COSC451: Artificial Intelligence
Lecture 9: Working memory representation of a reach-to-grasp action

Alistair Knott

Dept. of Computer Science, University of Otago
Recap

In Lectures 2-8, I introduced a model of the SM processes involved in ‘experiencing’ an agent grabbing a cup.

I argued:

- *Perception* of a reach-to-grasp action involves a sequence of three sensorimotor operations.
- *Execution* of a reach-to-grasp action involves a very similar sequence.
The sequence for perception of a reach-to-grasp

1. Operation 1: O attends to an external agent, configuring his mirror system circuit for action perception.
2. State 1: O receives reafferent feedback from this operation; the percept 'man'.
3. Operation 2: O establishes joint attention with the agent, and attends to another object (the cup).
4. State 2: O receives feedback from this operation: the percept 'cup'.
5. Operation 3: O initiates a process of biological motion classification, which results in the action 'grab' being activated in O's premotor cortex.
6. State 3: As a corollary of this process, O re-attends to the agent as an animate agent.
7. State 4: O sees the agent achieve a stable grasp on the cup, thereby re-attending to it in the haptic modality.
The sequence for perception of a reach-to-grasp

Operation 1 \(O \) attends to an external agent, configuring his mirror system circuit for action perception.

State 1 \(O \) receives reafferent feedback from this operation; the percept 'man'.

Operation 2 \(O \) establishes joint attention with the agent, and attends to another object (the cup).

State 2 \(O \) receives feedback from this operation: the percept 'cup'.

Operation 3 \(O \) initiates a process of biological motion classification, which results in the action 'grab' being activated in \(O \)'s premotor cortex.

State 3 As a corollary of this process, \(O \) re-attends to the agent as an animate agent.

State 4 \(O \) sees the agent achieve a stable grasp on the cup, thereby re-attending to it in the haptic modality.
The sequence for perception of a reach-to-grasp

<table>
<thead>
<tr>
<th>Operation 1</th>
<th>O attends to an external agent, configuring his mirror system circuit for action perception.</th>
</tr>
</thead>
<tbody>
<tr>
<td>State 1</td>
<td>O receives reafferent feedback from this operation; the percept ‘man’.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operation 2</th>
<th>Establishes joint attention with the agent, and attends to another object (the cup).</th>
</tr>
</thead>
<tbody>
<tr>
<td>State 2</td>
<td>Receives feedback from this operation: the percept ‘cup’.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operation 3</th>
<th>Initiates a process of biological motion classification, which results in the action ‘grab’ being activated in O’s premotor cortex.</th>
</tr>
</thead>
<tbody>
<tr>
<td>State 3</td>
<td>As a corollary of this process, O re-attends to the agent as an animate agent.</td>
</tr>
<tr>
<td>State 4</td>
<td>Sees the agent achieve a stable grasp on the cup, thereby re-attending to it in the haptic modality.</td>
</tr>
</tbody>
</table>
The sequence for perception of a reach-to-grasp

<table>
<thead>
<tr>
<th>Operation 1</th>
<th>O attends to an external agent, configuring his mirror system circuit for action perception. O receives reafferent feedback from this operation; the percept ‘man’.</th>
</tr>
</thead>
<tbody>
<tr>
<td>State 1</td>
<td>O establishes joint attention with the agent, and attends to another object (the cup).</td>
</tr>
</tbody>
</table>

Alistair Knott (Otago) COSC451 Lecture 9 3 / 38
The sequence for perception of a reach-to-grasp

<table>
<thead>
<tr>
<th>Operation 1</th>
<th>O attends to an external agent, configuring his mirror system circuit for action perception. O receives reafferent feedback from this operation; the percept ‘man’.</th>
</tr>
</thead>
<tbody>
<tr>
<td>State 1</td>
<td>O receives reafferent feedback from this operation; the percept ‘man’.</td>
</tr>
<tr>
<td>Operation 2</td>
<td>O establishes joint attention with the agent, and attends to another object (the cup). O receives feedback from this operation: the percept ‘cup’.</td>
</tr>
<tr>
<td>State 2</td>
<td>O receives feedback from this operation: the percept ‘cup’.</td>
</tr>
</tbody>
</table>
The sequence for perception of a reach-to-grasp

