• Aggregation and delegation patterns are used a lot.  A class is  an aggregate of
methods, fields, etc. and delegates a lot of its work to objects created for subparts
of its overall syntax. 

An Aside on Public Interfaces and Runtime Type Checking 

Object-oriented  facilities  are  usually  discussed  in  the  context  of  large  complex
applications where software engineering is an issue. We don't usually need OOP for 100
line programs, but for 10,000+ line programs it is often a big help. 

Besides classes and packages, Unicon adds to Icon one additional syntax construct in
support of this kind of program: type checking and coercion of parameters. Parameters
and return values are the points at which type errors usually occur, during an integration
phase in a large project where one person's code calls another. The type checking and
coercion syntax was inspired by the type checks done by the Icon runtime system at the
boundary where Icon program code calls the C code for a given function or operator.

One additional comment about types is that the lack of types in declarations for ordinary
variables such as "local x" does not prevent the Icon compiler iconc from determining the
exact types of well over 90% of uses at compile time using type inference. Type checking
can generally be done at compile time even if variable declarations do not refer to types...
as long as the type information is available across file and module boundaries. 
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Chapter 27: Portable 2D and 3D Graphics
Graphics facilities in Unicon Version 11 are a large component of the Unicon language.
Version 11 introduces a powerful set of 3D facilities. This document describes the design
and implementation  internals  of  the  2D and 3D graphics  facilities  and their  window
system implementation.   It is intended for persons extending the graphics facilities or
porting Unicon to a new window system.This chapter is derived from Unicon Technical
Report #5a, The Implementation of Graphics in Unicon Version 11, by Clint Jeffery and
Naomi Martinez.

27.1 Window Systems and Platform-Independence
This  chapter  describes  the  internals  of  the  implementation  of  Unicon's  graphics  and
window system facilities.  Much of the code is devoted to hiding specific features of C
graphics interfaces that were deemed overly complex or not worth the coding effort they
entail.   Other  implementation  techniques  are  motivated  by portability concerns.   The
graphics  interface  described  below  has  been  implemented  to  various  levels  of
completeness  on  the  X  Window  System,  Microsoft  Windows,  OS/2  Presentation
Manager,  and Macintosh  platforms.  Most  of  this  discussion  is  relevant  also  for  Icon
Version 9.4; Unicon's graphics facilities include minor improvements.

Relevant Source File Summary

This document assumes a familiarity with the general organization and layout of Unicon
sources and the configuration and installation process. For more information on these
topics,  consult  Icon Project  Documents  IPD 238  [TGJ96]  and  IPD 243  [TGJ98]  for
UNIX, and Appendix B of this document for MS Windows.

Unicon's window facilities  consist  of several source files, all  in the runtime directory
unless otherwise noted.  They are discussed in more detail later in this document.

header files --  h/graphics.h contains structures and macros common across platforms.
Each platform adds platform-specific elements to the common window structures defined
in this file.  In addition, each platform gets its own header file, currently these consist of
X Windows (h/xwin.h), Microsoft Windows (h/mswin.h), OS/2 Presentation Manager
(h/pmwin.h),and the  Macintosh  (h/mac.h).   Every platform defines  several  common
macros  in  the  window-system specific  header  file  in  addition  to  its  window  system
specific  structures  and  macros.  The  common  macros  are  used  to  insert  platform-
dependent pieces into platform-independent code.

Unicon functions --  fwindow.r contains the RTL (Run-Time Language) interface code
used to define built-in graphics functions for the Unicon interpreter and compiler.  For
most functions, this consists of type checking and conversion code followed by calls to
platform-dependent graphics functions.  The platform dependent functions are described
later in this document; fwindow.r is platform independent.  You will generally modify it
only  if  you  are  adding  a  new  built-in  function.  For  example,  the  Windows  native
functions are at the bottom of this file.

internal support routines -- rwindow.r, rwinrsc.r, rgfxsys.r and rwinsys.r are basically
C files with some window system dependencies but mostly consisting of code that is used
on all systems.  For example, rwindow.r is almost 100 kilobytes of portable source code
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related to Unicon's event model, attribute/value system, portable color names, GIF and
JPEG image file support, palettes, fonts, patterns, spline curves and so forth.

window-system specific files -- Each window system gets its  own source files for C
code, included by the various  r*.r files in the previous section.  Currently these include
rxwin.ri and rxrsc.ri for X Window; rmswin.ri for MS Windows; rpmwin.ri,  rpmrsc.ri,
and  rpmgraph.ri for  Presentation  Manager;  and  rmac.ri for  the  Macintosh.   Each
platform will implement one or more such r*.ri files. In addition,  common/xwindow.c
contains so many X Window includes that it won't even compile under UNIX Sys V/386
R 3.2 if all of the Unicon includes are also present -- so its a .c file instead of a .r file.

tainted "regular" Unicon sources -- Many of the regular Unicon source files include
code under #ifdef Graphics and/or one or more specific window system definitions such
as  #ifdef XWindows or  #ifdef PresentationManager. The tainted files that typically
have  to  be  edited  for  a  new  window  system  include  h/grttin.h,  h/features.h,
h/rexterns.h,  h/rmacros.h,  h/rproto.h,  h/rstructs.h,  and  h/sys.h.   Other  files  also
contain Graphics code.  This means that most of the system has to be recompiled with rtt
and  cc  after  Graphics is  defined  in  h/define.h.    You  will  also  want  to  study the
Graphics stuff in  h/grttin.h since several profound macros are there.  Also, any new
types (such as structures) defined in your window system include files will need dummy
declarations (of the form typedef int foo;) to be added there.

Under UNIX the window facilities are turned on at configuration time by typing
make X-Configure name=system

instead  of  the  usual  make  Configure invocation.   The  X  configuration  modifies
makefiles and defines the symbolic constant Graphics in h/define.h. If OpenGL libraries
are  detected,  configuration  enables  them  automatically.  Similar  but  less  automatic
configuration handling is performed for other systems; for example, an alternate .bat file
is used in place of os2.bat or turbo.bat.

Graphics #define-d symbols
The primary, window-system-independent defined symbol that turns on window facilities
is simply Graphics. Underneath this parent  #ifdef, the symbol  XWindows is meant to
mark  all  X  Window  code.   Other  window systems  have  a  definition  comparable  to
XWindows:  for  Microsoft  Windows  it  is  MSWindows,  for  OS/2  it  is
PresentationManager,  and  for  the  Macintosh,  MacGraph.   Turning on any of  the
platform specific graphics #define symbols turns on Graphics implicitly.

27.2 Structures Defined in graphics.h
The header file  graphics.h defines a collection of C structures that contain pointers to
other C structures from graphics.h as well as pointers into the window system library
structures.   The  internals  for  the  simplest  Unicon  window  structure  under  X11  are
depicted in Figure 1. The picture is slightly simpler under MS Windows, with no display
state or related color or font management;  on the other hand MS Windows maps the
Unicon context onto a large set of resources, including pens, brushes, fonts and bitmaps.
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           Figure 1: Internal Structure of an Unicon Window Value

At the top,  Unicon level,  there is  a simple  structure called a  binding that  contains  a
pointer to a window state and a window context. Pointers to bindings are stored in the
FILE * variable of the Unicon file structure, and most routines that deal with a window
take a pointer to a binding as their first argument.  Beneath this facade, several structures
are accessed to perform operations on each window.

The window state holds the typical window information (size, text cursor location,  an
Unicon list of events waiting to be read) as well as a window system pointer to the actual
window, a pointer to a backing pixmap (a "compatible device context" used to handle
redraw requests), and a pointer to the display state.

The window context contains the current font, foreground, and background colors used in
drawing/writing to the window.  It also contains drawing style attributes such as the fill
style. Contexts are separate from the window state so that they may be shared among
windows.  This is a big win, and Unicon programs tend to use it heavily, so in porting the
window functions a central design issue must be the effective use of a comparable facility
on other window systems, or emulating the context abstraction if necessary. Nevertheless,
one might start out with  Couple() and  Clone() disabled and only allow one hardwired
context associated with each window.

The display state contains whatever system resources (typically pointers or handles) that
are  shared  among  all  the  windows on a  given display in  the  running program.   For
example, in X this includes the fonts, the colors, and a window system pointer for an
internal Display structure required by all X library calls to denote the connection to the X
server.

27.3 Platform Macros and Coding Conventions
Since  the  above  structure  is  many  layers  deep  and  sometimes  confusing,  Unicon's
graphics interface routines employ coding conventions to simplify things.  In order to
avoid  many extra  memory references  in  accessing  fields  in  the  multi-level  structure,
"standard"  local  variables  are  declared  in  most  of  the  platform  dependent  interface
routines in rxwin.ri and rmswin.ri.  The macro STDLOCALS(w) declares local variables
pointing to the most commonly used pieces of the window binding, and initializes them
from the supplied argument;  each window system header should define an appropriate
STDLOCALS(w) macro.   Under  some  window  systems,  such  as  MS  Windows,
STDLOCALS(w) allocates resources which must be freed before execution continues, in
which case a corresponding FREE_STDLOCALS(w) macro is defined.

Some common standard locals are  wc,  ws,  stdwin, and stdpix.  While  wc, and ws are
pointers to structures copied from the window binding, stdwin, and stdpix are actual X
(or  MS  Window)  resources  that  are  frequently  supplied  to  the  platform-dependent
routines  as arguments.   Each window system will  have its  own standard locals.   For
example, MS Windows adds stddc and pixdc since it uses a device context concept not
found in X11.

In much of the platform-dependent source code, the window system calls are performed
twice.  This  is  because  most  platforms  including  X,  MS  Windows,  and
PresentationManager do not remember the contents of windows when they are reduced to
iconic size or obscured behind other windows.  When the window is once again exposed,
it  is  sent  a message to  redraw itself.   Unicon hides  this  entirely,  and remembers  the
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contents of the window explicitly in a window-sized bitmap of memory.  The calling of
platform graphics routines twice is so common that a set of macros is defined in xwin.h
to facilitate it.  The macros are named RENDER2 through RENDER6, and each of them
takes an Xlib function and then some number of arguments to pass that function, and then
calls that function twice, once on the window and once on the bitmap.

Platforms that provide backing store may avoid this duplicated effort. In practice however
it  seems  most  window systems  have  redraw events  even  if  they implement  retained
windows (for example, MGR [Uhler88]).

27.4 Window Manipulation in rxwin.ri and rmswin.ri
The platform-dependent  calls  in  the  Unicon run-time  system can be  categorized  into
several major areas:

•  Window creation and destruction

•  Low-level event processing

•  Low-level text output operations

•  Window and context attribute manipulation

Window Creation and Destruction

A graphics window is created when the Unicon program calls  open() with file attribute
"g".  The window opening sequence consists of a call to wopen() to allocate appropriate
Unicon structures for the window and evaluate any initial  window attributes given in
additional  arguments  to  open().   After these attributes  have been evaluated,  platform
resources such as fonts and colors are allocated and and the window itself is instantiated.
Under  X,  wopen() busy-waits  until  the  window has  received  its  first  expose  event,
ensuring  that  no  subsequent  window  operation  takes  place  before  the  window  has
appeared onscreen.

A window is closed by a call to  wclose(); this removes the on-screen window even if
other bindings (Unicon window values) refer to it.  A closed window remains in memory
until all Unicon values that refer to it are closed. A call to  unbind() removes a binding
without necessarily closing the window.

Event Processing

The system software for each graphics platform has a huge number of different types of
events.   Unicon ignores  most  of  them.   Of the  remainder,  some are  handled  by the
runtime system code in the  .ri files implicitly, and some are explicitly passed on to the
Unicon program.

Most  native  graphic  systems  require  that  applications  be  event-driven;  they must  be
tightly I/O bound around the user's actions.  The interaction between user and program
must be handled at every instant by the program. Unicon, on the other hand, considers
this event-driven model optional.

Making  the  event-driven  model  optional  means  that  the  Unicon  interface  must
occasionally read and process events when the Unicon program itself is off in some other
computation.  In particular, keystrokes and mouse events must be stored until the user
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requests  them, but exposure events and resizes  must  be processed immediately.   The
Unicon interpreter pauses at regular intervals in between its virtual machine instructions
(the Unicon compiler  emits  polling code in  its  generated C code,  so window system
facilities are supported by the compiler as well) and polls the system for events that must
be processed; this  technique fails  when no virtual machine instructions are executing,
such as during garbage collections or when blocked on file I/O.

On some platforms such as X, this probably could be done using the platform event queue
manipulation routines.  Instead, the Unicon window interface maintains its own keystroke
and  mouse  event  queue from which  the  Unicon  functions  obtain  their  events.   This
additional  queue  makes  the  implementation  more  portable.  Various  window systems
probably do not support queue manipulation to the extent or in the same way that X does.
It also provides the programmer with a higher level event processing abstraction which
has proven useful.

Window resizing is partly handled by the interface.  The old contents of the window are
retained in their original positions, but the program is informed of the resize so it can
handle the resize in  a more reasonable manner.   As has already been noted exposure
events are hidden entirely via the use of a backing pixmap with identical contents for each
window.  The pixmap starts out the same size as the window.  It is resized whenever the
window grows beyond one of its dimensions.  It could be reduced whenever the window
shrinks,  but  then  part  of  the  window  contents  would  be  lost  whenever  the  user
accidentally made the window smaller than intended.

The platform-dependent modules also contains tables of type stringint. These tables are
supported by routines that map strings for various attributes and values to native window
system integer  constants.   Binary search  is  employed.   This  approach is  a  crude but
effective way to provide symbolic  access "built-in" to  the language without  requiring
include files.  Additional tables mapping strings to integers are found in the platform
independent source files.

Resource Management

One of the most important  tasks performed by platform-specific graphics functions is the
management  of  resources,  both  the  on-screen  resources  (windows)  and  the  drawing
context elements used by the window system in performing output.

Memory Management and r*rsc.ri Files

Memory management for internal window structures is independent of Unicon's standard
memory management system.  Xlib memory is allocated using malloc(2).

Most internal Unicon window structures could be allocated in Unicon's block region, but
since they are acyclic and cannot contain any pointers to Unicon values, this would serve
little purpose  (Actually, it is probably the right thing to do, and will probably happen
some day, but its just not in the cards right now unless you feel like messing with the
garbage collector.).  In addition when an incoming event is being processed it has to be
matched  up  with  the  appropriate  window  state  structure,  so  some  of  the  window
structures must be easily reached, not lost in the block region.  The window interface
structures are reference counted and freed when the reference count reaches 0.
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Color Management

Managing colors under X Windows is painful.  In particular, if the same color is allocated
twice the color table entry is shared (which is good) and that entry may only be freed once
(which is  bad).   For this  reason, every color allocated by Unicon is  remembered and
duplicate requests are identified and freed only once.  In the general case it is impossible
to detect when a particular color is no longer being displayed, and so colors are only freed
on window closure or when a window is cleared.

Font Management

Unicon supports a portable font name syntax.  Since the available fonts on systems vary
widely, "interesting" code has been written to support these portable names on various X
servers.  Each window system may need to include heuristics to pick an appropriate font
in the font allocation routine in the window system's r*.ri file.

27.6  External Image Files and Formats
Reading and writing window contents to external files is accomplished by the routines
loadimage() and  dumpimage(),  implemented  in  each  platform's  window  system
specific  file,  such  as  rxwin.ri.   These  routines  take  a  window  binding  and  a  string
filename  and  perform the  I/O  transfer.   Presently,  the  file  format  is  assumed  to  be
indicated  by the  filename extension;  this  is  likely to  change.   Ideally Unicon should
tolerate different file formats more flexibly, inferring input file formats by reading the file
header where possible, and running external conversion programs where appropriate.

GIF and JPEG files are self-identifying, so they are always recognized independent of
name.  They are  checked  in  system-independent  code  before  platform-specific  image
reading code is invoked.

27.7 Implementation of 3D Facilities
In order  to  implement  the 3D facilities,  the Unicon runtime system was modified  to
support 2D and 3D windows. The Unicon runtime system is written in a custom superset
dialect of C called RTL [Walker94]. The 3D facilities use the existing 2D facilities code
for window creation and destruction, as well as handling keyboard and mouse input.

3D Facilities Requirements 

OpenGL 1.2 or later must be present on the system in order for Unicon's 3D graphics
facilities to work. A check for this is performed in wopengl() which can be found in the
file  ropengl.ri. The requirement of OpenGL 1.2 is based on the fact that the function
glTexBind(), which  make  the  implementation  of  textures  more  efficient,  is  only
available in  OpenGL 1.2 and later.

Also needed for the Unicon 3D graphics facilities is a system that supports a true color
visual with a depth buffer of 16 and a double buffer. The requirement of a depth buffer is
a necessity to implement lighting. For lighting to work properly in OpenGL, a depth test
must  be performed,  hence the  need of  a  depth  buffer.  A double  buffer  is  needed to
implement the list structure that is used to redraw a window. More information can be
found on redrawing of windows in section 7.3.   
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Files

Several  existing files  contain  extensions  to  support  the Unicon 3D graphics  facilities
under #ifdef Graphics3D, including data.r (new runtime error codes), fwindow.r (new 3D
functions),  rmemmgt.r  (3D  window  display  lists),  rxwin.ri  and  rmswin.ri  (modified
wopen() and wmap() to support 3d mode), rwindow.r (new 3D attributes), and graphics.h
(new 3D fields in canvas and context structures). Also a new file, ropengl.ri was added
that contains the C helper functions for functions in fwindow.r, rxwin.ri, and rwindow.r.

