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Recap

Lectures 6-7: Language learning networks in the brain
Phonological networks: auditory cortex ↔ STS ↔ IP ↔ PMC
Word-meaning networks: temporal cortex, premotor cortex, PFC

Lectures 8-9: Chomsky’s Minimalist model of syntax
No account of sentence processing, surface patterns in language,
learning from actual data. . .

Lecture 10: Empiricist models of syntax
Syntactic development through item-specific constructions
Networks which learn patterns in surface language (SRNs)

Lecture 11: A SM interpretation of Minimalist LF
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Recap

The SM interpretation of LF:
The LF of a concrete sentence is a description of the sequence of
SM operations involved in experiencing the episode it describes.

(As replayed from working memory.)

The Minimalist conception of LF has nothing to do with sentence
processing. But the SM conception suggests an interesting account of
sentence processing:

When a speaker produces a sentence, s/he is replaying an
episode-denoting SM sequence in a special mode, where SM
signals can evoke phonological side-effects.
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Outline of today’s lecture

1 Neural network representations of sentence meanings

2 Neural network models of syntactic processing
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Neural network representations of sentence meanings

Neural network representations of sentence meanings

How do you represent the meaning of a sentence in a pattern of neural
activity?

E.g. how do you represent our example episode where a man
grabs a cup?

Simplest idea: just activate semantic representations MAN, GRAB and
CUP simultaneously.

GRABMAN DOG CAT BALL CUP RUN

But this doesn’t tell us who the agent and patient are.
The representation scheme needs to bind entity reps to thematic roles
like AGENT, PATIENT.
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Neural network representations of sentence meanings

Binding by space

One scheme is to have multiple representations of entities—one for
each thematic role.

PATIENT

MAN CUPBALL MAN CUPBALLGRABKISSKICK

AGENT ACTION

But:
This scheme is combinatorially expensive.
More importantly: it doesn’t allow generalisation from one role to
another.
(There’s no relationship between MAN-AGENT and MAN-PATIENT.)
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Neural network representations of sentence meanings

Systematicity

After seeing a word in one role during training, a sentence-processing
network should immediately be able to use it in another role.

Training: man grab cup
man kick ball
man kick cup

Testing: man kick man

It should learn the meaning of words independently of the roles
they play in a sentence.
It should learn rules about the positions of AGENT, PATIENT in a
sentence which are independent of particular words.
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Neural network representations of sentence meanings

Systematicity

Symbolic grammars have perfect systematicity.

Here’s a rule about the positions of AGENT, PATIENT and ACTION which
abstracts away from words:

S(AG=X1, ACT=X2, PAT=X3) → N(X1), VT(X2), N(X3)

(The arguments carry semantic representations.)

Here are representations of words which abstract away from the roles
they can play:

N(MAN) → man
N(CUP) → cup

VT(GRAB) → grab
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Neural network representations of sentence meanings

Binding by synchrony

Background for the binding-by-synchrony scheme:
At a macro-level, the brain’s activity is cyclic: different periodic
signals can be detected at different times, but a strong one is the
theta rhythm (e.g. in the hippocampus).
The firing of individual neurons is often time-locked to a particular
phase in one of these cycles. Here are some examples:Neuron

328

Figure 3. Theta Phase Relationship of Pyra-
midal Cell Spiking Is Variable

(A) Averaged field theta wave and the pre-
ferred phase distribution of single interneur-
ons in the pyramidal layer [int(p)] and alveus-
str. oriens [int(a/o)] and CA1 pyramidal cells
of the rat. Only neurons with significant phase
modulation are included. Note that most in-
terneurons and pyramidal cells discharge on
the negative phase of local (pyramidal layer)
theta waves. (B) Relationship between firing
rate and theta phase distribution of spikes
for a single pyramidal neuron. Line: running
circular mean. The phase was calculated for
each firing rate bin separately. Note the half-
cycle phase shift from !2 Hz to "15 Hz. (C)
Illustration of spike-phase relationship for
weakly and strongly activated neurons. The
strongly activated neuron (due to hypothe-
sized coactivation by the entorhinal and
Schaffer afferents; red) discharges on the
negative phase of local extracellular (EC)
theta. Neurons with threshold activation dis-
charge on the positive phase (blue, green,
and purple cells). Nonspiking cells are black.
The strongly active few pyramidal cells thus
may contribute more action potentials per
theta cycle than the remaining population
combined. (From Csicsvari et al., 1999 and
unpublished data from K. Harris, H. Hirase,
X. Leinekugel, and G.B.)

never been identified conclusively (Vanderwolf, 1988; We hypothesize that activation of NMDA receptors is
critical for the atropine-resistant form of theta oscillation.Vertes and Kocsis, 1997).