<table>
<thead>
<tr>
<th>Operation 1</th>
<th>O attends to an external agent, configuring his mirror system circuit for action perception.</th>
</tr>
</thead>
<tbody>
<tr>
<td>State 1</td>
<td>O receives reafferent feedback from this operation; the percept ‘man’.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operation 2</th>
<th>O establishes joint attention with the agent, and attends to another object (the cup).</th>
</tr>
</thead>
<tbody>
<tr>
<td>State 2</td>
<td>O receives feedback from this operation: the percept ‘cup’.</td>
</tr>
</tbody>
</table>

| Operation 3 | O initiates a process of biological motion classification, which results in the action ‘grab’ being activated in O’s premotor cortex. |
The sequence for perception of a reach-to-grasp

<table>
<thead>
<tr>
<th>Operation 1</th>
<th>O attends to an external agent, configuring his mirror system circuit for action perception.</th>
</tr>
</thead>
<tbody>
<tr>
<td>State 1</td>
<td>O receives reafferent feedback from this operation; the percept ‘man’.</td>
</tr>
<tr>
<td>Operation 2</td>
<td>O establishes joint attention with the agent, and attends to another object (the cup).</td>
</tr>
<tr>
<td>State 2</td>
<td>O receives feedback from this operation: the percept ‘cup’.</td>
</tr>
<tr>
<td>Operation 3</td>
<td>O initiates a process of biological motion classification, which results in the action ‘grab’ being activated in O’s premotor cortex.</td>
</tr>
<tr>
<td>State 3</td>
<td>As a corollary of this process, O re-attends to the agent as an animate agent.</td>
</tr>
</tbody>
</table>
The sequence for perception of a reach-to-grasp

<table>
<thead>
<tr>
<th>Operation 1</th>
<th>O attends to an external agent, configuring his mirror system circuit for action perception.</th>
</tr>
</thead>
<tbody>
<tr>
<td>State 1</td>
<td>O receives reafferent feedback from this operation; the percept ‘man’.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operation 2</th>
<th>O establishes joint attention with the agent, and attends to another object (the cup).</th>
</tr>
</thead>
<tbody>
<tr>
<td>State 2</td>
<td>O receives feedback from this operation: the percept ‘cup’.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operation 3</th>
<th>O initiates a process of biological motion classification, which results in the action ‘grab’ being activated in O’s premotor cortex.</th>
</tr>
</thead>
<tbody>
<tr>
<td>State 3</td>
<td>As a corollary of this process, O re-attends to the agent as an animate agent.</td>
</tr>
</tbody>
</table>

| State 4 | O sees the agent achieve a stable grasp on the cup, thereby re-attending to it in the haptic modality. |
The sequence for execution of a reach-to-grasp

Operation 1
A attends to himself, configuring his mirror system circuit for action execution.

State 1
A receives reafferent feedback that this operation succeeded.

Operation 2
A selects an object to reach for (the cup), and hence executes an action of attention to the cup.

State 2
A receives feedback from this operation: the percept 'cup'.

Operation 3
A selects an action category ('grab') and begins to execute the grab action.

State 3
A receives feedback from the process of action execution, which includes an action gestalt which he can associate with himself 'as an agent'.

State 4
A re-establishes the cup in the haptic modality.
The sequence for execution of a reach-to-grasp

<table>
<thead>
<tr>
<th>Operation 1</th>
<th>A attends to himself, configuring his mirror system circuit for action execution.</th>
</tr>
</thead>
</table>
The sequence for execution of a reach-to-grasp

<table>
<thead>
<tr>
<th>Operation 1</th>
<th>A attends to himself, configuring his mirror system circuit for action execution.</th>
</tr>
</thead>
<tbody>
<tr>
<td>State 1</td>
<td>A receives reafferent feedback that this operation succeeded.</td>
</tr>
</tbody>
</table>
The sequence for execution of a reach-to-grasp

<table>
<thead>
<tr>
<th>Operation 1</th>
<th>A attends to himself, configuring his mirror system circuit for action execution.</th>
</tr>
</thead>
<tbody>
<tr>
<td>State 1</td>
<td>A receives reafferent feedback that this operation succeeded.</td>
</tr>
<tr>
<td>Operation 2</td>
<td>A selects an object to reach for (the cup), and hence executes an action of attention to the cup.</td>
</tr>
</tbody>
</table>
The sequence for execution of a reach-to-grasp