Redrawing Windows

In the 2D graphics facilities, events that require the redrawing of a window are handled
by using a pixmap. Instead of using a pixmap, for the Unicon 3D graphics facilities, a
Unicon list of lists is created for each window opened in “gl” mode. This list of lists keeps
track of all objects in a 3D graphics scene. This list is called funclist and is found in the
wstate structure of a "gl" window.  The individual lists of contain the function name and
the parameters of that function. Also placed on the list are attributes that affect the scene.
These include  dim,  linewidth, texcoord, texture,  texmode,  and  fg.    When a window
receives an event that requires redrawing, the window is cleared, all attributes are reset to
the defaults, and the Unicon list of lists is traversed to redraw every object in the scene. 

There are some functions and attributes that are not placed in the list. Instead they much
either modify the list or call the list to redraw the scene. The function EraseArea(), not
only clears the screen but also clears the contents of the list. The attributes light0-light7,
eye, eyeup, eyedir, and eyepos use the list to redraw the window with the new attributes.
So if the position of a light changes, the new lighting calculations are preformed and the
scene  is  redraw.  Besides  these  functions  and  attributes,  every  function  or  attribute
available in the 3D graphics facilities is placed on this list. In is important to note that
functions and attributes that have no effect in the 3D graphics facilities are not placed in
this list.    

Textures

In OpenGL, textures can be one, two, or three-dimensional and are represented as multi-
dimensional arrays. In the Unicon 3D graphics facilities all texture are 2D dimensional,
and represented as three-dimensional arrays.  This array keeps track of the position and
red, green, and blue components of each pixel in the texture image. When a texture image
is  specified  in  a  Unicon program,  the  texture  is  converted  from the  Unicon  internal
representation of the image to a three-dimensional array. For most cases, this does not
take a long time, but as a texture image gets larger, the slower the application will run.
Several measures have been taken in order to increase the efficiency of converting the
texture image into an array. Since lighting and texturing are fairly expensive operations,
especially  if  several  lights  are  activated,  these  features  are  temporarily  deactivated.
Despite  these  efforts,  converting  a  "g" window to  a  texture  is  still  fairly expensive.
Possible future work includes ways to speed up this process.  

Instead of  adding a  texture  to  the  list  of  lists  as  described in  section  7.3,  OpenGL’s
internal texture resources are used. OpenGL assigns to each texture a name. The names
assigned to each texture in a Unicon scene are stored in texname[], which can be found in
a  “gl” window’s  context.  To  ensure  that  a  texture  name  is  not  reused,  a  call  to
glGenTextures() made which produces unused texture names. When a texture is applied
to the scene, only the index of the array texname[] is stored in the list. When the list is
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traversed, a call to  glBindTexture() is made which binds the texture to the subsequent
objects in the scene. One problem of using this representation of textures is that it places
an upper bound on the number of texture used. This is because glGenTextures() requires
the number of texture names to generate. Also by using glBindTexture(), never deletes a
texture from the texture resources, possibly using up all texture resources. Future work
might look into when to delete a texture an ways to check when the texture resources
have been used up. 

Texture Coordinates

The primitives as mentioned in previous sections are cubes, tori, cylinders, disks, partial
disks, points, lines, polygons, spheres, line segments, and filled polygons. Some of these
primitives are drawn using different aspect of the OpenGL library, with some using the
glu library. Points, lines, line segments, polygons, and filled polygons are drawing using
glBegin(), glEnd(), and vertices in between the function calls.  Cylinders,  disks,  partial
disks,  and spheres  are  implemented  using  the  glu  library.  They are considered to  be
gluQuadrics objects. Finally cubes and tori are a composition of several polygons. 

The texturing method used is influenced by the how the primitive is composed. For the
primitives built using the OpenGL library, default texture coordinates are obtain much
differently than those primitives  built  using the glu library.  For those primitives  built
using glBegin() and glEnd(), glTexGen() is used to determine the default parameters when
"texcoord=auto". In order to use this feature we must enable  GEN_S and  GEN_T with
glEnable(). This generates texture coordinates for a 2D textures. The texture coordinates
for a torus are obtained in the same ways. 

Primitives  built  using the  glu  library,  have texture  coordinates  associated  with  them.
These texture coordinates can be obtained by calling gluQuadricTexture().The use of the
glu texture coordinates verses the OpenGL coordinates, is due to the fact that the glu
texture coordinate look nicer. In order to use these texture coordinates instead of the ones
specified by OpenGL, it is necessary to disable GEN_S and GEN_T. After the object has
been drawn, GEN_S and GEN_T are turned back on. 

A cube uses default texture coordinates that map the texture onto each of the faces of a
cube. In order to use these default  coordinates,  it  is  necessary to disable  GEN_S and
GEN_T, similar to glu objects. 

27.8  Graphics Facilities Porting Reference
This section documents the window-system specific functions and macros that generally
must  be  implemented  in  order  to  port  Unicon's  graphics  facilities  to  a  new window
system.   The  list  is  compiled  primarily  by studying  fwindow.r,  rwindow.r,  and  the
existing platforms.

A note on types: w is a window binding pointer (wbp), the top level Unicon "window"
value.  i is an integer, s is a string.  wsp is the window state (a.k.a. canvas) pointer, and
wcp is the window context pointer.  A  bool return value returns one of the C macro
values Succeeded or Failed, instead of the usual C booleans 1 and 0.

ANGLE(a)
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Convert from radians into window system units.  For example, under X these are 1/64 of
a degree integer values, while under PresentationManager it converts to units of 1/65536
of a degree in a fixed-point format.

ARCHEIGHT(arc)

The height component of an XArc.

ARCWIDTH(arc)

The width component of an XArc.

ASCENT(w)

Returns the number of pixels above the baseline for the current font.  Note that when
Unicon writes text, the (x,y) coordinate gives the left edge of the character at its baseline;
some window systems may need to translate our coordinates.

int blimage(w, x, y, width, height, ch, s, len)

Draws a bi-level (i.e. monochrome, 1-bit-per-pixel) image; used in DrawImage() which
draws bitmap data stored in Unicon strings.

wcp clone_context(w)

Allocate a new context, cloning attributes from w's context.

COLTOX(w, i)

Return integer conversion from a 1-based text column to a pixel coordinate.

copyArea(w1, w2, x, y, width, height, x2, y2)

Copies a rectangular block of pixels from w1 to w2.

DESCENT(w)

Returns the number of pixels below the baseline for the current font.

DISPLAYHEIGHT(w)

Return w's display (screen) height in pixels.

DISPLAYWIDTH(w)

Return w's display width in pixels.

bool do_config(w, i)

Performs  move/resize  operations  after  one  or  more  attributes  have  been  evaluated.
Config is a word with two flags: the one bit indicates a move, the two bit indicates a
resize.  The desired sizes are in the window state pointer, e.g. w->window->width.

drawarcs(w, thearcs, i)

Draw i arcs on w, given in an array of XArc structures.  Define an appropriate XArc
structure for your window system; it must include fields x, y and width and height fields
accessible through macros  ARCWIDTH() and  ARCHEIGHT().  Also, a starting angle
angle1  and  arc  extent  angle2,  assigned  through  macros  ANGLE(),  EXTENT(),  and
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FULLARC.  This is currently a mess.  Imitation of the X or PresentationManager code is
in order.

drawlines(w, points, i)

Draw i-1 connected lines, connecting the dots given in points.

drawpoints(w, points, i)

Draw i points.

drawsegments(w, segs, i)

Draw i disconnected line segments;  define an Xsegment structure appropriate do your
window system, consisting of fields x1,  y1,  x2,  y2.  This type definition requirement
should be cleaned up someday.

drawstring(w, x, y, s, s_len)

Draw string s at coordinate (x,y) on w.  Note that y designates a baseline, not an upper-
left corner, of the string.

drawrectangles(w, rectangles, i)

Draw i rectangles.  Define an XRectangle structure appropriate to your window system.

int dumpimage(w, s, x, y, width, height)

Write  an image of a rectangular area in  w to file s.  Returns  Succeeded,  Failed,  or
NoCvt if  the  platform  doesn't  support  the  requested  format.   Note  that  this  is  the
"platform-  dependent  image  writing  function";  requests  to  write  GIF   or  JPEG  are
handled outside of this function.

eraseArea(w, x, y, width, height)

Erase a rectangular area, that is, set it to the current background color.  Compare with
fillrectangles().

EXTENT(a)

Convert  from  radians  into  window  system  units,  e.g.  under  PresentationManager  it
converts to units of 1/65536 of a circle and does some weird type conversion.

fillarcs(w, arcs, i)

Fill wedge-like arc sections (pie pieces).  See drawarcs().

fillrectangles(w, rectangles, i)

Fill i rectangles.  See drawrectangles().

fillpolygon(w, points, i)

Fill a polygon defined by i points.  Connect first and last points if they are not the same.

FHEIGHT(w)

Returns the pixel height of the current font, hopefully ASCENT + DESCENT.
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free_binding(w)

Free binding associated with  w.   This gets rid  of a binding that  refers to  w,  without
necessarily closing the window itself (other bindings may point to that window).

free_context(wc)

Free window context wc.

free_mutable(w, i)

Free mutable color index i.

free_window(ws)

Free window canvas ws.

freecolor(w, s)

Free a color allocated on w's display.

FS_SOLID

Define this to be the window system's solid fill style symbol.

FS_STIPPLE

Define this to be the window system's stippled fill style symbol.

FULLARC

Window-system value for a complete (360 degree) circle or arc.

FWIDTH(w)

Returns the pixel width of the widest character in the current font.

wsp getactivewindow()

Return a window state pointer to an active window, blocking until a window is active.
Probably will  be generalized to include a non-blocking variant.   Returns  NULL if  no
windows are opened.

getbg(w, s)

Returns (writes into s) the current background color.

getcanvas(w, s)

Returns (writes into s) the current canvas state.

getdefault(w, s_prog, s_opt, s)

Get any window system defaults  for a program named s_prog resource named s_opt,
write result in s.

getdisplay(w, s)

Write a string to s with the current display name.

getdrawop(w, s)
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Return  current  drawing operation,  one of  various  logical  combinations  of  source and
destination bits.

getfg(w, s)

Returns (writes into s) the current foreground color.

getfntnam(w, s)

Returns (writes into s) the current font.  This interface may get changed since a portable
font naming mechanism is to be installed. Name is presently always prefixed by "font="
(pretty  stupid,  huh);  must  be  an  artifact  of  merging  window  system  ports,  will  be
changed.

geticonic(w, s)

Return current window iconic state in s, could "iconify" or whatever. Obsolete (subsumed
by canvas attribute, getcanvas()).

geticonpos(w, s)

Return icon's position to s, an encoded "x,y" format string.

int getimstr(w, x, y, width, height, paltbl, data)

Gets an image as a string.  Used in GIF code.

getlinestyle(w, s)

Return current line style, one of solid, dashed, or striped.

get_mutable_name(w, i)

Returns the string color name currently associated with a mutable color.

getpattern(w, s)

Return current fill pattern in s.

getpixel(w, x, y, long *rv)

Assign RGB value for pixel (x,y) into *rv.

getpixel_init(w, struct imgmem *imem)

Prepare to fetch pixel values from window, obtaining contents from server if necessary.
This function does all the real work used by subsequent calls to getpixel().

getpointername(w, s)

Write mouse pointer appearance, by name, to s.

getpos(w)

Update the window state's posx and posy fields with the current window position.

getvisual(w, s)
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Write a string to s that explains what type of display w is on, e.g. "visual=x,y,z", where x
is a class, y is the bits per pixel, and z is number of colormap entries available. This X-
specific anachronism is likely to go away.

HideCursor(wsp ws)

Hide the text cursor on window state ws.

ICONFILENAME(w)

Produce char * for window's icon image file name if there is one.

ICONLABEL(w)

Produce char * for icon's title if there is one.

isetbg(w, i)

Set background color to mutable color table entry i.  Mutable colors are not available on
all display types.

isetfg(w, i)

Set foreground color to mutable color table entry i.  Mutable colors are not available on
all display types.

ISICONIC(w)

Return 1 if the window is presently minimized/iconic, 0 otherwise.

ISFULLSCREEN(w)

Return 1 if the window is presently maximized/fullscreen, 0 otherwise.

ISNORMALWINDOW(w)

Return 1 if the window is neither minimized nor maximized, 0 otherwise.

LEADING(w)

Return current integer leading, the number of pixels from line to line.

LINEWIDTH(w)

Return current integer line width used during drawing.

lowerWindow(w)

Lower the window to the bottom of the stack.

mutable_color(w, dptr dp, i, C_integer *result)

Allocate  a  mutable  color  from color  spec given by  dp and  i,  placing result  (a  small
negative integer) in *result.

nativecolor(w, s, r, g, b)

Interpret a platform-specific color name s (define appropriately for your window system).
Under X, we can do this only if there is a window.
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pollevent()

Poll for available events on all opened displays.  This is where the interpreter calls the
window system interface.  Return a -1 on an error, otherwise return count of how long
before it should be polled (400).

query_pointer(w, XPoint *xp)

Produce mouse pointer location relative to w.

query_rootpointer(XPoint *xp)

Produce mouse pointer location relative to root window on default screen.

raiseWindow(w)

Raise the window to the top of the stack.

bool readimage(w, s, x, y, int *status)

Read image from file s into w at (x,y).  Status is 0 if everything was kosher, 1 if some
colors weren't available but the image was read OK; if a major problem occurs it returns
Failed. See loadimage() for the real action.

rebind(w, w2)

Assign w's context to that of w2.

RECHEIGHT(rec)

The height component of an XRectangle.  Gets "fixed up" (converted) into a Y2 value if
necessary, in window system specific code.

RECWIDTH(rec)

The width component of an XRectangle.  Gets "fixed up" (converted) into a X2 value if
necessary, in window system specific code.

RECX(rec)

The x component of an XRectangle.

RECY(rec)

The y component of an XRectangle.

ROWTOY(w, i)

Return integer conversion from a 1-based text row to a pixel coordinate.

SCREENDEPTH(w)

Returns the number of bits per pixel.

int setbg(w, s)

Set the context background color to s.  Returns Succeeded or Failed.

setcanvas(w, s)
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Set canvas state to s, make it "iconic", "hidden" or whatever. A canvas value extension
such as fullscreen would go here. Changes in canvas state are tantamount to destroying
the old window, creating a new window (with appropriate size and style) and adjusting
the  pixmap  size  correspondingly.   Much  of  the  associated  logic,  however,  might  be
located in the event handlers for related window system events.

setclip(w)

Set (enable) clipping on w from its context.

setcursor(w, i)

Turn text cursor on or off.  Text cursor is off (invisible) by default.

setdisplay(w, s)

Set the display to use for this window; fails if the window is already open somewhere.

setdrawop(w, s)

Set drawing operation to one of various logical combinations of source and destination
bits.

int setfg(w, s)

Set the context foreground color to s.  Returns Succeeded or Failed.

setfillstyle(w, s)

Set fill style to solid, masked, or textured.

bool setfont(w, char **s)

Set the context font to  s.   This function first attempts to use the portable font naming
mechanism; it resorts to the system font mechanism if the name is not in portable syntax.

setgamma(w, gamma)

Set the context's gamma correction factor.

setgeometry(w, s)

Set the window's size and/or position.

setheight(w, i)

Set window height to i, whether or not window is open yet.

seticonicstate(w, s)

Set window iconic state to s, it could be "iconify" or whatever. Obsolete; setcanvas() is
more important.

seticonimage(w, dptr d)

Set  window  icon  to  d.   Could  be  string  filename  or  existing  pixmap  (i.e.  another
window's contents).  Pixmap assignment no longer possible, so one could simplify this to
just take a string parameter.

seticonlabel(w, s)
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Set icon's string title to s.

seticonpos(w, s)

Move icon's position to s, an encoded "x,y" format string.

setimage(w, s)

Set an initial image for the window from file s.  Only valid during open().

setleading(w, i)

Set  line spacing to  i pixels  from line to line.   This  includes font  height and external
leading, so i < fontheight means lines draw partly over preceding lines,  i > fontheight
means extra spacing.

setlinestyle(w, s)

Set line style to solid, dashed, or striped.

setlinewidth(w, i)

Set line width to i.

set_mutable(w, i, s)

Set mutable color index i to color s.

SetPattern(w, s, s_len)

Set fill  pattern to bits  given in  s.   Fill  pattern is  not used unless fillstyle  attribute  is
changed to "patterned" or "opaquepatterned".

SetPatternBits(w, width, bits, nbits)

Set fill pattern to bits given in the array of integers named bits. Fill pattern is not used
unless fillstyle attribute is changed to "patterned" or "opaquepatterned".

setpointer(w, s)

Set mouse pointer appearance to shape named s.

setpos(w, s)

Move window to s, a string encoded "(x,y)" thing.

setwidth(w, i)

Set window width to i, whether or not window is open yet.

setwindowlabel(w, s)

Set window's string title to s.

