Writing a basic RPN interpreter in Haskell

Introduction Our goal is to write a simple interpreter for reverse Polish notation® in
Haskell. It should read a file line by line, interpreting the results, pos-
sibly as assignment statements, and print the result of computing each
line in an output file. All input values are to be positive integers, or
strings representing previously assigned variables (an unassigned vari-
able in an expression will trigger an error, we could just as easily replace
it by 0). The operations allowed in the present instance are + * and
unary —. As will be clear from the code, adding additional operators
would require adding precisely one line per operator.

When I first specified this problem I intended to allow only single char-
acter variable names. It turned out to be just as convenient, and in
fact easier, to allow any variable name beginning with an alphabetic
character (and not containing any whitespace of course!)

module RPNInterpreter where
import I0

These header lines define our module, and note that we need to make
use of the 10 library.

The | / O bit The program breaks naturally into two parts:

e An outer framework for handling the I/0,

e A functional core which interprets a line, represented as a list of
tokens.

In this section we define the I/0 framework. Since the intended syntax
of the command is:
Main> rpn “foo”
meaning that the interpreted lines be read from “foo.in” and written
to “foo.out’, our top level function is simply called rpn. All that it
does is to open two handles for reading and writing, pass them to the
interpreter, and when that finishes, closes the handles and exits.
rpn fileName = do
inHandle «— openFile (fileNamet+".in") ReadMode
outHandle « openFile (fileNamet++".out") WriteMode
interpreter inHandle outHandle []
hClose inHandle
hClose outHandle
return ()

The interpreter processes the input file a line at a time. As usual, this
is done recursively, it processes a line, and then calls itself. When this
raises an error (owing to EOF) it exits (this is the meaning of the “catch”
block). An important addition at this level is the state. This is a list of

!See http://www-stone.ch.cam.ac.uk/documentation/rrf/rpn.html

COSC 347 Lecture 10 An RPN interpreter 2

pairs: (variableName, variableValue) that needs to be maintained line
by line in order to look up any variables found in an expression. In
particular the processLine function has a primary effect of returning a
new state, and a secondary side effect of putting the output value onto
the output file.
interpreter hIn hQut state = catch

(do newState «— processLine hIn hQut state

interpreter hIn hOut newState)
(_ — return ([1))

processLine hIn hOut state =
do
thisLine < hGetLine hIn
let (newState, outValue) = evaluateLine (words thisLine) state
in
do hPutStrLn hOut (show outValue)
return newState

The processLine function, finally accesses the functional guts of the pro-
gram by calling evaluateLine. It prepares a list of tokens by using the
built in function words to break up this line, and then evaluates it. The
evaluateLine function returns a pair consisting of the value of the line
and a new state (which differs from the old state only for assignment
statements). The “let ...in"” statement pattern matches this result to
isolate the output value, and the new state, and then the second “do”
block places the output value in the output file, and returns the new
state.

The This part of the is where all the real work happens. The I /O section was
functional Just dull window dressing. The basic idea is that we have: a sequence
of tokens representing a line, and a sequence of pairs representing the
present “state” (values of assigned variables). The tasks relating to state
are to look up, or find the values of variables, and to add new values to
the state when we make an assignment. Evaluation of the line itself is
just a matter of pushing the values of integer or variable tokens onto a
stack (list), or evaluating an operation on the top or top two elements
of the stack.

core

COSC 347 Lecture 10 An RPN interpreter 3

Matters of state In these brief functions we describe the type in which we hold the state.
It is a simple list of pairs consisting of a String and an Int. The
first member of the pair is a variable name and the second its value.
Whenever we need to update the state, we simply add a new element to
the front. We don’t have to worry about duplicate values because the
lookup function (built in) takes (key,value) pairs from a list and returns
the first value which matches a key (so, as long as our updates precede
old values in the list, the old values are hidden). One slight subtlety is
that lookup uses the Maybe type to indicate success or failure, so our
find function has to allow for this in terms of returning a value or an
error message.

type State = [(String, Int)]

update :: (String, Int) — State — State
update = (:)

find c state = case (lookup c state) of
(Just v) — v
(Nothing) — error "Attempt to use uninitialised variable"

Evaluation To evaluate a line we must check whether or not we have an assignment
statement. If we do, we make use of the asg function to both produce
the value and update the state. If not, the state will not change, and
we simply evaluate the whole token list with an initial empty stack.

evaluateLine :: [String] — State — (State, Int)

evaluatelLine tokenlist state
| assignmentStatement = asg tokenlist state
| otherwise = (state, eval tokenList [] state)
where assignmentStatement = ((length tokenList) > 2) &&
tokenList!!1l =— "="

To carry out the asg function, we evaluate the remainder of the token
list (after dropping its first two parts), and return an updated state and
the value.

asg :: [String] — State — (State, Int)

asg tokenlList state = (newState, outValue)
where outValue = eval (drop 2 tokenList) [] state
newState = update (newVar, outValue) state
newVar = (tokenList!!0)

At last we come to the actual evaluation function. The first argument is
the token list, the second the stack, and the third the state. If we reach
empty token list and empty stack something has gone wrong! Otherwise
when we reach empty token list, we wish to report the top element on

the stack.
eval :: [String] — [Int] — State — Int
eval [] [] _ = error "Empty stack at end of evaluation?"

eval [] (s:_) =s

COSC 347 Lecture 10 An RPN interpreter 4

Finally, we come to the case where there are still tokens to be processed.
These are either binary operators, a unary operator, variables, numbers,
or errors. We handle each case with a guard. An appropriate action is
taken, and then the eval function is called recursively with the remainder
of the tokens. Variables are identified as strings whose first character is
alphabetic (isAlpha (t!!'0)). Numbers are identified as strings all of
whose characters are digits (and (map isDigit t)).

eval (t:ts) stack state

| (£t = "x") = eval ts (evalBinOp (%) stack) state

| (£t = "+") = eval ts (evalBinOp (+) stack) state

| (£t = "-") = eval ts (evalUnOp negate stack) state
| isVar = eval ts ((find t state):stack) state
| isNumber = eval ts ((read t :: Int):stack) state
| otherwise = error "In eval: unacceptable input."
where isVar = isAlpha (t!'!0)

isNumber = and (map isDigit t)

Evaluating a binary operator on a stack with at least two elements is
easy. If there are too few, then an error has ocurred. Unary operators
are even easier.

evalBinOp op (sO:sl:ss) ((sO ‘op‘ s1):ss)

evalBinOp _ _ = error "Binary operation on short stack"
evalUnOp op (s:ss) = (op s):ss
evalUnOp _ _ = error "Unary operation on empty stack"

And that’s all! T make it 52 actual lines of code, including some which
are merely type declarations and not strictly speaking necessary. By the
way, both the program and the explanatory text are in a single .lhs
file which can be loaded directly to Haskell, but is also imported into a
.tex file using the listings package and producing this document!