Operation 1	A attends to himself, configuring his mirror system circuit for action execution.
State 1	A receives reafferent feedback that this operation succeeded.
Operation 2	A selects an object to reach for (the cup), and hence executes an action of attention to the cup.
State 2	A receives feedback from this operation: the percept ‘cup’.
The sequence for execution of a reach-to-grasp

<table>
<thead>
<tr>
<th>Operation 1</th>
<th>A attends to himself, configuring his mirror system circuit for action execution.</th>
</tr>
</thead>
<tbody>
<tr>
<td>State 1</td>
<td>A receives reafferent feedback that this operation succeeded.</td>
</tr>
<tr>
<td>Operation 2</td>
<td>A selects an object to reach for (the cup), and hence executes an action of attention to the cup.</td>
</tr>
<tr>
<td>State 2</td>
<td>A receives feedback from this operation: the percept ‘cup’.</td>
</tr>
<tr>
<td>Operation 3</td>
<td>A selects an action category (‘grab’) and begins to execute the grab action.</td>
</tr>
</tbody>
</table>
The sequence for execution of a reach-to-grasp

<table>
<thead>
<tr>
<th>Operation 1</th>
<th>A attends to himself, configuring his mirror system circuit for action execution.</th>
</tr>
</thead>
<tbody>
<tr>
<td>State 1</td>
<td>A receives reafferent feedback that this operation succeeded.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operation 2</th>
<th>A selects an object to reach for (the cup), and hence executes an action of attention to the cup.</th>
</tr>
</thead>
<tbody>
<tr>
<td>State 2</td>
<td>A receives feedback from this operation: the percept ‘cup’.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operation 3</th>
<th>A selects an action category (‘grab’) and begins to execute the grab action.</th>
</tr>
</thead>
<tbody>
<tr>
<td>State 3</td>
<td>A receives feedback from the process of action execution, which includes an action gestalt which he can associate with himself ‘as an agent’.</td>
</tr>
</tbody>
</table>
The sequence for execution of a reach-to-grasp

<table>
<thead>
<tr>
<th>Operation 1</th>
<th>A attends to himself, configuring his mirror system circuit for action execution.</th>
</tr>
</thead>
<tbody>
<tr>
<td>State 1</td>
<td>A receives reafferent feedback that this operation succeeded.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operation 2</th>
<th>A selects an object to reach for (the cup), and hence executes an action of attention to the cup.</th>
</tr>
</thead>
<tbody>
<tr>
<td>State 2</td>
<td>A receives feedback from this operation: the percept ‘cup’.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operation 3</th>
<th>A selects an action category (‘grab’) and begins to execute the grab action.</th>
</tr>
</thead>
<tbody>
<tr>
<td>State 3</td>
<td>A receives feedback from the process of action execution, which includes an action gestalt which he can associate with himself ‘as an agent’.</td>
</tr>
</tbody>
</table>

| State 4 | A re-establishes the cup in the haptic modality. |
In the next two lectures I’ll talk about how a cup-grabbing event is represented in memory.

- Lecture 9: representation of the event in working memory.
- Lecture 10: representation of the event in long-term memory.
Why do we need an account of memory?

1. The relation between SM experience and language is not direct.

We don’t have to talk about SM experiences. We can talk about things other than SM experiences.

Language interfaces with working memory (WM) representations.

A SM experience can be stored in working memory. WM event representations can be 'read out' linguistically. We can also retrieve events from long-term memory into WM.
Why do we need an account of memory?

1. The relation between SM experience and language is not direct.
 - We don’t *have to* talk about SM experiences.
 - We can talk about things *other than* SM experiences.
Why do we need an account of memory?

1. The relation between SM experience and language is not direct.
 - We don’t *have to* talk about SM experiences.
 - We can talk about things *other than* SM experiences.

Language interfaces with *working memory (WM)* representations.
- A SM experience can be stored in working memory.
Why do we need an account of memory?

1. The relation between SM experience and language is not direct.
 - We don’t *have to* talk about SM experiences.
 - We can talk about things *other than* SM experiences.