ShowCursor(wsp ws)

Show the text cursor on window state ws.

int strimage(w, x, y, width, height, e, s, len)

Draws a character-per-pixel image, used in DrawImage().  See blimage().
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SysColor

Define this type to be the window system's RGB color structure.

TEXTWIDTH(w, s, s_len)

Returns the integer text width of s using w's current font.

toggle_fgbg(w)

Swap the foreground and background on w.

unsetclip(w)

Disable clipping on w from its context.

UpdateCursorPos(wsp ws, wcp wc)

Move the text cursor on window state ws and context wc.

walert(w, i)

Sounds an alert (beep).  i is a volume; it can range between -100 and 100; 0 is normal.

warpPointer(w, x, y)

Warp the mouse location to (x,y).

wclose(w)

Closes window w.  If there are other bindings that refer to the window, they are converted
into pixmaps, i.e. the window disappears but the canvas is still there and can be written
on and copied from.

wflush(w)

Flush output to window w; a no-op on some systems.

wgetq(w, dptr result)

Get an event from w's pending queue, put results in descriptor  *res.  Returns -1 for an
error, 1 for success (should fix this).

WINDOWLABEL(w)

Produce char * for window's title if there is one.

FILE *wopen(s, struct b_list *lp, dptr attrs, i, int *err_index, is_3d)

Open window named s, with various attributes.  This ought to be merged from various
window system dependent files, but presently each one defines its own.  Copy and modify
from rxwin.ri or rmswin.ri. The return value is really a wbp, cast to a FILE *.

wputc(c, w)

Draw  character  c on  window  w,  interpret  newlines,  carriage  returns,  tabs,  deletes,
backspaces, and the bell.
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wsync(w)

Synchronize server and client (a no-op on some systems).

xdis(w, s, s_len)

Draw string s on window w, low-level.

XTOCOL(w, i)

Return integer conversion from a 0-based pixel coordinate to text column.

YTOROW(w, i)

Return integer conversion from a 0-based pixel coordinate to text row.

26.9 The X Implementation
The reference implementation of Unicon's graphics facilities is written in terms of Xlib,
the lower-level X Window C interface [Nye88].  It does not use the X resource manager.
The end result  of these two facts  is  that  the implementation  is  relatively visible:  the
semantics are expressed fairly directly in the source code.  Although it is necessary to
understand  the  semantics  of  the  underlying  X  routines,  hidden  behavior  has  been
minimized.

Unicon does not rely on the X Toolkit Intrinsics (Xt) or any higher level widget set such
as Motif. This guarantees that Unicon will compile and run on any X11 platform.  Unicon
programs implement their own look and feel, which may or may not be consistent with
the other applications on a given X workstation.  The Unicon Program Library includes
routines that implement user interface components with an appearance that is similar to
Motif.

The X implementation employs the XPM X pixmap library if it is available; XPM is a
proposed extension to Xlib for storing color images in external files [LeHors91].  XPM
provides color facilities analogous to the built-in X black-and-white bitmap routines.  In
addition to the image formats  native to each platform, Unicon also supports  GIF and
JPEG as portable image file formats.

26.10 The MS Windows Implementation
The Microsoft Windows implementation of Unicon is written using Win32, the lower-
level  32-bit  Windows API.  It does not  use the Microsoft  Foundation  Classes.   This
makes  it  easier  to  build  with  different  C  compilers,  and  easier  to  port  to  different
Windows implementations, such as Windows CE.

Installing, Configuring, and Compiling the Source Code

Building  Unicon  for  Windows  Version  11.0  requires  Mingw32  GCC  2.95.2.  Newer
versions  of  Windows GCC might  be made  to  work,  but  thusfar  have  produced non-
working executables. We hope to add Cygwin GCC support in the future. The sources
may also build with modest revision under MS Visual C++ 2.0 or newer. I have built
earlier versions with MSVC versions 2, 5, and 6.  I encourage you to try building using
other compilers, and send me your configuration files. You will need a robust Win32
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platform to compile these sources; the build scripts and "make" process tend to fail on
older versions of Windows.

1. Unpack the sources.

Unpack uni.zip in such a way that it  preserves its subdirectory structure. Unzip.exe is
recommended rather than WinZip. See Icon Project Document 243 [ipd243] for a picture
of the directory hierarchy.  In particular, there should be a BIN directory along with the
SRC directory under the unicon/ directory.

2. Configure the sources.

Run "make W-Configure-GCC" (or  "make W-Configure" under  MSVC) to  configure
your sources to build wiconx and wicont, the Unicon virtual machine interpreter, and the
Unicon bytecode compiler, with graphics facilities enabled.

3. Compile to make executables.

Run "make Unicon" to build the currently-configured binary set. It is worth discussing
why I provide makefiles instead of a project file for use in the Visual C++ IDE.  The
reason is  that  the  source  files  for  the  Unicon virtual  machine  interpreter  (generically
called iconx; wiconx.exe in this case) are written in an extended dialect of ANSI C called
RTL [ipd261].  Files in this language have the extension .r instead of .c and .ri instead
of .h.  During compilation, a program called rtt (the run time translator) translates .r* files
into .c files. If someone wants to show me how to insert this step into the Visual C++ IDE
build process, I would be happy to use their IDE.  You can write project files for the other
C programs that make up the Unicon system, but most modifications to the language are
changes to the interpreter.

Notes on the MS Windows internal functions

The functions documented here are those most likely to be involved in projects to add
features to Windows Unicon.

handle_child(w, UINT msg, WPARAM wp, LPARAM lp)

This procedure handles messages from child window controls such as buttons. In many
cases, this enqueues an event on the Unicon window.

int playmedia(w, char *s)

This crude function will call one of several multimedia functions depending on whether s
is the name of a multimedia file (.wav, .mid, .rmi are supported) or an MCI command
string.

int getselection(w, char *s)

Return the current contents of the clipboard text. The design of this and setselection()
need to be broadened a bit to support images.

int setselection(w, char *s)

Set the clipboard text to s.
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Chapter 28: Networking, Messaging and the 
POSIX Interface
Unicon's system interface is  greatly enriched compared with Icon, primarily in  that  it
treats Internet connections and Internet-based applications as ubiquitous, and extends the
file  type  with  appropriately  high-level  capabilities.  Fundamental  TCP  and  UDP
connections are a breeze using the networking facilities, and common application-level
protocols are supported via the messaging facilities (see also the X11 graphics facilities
and the SQL/ODBC database facilities for examples where application-level networking
is provided in Unicon). Portions of this chapter related to the messaging facilities were
contributed by their author, Steve Lumos.

28.1 Networking Facilities
...

28.2 Messaging Facilities

The Transfer Protocol Library

All of the message facilities are handled by the transfer protocol library (libtp).   This
library provides an abstraction of the many different protocols (HTTP, SMTP, etc) into a
clear and consistent API.  Ease of adding support for new protocols and porting the entire
library to new operating system interfaces were primary design goals.  These goals are
both accomplished by using the AT&T Labs discipline and method  (DM) architecture
described below.

Libtp Architecture

The key feature of the DM architecture is that it  makes explicit  two interfaces in the
library:  disciplines which  hold  system  resources  and  define  routines  to  acquire  and
manipulate them, and  methods which define the higher-level algorithms used to access
these resources.  This model fits the problem of Internet transfer protocols nicely; the
discipline abstracts the operating system interface to the network, and there is a method
for each protocol that defines communication with a server only in terms of the discipline.

This architecture makes porting easy because you need only create a discipline for the
new system, which means writing 9 functions.   The only currently-existing discipline
handling both the Berkeley Socket and WINSOCK APIs is only 400 lines long.  Once a
discipline exists, the new system immediately gains all of the supported protocols.

The Discipline

The discipline is a C structure whose members are pointers to functions:

typedef struct _tp_disc_s Tpdisc_t;   /* discipline */

typedef int (*Tpconnect_f)(char* host, u_short 
port, Tpdisc_t* disc);
typedef int (*Tpclose_f)(Tpdisc_t* disc);
typedef ssize_t (*Tpread_f)(void* buf, size_t n, Tpdisc_t* disc);
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typedef ssize_t (*Tpreadln_f)(void* buf, size_t n, Tpdisc_t* 
disc);
typedef ssize_t (*Tpwrite_f)(void* buf, size_t n, Tpdisc_t* 
disc);
typedef void* (*Tpmem_f)(size_t n, Tpdisc_t* disc);
typedef int (*Tpfree_f)(void* obj, Tpdisc_t* 
disc);
typedef int (*Tpexcept_f)(int type, void* obj, 
Tpdisc_t* disc);
typedef Tpdisc_t* (*Tpnewdisc_f)(Tpdisc_t* disc);

struct _tpdisc_s
{

Tpconnect_f connectf; /* establish a connection */
Tpclose_f closef; /* close the connection */
Tpread_f readf; /* read from the connection */
Tpreadln_f readlnf; /* read a line from the connection */
Tpwrite_f writef; /* write to the connection */
Tpmem_f memf; /* allocate some memory */
Tpfree_f freef; /* free memory */
Tpexcept_f exceptf; /* handle exception */
Tpnewdisc_f newdiscf; /* deep copy a discipline */
int type; /* (not used currently) */

};

These functions define a complete API for acquiring and manipulating all of the system
resources needed by all of the methods and (it is hoped) any conceivable method.  By
convention, every discipline function takes a pointer to the current discipline as its last
argument.  (Every method function takes a library handle which contains a pointer to the
current discipline, so the discipline functions are always available when needed.)  The
Tpdisc_t is an abstract discipline.  In practice, a new discipline will extend Tpdisc_t by at
minimum adding some system dependent data such as a Unix file descriptor or Windows
SOCKET*.  Here is the "Unix" discipline (it would be better called the socket discipline
since it works for the Berkeley Socket API and WINSOCK on multiple systems):
struct _tpunixdisc_s
{
   Tpdisc_t tpdisc;
   int fd;
}

Exception Handling

The DM archtecture defines a very useful convention for exception handling.  Exceptions
are passed as integers to the exceptf function along with some exception-specific data.
The function can do arbitrary processesing and then return {-1, 0, 1}, which instructs the
library to retry the operation (1), return an error to the caller (-1), or take some default
action  (0).   Libtp  uses  constants  TP_TRYAGAIN,  TP_RETURNERROR,  and
TP_DEFAULT.

Although not as powerful as languages with true exceptions, the DM exception handling
definitely serves to make the code more readable.  In the Unix discipline, exceptf is used
to  aggregate  all  of  the  many,  sometimes  transient  errors  that  can  occur  in  network
programming.  For example, the Unix discipline's readf function is:
ssize_t unixread(void* buf, size_t n, Tpdisc_t* tpdisc)
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{
  Tpunixdisc_t* disc = (Tpunixdisc_t*)tpdisc;

  size_t  nleft;
  ssize_t nread;
  char*   ptr = buf;

  nleft = n;
  while (nleft > 0) {
    if ((nread = read(disc->fd, ptr, nleft)) <= 0) {
      int action = tpdisc->exceptf(TP_EREAD, &nread, tpdisc);
      if (action > 0) {
        nread = 0;
        continue;
      }
      else if (action == 0) {
        break;
      }
      else {
        return (-1);
      }
    }

    nleft -= nread;
    ptr += nread;
  }
  return (n – nleft);
}

The Unix read() system call can return a positive number, indicating the number of bytes
read, a negative number, indicated error, or zero, if end-of-file is reached (or a network
connection is closed by the remote host).  We consider the latter two cases exceptional,
and ask exceptf what we should do.  An exceptf function is normally a large switch with
one case for each exception.  For TP_EREAD, it says:
   case TP_EREAD:
      if (errno == EINTR) {
         return TP_TRYAGAIN;
         }
      else {
         ssize_t nread = (*(ssize_t*)obj);
         if (nread == 0) { /* EOF */
            return TP_DEFAULT;
            }
         else {
            return TP_RETURNERROR;
            }
         }

This may not seem very revolutionary, after all the code that calls exceptf and branches
on its result is just as long as the exception handler itself.  We aren't even gaining much
code-reuse over the conventional method, which wraps system calls in another function
with names like Read().  The real win here lies in the ability of the caller to replace or
extend exceptf at runtime.  You may have noticed that there is no code above to output an
error message, unixread() simply returns -1 on errors.  In fact, the standard and expected
way to output errors is to override exceptf.  The wtrace example shown [XXX: at the end
somewhere?] uses the following:
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Tpexcept_f tpexcept;
Tpdisc_t disc;

int exception(int e, void* obj, Tpdist_t* disc)
{
   int rc = tpexcept(e, obj, disc);
   if (rc == TP_RETURNERROR) {
      if (errno != 0) {
         perror(url);
         }
      else {
         switch (e) {
            case TP_HOST:
               fputs(url, stderr);
               fputs(": Unknown host\n", stderr);
               break;
            default:
               fputs(url, stderr);
               fputs(": Error connecting\n", stderr);
               }
         }
      exit(1); 
      }
   else {
      return rc;
      }
}

Then instead of the usual:
tp = tp_new(<uri>, <method>, TpdUnix);

wtrace copies TpdUnix, saves and replaces the default exception handler, and then uses
the copied discipline:
disc = tp_newdisc(TpdUnix);
tpexcept = disc->exceptf;
disc->exceptf = exception;

tp = tp_new(<uri>, <method>, disc);

In the same way, wtrace also overrides all of the read and write functions to provide a
trace log of HTTP communications.



348

Part IV: Appendixes



349

 



350

Appendix A: Data Structures
This appendix summarizes, for reference purposes, all descriptor and block lay

outs in Icon.

A.1 Descriptors
Descriptors consist of two words (normally C ints): a d-word and a v-word. The d-word
contains flags in its most significant bits and small integers in its least significant bits.
The v-word contains a value or a pointer. The flags are

n nonqualifier
p v-word contains a pointer
v variable
t trapped variable

A.1.1 Values

There are three significantly different descriptor layouts for values. A qualifier for a string
is  distinguished from other  descriptors  by the lack of  an n flag in  its  d-word,  which
contains only the length of the string. For example, a qualifier for the string "hello" is

The null  value  and integers  have type codes  in  their  d-words  and are self-contained.
Examples are:

For all other data types, a descriptor contains a type code in its d-word and a pointer to a
block of data in its v-word. A record is typical:
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A.1.2 Variables

There are two formats for variable descriptors. The v-word of an ordinary variable
points to the descriptor for the corresponding value:

If the variable points to a descriptor in a block, the offset is the number of words from the
top  of  the  block  to  the  value  descriptor.  If  the  variable  points  to  a  descriptor  that
corresponds to an identifier, the offset is zero.

The descriptor for a trapped variable contain,s a type code for the kind of trapped variable
in its d-word and a pointer to the block for the trapped variable in its v-word. The trapped
variable for &subject is typical:

A.2 Blocks
With the exception of the null value, integers, and strings, the data for Icon values is kept
in blocks.  The first  word of every block is  a title  that  contains the type code for the
corresponding data type. For blocks that vary in size for a particular type, the next word is
the size of the block in bytes. The remaining words depend on the block type, except that
all non-descriptor data precedes all descriptor data. With the exception of the long integer
block, the diagrams that follow correspond to blocks for computers with 32-bit words.

A.2.1 Long Integers

On computers with 16-bit  words,  integers that  are too large to  fit  in the d-word of a
descriptor are stored in blocks. For example, the block for the integer 80,000 is

A.2.2 Real Numbers

Real numbers are represented by C doubles. For example, on computers with 32-
bit words, the real number 1.0 is represented by

A.2.3 Csets

The block for a cset contains the usual type code, followed by a word that contains the
number of characters in  the cset.  Words totaling 256 bits  follow,  with a one in a bit
position indicating that the corresponding character is in the cset, and a zero indicating
that it is not. For example, &ascii is
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A.2.4 Lists

A list consists of a list-header block that points to a doubly-linked list of list-element
blocks, in which the list elements are stored in circular queues. See Chapter 6 for details.
An example is the list

[1,2,3]

which is represented as

Here there is only one list-element block:
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A.2.5 Sets

A set  consists  of a set-header  block that  contains  slots  for  linked lists  of  set-
element blocks. See Sec. 7.1 for details. An example is given by

set([1, 2, 3, 4])

which is represented as

The set-element block for the member 3 is
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A.2.6 Tables

A table is similar to a set, except that a table-header block contains the default
assigned value as well as slots for linked lists of table-element blocks. See Sec. 7.2 for
details. An example is given by

t := table()
every t[1 | 4 | 7] := 1

The table t is represented as

The table-element block for the entry value 4 in the previous example is
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A.2.7 Procedures

The  procedure  blocks  for  procedures  and  functions  are  similar.  For  a  procedure
declaration such as

procedure calc(i,j)
local k
static base, index
end

the procedure block is

In a procedure block for a function,  there is a value of -1 in place of the number of
dynamic locals. For example, the procedure block for repl is

In the case of a function, such as write, which has a variable number of arguments, the
number of arguments is given as -1:
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A.2.8 Files

The block for a file contains a pointer to the corresponding file, a word containing the file
status, and a qualifier for the name of the file. For example, the block for &output is

The file status values are

0 closed
1 open for reading
2 open for writing
4 open to create
8 open to append
16 open as a pipe

A.2.9 Trapped Variables

There are three kinds of trapped variables: keyword trapped variables, substring trapped
variables, and table-element trapped variables. The corresponding blocks are tailored to
the kind of trapped variable.