Complete surgical removal of the entorhinal cortex Although the pharmacological action of urethane is not
well understood, experiments using more specific drugsor surgical isolation of the entorhinal cortex from its

nonhippocampal afferents eliminates the theta dipole provide support for this hypothesis. First, the depth versus
voltage profile of theta under the NMDA receptor blocker,localized on the banks of the hippocampal fissure (Fig-

ure 4). Importantly, such lesions render the remaining ketamine, is similar to that described under urethane
(Soltesz and Deschénes, 1993). Second, combination oftheta oscillation atropine sensitive (Buzsáki et al., 1983;

Vanderwolf and Leung, 1983) and its depth versus volt- ketamine or other NMDA receptor blockers (phencycli-
dine, 3-(2-carboxypiperazin-4-yl) propyl-1-phosphonicage profile somewhat similar to that observed under

urethane anesthesia (Ylinen et al., 1995; Kamondi et al., acid [CPP], DL-2-amino-5-phosphonovaleric acid [APV])
and atropine or scopolamine abolished all theta activity1998a). Two important hypotheses can be deduced from

these observations. First, that the receptors involved in in the hippocampus (Vanderwolf and Leung, 1983; Solt-
esz and Deschénes, 1993; Horvath et al., 1988). Earlieratropine-resistant type of theta are urethane sensitive

(Kramis et al., 1975). The second deduction is that the experiments, using anesthetic doses of urethane or
NMDA blockers, reported that the frequency of atropine-atropine-resistant component of hippocampal theta is

conveyed by layer III and layer II entorhinal cortical affer- sensitive theta is substantially less (2–5 Hz) than in the
awake rat (6–9 Hz). However, subanesthetic doses ofents to the CA1 and dentate/CA3 neurons, respectively

(Amaral and Witter, 1989). Since these pathways contain NMDA receptor blockers or their intracerebro-ventricu-
lar application are also effective in reducing the atro-glutamate (cf. Bland, 1986) and urethane attenuates glu-

tamate release from presynaptic vesicles (Moroni et al., pine-resistant theta component (Horvath et al., 1988;
L.S. Leung, unpublished observations). A candidate tar-1981), one might expect quantitative similarities be-

tween the CSD maps of theta and those evoked by get of the NMDA blockers is the entorhinal afferent syn-
apses on the distal apical dendrites of CA1 pyramidalelectrical stimulation of the entorhinal afferents. How-

ever, the theta dipoles mediated by the entorhinal cortex neurons. These synapses have at least two distinguish-
ing features. First, they are larger than the synapses incannot be fully explained by glutamate activation of

pyramidal and granule cells via fast acting AMPA recep- str. oriens and radiatum and are frequently perforated
(Megias et al., 2001). Second, in addition to spines, thetors only (Buzsáki et al., 1986; Brankack et al., 1993;

Bragin et al., 1995). terminals frequently contact dendritic shafts. Activation

Buszaki (2002)
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Neural network representations of sentence meanings

Binding by synchrony

In the binding-by synchrony model, some cell assemblies represent
roles (AGENT, PATIENT, ACTION etc), and others represent concepts
that can fill these roles.

The idea: role and filler units which fire at the same phase are
bound together.

THETA CYCLE

PATIENT ACT MAN CUP GRAB

FILLERS

AGENT

ROLES

This scheme achieves good systematicity.
But: we’re not sure whether this kind of binding happens in the brain.
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Neural network representations of sentence meanings

Binding by connection

The binding-by-connection scheme (Chang, 2002) also features
separate units for roles and fillers.

But here, binding is implemented by short-term connections
between role and filler units.

FILLERS

AGENT ACTPATIENT

ROLES

MAN CUP GRAB

This scheme can also achieve systematicity.
Again there’s some computational complexity.
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Neural network representations of sentence meanings

Binding by serial position

In my SM model, experiencing the cup-grabbing episode involves a
canonical sequence of SM operations and their sensory
consequences.

Context C1 C2 C3 C4
SM operation ATTEND-MAN ATTEND-CUP GRASP

Sens. conseq MAN CUP MAN CUP

This suggests another scheme, where thematic roles are simply
associated with serial positions in a canonical sequence.

OBJECT REPS

MAN CUPATTEND−CUPATTEND−MAN GRASP

SM OPERATIONS
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Neural network representations of sentence meanings

Representing the semantics of nested sentences

A problem for all the models discussed so far are nested sentences.
For example:

The man who chased the dog grabbed the cup
In these cases, there are multiple copies of thematic roles like AGENT,
PATIENT, ACTION.