Language interfaces with *working memory* (WM) representations.
 - A SM experience can be stored in working memory.
 - WM event representations can be ‘read out’ linguistically.
Why do we need an account of memory?

1. The relation between SM experience and language is not direct.
 - We don’t have to talk about SM experiences.
 - We can talk about things other than SM experiences.

Language interfaces with working memory (WM) representations.
 - A SM experience can be stored in working memory.
 - WM event representations can be ‘read out’ linguistically.
 - We can also retrieve events from long-term memory into WM.
Why do we need an account of memory?

2. We must make reference to memory when describing particular syntactic constructions.

- Assertions encode something in LTM.
- Questions retrieve something from LTM.
- Indefinite NPs (a cat) encode something in WM.
- Definite NPs (the cat) retrieve something in WM.
Why do we need an account of memory?

2. We must make reference to memory when describing particular syntactic constructions.
 - E.g. assertions encode something in LTM.

```
<table>
<thead>
<tr>
<th>SM processing</th>
<th>Working memory</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>←</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>←</td>
<td></td>
</tr>
</tbody>
</table>
```

Long–term memory

E.g. questions retrieve something from LTM.

E.g. indefinite NPs (a cat) encode something in WM.

E.g. definite NPs (the cat) retrieve something in WM.
Why do we need an account of memory?

2. We must make reference to memory when describing particular syntactic constructions.
 - E.g. assertions encode something in LTM.
 - E.g. questions retrieve something from LTM.
Why do we need an account of memory?

2. We must make reference to memory when describing particular syntactic constructions.
 - E.g. **assertions** encode something in LTM.
 - E.g. **questions** retrieve something from LTM.
 - E.g. **indefinite NPs** (*a cat*) encode something in WM.
Why do we need an account of memory?

2. We must make reference to memory when describing particular syntactic constructions.
 - E.g. assertions encode something in LTM.
 - E.g. questions retrieve something from LTM.
 - E.g. indefinite NPs *(a cat)* encode something in WM.
 - E.g. definite NPs *(the cat)* retrieve something in WM.
Talk 2: representation of reach actions in memory

Talk overview:

- Working memory (WM) and long-term memory (LTM)
- Different types of WM
- WM representations of actions/events
 - Baddeley’s episodic buffer
 - Representation of planned action sequences in WM
Working memory and long-term memory

There is a well-established distinction between working memory (WM) and long-term memory (LTM) in psychology.

The basic idea:
- WM involves frontal cortex and the temporoparietal junction.
Working memory and long-term memory

There is a well-established distinction between working memory (WM) and long-term memory (LTM) in psychology.

The basic idea:

- WM involves frontal cortex and the temporoparietal junction.
- LTM involves the hippocampus, and adjacent regions of temporal cortex.

![Diagram of brain highlighting the hippocampus](image-url)
Neuropsychology.

- Patients with damage to the hippocampus (& associated cortical areas) show impaired LTM with normal WM. Patient HM had his hippocampal region removed bilaterally.
 - He had anterograde amnesia: couldn’t form new memories.
 - But he could still carry on a conversation, play chess, repeat phone numbers.

- Patients with damage to the frontal lobes (sometimes) have the reverse pattern. Patient KF (Shallice and Warrington, 1970) had damage to his left temporoparietal cortex.
 - He had very bad phonological STM. (E.g. a digit span of 1.)
 - But his ability to store events in LTM was intact.
Working memory and long-term memory

Behavioural experiments on normal subjects.

A classic WM task: immediate serial recall (ISR) of a list of stimuli.

There’s good evidence subjects encode stimuli in ISR experiments phonologically—i.e. as sounds, rather than as meanings.

- Phonological similarity effects: ba ga da is harder than bo ga di
- Word length effects: kitten collie rooster is harder than cat dog chick

In LTM experiments, stimuli are encoded as meanings, not sounds.

- cat is not confused with bat
- cat is confused with kitten
Neural mechanisms.

WM is implemented in the *activity levels* of cells.
- See e.g. Miller’s model of PFC.
- See also this lecture.