The value of &trace illustrates a typical keyword trapped variable:
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A substring trapped variable contains the offset and length of the substring, as well as a
variable  that  points  to  the  qpalifier  for  the  string.  For  example,  if  the  value  of  s  is
"abcdef", the substring trapped-variable block for s [2:5] is

A table-element trapped-variable block contains a word for the hash number of the entry
value, a pointer to the table, the entry value, and a descriptor reserved for the assigned
value. For example, if t is a table, the table-element trapped-variable block for t[36] is

A.2.10 Co-Expressions

A co-expression block consists of heading information, an array of words for saving the C
state, an interpreter stack, and a C stack:
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The  refresh  block  contains  information  derived  from  the  procedure  block  for  the
procedure in which the co-expression was created. Consider, for example,

procedure labgen(s)
local i, j, e
i := 1
j := 100
e := create (s || (i to j) || ":")
...
end

For the call labgen("L"), the refresh block for e is
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   0
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Appendix B: Virtual Machine Instructions
This  appendix  lists  all  the  Icon  virtual  machine  instructions.  For  instructions  that
correspond to source-language operators, only the corresponding operations are shown.
Unless otherwise specified, references to the stack mean the interpreter stack.

arg n Push a variable descriptor pointing to argument n.

asgn expr1 := exp12

bang lexpr

bscan Push the current values of &subject and &pos. Convert  the descriptor prior to
these  two descriptors  into  a  string.  If  the  conversion  cannot  be  performed,  terminate
execution with an error message. Otherwise, assign it to &subject and assign 1 to &pos.
Then suspend. If resumed, restore the former values of &subject and &pos and fail.

cat expr1 || exp12

ccase Push a copy of the descriptor just below the current expression frame.

chfail n Change the failure ipc in the current expression frame marker to n.

coact Save the current state information in the current co-expression block, restore state
information from the co-expression block being activated, perform a context switch, and
continue execution.

cofail Save the current state information in the current co-expression block, restore state
information from the co-expression block being activated, perform a context switch, and
continue execution with co-expression failure signal set.

compl ~expr

caret Save the current state information in the current co-expression block, restore state
information from the co-expression block being activated, perform a context switch, and
continue execution with co-expression return signal set.

create Allocate a co-expression block and a refresh block. Copy the current procedure
frame marker, argument values, and local identifier values into the refresh block. Place a
procedure frame for the current procedure on the stack of the new co-expression block.

cset a Push a descriptor for the cset block at address a onto the stack.

diff expr1 --expr2

div expr1 / expr2

dup Push a null descriptor onto the stack and then push a copy of the descriptor that
was previously on top of the stack.

efail If there is a generator frame in the current expression frame, resume its generator.
Otherwise remove the current expression frame. If the ipc in its marker is nonzero, set ipc
to it. If the failure ipc is zero, repeat efail.

eqv expr1 === expr2
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eret Save the descriptor  on the top of the stack.  Unwind the C stack.  Remove the
current expression frame from the stack and push the saved descriptor.

escan Dereference the top descriptor on the stack if necessary. Copy it to the place on
the  stack prior  to  the saved values  of  &subject  and &pos (see bscan).  Exchange the
current values of &subject and &pos with the saved values on the stack. Then suspend. If
resumed, restore the values of &subject and &pos from the stack and fail.

esusp Create a generator frame containing a copy of the portion of the stack that  is
needed if the generator is resumed.

field n Replace the record descriptor on the top of the stack by a descriptor for field n of
that record.

global n Push a variable descriptor pointing to global identifier n.

goto n Set ipc to n.

init n Change init instruction to goto.

int n Push a descriptor for the integer n.

inter expr1 ** exp'2

invoke n exp1lJ(expr1, exp'2, ..., exprn)

keywd n Push a descriptor for keyword n.

lconcatexpr1 ||| expr2

lexeq expr1 == expr2

lexge expr1 »= expr2

lexgt expr1 » expr2

lexle expr1 «= expr2

lexlt expr1 « expr2

lexne expr1 -== expr2

limit Convert  the descriptor on the top of the stack to an integer.  If the conversion
cannot  be  performed  or  if  the  result  is  negative,  terminate  execution  with  an  error
message. If it is zero, fail. Otherwise, create an expression frame with a zero failure ipc.

line n Set the current line number to n.

llist n [expr1,expr2,...,exprn]

local n Push a variable descriptor pointing to local identifier n.

lsusp Decrement  the  current  limitation  counter,  which  is  immediately  prior  to  the
current expression frame on the stack. If the limit counter is nonzero, create a generator
frame  containing  a  copy of  the  portion  of  the  interpreter  stack  that  is  needed if  the
generator is resumed. If the limitation counter is zero, unwind the C stack and remove the
current expression frame from the stack.
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mark Create an expression frame whose marker contains the failure ipc corresponding
to the label n, the current efp, gfp, and ilevel.

mark0 Create an expression frame with a zero failure ipc.

minus expr1 -expr2

mod expr1 % expr2

mult expr1 * expr2

neg -expr

neqv exprl -=== expr2

nonnull \expr

null /expr

number +expr .

numeq expr1 = expr2

numge exprl >= expr2

numgt expr1 > expr2

numle exprl <= expr2

numlt exprl < expr2

numne exprl -= expr2

pfail If &trace is nonzero, decrement it and produce a trace message. Unwind the C
stack and remove the current procedure frame from the stack. Then fail.

plus exprl + expr2

pnull Push a null descriptor.

pop Pop the top descriptor.

power exprl ~ expr2

pret Dereference the descriptor on the top of the stack, if necessary, and copy it to the
place where the descriptor for the procedure is. If &trace is nonzero; decrement it and
produce a trace message. Unwind the C stack and remove the current procedure frame
from the stack.

psusp Copy the descriptor on the top of the stack to the place where the descriptor for
the procedure is, dereferencing it if necessary. Produce a trace message and decrement
&trace if it is nonzero. Create a generator frame containing a copy of the portion of the
stack that is needed if the procedure call is resumed.

push1 Push a descriptor for the integer 1.

pushn1Push a descriptor for the integer -1.

quit Exit from the interpreter.
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random ?expr

rasgn expr1 <- expr2

real a Push a descriptor for the real number block at address a onto the stack.

refresh ~expr

rswap expr1 <-> expr2

sdup Push a copy of the descriptor on the top of the stackr

sect expr1 [ expr2: expr3 ]

size *expr

static n Push a variable descriptor pointing to static identifier n.

str n, a Push a descriptor for the string of length n at address a.

subsc expr1[expr2]

swap expr1 :=: exp12

tabmat =exp'

toby expr1 to expr2 by expr3

unions expr1 ++ expr2

unmark Remove the current expression frame from the stack and unwind the C
stack.

value .expr
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Appendix C: Virtual Machine Code
The virtual machine code that is generated for various kinds of Icon expression is listed
below. The form of code given is icode, the output of the Icon linker cast in a readable
format.  The ucode produced' by the Icon translator, which serves as input to the Icon
linker, is slightly different in some cases, since th linker performs some refinements.

C.1 Identifiers
As mentioned in Sec. 8.2.2, the four kinds of identifiers are distinguished by where their
values are located. All are referred to by indices, which are zero based.

The values of global identifiers are kept in an array that is loaded from thl icode file and
is at a fixed place in memory during program execution. By con vention, the zeroth global
identifier contains the procedure descriptor for main The following instruction pushes a
variable pointing to the value of main onto the interpreter stack:

main global                       0

Static identifiers are essentially global identifiers that are only known on a per-procedure
basis. Like global identifiers, the values of static identifiers are in an array that is at a
fixed location. Static identifiers are numbered starting at zero and continuing through the
program. For example, if count is static identifier 10 the following instruction pushes a
variable descriptor pointing to that static identifier onto the stack:

count static                      10

The space for the values of arguments and local identifiers is allocated on the stack when
the procedure in which they occur is called. If x is argument zero and i is local zero for
the current procedure, the following instructions push variable descriptors for them onto
the stack:

x arg                      0

i local                      0

C.2 Literals
The virtual machine instruction generated for an integer literal pushes the integer onto the
stack as an Icon descriptor. The value of the integer is the argument to the instruction:

100 int                      100

The instruction generated for a string literal is similar to that for an integer literal, except
that the address of the string and its length are given as arguments. The string itself is in a
region of data produced by the linker and is loaded as part of the icode file:

"hello" str                      5,a1

The instruction generated for a real or cset literal has an argument that is the address of a
data block for the corresponding value. Such blocks are in the data region generated by
the linker:
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100.2 real                      a2

'aeiou' cset                      a3

C.3 Keywords
The instruction generated for most keywords results in a call to a C function that pushes a
descriptor for the keyword onto the stack. The argument is an index that identifies the
keyword. For example, &date is keyword 4:

&date keywd                      4

Some keywords correspond directly to virtual machine instructions. Examples are &null
and &fail:

&null pnull                         

&fail efail                         

C.4 Operators
The code generated for a unary operator first pushes a null descriptor, then evaluates the
code for the argument, and finally executes a virtual machine instruction that is specific to
the operator:

*expr pnull             
code for expr
size               

The code generated for a binary operator is the same as the code generated for a unary
operator, except that there are two arguments:

expr1 + expr2 pnull               
code for expr1
code for expr2
plus                 

An augmented assignment operator uses the virtual machine instruction dup to duplicate
the result produced by its first argument:

expr1 +:= expr2 pnull               
code for expr1
dup                 
code for expr2
plus                 
asgn                

The difference between the code generated for left-  and right-associative operators is
illustrated by the following examples:
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expr1 + expr2 + expr3 pnull               
pnull               
code for expr1
code for expr2
plus                 
code for expr3
plus                

expr1 := expr2 := expr3 pnull               
code for expr1
pnull               
code for expr2
code for expr3
asgn                 
asgn                

A subscripting expression is simply a binary operator with a distinguished syntax:

expr1 [ expr2 ] pnull               
code for expr1
code for expr2
subsc                

A sectioning expression is a ternary operator:

expr1 [ expr2 : expr3 ] pnull               
code for expr1
code for expr2
code for expr3
sect                

Sectioning expressions with relative range specifications are simply abbreviations. The
virtual  machine  instructions  for  them  include  the  instructions  for  performing  the
necessary arithmetic:

expr1 [ expr2 +: expr3 ] pnull               
code for expr1
code for expr2
dup                 
code for expr3
plus                
sect                

A to-by expression is another ternary operator with a distinguished syntax:

expr1 to expr2 by expr3 pnull               
code for expr1
code for expr2
code for expr3
toby                



368

If  the  by clause  is  omitted,  an  instruction  that  pushes  a  descriptor  for  the  integer  is
supplied:

expr1 to expr2 pnull               
code for expr1
code for expr2
push1              
toby                

The code generated for an explicit list is similar to the code generated for an operator.
The instruction  that  constructs  the  list  has  an  argument  that  indicates  the  number  of
elements in the list:

[expr1, expr2, expr3] pnull               
code for expr1
code for expr2
code for expr3
llist                 

C.5 Calls
The code generated for a call also is similar to the code generated for an operator except
that  a  null  descriptor  is  not  pushed  (it  is  provided  by the  invoke  instruction).  The
argument  of  invoke is  the number  of arguments  present  in  the call,  not  counting the
zeroth argument, whose value is the procedure or integer that is applied to the arguments:

expr0(expr1, expr2) code for expr0
code for expr1
code for expr2
invoke       2   

In a mutual evaluation expression in which the zeroth argument of the "call" is omitted,
the default value is -1, for which an instruction is provided:

(expr1, expr2, expr3) pushn1            
code for expr1
code for expr2
code for expr3
invoke          3

C.6 Compound Expressions and Conjunction
The  difference  between  a  compound  expression  and  a  conjunction  expression  is
illustrated by the following examples.  Note that the code generated for conjunction is
considerably simpler than that generated for a compound expression, since no separate
expression frames are needed:
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{expr1; expr2; expr3} mark          L1
code for expr1
unmark          

L1:                                                     
mark          L2
code for expr2
unmark          

L2:                                                     
code for expr3

expr1 & expr2 & expr3 code for expr1
pop                 
code for expr2
pop                 
code for expr3

C.7 Selection Expressions
In the code generated for an if-then-else expression, the control expression bounded and
has an expression frame of its own:

if expr1 then expr2
   else expr3

mark          L1
code for expr1
unmark          
code for expr2

          goto           L2          
L1:                                                     

code for expr3
L2:                                                     

If the else clause is omitted, mark0 is used, so that if the control expression fails, this
failure is transmitted to the enclosing expression frame:

if expr1 then expr2 mark0             
code for expr1
unmark          
code for expr2

The code generated for a case expression is relatively complicated. As for similar control
structures, the control expression is bounded. The result it produces is placed on the top
of the stack by the eret instruction, which saves the result of evaluating expr1, removes
the current expression frame, and then push the saved result on the top of the stack. The
ccase instruction pushes a null descriptor onto the stack and duplicates the descriptor just
below the current efp on the top of the stack. This has the effect of providing a null
descriptor and the first argument for the equivalence comparison operation performed by
eqv. The second argument of eqv is provided by the code for the selector clause. The
remainder of the code for a case clause removes the current expression frame marker. in
case the comparison succeeds. and evaluates the selected expression:
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case expr1 of {
   expr2 : expr3
   expr4 : expr5
   default: expr6
   }

mark0             
code for expr1
eret                 
mark          L2
ccase              
code for expr2
eqv                 
unmark          
pop                
code for expr3
goto            L1

L2:                                                     
mark          L3
ccase              
code for expr4
eqv                 
unmark          
pop                
code for expr5
goto            L1

L3:                                                     
pop                
code for expr6

L1:                                                     

C.8 Negation
The not control structure fails if its argument succeeds but produces the null value if its
argument fails:

not expr mark          L1
code for expr 
unmark          
efail               

L1:                                                     
pnull             

C.9 Generative Control Structures
If the first  argument  of an alternation  expression produces a result,  esusp produces a
generator frame for possible resumption and duplicates the surrounding expression frame
on the top of the stack. The result of the first argument is then pushed on the top of the
stack,  so  that  it  looks  as  if  the  first  argument  merely produced a  result.  The  second
argument  is  then  bypassed.  When  the  first  argument  does  not  produce  a  result,  its
expression frame is removed, leaving the second argument to be evaluated:
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expr1 | expr2 mark          L1
code for expr1
esusp              

          goto           L2          
L1:                                                     

code for expr2
L2:                                                     

Since alternation is treated as a binary operation, a succession of alternations produces the
following code:

expr1 | expr2 | expr3 mark          L1
code for expr1
esusp              

          goto           L2          
L1:                                                     

mark          L3
code for expr2
esusp              

         goto           L2          
L2:                                                     

code for expr3
L3:                                                     

Repeated alternation  is  complicated  by the special  treatment  of  the case in  which its
argument  does  not  produce  a  result.  If  it  does  not  produce  a  result,  the  failure  is
transmitted to the enclosing expression frame, since the failure ipc is 0. However, if it
produces a result, the failure ipc is changed by chfail so that subsequent failure causes
transfer to the beginning of the repeated alternation expression.  The esusp instruction
produces the same effect as that for regular alternation. Note that changing the failure ipc
only affects the expression frame marker  on the stack. When mark is executed again, a
new expression frame marker with a failure ipc of 0 is created.

| expr L1:                                                     
mark0             
code for expr  

             chfail            L1          
esusp             

In the limitation control structure, the normal left-to-right order of evaluation is reversed
and the limiting expression is evaluated first. The limit instruction checks that the value is
an integer and pushes it. It then creates an expression frame marker with a zero failure
ipc. Thus, the limit is always one descriptor below the expression marker created by the
subsequent  mark  instruction.  The lsusp instruction  is  similar  to  the esusp instruction,
except  that  it  checks  the  limit.  If  the  limit  is  zero,  it  fails  instead  of  suspending.
Otherwise, the limit is decremented:

expr1 \ expr2 code for expr2
limit                
code for expr1
lsusp              
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C.10 Loops
The  code  generated  for  a  repeat  loop  assures  that  the  expression  frame  is  handled
uniformly, regardless of the success or failure of the expression:

repeat expr L1:                                                     
mark          L1
code for expr  
unmark          

          goto           L1          

A while loop, on the other hand, transmits failure to the enclosing expression frame if its
control  expression  fails.  Note  that  both  expr1  and  expr2  are  evaluated  in  separate
expression frames:

while expr1 do expr2 L1:                                                     
mark0             
code for expr1
unmark          
mark              

 code for expr2
          goto           L1          

If the do clause is omitted, the generated code is similar to that for a repeat loop, except
for the argument of mark:

while expr L1:                                                     
mark0            
code for expr  
unmark          

          goto           L1          

An until loop simply reverses the logic of a while loop:

until expr1 do expr2 L1:                                                     
mark          L2
code for expr1
unmark          
efail               