There are lots of ways of addressing this problem.
I won’t look at any of them :-)
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Neural network models of syntactic processing

Outline of today’s lecture

1 Neural network representations of sentence meanings

2 Neural network models of syntactic processing
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Neural network models of syntactic processing

Recap: SRNs for sentence processing

Recall from Lecture 10, and Assignment 4. . .
A SRN can be set up to take a sequence of words as input, and
trained to predict the next word.
It thereby learns a simple model of syntax.
(And also a neat taxonomy of syntactic/semantic word categories.)

−

Hidden layer

Predicted next word Err Actual next word

Current word Context

+

That’s very useful. . .
However, if we want to model the mapping between syntax and
semantics, we need to extend the model.
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Current word Context

+

That’s very useful. . .
However, if we want to model the mapping between syntax and
semantics, we need to extend the model.
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Neural network models of syntactic processing

Extending a SRN for sentence interpretation

We can also train a SRN to map word sequences onto episode
representations.

Pick your favourite episode representation scheme.
Create a set of training items, each of which pairs a word
sequence with an episode representation.
For each training item, present the sequence of words to the SRN
as input, and the episode representation as a static output.

Actual sentence meaning

Hidden layer

Err

Current word Context

+ −
Predicted sentence meaning
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Neural network models of syntactic processing

SRNs and incremental sentence interpretation

After training, this SRN will interpret input sentences incrementally.

Assume a simple binding-by-space representation of episodes.
As soon as the first word of a sentence is produced, the network will
predict a distribution of whole episode representations.

Say the first word is man.

And the next word is grab. . .
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Neural network models of syntactic processing

Extending a SRN for sentence generation

You can also convert a word-sequencing SRN into a sentence
generator.

You use the same sort of training items.
But now you present an episode rep as an additional input to the
network, and train it to predict a sequence of words.

Sentence meaning

Hidden layer

Predicted next word Err Actual next word

Current word Context

+ −

N.B. The current word and context enforce syntactic constraints on the
output sentence, while the sentence meaning enforces semantic
constraints.
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Neural network models of syntactic processing

SRNs and systematicity

SRNs are good at learning sequential patterns of words, as we’ve
seen. But can they produce (or interpret) patterns of words they’ve
never seen before?

Say we use a simple static episode representation scheme (e.g.
binding by space).

For a generating SRN: you’re asking it to produce a word
sequence it’s never produced before.
For an interpreting SRN: you’re giving it a word sequence it’s
never been given before.

Alistair Knott (Otago) COSC421 12 20 / 37



Neural network models of syntactic processing

Strong and weak systematicity

How well an SRN can handle new sequences depends on how new
they are.

Say the network has seen the following sentences:

man grab cup
woman grab spoon

And we ask it to generate

woman grab cup

This is a test of weak systematicity: the ability to deal with new
combinations of words appearing in familiar positions.

An SRN has some ability to do that. (Provided you don’t train it too
much.)
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Neural network models of syntactic processing

Strong and weak systematicity

Say the network has seen the following sentences:

man grab cup
woman grab spoon

And we ask it to generate

man grab woman

This is a test of strong systematicity: the ability to deal with words
appearing in new positions.

An ordinary SRN using a simple semantic scheme like
binding-by-space just can’t do that.

Alistair Knott (Otago) COSC421 12 22 / 37



Neural network models of syntactic processing

Chang’s sentence-generating SRN

Chang (2002) modified an SRN to use episode reps encoded with a
binding-by-connection scheme.

The SRN learns to sequence thematic roles as well as word meanings.
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Neural network models of syntactic processing

Chang’s model

Chang’s model is very empiricist:
It learns syntactic structures from scratch.
It learns a mixture of surface and abstract syntactic rules.

In the last part of the lecture, I’ll introduce a sentence generation
network which implements a more nativist model of syntax, based on
my SM interpretation of Minimalism.
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Neural network models of syntactic processing

A nativist model of syntactic processing

Here’s the SM model of episode representations, to start with:
When we ‘entertain the meaning’ of a concrete sentence, we
internally rehearse a SM sequence stored in WM.

We need to give a model of how children learn to generate surface
word sequences from these SM replay operations.
I.e. of how children learn the mapping from LF to PF.

The model should ideally include an account of learned surface
patterns in language. (Which is problematic for the traditional
Minimalist model.)
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Neural network models of syntactic processing

Deciding when to read out overt words

Here’s the sequence of SM signals again:

Sustained signals Transient signals
Context Action Reafferent

Planned action signals signals signals signals
planattend_agent/attend_cup/grasp C1

↓ attend_agent
↓ attending_agent

planattend_agent/attend_cup/grasp C2
↓ attend_cup
↓ attending_cup

planattend_agent/attend_cup/grasp C3
↓ grasp
↓ attending_agent

planattend_agent/attend_cup/grasp
↓
↓ C4 attending_cup
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Neural network models of syntactic processing

Deciding when to read out overt words

A selective read-out for English SVO structure:
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Neural network models of syntactic processing

Deciding when to read out phonological items

A selective read-out for Māori VSO structure:
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Context Action Reafferent
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Neural network models of syntactic processing

A neural network model of parameter-setting

I have developed a neural network model of sentence generation
(jointly with Martin Takac and Lubica Benuskova).