L2:                                                     
mark          L1

 code for expr2
unmark          

          goto           L1          

The every-do control structure differs from the while-do control structure in that when its
control expression produces a result,  its expression frame is not removed. Instead, the
result is discarded by pop, and the do clause is evaluated in its own expression frame. The
efail  instruction  forces  the  resumption  of  a  suspended generator  that  may have  been
produced by an esusp instruction in the code for expr1:
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every expr1 do expr2 mark0            
  code for expr1  

pop                 
mark0            

  code for expr2  
 unmark          

          efail                        

Breaks from loops normally occur in the context of other expressions. In the following
example, the break expression removes the expression frame corresponding to the repeat
control structure, evaluates its argument expression, and then transfers to a point beyond
the end of the loop:

repeat
   expr1 | break expr2

L1:                                                     
mark          L1
mark          L3
code for expr1
esusp              

            goto           L4             
L3:                                                     

unmark          
 code for expr2

             goto           L2             
L4:                                                     

unmark          
          goto           L1          

L2:                                                     

Like break, next normally occurs in the context of other expressions. In the following
example, next transfers control from a selection expression to the beginning of the loop:

while expr1 do
   if expr2 then next
      else expr3

L1:                                                     
mark0            
code for expr1
unmark          
mark          L1
mark          L4
code for expr2
unmark          

          goto           L2          
L4:                                                     

code for expr3
L2:                                                     

unmark          
          goto           L1          

C.11 String Scanning
String scanning is a control structure, rather than an operator, since the values of &subject
and  &pos  must  be  saved  and  new values  established  before  the  second argument  is
evaluated. This is accomplished by bscan. The instruction bscan saves the current values
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of &subject and &pos and establishes their new values before expr2 is evaluated. escan
restores their values prior to the execution of bscan:

expr1 ? expr2 code for expr1
bscan              
code for expr2
escan              

Augmented string scanning is similar to other augmented operations, but it differs in that
the string scanning operation does not push a null value on the stack. The instruction sdup
therefore is slightly different from dup, which is used in other augmented assignment
operations:

expr1 ?:= expr2 pnull               
code for expr1
sdup               
bscan              
code for expr2
escan              
asgn               

C.12 Procedure Returns
The code generated for a return expression consists of the pret instruction. However, it
allows for failure of the argument of return, which is equivalent to fail:

return expr mark          L1
code for expr  
pret                

L1:                                                     
pfail               

fail pfail               

The code generated for the suspend expression is analogous to the code generated for
alternation,  except  that  the  result  is  returned  from  the  current  procedure.  The  efail
instruction causes subsequent results to be produced if the call is resumed:

suspend expr mark0             
code for expr  
psusp              
efail                

C.13 Co-Expression Creation
The first instruction in the code generated for a create expression is a transfer around the
code that is executed when the resulting co-expression is activated The create instruction
constructs a descriptor that points to the co-expression whose code is at the label given in
its argument and pushes this descriptor on the stack. When the co-expression is activated
the first time, evaluation starts at the label stored in the co-expression. The result that is
on the top of the stack is popped, since transmission of a result to the first activation of a
co-expression is meaningless. If  expr  produces a result,  coret returns that result  to the
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activating  co-expression.  If  expr  fails,  cofail  signals  failure  to  the  activating  co-
expression:

create expr goto            L3
L1:                                                     

pop                
mark          L2
code for expr  
coret               
efail                

L2:                                                     
cofail              
goto            L2

L3:                                                     
             create         L1             
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Appendix D: Adding Functions and Data Types
Icon is designed so that new functions and data types can be added with com.

parative ease. Such additions require changes only to the run-time system; the translator
and linker are not affected.

This appendix provides some guidelines for modifying the Icon run-time system and lists
useful macro definitions and support routines. It is designed to be read in conjunction
with the source code for the implementation. The material included here only touches on
the  possibilities.  There  is  no  substitute  for  actually  implementing  new  features  and
spending time studying the more intricate parts of the Icon system.

D.1 File Organization
The Icon system is organized in a hierarchy. Under UNIX, the Icon hierarchy is rooted at
v6 and is usually located at /usr/icon/v6. For other operating systems, Icon may be named
differently.  The v6 directory has  several  subdirectories  that  contain  source  code,  test
programs,  documents,  and  so  forth.  The  source  code  is  in  v6/src.  There  are  five
subdirectories in src:

h common header files
icont command processor
iconx run-time system
link linker
tran translator

The subdirectory h holds header files that are included by files in the other subdirectories.
The file  h/rt.h  is  particularly important,  since  it  contains  most  0f  the  definitions  and
declarations used in the run-time system.

The rest of the code related to the run-time system is in the subdirectory iconx. The first
letters of files in this subdirectory indicate the nature of their contents. Files that begin
with the letter f contain code for functions, while files that begin with o contain code for
operators. Code related directly to the interpretive process is in files that begin with the
letter  i.  "Library"  routines  for  operations  such as  list  construction  that  correspond to
virtual machine instructions are in files that begin with the letter l. Finally, files that begin
with the letter r hold run-time support routines.

Within  each  category,  routines  are  grouped  by  functionality.  For  example,  string
construction functions  such as map are in fstr.c,  while storage allocation and garbage
collection routines are in rmemmgt.c.

D.2 Adding Functions
There are several conventions and rules of protocol that must be followed in writing a
new function.  The  situations  that  arise  most  frequently are  covered  in  the  following
sections. The existing functions in f files in iconx provide many examples to supplement
the information given here.
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D.2.1 Function Declarations

A function begins with a call of the macro FncDcl(name, n), where name is the name of
the  function  as  it  is  called  in  a  source-language  program,  and  n  is  the  number  of
arguments for the function. For example,
FncDcl(map,3)

appears at the beginning of the function map. This macro declares the procedure block for
the function and provides the beginning of the declaration of a C function for the code
that follows. The value of n appears in the procedure block and is used to assure that the
number of arguments on the interpreter stack when the function is called is the same as
the number of arguments that the function expects. See Sec. 10.3.

An X is prepended to the name given to avoid a collision with the names of other C
routines  in the run-time system. Thus,  the C function that  implements  map is  named
Xmap.  Although  the  Icon  function  map  has  three  arguments,  the  corresponding  C
function  has  only  one:  cargp,  which  is  a  pointer  to  an  array  of  descriptors  on  the
interpreter stack. For example, FncDcl(map, 3) generates

Xmap(cargp)
register struct descrip *cargp;

Other macros are provided for referencing the descriptors:  Arg0 is the descriptor into
which the result  of a function is  placed before it  returns,  Arg1 is  the first  descriptor
argument in the call of the function, Arg2 is the second descriptor argument, and so on.
These  macros  conceptually  refer  to  the  arguments  in  a  source-language  call  of  the
function. It is never necessary (or desirable) to refer to cargp directly.

Note that the descriptor at Arg0 initially points to the procedure block for the function
(see Sec. 10.1). It is fair to assume that Arg1, Arg2, ...,  Argi, where i  arguments  are
specified in the declaration contain valid descriptors Nothing can be assumed about the
nature of these descriptors, other than that they represent valid source-language values.
Similarly, a function must place a valid descriptor in Arg0 before returning, overwriting
the procedure descriptor.

The macros described previously allow functions to be written without worrying about
the details  of the interpreter stack. It is  not important  to  know how these macros are
actually defined; it is best to think of them in terms of the higher-level concepts they
embody.

D.2.2 Returning from a Function

A function  returns  control  to  the  interpreter  by use  of  one  of  three  macros,  Return,
Suspend,  or  Fail,  depending  on  whether  the  function  returns,  suspends,  or  fails,
respectively. Return and Fail return codes that the interpreter uses to differentiate between
the two situations. Suspend returns control to the interpreter by calling it, as described in
Sec. 9.3.

The use of Return is illustrated by the following trivial function that simply returns its
argument:
FncDcl(idem, 1)
{
Arg0 = Arg1;
Return;
}
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For example,
write(idem("hello"))

writes hello.

The use of Suspend and Fail is illustrated by the following function, which generates its
first and second arguments in succession:
FncDcl(gen2,2)
{
Arg0 = Arg1;
Suspend;
Arg0 = Arg2;
Suspend;
Fail;
}

For example,
every write(gen2("hello", "there"))

writes
hello
there

As illustrated previously, Fail is used when there is not another result to produce. It is
safe to assume that Arg0, Arg1, ...are intact when the function is resumed to produce
another result.

Most functions have a fixed number of arguments. Only write, writes, and stop in the
standard  Icon repertoire  can  be  called  with  an  arbitrary number  of  arguments.  For  a
function  that  can  be  called  with  an  arbitrary  number  of  arguments,  an  alternative
declaration macro,  FncDcIV(name),  is used. When this  macro is  used, the function is
called with two arguments:  the number of arguments  in the call  and a pointer  to the
corresponding array of descriptors. For example, FncDcIV(write) generates
Xwrite(nargs, cargp)
int nargs;
register struct descrip cargp;

Within such a function, Arg0 refers to the return value as usual, but the arguments are
referenced using the macro Arg(n). For example, a function that takes an arbitrary number
of arguments and suspends with them as values in succession is
FncDcIV(gen)
{
register int n;
for (n = 1; n <= nargs; n++) {
Arg0 = Arg(n);
Suspend;

}
Fail;
}

For example,
every write(gen("hello","there","!"))

writes
hello
there
!
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Note the use of Fail at the end of the function; the omission of Fail would be an error,
since returning by flowing off the end of the function would not provide the return code
that the interpreter expects.

D.2.3 Type Checking and Conversion

Some functions need to perform different operations, depending on the types of
their arguments. An example is type(x):

FncDcl(type, 1)
{
if (Qual(Arg1)) (

StrLen(Arg0) = 6;
StrLoc(Arg0) = "string";
}
else {

switch (Type(Arg1)) (
case T_Null:
StrLen(Arg0) = 4;
StrLoc(Arg0) = "null";

break;
case T_Integer:
case T_Long:
StrLen(Arg0) = 7;
StrLoc(Arg0) = "integer";
break;
case T_Real:
StrLen(Arg0) = 4;
StrLoc(Arg0) = "real";
break;

}
}
Return;
}

As indicated by this function, the d-word serves to differentiate between types, except for
strings, which require a separate test.

For most functions, arguments must be of a specific type. As described in Sec. 12.1, type
conversion routines are used for this purpose. For example, the function tab(i) requires
that i be an integer. It begins as follows:
FncDcl(tab. 1 )
{
register word i, j;
word t, oldpos;
long 11;

/*
* Arg1 must be an integer.
*/

if (cvint(&Arg1, &11) == CvtFail)
runerr(101, &Arg1);

Note  that  cvint  is  called  with  the  addresses  of  Arg1  and  11.  If  the  conversion  is
successful, the resulting integer is assigned to 11. As indicated by this example, it is the
responsibility  of  a  function  to  terminate  execution  by  calling  runerr  if  a  required
conversion cannot be made.
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The routine cvstr, which converts values to strings, requires a buffer, which is supplied by
the routine that calls  it.  See Sec. 4.4.4. This buffer must be large enough to hold the
longest string that can be produced by the conversion of any value. This size is given by
the defined constant MaxCvtLen. For example, the function to reverse a string begins as
follows:
FncDcl(reverse.1 )
{
register char c. *floc. *lIoc;
register word slen;
char sbuf[MaxCvtLen];
extern char *alcstrO;
/*
* Make sure that Arg1 is a string.
*/
if (cvstr(&Arg1. sbuf) == CvtFail)
runerr(103. &Arg1);

The buffer is used only if a nonstring value is converted to a string. In this case,

Arg1 is changed to a qualifier whose v-word points to the converted string in sbuf. This
string does not necessarily begin at the beginning of sbuf. In any event, after a successful
call to cvstr, the argument is an appropriate qualifier, regardless of whether a conversion
actually was performed.

D.2.4 Constructing New Descriptors

Some functions  need to  construct  new descriptors to  return in  Arg0. Sometimes  it  is
convenient to construct a descriptor by assignment to its d- and v-words. Various macros
are provided to  simplify these assignments.  As given in the function type previously,
StrLen and StrLoc can be used to construct a qualifier. For example, to return a qualifier
for the string "integer", the following code suffices:
StrLen(Arg0) = 7;
StrLoc(Arg0) = "integer";
Return;

Here, the returned qualifier points to a statically allocated C string.

There also are macros and support routines for constructing certain kinds of descriptors.
For example, the macro
Mkint(i, dp);

constructs an integer descriptor containing the integer i in the descriptor pointed to by dp.
The definition of Mkint depends on the word size of the computer. On 32-bit computers,
Mkint simply produces assignments to the d-word and v-word of descriptor pointed to by
dp. On computers with 16-bit words, which have both T_Integer and T_Long forms of
integers, Mkint produces a call to a support routine.

D.2.5 Default Values

Many functions  specify  default  values  for  null-valued  arguments.  There  are  support
routines for providing default values. For example,
defstr(Arg3, sbuf, &q);
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changes Arg3 to the string given by the qualifier q in case Arg3 is null-valued. If Arg3 is
not null-valued, however, its value is converted to a string, if possible, by defstr. If this is
not possible, defstr terminates execution with an error message.

D.2.6 Storage Allocation

Functions that construct new data objects often need to allocate storage. Allocation is
done in the allocated string region or the allocated block region, depending on the nature
of the object. Support routines are provided to perform the actual allocation.

As mentioned in  Sec.  11.4,  predictive  need requests  must  be made  before  storage is
actually allocated. The functions strreq(i) and blkreq(i) request i bytes of storage in the
allocated string and block regions, respectively.

Such a request generally should be made as soon as an upper bound on the amount of
storage needed is known. It is not necessary to know the exact amount, but the amount
requested must  be at  least  as large as the amount  that  actually will  be allocated.  For
example,  the function reads(f.  i)  requests  i  bytes  0 string storage,  although the string
actually read may be shorter.

String Allocation. The function alcstr(s, i) copies i bytes starting at s into the allocated
string region and returns a pointer to the beginning of the copy. Fo example, a function
double(s) that produces the concatenation of s with itself is written as follows:
FncDcl(double. 1)
{
register int glen;
char sbuf[MaxCvtLen];
extern char *alcstrO;
if (cvstr(&Arg1. sbuf) == NULL)
runerr(103, &Arg1);
glen = StrLen(Arg1);
strreq(2 * glen);
StrLen(Arg0) = 2 * glen;
StrLoc(Arg0) = alcstr(StrLoc(Arg1). glen);
alcstr(StrLoc(Arg1), glen);
Return;
}

If the first argument of alcstr is NULL, instead of being a pointer to a string, the space is
allocated and a pointer to the beginning of it is returned, but nothing is copied into the
space. This allows a function to construct a string directly in the allocated string region.

If a string to be returned is in a buffer as a result of conversion from another type, care
must be taken to copy this string into the allocated string region---otherwise the string in
the buffer will be overwritten on subsequent calls. Copying such strings is illustrated by
the function string(x) given in Sec. 12.1.

Block Allocation. The routine alcblk(i) allocates i bytes in the allocated block region and
returns a pointer to the beginning of the block. The argument of alcblk must correspond
to a whole number of words. There are run-time support routines for allocating various
kinds of blocks. These routines, in turn, call alcblk. Such support routines generally fill in
part of the block as well. For example, alccset(i) allocates a block for a cset, fills in the
title and size words, and zeroes the bits for the cset:
struct b_cset *alccset(size)
int size;
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{
register struct b_cset *blk;
register i;
extern union block *alcblk();
blk = (struct b_cset *)alcblk((word)sizeof(struct b_cset) , 
T_Cset); blk->size = size;
/*
* Zero the bit array.
*/
for (i = 0; i < CsetSize; i++)
blk->bits[i] = 0; return blk;
}

See Sec. D.5.5 for a complete list of block-allocation functions.

D.2.7 Storage Management Considerations

In addition to assuring that predictive need requests are made before storage is allocated,
it  is  essential  to  assure  that  all  descriptors  contain  valid  data  at  any time  a  garbage
collection may occur, that all descriptors are accessible to the garbage collector, and that
all pointers to allocated data are in the v-words of descriptors.

Normally,  all  the descriptors that  a function  uses are on the interpreter stack and are
referenced as Arg0, Arg1, Such  descriptors  are  processed  by the  garbage  collector.
Occasionally,  additional  descriptors are needed for intermediate  computations.  If such
descriptors contain pointers in their v-words, it is not correct to declare local descriptors,
as in
FncDcl(mesh,2)
{
struct descrip d1, d2;

The problem with this approach is that d1 and d2 are on the C stack and the garbage
collector has no way of knowing about them.

However,  since  all  descriptors  on  the  interpreter  stack  are  accessible  to  the  garbage
collector, intermediate computations can be performed on descriptors on the interpreter
stack. Extra descriptors for this  purpose can be provided by increasing the number of
arguments specified for the function. Thus,

FncDcl(mesh,4)

makes Arg3 and Arg4 available for intermediate computations. The initial values of Arg3
and Arg4 will be null because of argument adjustment performed by invoke unless mesh
is called with extra arguments.

Garbage  collection  can  occur  only  during  a  predictive  need  request.  However,  a
predictive need request can occur between the time a function suspends and the time it is
resumed to produce another result. Consequently, if a pointer is kept in a C variable in a
loop that is producing results by suspending, the pointer may be invalid when the function
is  resumed.  Instead,  the  pointer  should  be kept  in  the  v-word of  a  descriptor  that  is
accessible to the garbage collector.

D.2.8 Error Termination

An Icon program may terminate abnormally for two reasons: as the result of a source-
language programming error (such as an invalid type in a function call), or as a result of
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an error detected in the Icon system itself (such as a descriptor that should have been
dereferenced but was not).

In case a source-language error is detected, execution is terminated by a call of the form
runerr(i, &d);

where i is an error message number and d is the descriptor for the offending value. If
there is no specific offending value, the second argument is 0.

The  array  of  error  message  numbers  and  corresponding  messages  is  contained  in
iconx/imain.c. If there is no appropriate existing error message, a new one can be added,
following the guidelines given in Appendix D of Griswold and Griswold 1983.

In theory,  there should  be no errors  in  the Icon system itself,  but  no large,  complex
software  system  is  totally  free  of  errors.  Some  situations  are  recognizable  as  being
potential sources of problems in case data does not have the expected values. In such
situations, especially during program development, it  is advisable to insert calls of the
function syserr, which terminates execution, indicating that an error was detected in the
Icon system,  and prints  its  argument  as an indication of the nature of the error.  It is
traditional to use calls of the form

syserr("mesh: can't happen");

so that when, in fact, the "impossible" does happen, there is a reminder of human frailty.
More informative messages are desirable, of course.

D.2.9 Header Files

If  a  new function  is  added to  an  existing  f  file  in  iconx,  the  necessary header  files
normally will be included automatically. If a new function is placed in a new file, that file
should begin with

#include "../h/rt.h"

This header file includes three other header files:

../h/config.h general configuration information

../h/cpuconf.h definitions that depend on the computer word size

../h/memsize.h definitions that depend on the computer address space

All of these files contain appropriate information for the local installation, and no changes
in them should be needed.

In rare cases, it may be necessary to include other header files. For example,  a function
that deals directly with garbage collection might need to include iconx/gc.h.

D.2.10 Installing a New Function

Both the linker  and the run-time system must  know the names of all  functions.  This
infonnation is provided in the header file h/fdefs.h.

In order to add a function, a line of the form
FncDef(name)

must be inserted in h/fdefs.h in proper alphabetical order.

Once this insertion is made, the Icon system must be recompiled to take into account the
code for  the new function.  The steps  involved in  recompilation  vary from system to
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system. Information concerning recompilation is available in system-specific installation
documents.

D.3 Adding Data Types
Adding a new data type is comparatively simple, although there are several places where
changes  need  to  be  made.  Failure  to  make  all  the  required  changes  can  produce
mysterious bugs.

D.3.1 Type Codes

At present, type codes range from 0 to 18. Every type must have a distinct type code and
corresponding definitions.  These additions  are made in h/rt.h.  First,  a T -definition is
needed. For example, if a Boolean type is added, a definition such as

#define T _Boolean 19

is needed. The value of MaxType, which immediately follows the type code definitions,
must be increased to 19 accordingly. Failure to set MaxType to the maximum type code
may result in program malfunction during garbage collection. See Sec. 11.3.2.

Next a 0- definition is needed for the d-word of the new type. For a Boolean type, this
definition might be

#define D_Boolean (T_Boolean I F_Nqual)

All nonstring types have the F _Nqual flag and their T- type code. Types whose v-words
contain pointers also have the F _Ptr flag.

D.3.2 Structures

A value of a Boolean type such as the one suggested previously can be stored in the d-
word of its descriptor. However, most types contain pointers to blocks in their v-words. In
this case, a declaration of asttucture corresponding to the block must be added to h/rt.h.
For example, a new rational number data type, with the type code T_Rational, might be
represented by a block containing two descriptors, one for the numerator and one for the
denominator. An appropriate structure declaration for such a block is
struct b_rational {
int title;
struct descrip numerator;
struct descrip denominator;
};

Since rational blocks are fixed in size, no size field is needed. However, a vector type
with code T_Vector in which different vectors have different lengths needs a size field.
The declaration for such a block might be
struct b_vector {
int title;
int blksize;
struct descrip velems[1];
};

As mentioned in Sec. 4.4.2, the size of one for the array of descriptors is needed to avoid
problems with C compilers. In practice, this structure conceptually overlays the allocated
block region, and the number of elements varies from block to block.
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Any new structure declaration for a block must be added to the declaration union block in
h/rt.h.

D.3.3 Information Needed for Storage Management

All pointers to allocated data must be contained in the v-words of descriptors, since this is
the only way the garbage collector can locate them. Furthermore, all non-descriptor data
must precede any descriptors in a block. The amount of non-descriptor data, and hence
the location of the first descriptor in a block, must be the same for all blocks of a given
type.

As described in Sec. 11.3.2, the garbage collector uses the array bsizes to determine the
size of a block and the array firstd to determine the offset of the first descriptor in the
block. These arrays are in iconx/rmemmgt.c. When a new data type is added, appropriate
entries must be made in these arrays. Failure to do so may result in serious bugs that
occur  only in  programs  that  perform  garbage  collection,  and  the  symptoms  may be
mysterious.

There is an entry in bsizes for each type code. If the type has no block, the entry is -1. If
the type has a block of constant size, the entry is the size of the block. Otherwise, the
entry is 0, indicating that the size is in the second word of the block. Thus, the entry for
T_Boolean would be -1, the entry for T_Rational would be sizeof(struct b_rational), and
the size for T_Vector would be O.

There is a corresponding entry in firstd for each type code that gives the offset of the first
descriptor in its corresponding block. If there is no block, the entry is -1. If the block
contains no descriptors, the entry is O. For example, the entry for T_Boolean would be -1,
the  entry for  T_Rational  would  be  WordSize,  and  the  entry for  T_Vector  would  be
2*WordSize, where WordSize is a defined constant that is the number of bytes in a word.

A third array, blknames, provides string names for all block types. These names are only
used for debugging, and an entry should be made in blknames for each new data type.

D.3.4 Changes to Existing Code

In addition to any functions that may be needed for operating on values of a new data
type, there are several functions and operators that apply to all data types and which may,
therefore, need to be changed for any new data type.

These are

*x size of x (in iconx/omisc.c)
copy(x) copy of x (in iconx/fmisc.c)
image(x) string image of x (in iconx/fmisc.c)
type(x) string name of type of x (in iconx/fmisc.c)

There is not a concept of size for all data types. For example, a Boolean value presumably
does not have a size, but the size of a vector presumably is the number of elements it
contains. The size of a rational number is problematical. Modifications to *x are easy; see
Sec. 4.4.4.

There must  be some provision for copying any value. For structures, such as vectors,
physical  copies  should  be  made  so  that  they are  treated  consonantly with  other  Icon
structures. For other data types, the "copy" consists of simply returning the value and not
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making a physically distinct copy. This should be done for data types, such as Boolean,
for which there are only descriptors and no associated blocks. Whether or not a copy of a
block for a rational value should be made is a more difficult decision and depends on how
such values are treated conceptually, at the source-language level. It is, of course, easiest
not to make a physical copy.

Some  image  must  be  provided  for  every  value.  This  image  should  contain  enough
information to distinguish values of different types and, where possible, to provide some
useful  additional  information about the specific value.  The amount  of detail  that  it  is
practical to provide in the image of a value is limited by the fact that the image is a string
that must be placed in the allocated string region.

The type must be provided for all values and should consist of a simple string name. For
example, if x is a Boolean value, type(x) should produce "boolean". The coding for type
is trivial; see Sec. D.2.3.

There also are several run-time support routines that must be modified for any new type:

outimage image for tracing (in iconx/rmisc.c)
order order for sorting (in iconx/rcomp.c)
anycmp comparison for sorting (in iconx/rcomp.c)
equiv equivalence comparison (in iconx/rcomp.c)

The image produced for tracing purposes is similar to that produced by image and must
be provided for all data types. However, outimage produces output and is not restricted to
constructing  a  string  in  allocated  storage.  It  therefore  can  be  more  elaborate  and
informative.

There must be some concept of sorting order for every Icon value. There are two aspects
to sorting: the relative order of different data types and the ordering among values of the
same type. The routine order produces an integer that corresponds to the order of the type.
If the order of a type is important with respect to other types, this matter must be given
some consideration. For example, a rational number probably belongs among the numeric
types, which, in Icon, sort before structure types. On the other hand, it probably is not
important whether vectors come before or after lists.

The  routine  anycmp  compares  two  values;  if  they  have  the  same  order,  as  defined
previously,  anycmp determines  which  is  the  "smaller."  For  example,  Boolean "false"
might (or might not) come before "true," but some ordering between the two should be
provided. On the other hand, order among vectors probably is not important (or well-
defined), and they can be lumped with the other structures in anycmp, for which ordering
is arbitrary. Sometimes ordering can be quite complicated; a correct ordering of rational
numbers is nontrivial.

The routine equiv is used in situations, such as table subscripting and case expressions, to
determine whether two values are equivalent in the Icon sense. Generally speaking, two
structure values are considered to be equivalent if and only if they are identical.  This
comparison  is  included  in  equiv  in  a  general  way.  For  example,  equiv  need  not  be
modified  for  vectors.  Similarly,  for  data  types  that  have  no  corresponding  blocks,
descriptor comparison suffices; equiv need not be modified for Boolean values either.
However,  determining  the  equivalence  of  numeric  values,  such  as  rational  numbers,
requires some thought.
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D.4 DEFINED CONSTANTS AND MACROS

Defined  constants  and  macros  are  used  heavily in  Icon to  parameterize  its  code  for
different operating systems and computer architectures and to provide simple, high-level
constructions for commonly occurring code sequences that otherwise would be complex
and obscure.

These defined constants and macros should be used consistently when making additions
to Icon instead of using ad hoc constructions. This improves portability, readability, and
consistency.

Learning the meanings and appropriate use of the existing defined constants and macro
definitions  requires investment  of time and energy. Once learned, however,  coding is
faster, simpler, and less prone to error.

D.4.1 Defined Constants

The following defined constants are used frequently in the run-time system. This list is by
no means exhaustive; for specialized constants, see existing functions.

CsetSize number of words needed for 256 bits
LogHuge one plus the maximum base-lO exponent of a C double
LoglntSize base-210garithm of number of bits in a C int
MaxCvtLen length of the longest possible string obtained by conversion
MaxLong largest C long
MaxShort largest C short
MaxStrLen longest possible string
MinListSlots minimum number of slots in a list-element block
MinLong smallest C long
MinShort smallest C short
WordSize number of bytes in a word

D.4.2 Macros

The  following  macros  are  used  frequently  in  the  run-time  system.  See  h  /rt.h  and
iconx/gc.h for the definitions, and see existing routines for examples of usages.

Arg(n) nth argument to function
ArgType(n) d-word of nth argument to function
ArgVal(n) integer value of v-word of nth argument to function
BlkLoc(d) pointer to block from v-word of d
BlkSize(cp) size of block pointed to by cp
BlkType(cp) type code of block pointed to by cp
ChkNull(d) true if d is a null-valued descriptor
CsetOff(b) offset in a word of cset bit b
CsetPtr(b, c) address of word c containing cset bit b
DeRef( d) dereference d
EqlDesc(d1, d2) true if d1 and d2 are identical descriptors
GetReal(dp, r) get real number into r from descriptor pointed to by dp
IntVal(d) integer value of v-word of d
Max(i, j) maximum of i and j
Min(i. j) minimum of i and j
Mkint(i, dp) make integer from i in descriptor pointed to by dp
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Offset(d) offset from d-word of variable descriptor d
Pointer(d) true if v-word of d is a pointer
Qual(d) true if d is a qualifier
Setb(b, c) set bit b in cset c
SlotNum(i, j) Slot for hash number i given j total slots
StrLen(q) length of string referenced by q
StrLoc(q) location of string referenced by q
Testb(b, c) true if bit b in cset c is one
Tvar(d) true if d is a trapped variable
TvarLoc(d) pointer to trapped variable from v-word of d
Type(d) type code in d-word of d
Var(d) true if d is a variable descriptor
VarLoc(d) pointer to value descriptor from v-word of d
Vsizeof(x) size of structure x less variable array at end
Vwsizeof(x) size of structure x in words less variable array at end
Wsizeof(x) size of structure x in words

D.5 Support Routines
There are many support routines for performing tasks that occur frequently in the Icon
run-time system. Most of these routines are in files in iconx that begin with the letter r.
The uses of many of these support routines have been illustrated earlier; what follows is a
catalog for reference.

D.5.1 Comparison

The following routines in iconx/rcomp.c perform comparisons:

anycmp(dp1, dp2) Compare the descriptors pointed to by dp1 and dp2 as Icon
values in sorting order, returning a value greater than 0, 0, or less than 0 depending on
whether the descriptor pointed to by dp1 is respectively greater than, equal to, or less than
the descriptor pointed to by dp2.

equiv(dp1, dp2) Test for equivalence of descriptors pointed to by dp1 and
dp2, returning 1 if equivalent and 0 other
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Appendix E: Projects
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Appendix F: Solutions to Selected Exercises
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Appendix G: The RTL Run-Time Language 

This appendix contains a description of the language used to implement  the run-time
operations of the Icon compiler system. Chapter 5 provides a description of the design
goals  of  the  implementation  language and  an  introduction  to  it.  Some  of  the  design
decisions for the language were motivated by optimizations planned for the future, such
as constant folding of csets. The use of these features is presented as if the optimizations
were implemented; this insures that the optimizations will be supported by the run-time
system when they are implemented. This appendix is adapted from the reference manual
for the language [.ipd79.]. 

The translator for the implementation language is the program rtt. An rtt input file may
contain  operation  definitions  written  in  the  implementation  language,  along  with  C
definitions  and declarations.  Rtt  has  a  built-in  C preprocessor  based  on the  ANSI C
Standard, but with extensions to support multi-line macros with embedded preprocessor
directives [.ipd65.]. Rtt prepends a standard include file, grttin.h, on the front of every
implementation language file it translates. 

The  first  part  of  this  appendix  describes  the  operation  definitions.  C  language
documentation should be consulted for ordinary C grammar. The extensions to ordinary C
grammar are described in the latter part of the appendix.

The grammar for the implementation language is presented in extended BNF notation.
Terminal symbols are set in Helvetica. Non-terminals and meta-symbols are set in Times-
Italic.  In  addition  to  the  usual  meta-symbols,  ::= for  ``is  defined  as''  and  | for
``alternatives'',  brackets  around a  sequence  of  symbols  indicates  that  the  sequence  is
optional, braces around a sequence of symbols followed by an asterisk indicates that the
sequence may be repeated zero or more times, and braces followed by a plus indicates
that the enclosed sequence may be repeated one or more times. 

G.1 Operation Documentation 
An operation definition can be preceded by an optional description in the form of a C
string literal. 
        documented-definition ::= [ C-string-literal ] operation-
definition

The use of a C string allows an implementation file to be run through the C preprocessor
without altering the description.  The preprocessor concatenates adjacent string literals,
allowing a multi-line description  to be written using multiple  strings.  Alternatively,  a
multi-line description can be written using `' for line continuation.  This description is
stored in the operation data base where it can be extracted by documentation generation
programs.  These documentation  generators  produce formatted documentation  for Icon
programmers  and  for  C  programmers  maintaining  the  Icon  implementation.  The
documentation generators are responsible for inserting newline characters at reasonable
points when printing the description. 
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G.2 Types of Operations 
Rtt  can be used to define the built-in functions,  operators,  and keywords of the Icon
language. (Note that there are some Icon constructs that fall outside this implementation
specification  system.  These  include  control  structures  such  as  string  scanning  and
limitation, along with record constructors and field references.) 
   operation-definition ::=
      function result-seq identifier ( [ param-list ] ) [ declare
] actions end |
      operator result-seq op identifier ( [ param-list ] ) 
[ declare ] actions end |
      keyword result-seq identifier actions end |
      keyword result-seq identifier const key-const end
   result-seq ::= { length , length [ + ] } |
                  { length [ + ] } |
                  { }
   length ::= integer | *

result-seq indicates  the  minimum and  maximum length  of  the  result  sequence  of  an
operation (the operation is treated as if it is used in a context where it produces all of its
results). For example, addition always produces one result so its  result-seq is {1, 1}. If
the minimum and maximum are the same, only one number need be given, so the result-
seq for addition  can be coded as {1}. A conditional  operation can produce either  no
results (that is, it can fail) or it can produce one result, so its result-seq is {0, 1}. A length
of indicates unbounded, so the result-seq of ! is indicated by {0, }. An in the lower bound
means the same thing as 0, so {0, } can be written as {, }, which simplifies to {}. A
result-seq of {} indicates no result sequence. This is not the same as a zero-length result
sequence, {0}; an operation with no result sequence does not even fail. exit is an example
of such an operation. 