The network takes a SM sequence as input, and generates a word
sequence as output.
It’s trained on pairs of (replayed) SM sequences and word
sequences.
It learns:
(i) a vocabulary (a mapping from SM signals to words);
(ii) rules about when the word associated with a SM signal should
be pronounced.
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Neural network models of syntactic processing

A neural network sentence generator
Here’s the episode-rehearsal network.
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Neural network models of syntactic processing

A neural network sentence generator
A word production network (WPN) maps SM signals to words in a
phonological output buffer.
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Neural network models of syntactic processing

A neural network sentence generator
The WPN is trained to reproduce words replayed from a phonological
input buffer.
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Neural network models of syntactic processing

A neural network sentence generator
A control network decides when to pronounce and when to withold
words produced by the WPN.
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Neural network models of syntactic processing

A neural network sentence generator
The control network’s rules make no reference to words or word mean-
ings; only to contexts.
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Neural network models of syntactic processing

A neural network sentence generator
The control network learns different policies for pronouncing/witholding
words in different languages.
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Neural network models of syntactic processing

The policies learned by the control network

Here’s the policy the network learns for a VSO training language:

Context C1a C1b C2a C2b C3a C3b C4a
SM sequence MAN GRAB-PLAN CUP GRAB-PLAN MAN GRAB-PLAN CUP
control policy — ↓ — — ↓ — ↓
output words grabs man cup

Here’s the policy it learns for an SVO language:

Context C1a C1b C2a C2b C3a C3b C4a
SM sequence MAN GRAB-PLAN CUP GRAB-PLAN MAN GRAB-PLAN CUP
control policy ↓ ↓ ↓ — — — —
output words man grabs cup
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Neural network models of syntactic processing

How the control network learns

The control network compares the word predicted by the WPN from
the current SM signal to the ‘next word’ in the training utterance.

If they match, it learns to pronounce words in this context (and
updates the ‘next word’).
If not, it learns to withold words in this context (and doesn’t update
the ‘next word’).

Here’s a typical training item in a VSO language.
Context C1a C1b C2a C2b C3a C3b C4a
Target utterance grabs man cup
SM signal

MAN GRAB-PLAN CUP

output of WPN

man grabs cup

actual next wd

grabs grabs man

‘match’ signal

no yes no

training signal
for ctrl network

— ↓ —
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Context C1a C1b C2a C2b C3a C3b C4a
Target utterance grabs man cup
SM signal MAN GRAB-PLAN CUP
output of WPN man grabs

cup

actual next wd grabs grabs

man

‘match’ signal no yes

no

training signal
for ctrl network — ↓

—
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Neural network models of syntactic processing

Syntactic agreement

Our training language included a rich system of subject-verb
agreement.

helen-3sg chase-3sg rabbit

The network can learn such agreement rules, because WM episodes
carry information about planned attentional operations as well as
planned motor operations.
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Neural network models of syntactic processing

Adding an ability to learn surface word patterns
The model also includes a word sequencing network (WSN), which
learns surface patterns of words in the training language.
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Neural network models of syntactic processing

Adding an ability to learn surface word patterns
The WSN is a recurrent network, which learns to predict the next word
on the basis of the words it has recently produced.
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Neural network models of syntactic processing

Adding an ability to learn surface word patterns
Recurrent networks are a traditional ‘empiricist’ language modelling
tool.
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Neural network models of syntactic processing

A training language including idioms

We trained the network on a language including regular transitive
sentences, but also various types of idiomatic construction.

daddy grabs cup
winnie the pooh grabs cup
daddy gives helen a hug

The network can learn idiomatic constructions, as well as abstract
syntactic rules.

(The entropy network decides when to produce idiomatic
expressions.)
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Neural network models of syntactic processing

Simulating the timecourse of language development

The network learns vocabulary and idiomatic constructions at the
same time as abstract rules.

During training it goes through developmental stages, which somewhat
resemble those of children.

A stage of single-word utterances
A stage of item-based syntactic constructions
A stage of ‘mature syntax’, with knowledge of abstract rules as
well as idiomatic constructions.
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Neural network models of syntactic processing

Summary

Our network is something which empiricist linguists will recognise as a
SRN-based sentence-processing model.

We hope that Minimalist linguists also recognise it as a model of:
how infants bring ‘innate knowledge’ to the process of learning
language;
how infants learn the parameter values which define their own
native language.
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