A + following the length(s) in a result-seq indicates that the operation can be resumed to
perform some side effect after producing its last result.  All existing examples of such
operations produce at most one result, performing a side effect in the process. The side
effect on resumption is simply an undoing of the original side effect. An example of this
is tab, which changes &pos as the side effect. 

For  functions  and keywords,  identifier is  the  name by which the operation  is  known
within the Icon language (for keywords, identifier does not include the &). New functions
and keywords can be added to the language by simply translating implementations for
them. For operations, op is (usually) the symbol by which the operation is known within
the Icon language and identifier is a descriptive name. It is possible to have more than one
operation with the same op as long as they have different identifiers and take a different
number of operands. In addition to translating the implementation for an operator, adding
a new operator requires updating iconc's lexical analyzer and parser to know about the
symbol (in reality, an operator definition may be used for operations with non-operator
syntax,  in  which  case  any syntax  may be  used;  iconc's  code  generator  identifies  the
operation by the type of node put in the parse tree by a parser action). In all cases, the
identifier is  used to  construct  the name(s)  of  the C function(s)  which implement  the
operation.

A param-list is a comma separated list of parameter declarations. Some operations, such
as  the  write  function,  take  a  variable  number  of  arguments.  This  is  indicated  by
appending a pair of brackets enclosing an identifier to the last parameter declaration. This
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last  parameter  is  then an array containing the  tail of  the argument  list,  that  is,  those
arguments not taken up by the preceding parameters. The identifier in brackets represents
the length of the tail and has a type of C integer. 
   param-list ::= param { , param } [ [ identifier ] ]

Most operations need their arguments dereferenced. However, some operations, such as
assignment,  need  undereferenced  arguments  and  a  few  need  both  dereferenced  and
undereferenced versions of an argument.  There are forms of parameter declarations to
match each of these needs. 
   param ::= identifier |
                underef identifier |
                underef identifier -> identifier

A  simple  identifier  indicates  a  dereferenced  parameter.  underef  indicates  an
undereferenced parameter. In the third form of parameter declaration, the first identifier
represents the undeferenced form of the argument and the second identifier represents the
dereferenced form. This third form of declaration may not be used with the variable part
of an argument list. These identifiers are of type descriptor. Descriptors are implemented
as  C  structs.  See  Chapter  4  for  a  detailed  explanation  of  descriptors.  Examples  of
operation headers: 
   detab(s,i,...) - replace tabs with spaces, with stops at 
columns indicated.
   function{1} detab(s, i[n])
      actions
   end

   x <-> y -swap values of x and y.
   Reverses swap if resumed.
   operator{0,1+} <-> rswap(underef x -> dx, underef y -> dy)
      declare
      actions
   end

   &fail -just fail
   keyword{0} fail
      actions
   end

G.3 Declare Clause
Some operations need C declarations that are common to several actions. These can be
declared within the declare clause. 
      declare ::= declare { C declarations }

These may include  tended declarations,  which are explained below in the section  on
extensions to C. If a declaration can be made local to a block of embedded C code, it is
usually better  to put  it  there than in  a declare clause.  This  is  explained below in the
discussion of the body action. 

Constant Keywords

Any  keyword  can  be  implemented  using  general  actions.  However,  for  constant
keywords, iconc can sometimes produce more efficient code if it treats the keyword as a
literal constant. Therefore, a special declaration is available for declaring keywords that
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can be represented as Icon literals. The constant is introduced with the word const and
can be one of four literal types. 
      key-const ::= string-literal | cset-literal | integer-
literal | real-literal

When using this mechanism, it is important to be aware of the fact that rtt tokenizes these
literals  as  C literals,  not  as  Icon literals.  The contents  of string literals  and character
literals  (used  to  represent  cset  literals)  are  not  interpreted  by  rtt  except  for  certain
situations in string concatenation (see [.ipd65.]). They are simply stored, as is, in the data
base. This means that literals with escape sequences can be used even when C and Icon
would  give  them  different  interpretations.  However,  C  does  not  recognize  control
escapes,  so '^'',  which is  a valid  Icon literal,  will  result  in an error message from rtt,
because the second quote ends the literal, leaving the third quote dangling. Only decimal
integer literals are allowed. 

G.4 Actions 
All operations other than constant keywords are implemented with general actions.

Actions fall into four categories: type checking and conversions, detail code expressed in
extended C, abstract type computations, and error reporting. 
   actions ::= { action }*
   action ::= checking-conversions |
              detail-code |
              abstract { type-computations } |
              runerr( msg_number [ , descriptor ] ) [ ; ]
             { actions }

Type Checking and Conversions

The type checking and conversions are 
   checking-conversions ::= if type-check then action |
                            if type-check then action else action
|
                            type_case descriptor of { { type-
select }+ } |
                            len_case identifier of { { integer : 
action }+ default : action }
   type-select ::= { type-name : }+ action |
                   default : action

These actions specify run-time operations. These operations could be performed in C, but
specifying them in the implementation language gives the compiler information it can use
to generate better code.

The if actions use the result of a type-check expression to select an action. The type_case
action selects an action based on the type of a descriptor. If a type_case action contains a
default  clause, it  must  be last.  type-select clauses must  be mutually exclusive in their
selection. The len_case action selects an action based on the length of the variable part of
the  argument  list  of  the  operation.  The  identifier in  this  action  must  be  the  one
representing that length.
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A  type-check can succeed or fail. It is either an assertion of the type of a descriptor, a
conversion of the type of a descriptor, or a logical expression involving type-checks. Only
limited forms of logical expressions are supported. 
   type-check ::= simple-check { && simple-check }* |
                     ! simple-check

   simple-check ::= is: type-name ( descriptor ) |
                    cnv: dest-type ( source [ , destination ] ) |
                    def: dest-type ( source , value [ , 
destination ] )

   dest-type ::= cset |
                 integer |
                 real |
                 string |
                 C_integer |
                 C_double |
                 C_string |
                 (exact)integer |
                 (exact)C_integer |
                 tmp_string |
                 tmp_cset

The is check succeeds if the value of the descriptor is in the type indicated by type-name.
Conversions indicated by cnv are the conversions between the Icon types of cset, integer,
real, and string. Conversions indicated by def are the same conversions with a default
value to be used if the original value is null.

dest-type is the type to which to a value is to be converted, if possible. cset, integer, real,
and string constitute a subset of  icon-type which is in turn a subset of  type-name (see
below). C_integer, C_string, and C_double are conversions to internal C types that are
easier to manipulate than descriptors. Each of these types corresponds to an Icon type. A
conversion to an internal C type succeeds for the same values that a conversion to the
corresponding Icon type succeeds. C_integer represents the C integer type used for integer
values in the particular Icon implementation being compiled (typically, a 32-bit integer
type).  C-double represents  the C double type.  C-string represents a pointer to  a null-
terminated C character array. However, see below for a discussion of the destination for
conversion to C_string. (exact) before integer or C_integer disallows conversions from
reals or strings representing reals, that is, the conversion fails if the value being converted
represents a real value.

Conversion to tmp_string is the same as conversion to string (the result is a descriptor),
except that the string is only guaranteed to exist for the lifetime of the operation (the
lifetime of a suspended operation extends until it can no longer be resumed). Conversion
to tmp_string is  generally less expensive than conversion to string and is  never more
expensive, but the resulting string must not be exported from the operation. tmp_cset is
analogous to tmp_string.

The source of the conversion is  the descriptor  whose value is  to  be converted.  If no
destination is specified, the conversion is done ``in-place''. However, it may not actually
be possible  to  do an argument  conversion  in  the  argument's  original  location,  so the
argument may be copied to another location as part of the conversion. Within the scope of
the conversion, the parameter name refers to this new location. The scope of a conversion
is usually only important for conversions to C types; the run-time system translator and
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the Icon compiler try to keep the movement of descriptor parameters transparent (see
below for more details).  All elements of the variable part of an argument list must be
descriptors. Therefore, when an element is converted to a C type, an explicit  location
must be given for the destination.

The destinations for conversions to cset, integer, real, string, (exact)integer, tmp_string,
and  tmp_cset  must  be  descriptors.  The  destinations  for  conversions  to  C_integer,
C_double,  and  (exact)C_integer  must  be  the  corresponding  C  types.  However,  the
destination for conversion to C_string must be tended. If the destination is declared as
``tended char '', then the dword (string length) of the tended location will be set, but the
operation will not have direct access to it. The variable will look like a ``char ''. Because
the operation does not have access to the string length, it is not a good idea to change the
pointer  once  it  has  been  set  by  the  conversion.  If  the  destination  is  declared  as  a
descriptor, the operation has access to both the pointer to the string and the string's length
(which includes the terminating null character). If a parameter is converted to C_string
and no explicit  destination  is  given, the parameter  will  behave like a ``tended char ''
within the scope of the conversion. 

The second argument to the def conversion is the default value. The default value may be
any C expression that evaluates to the correct type. These types are given in the following
chart. 

cset: 
struct
b_cset 

integer: C_integer 

real: double 

string: 
struct
descrip 

C_integer: C_integer 

C_double: double 

C_string: char * 

tmp_string:
struct
descrip 

tmp_cset: 
struct
b_cset 

(exact)integer: C_integer 

(exact)C_inte
ger: 

C_integer 

The numeric operators provide good examples of how conversions are used: 
   operator{1} / divide(x, y)
      if cnv:(exact)C_integer(x) && cnv:(exact)C_integer(y) then
         actions
      else {
         if !cnv:C_double(x) then
            runerr(102, x)
         if !cnv:C_double(y) then
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            runerr(102, y)
         actions
         }
    end

Within the code indicated by actions, x and y refer to C values rather than to the Icon
descriptors of the unconverted parameters.

The subject of any type check or type conversion must be an unmodified parameter. For
example,  once  an  in-place  conversion  has  been  applied  to  a  parameter,  another
conversion  may  not  be  applied  to  the  same  parameter.  This  helps  insure  that  type
computations in iconc only involve the unmodified types of arguments, simplifying those
computations. This restriction does not apply to type checking and conversions in C code.

Scope of Conversions

The following discussion is included mostly for completeness. The scope of conversions
sounds  complicated,  but  in  practice  problems  seldom  occur  in  code  that  ``looks
reasonable''. If a problem does occur, the translator catches it. Normally, the intricacies of
scope  should  be  ignored  and  the  person  writing  run-time  routines  should  code
conversions in a manner that seems natural.

An "in-place" conversion  of  a  parameter  can  create  a  scope for  the  parameter  name
separate from the one introduced by the parameter list. This is because conversions to C
types may require the converted value to be placed in a different location with a different
type. The parameter name is then associated with this new location. The original scope of
a parameter starts at the beginning of the operation's definition. The scope of a conversion
starts at the conversion. A scope extends through all code that may be executed after the
scope's beginning, up to a runerr or a conversion that hides the previous scope (because
the  type  checking portion  of  the  implementation  language does  not  contain  loops  or
arbitrary gotos, scope can easily be determined lexically).

The use of an in-place conversion in the first sub-expression of a conjunction, cnv1 &&
cnv2, has a potential for causing problems. In general, there is no way to know whether
the first conversion will effectively be undone when the second conversion fails. If the
first conversion is actually done in-place, the parameter name refers to the same location
in both the success and failure scope of the conjunction, so the conversion is not undone.
If  the  conversion  is  done into  a  separate  location,  the  failure  scope will  refer  to  the
original value, so the conversion will effectively be undone. Whether the conversion is
actually done in-place  depends  on  the  context  in  which  operation  is  used.  However,
conversion to C_integer and C_double always preserve the original value, so there is no
potential  problem using them as the first  argument  to  a conjunction,  nor is  there any
problem using a non-conversion test there. An example of this uncertainty: 
   if cnv:string(s1) && cnv:string(s2) then {
      /* s1 and s2 both refer to converted values */
      }
   else { /* s2 refers to the original value. s1 may
             refer to either the original or the converted value 
*/
      }

The translator issues a warning if there is a potential problem. 
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It is possible for scopes to overlap; this happens because scopes start within conditional
actions.  In  rare  instances,  executable  code  using  the  name  may  appear  within  this
overlapping scope,  as in  the following example,  which resembles  code that  might  be
found in the definition of a string analysis function such as find. 
   if is:null(s) then {
      if !def:C_integer(i, k_pos) then
         runerr(101, i)
      }
   else {
      if !def:C_integer(i, 1) then
         runerr(101, i)
      actions

Here, actions occurs within the scope of both conversions. Note that actions is not in the
scope of the original parameter i. This is because that scope is ended in each branch of the
outer if by the conversions and the runerrs.

If overlap does occur, the translator tries to insure that the same location is used for the
name in each scope. The only situation when it cannot do this is when the type of the
location is different in each scope, for instance, one is a C_integer and the other is a
C_real. If a name is referenced when there is conflicting scope, the translator issues an
error message. 

Type Names

The  type-names  represent  types  of  Icon  intermediate  values,  including  variable
references. These are the values that enter and leave an operation; ``types'' internal to data
structures, such as list element blocks, are handled completely within the C code. 
      type-name ::= empty_type |
                       icon-type |
                       variable-ref
      icon-type ::= null |
                    string |
                    cset |
                    integer |
                    real |
                    file |
                    list |
                    set |
                    table |
                    record |
                    procedure |
                    co_expression
      variable-ref ::= variable |
                       tvsubs |
                       tvtbl |
                       kywdint |
                       kywdpos |
                       kywdsubj

The type-names are not limited to the first-class types of Icon's language definition. The
type-names  that  do  not  follow  directly  from  Icon  types  need  further  explanation.
empty_type  is  the  type  containing  no  values  and  is  needed  for  conveying  certain
information to the type inferencing system, such as an unreachable state. For example, the
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result type of stop is empty_type. It may also be used as the internal type of an empty
structure. Contrast this with null, which consists of the null value.

Variable references are not first-class values in Icon; they cannot be assigned to variables.
However, they do appear in the definition of Icon as arguments to assignments and as the
subject of dereferencing. For example, the semantics of the expression 
      s[3] := s

can be described in terms of a substring trapped variable and a simple variable reference.
For  this  reason,  it  is  necessary to  include  these references  in  the  type  system of  the
implementation  language.  variable  consists  of  all  variable  references.  It  contains  five
distinguished subtypes. tvsubs contains all substring trapped variables. tvtbl contains all
table-element  trapped  variables.  kywdint  contains  &random  and  &trace.  kywdpos
contains &pos. kywdsubj contains &subject. 

Including C Code

As noted above, C declarations can be included in a declare clause. Embedded C code
may reference these declarations as well as declarations global to the operation.

Executable C code can be included using one of two actions. 
      detail-code ::= body { extended-C } |
                         inline { extended-C }

body and  inline  are  similar  to  each  other,  except  that  inline  indicates  code  that  is
reasonable for the compiler to put in-line when it can. body indicates that for the in-line
version of the operation, this piece of C code should be put in a separate function in the
link  library and  the  body action  should  be  replaced  by a  call  to  that  function.  Any
parameters or variables from the declare clause needed by the function must be passed as
arguments to the function. Therefore, it is more efficient to declare variables needed by a
body action within that body than within the declare. However, the scope of these local
variables is limited to the body action.

Most Icon keywords provide examples of operations that should be generated in-line. In
the following example, nulldesc is a global variable of type descriptor. It is defined in the
include files automatically included by rtt. 
   &null - the null value.
   keyword{1} null
      abstract {
         return null
         }
      inline {
         return nulldesc;
         }
   end

Error Reporting

runerr( msg_number [ , descriptor ] ) [ ; ]

runerr is translated into a call to the run-time error handling routine. Specifying this as a
separate  action  rather  than  a  C  expression  within  a  body or  inline  action  gives  the
compiler additional information about the behavior of the operation.  msg_number is the
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number used to look up the error message in a run-time error table. If a descriptor is
given, it is taken to be the offending value. 

Abstract Type Computations

   abstract { type-computations }

The behavior of an operation with respect to types is a simplification of the full semantics
of the operation. For example, the semantics of the function image is to produce the string
representing its operand; its behavior in the type realm is described as simply returning
some string. In general, a good simplification of an operation is too complicated to be
automatically  produced  from  the  operation's  implementation  (of  course,  it  is  always
possible to conclude that an operation can produce any type and can have any side effect,
but that is hardly useful). For this reason, the programmer must use the abstract action to
specify type-computations. 
   type-computations ::= { store [ type ] = type [ ; ] } [ return
type [ ; ] ]

type-computations consist  of  side  effects  and  a  statement  of  the  result  type  of  the
operation.  There must be exactly one return  type along any path from the start of the
operation to C code containing a return, suspend, or fail.

A side effect  is  represented as an assignment  to  the  store.  The store is  analogous to
program memory. Program memory is made up of locations containing values. The store
is made up of locations containing types. A type represents a set of values, though only
certain such sets correspond to types for the purpose of abstract type computations. Types
may be basic types such as all Icon integers, or they may be composite types such as all
Icon integers combined with all  Icon strings. The rules for specifying types are given
below. A location in the store may correspond to one location in program memory, or it
may  correspond  to  several  or  even  an  unbounded  number  of  locations  in  program
memory. The contents of a location in the store can be thought of as a conservative (that
is,  possibly overestimated) summary of values that might appear in the corresponding
location(s) in program memory at run time.

Program memory can be accessed through a pointer. Similarly, the store can be indexed
by a pointer type, using an expression of the form store[type], to get at a given location.
An Icon global variable has a location in program memory, and a reference to such a
variable in an Icon program is treated as a pointer to that location.  Similarly, an Icon
global variable has a location in the store and, during type inferencing, a reference to the
variable is interpreted as a pointer type indexing that location in the store. Because types
can be composite, indexing into the store with a pointer type may actually index several
locations. Suppose we have the following side effect 
   store[ type1 ] = type2

Suppose during type inferencing type1 evaluates to a composite pointer type consisting of
the pointer types for several global variables, then all corresponding locations in the store
will be updated. If the above side effect is coded in the assignment operator, this situation
might result from an Icon expression such as 
   every (x | y) := &null

In this example, it is obvious that both variables are changed to the null type. However,
type inferencing can only deduce that at least one variable in the set is changed. Thus, it
must assume that each could either be changed or left as is. It is only when the left hand
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side of the side effect represents a unique program variable that type inferencing knows
that the variable cannot be left as is. In the current implementation of type inferencing,
assignment  to  a single named variable  is  the only side effect  where type inferencing
recognizes that the side effect will definitely occur.

Indexing into the store with a non-pointer type corresponds to assigning to a non-variable.
Such an assignment results in error termination. Type inferencing ignores any non-pointer
components in the index type; they represent execution paths that don't continue and thus
contribute nothing to the types of expressions.

A type in an abstract type computation is of the form 
   type ::= type-name |
               type ( variable ) |
               attrb-ref |
               new type-name ( type { , type } ) |
               store [ type ] |
               type ++ type |
               type ** type |
               ( type )

The type(variable) expression allows type computations to be expressed in terms of the
type of an argument to an operation. This must be an unmodified argument. That is, the
abstract type computation involving this expression must not be within the scope of a
conversion.  This  restriction  simplifies  the  computations  needed  to  perform  type
inferencing.

This expression is useful in several contexts, including operations that deal with structure
types. The type system for a program may have several sub-types for a structure type. The
structure types are list,  table, set, record, substring trapped variable, and table-element
trapped  variable.  Each  of  these  Icon  types  is  a  composite  type  within  the  type
computations, rather than a basic type. Thus the type inferencing system may be able to
determine a more accurate type for an argument than can be expressed with a type-name.
For example, it is more accurate to use 
   if is:list(x) then
      abstract {
         return type(x)
         }
      actions
   else
      runerr(108, x)

than it is to use 
   if is:list(x) then
      abstract {
         return list
         }
      actions
   else
      runerr(108, x)

Structure values have internal ``structure''. Structure types also need an internal structure
that summarizes the structure of the values they contain. This structure is implemented
with type attributes. These attributes are referenced using dot notation: 
   attrb-ref ::= type . attrb-name
   attrb-name ::= lst_elem |
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                  set_elem |
                  key |
                  tbl_elem |
                  default |
                  all_fields |
                  str_var |
                  trpd_tbl

Just as values internal to structure values are stored in program memory, types internal to
structure types are kept in the store. An attribute is a pointer type referencing a location in
the store.

A list is made up of (unnamed) variables. The lst_elem attribute of a list type is a type
representing all the variables contained in all the lists in the type. For example, part of the
code for the bang operator is as follows, where dx is the dereferenced operand. 
   type_case dx of {
      list: {
         abstract {
            return type(dx).lst_elem
            }
         actions
         }
      ...

This code fragment indicates that, if the argument to bang is in a list type, bang returns
some variable from some list in that type. In the type realm, bang returns a basic pointer
type.

The set_elem attribute of a set type is similar. The locations of a set never ``escape'' as
variables. That is, it is not possible to assign to an element of a set. This is reflected in the
fact that a set_elem is always used as the index to the store and is never assigned to
another location or returned from an operation. The case in the code from bang for sets is 
   set: {
      abstract {
         return store[type(dx).set_elem]
         }
      actions
      }

Tables types have three attributes. key references a location in the store containing the
type  of  any possible  key value  in  any table  in  the  table  type.  tbl_elem references  a
location containing the type of any possible element in any table in the table type. default
references a location containing the type of any possible default value for any table in the
table type. Only tbl_elem corresponds to a variable in Icon. The others must appear as
indexes into the store.

Record  types  are  implemented  with  a  location  in  the  store  for  each  field,  but  these
locations cannot be accessed separately in the type computations of the implementation
language. These are only needed separately during record creation and field reference,
which are handled as  special  cases  in  the compiler.  Each record type does  have one
attribute, all_fields, available to type computations. It is a composite type and includes
the pointer types for each of the fields.

Substring trapped variables  are  implemented  as  structures.  For this  reason, they need
structure types to describe them. The part of the structure of interest in type inferencing is
the reference to the underlying variable. This is reflected in the one attribute of these
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types, str_var. It is a reference to a location in the store containing the pointer types of the
underlying the variables that are ``trapped''. str_var is only used as an index into the store;
it is never exported from an operation.

Similarly table-element trapped variables need structure types to implement them. They
have one attribute, trpd_tbl, referencing a location in the store containing the type of the
underlying table. The key type is not kept separately in the trapped variable type; it must
be immediately added to the table when a table-element trapped variable type is created.
This pessimistically assumes that the key type will eventually be put in the table, but
saves an attribute in the trapped variable for the key. trpd_tbl is only used as an index into
the store; it is never exported from an operation.

The  type  computation,  new,  indicates  that  an  invocation  of  the  operation  being
implemented  creates  a  new  instance  of  a  value  in  the  specified  structure  type.  For
example, the implementation of the list function is 
   function{1} list(size, initial)
      abstract {
         return new list(type(initial))
         }
      actions
   end

The type arguments to the new computation specify the initial values for the attributes of
the structure. The table type is the only one that contains multiple attributes. (Note that
record  constructors  are  created  during  translation  and  are  not  specified  via  the
implementation language.) Table attributes must be given in the order: key, tbl_elem, and
default. 

In the type system for a given program, a structure type is partitioned into several sub-
types (these sub-types are only distinguished during type inferencing, not at run time).
One of these sub-types is allocated for every easily recognized use of an operation that
creates a new value for the structure type. Thus, the following Icon program has two list
sub-types: one for each invocation of list. 
   procedure main()
      local x

      x := list(1, list(100))
   end

Two operations are available for combining types. Union is denoted by the operator `++'
and intersection is denoted by the operator `**'. Intersection has the higher precedence.
These  operations  interpret  types  as  sets  of  values.  However,  because  types  may be
infinite, these sets are treated symbolically. 

C Extensions

The C code included using the declare,  body,  and inline actions  may contain  several
constructs beyond those of standard C. There are five categories of C extensions: access
to  interface  variables,  declarations,  type  conversions/type  checks,  signaling  run-time
errors, and return statements.
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In addition to their use in the body of an operation, the conversions and checks, run-time
error, and declaration extensions may be used in ordinary C functions that are put through
the implementation language translator. 

Interface Variables

Interface variables include parameters, the identifier for length of the variable part of an
argument  list,  and  the  special  variable  result.  Unconverted  parameters,  converted
parameters with Icon types, and converted parameters with the internal types tmp_string
and  tmp_cset  are  descriptors  and  within  the  C  code  have  the  type  struct  descrip.
Converted parameters with the internal type of C_integer have some signed integer type
within the C code, but exactly which C integer type varies between systems. This type has
been set up using a typedef in the automatically included include file so it is available for
use in declarations in C code. Converted parameters with the internal type of C_double
have the type double within the C code. Converted parameters of the type C_string have
the type char . The length of the variable part of a argument list has the type int within the
C code.

result is a special descriptor variable. Under some circumstances it is more efficient to
construct a return value in this descriptor than to use other methods. See Section 5 of the
implementation language reference manual for details. 

Declarations

The extension to declarations consists of a new storage class specifier, tended (register is
an example of an existing storage class specifier). Understanding its use requires some
knowledge of Icon storage management. Only a brief description of storage management
is given here; see the Icon implementation book for further details.

Icon values are represented by descriptors. A descriptor contains both type information
and value information. For large values (everything other than integers and the null value)
the descriptor only contains a pointer to the value, which resides elsewhere. When such a
value is  dynamically created,  memory for it  is  allocated from one of several memory
regions.  Strings are allocated  from the  string  region.  All  other  relocatable  values are
allocated from the block region. The only non-relocatable values are co-expression stacks
and  co-expression  activation  blocks.  On  some  systems  non-relocatable  values  are
allocated in the static region. On other systems there is no static region and these values
are allocated using the C malloc function.

When a storage request is made to a region and there is not enough room in that region, a
garbage collection occurs. All reachable values for each region are located. Values in the
string and block regions are moved into a contiguous area at the bottom of the region,
creating (hopefully) free space at the end of the region. Unreachable co-expression stacks
and activator blocks are ``freed''. The garbage collector must be able to recognize and
save all values that might be referenced after the garbage collection and it must be able to
find and update all  pointers to the relocated values. Operation arguments  that contain
pointers  into  one  of  these  regions  can  always  be  found  by garbage  collection.  The
implementations  of  many operations  need  other  descriptors  or  pointers  into  memory
regions. The tended storage class identifies those descriptors and pointers that may have
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live values when a garbage collection could occur (that is, when a memory allocation is
performed).

A descriptor is  implemented as a C struct named descrip, so an example of a tended
descriptor declaration is 
   tended struct descrip d;

Blocks are also implemented as C structs. The following list illustrates the types of block
pointers that may be tended. 
   tended struct b_real *bp;
   tended struct b_cset *bp;
   tended struct b_file *bp;
   tended struct b_proc *bp;
   tended struct b_list *bp;
   tended struct b_lelem *bp;
   tended struct b_table *bp;
   tended struct b_telem *bp;
   tended struct b_set *bp;
   tended struct b_selem *bp;
   tended struct b_record *bp;
   tended struct b_tvkywd *bp;
   tended struct b_tvsubs *bp;
   tended struct b_tvtbl *bp;
   tended struct b_refresh *bp;
   tended struct b_coexpr *cp;

Alternatively, a union pointer can be used to tend a pointer to any kind of block. 
   tended union block *bp;

Character  pointers  may also  be  tended.  However,  garbage  collection  needs  a  length
associated with a pointer into the string region. Unlike values in the block region, the
strings themselves do not have a length stored with them. Garbage collection treats  a
tended  character  pointer  as  a  zero-length  string.  These  character  pointers  are  almost
always pointers into some string, so garbage collection effectively treats them as zero-
length substrings of the strings. The string as a whole must be tended by some descriptor
so that it is preserved. The purpose of tending a character pointer is to insure that the
pointer is relocated with the string it points into. An example is 
   tended char *s1, *s2;

Tended arrays are not supported. tended may only be used with variables of local scope.
tended and register are mutually exclusive. If no initial value is given, one is supplied that
is consistent with garbage collection. 

Type Conversions/Type Checks

Some conditional expressions have been added to C. These are based on type checks in
the type specification part of the implementation language. 
   is: type-name ( source )
   cnv: dest-type ( source , destination )
   def: dest-type ( source , value , destination )

source must be an Icon value, that is, a descriptor. destination must be a variable whose
type  is  consistent  with  the  conversion.  These  type  checks  may  appear  anywhere  a
conditional expression is valid in a C program. Note that is, cvn, and def are reserved
words to distinguish them from labels.
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The type_case statement may be used in extended C. This statement has the same form as
the corresponding action, but in this context,  C code replaces the  actions in the  type-
select clauses. 

Signaling Run-time Errors

runerr is used for signaling run-time errors. It acts like a function but may take either 1 or
2 arguments. The first argument is the error number. If the error has an associated value,
the second argument is a descriptor containing that value. 

Return Statements

There are three statements for leaving the execution of an operation. These are analogous
to the corresponding expressions in the Icon language. 
   ret-statments ::= return ret-value ; |
                     suspend ret-value ; |
                     fail ;
   ret-value ::= descriptor |
                 C_integer expression |
                 C_double expression |
                 C_string expression |
                 descript-constructor

descriptor is an expression of type struct descrip. For example 
   {
      tended struct descrip dp;
      ...
      suspend dp;
      ...
   }

Use  of  C_integer,  C_double,  or  C_string  to  prefix  an  expression  indicates  that  the
expression evaluates to the indicated C type and not to a descriptor. When necessary, a
descriptor is constructed from the result of the expression, but when possible the Icon
compiler  produces  code  that  can  use  the  raw  C  value  (See  Section  5  of  the
implementation language reference manual). As an example, the integer case in the divide
operation is simply 
   inline {
      return C_integer x / y;
      }

Note that a returned C string must not be in a local (dynamic) character array; it must
have a global lifetime. 

A descript-constructor is an expression that explicitly converts a pointer into a descriptor.
It is  only valid  in  a return statement,  because it  builds  the descriptor  in  the implicit
location of the return value. 
   descript-constructor ::= string ( length , char-ptr ) |
                            cset ( block-ptr ) |
                            real ( block-ptr ) |
                            file ( block-ptr ) |
                            procedure ( block-ptr ) |
                            list ( block-ptr ) |
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                            set ( block-ptr ) |
                            record ( block-ptr ) |
                            table ( block-ptr ) |
                            co_expression ( stack-ptr ) |
                            tvtbl ( block-ptr ) |
                            named_var ( descr-ptr ) |
                            struct_var ( descr-ptr , block-ptr ) 
|
                            substr ( descr-ptr , start , len ) |
                            kywdint ( descr-ptr ) |
                            kywdpos ( descr-ptr ) |
                            kywdsubj ( descr-ptr )

The arguments to string are the length of the string and the pointer to the start of the
string. block-ptrs are pointers to blocks of the corresponding types. stack-ptr is a pointer
to a co-expression stack. descr-ptr is a pointer to a descriptor. named_var is used to create
a reference to a variable (descriptor) that is not in a block. struct_var is used to create a
reference to a variable that is in a block. The Icon garbage collector works in terms of
whole blocks. It cannot preserve just  a single variable  in the block, so the descriptor
referencing a variable must contain enough information for the garbage collector to find
the start of the block. That is what the block-ptr is for. substr creates a substring trapped
variable for the given descriptor,  starting point within the string, and length. kywdint,
kywdpos, and kywdsubj create references to keyword variables.

Note that returning either C_double expression or substr(descr-ptr, start, len) may trigger
a garbage collection. 
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GNU Free Documentation License
Version 1.2, November 2002 

Copyright (C) 2000,2001,2002  Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA. Everyone is permitted to copy and distribute verbatim
copies of this license document, but changing it is not allowed.

0. PREAMBLE 

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others. 

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software. 

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing
the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is
published as a printed book. We recommend this License principally for works whose purpose is instruction or reference. 

1. APPLICABILITY AND DEFINITIONS 

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual
or work. Any member of the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring permission under
copyright law. 

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another
language. 

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to
the Document's overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part  a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding them. 

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under
this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the
Document does not identify any Invariant Sections then there are none. 

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this
License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words. 

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the
document straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used
for any substantial amount of text. A copy that is not "Transparent" is called "Opaque". 

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available
DTD, and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque
formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally
available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only. 

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page.
For works in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the
body of the text. 

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another
language. (Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of
such a section when you modify the Document means that it remains a section "Entitled XYZ" according to this definition. 

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License. 

2. VERBATIM COPYING 

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to
obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3. 

You may also lend copies, under the same conditions stated above, and you may publicly display copies. 

3. COPYING IN QUANTITY 

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document's license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover.
Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and
visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these
conditions, can be treated as verbatim copying in other respects. 

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages. 

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy,
or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public. 

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document. 

4. MODIFICATIONS 
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You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version: 

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in
the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission. 
B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the
principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement. 
C. State on the Title page the name of the publisher of the Modified Version, as the publisher. 
D. Preserve all the copyright notices of the Document. 
E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices. 
F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown
in the Addendum below. 
G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice. 
H. Include an unaltered copy of this License. 
I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on
the Title Page. If there is no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then
add an item describing the Modified Version as stated in the previous sentence. 
J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the "History" section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to gives permission. 
K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein. 
L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles. 
M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version. 
N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section. 
O. Preserve any Warranty Disclaimers. 

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be
distinct from any other section titles. 

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties--for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a standard. 

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old one. 

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to  assert  or imply endorsement of any Modified
Version. 

5. COMBINING DOCUMENTS 

You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in
the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that
you preserve all their Warranty Disclaimers. 

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections
with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that
section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work. 

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section Entitled "History"; likewise combine any sections
Entitled "Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements." 

6. COLLECTIONS OF DOCUMENTS 

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents
with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects. 

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document. 

7. AGGREGATION WITH INDEPENDENT WORKS 

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an
"aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document. 

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document's Cover
Text may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate. 

8. TRANSLATION 

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or
a notice or disclaimer, the original version will prevail. 

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4) to Preserve its Title (section 1) will typically require changing
the actual title. 

9. TERMINATION 

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sublicense or distribute
the Document is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in full compliance. 

10. FUTURE REVISIONS OF THIS LICENSE 

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/. 
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Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it,
you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation. 
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