LTM is implemented in the *strengths of synaptic connection* between cells.
- See next lecture.
Summary:

<table>
<thead>
<tr>
<th></th>
<th>WM</th>
<th>LTM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration</td>
<td>seconds/minutes</td>
<td>days/years</td>
</tr>
<tr>
<td>Stored in</td>
<td>frontal cortex/TP</td>
<td>hippocampus (→cortex)</td>
</tr>
<tr>
<td>Represented as</td>
<td>sounds &...</td>
<td>meanings</td>
</tr>
<tr>
<td>Implemented as</td>
<td>neural activity</td>
<td>synaptic strengths</td>
</tr>
</tbody>
</table>
There are actually two forms of LTM.

Episodic memory: memory for specific episodes in an agent’s life.
- E.g. ‘Yesterday, John grabbed this cup here’.

Semantic memory: memory for generic facts.
- E.g. ‘Cups tend to have handles’.

I’ll focus on episodic memory, because that’s how a (single) cup-grabbing event would be represented.

(There’s also **procedural memory**, which is LTM for *skills*. I won’t talk about that at all.)
Definitions of ‘working memory’

Baddeley’s definition of WM: a short-term store which subserves ‘cognitive’ operations: language processing, reasoning, learning.

The term ‘working memory’ is also used in sensorimotor psychology, to refer to an animal’s prepared actions or task set.

Baddeley wants to keep these two senses of WM separate. I’ll look at both types of WM.
Baddeley’s model of WM

- Central executive
- Visuospatial sketchpad
- Episodic buffer
- Phonological loop
Baddeley’s model of WM

The visuospatial sketchpad: a working memory for visual patterns.

- E.g. remembering a shape, so you can recognise it later. (Probably involves IT and its interface with PFC)
- E.g. remembering where you saw something. (We’ll look at this next semester.)
- Patterns can be spatially complex, but not temporally complex.
The phonological loop: holds a short sequence of words or phonemes.

Evidence from experiments on STM for phonological sequences.

- Items in the phonological loop are stored as sounds.
 - Phonological similarity / word length effects (already mentioned)

- Phonological sequences need to be rehearsed to be retained, as shown by studies of articulatory suppression.
 - It’s harder to recall a phon. sequence if you have to say the the the during the delay period. (Try it. . .)
The episodic buffer: a special form of storage for ‘episodes’.

1. This form of storage is **semantic**. Some evidence for it:
 - Sentences are easier to recall than sequences of unrelated words (Baddeley *et al.*, 1987).
 - Amnesic patients can retain the ‘gist’ of a paragraph of around 15 propositions for a short period (Wilson & Baddeley, 1988).
 - Amnesic patients can reason, solve problems, play bridge...
Baddeley’s model of WM

2. The episodic buffer can interface with the phonological loop.
 - A simple example: chunking.
 - Four two-syllable words are easier to recall than eight one-syllable words (Hulme et al., 1991)
 - Model: the phonological buffer stores a sequence of pointers to semantic items held ‘in a separate WM buffer’.
 - Baddeley: our improved WM for sentences / paragraph gist is due to items held in this same buffer.
3. The episodic buffer holds representations which integrate sensory, semantic and phonological information, and which are maintained through rehearsal.

Baddeley and Andrade (2000): subjects shown stimuli varying in meaningfulness (high/low) and in modality (visual/phonological) and asked to rate their ‘vividness’ after an interim distractor task.

- Meaningful stimuli were rated as more vivid.
- There was a modality-specific effect of distractor task on rated vividness, which didn’t interact with meaningfulness.
Baddeley’s model of WM

3. The episodic buffer holds representations which integrate sensory, semantic and phonological information, and which are maintained through rehearsal.

- Low OR high meaning visual stimuli (patterns of shapes)
 - Visual distractor task: shapes lose vividness
 - Phonological distractor task: shapes retain vividness

- Low OR high meaning phonological stimuli (sequences of tones)
 - Visual distractor task: tones retain vividness
 - Phonological distractor task: tones lose vividness
Baddeley’s model of WM

3. The episodic buffer holds representations which integrate sensory, semantic and phonological information, and which are maintained through rehearsal.

- There must be a WM medium where we represent stimuli semantically. (Because meaning affects vividness.)
- The medium must be maintained through rehearsal. (Because distractor tasks affect storage.)
- The medium must interface with phonological/visual modalities. (Because distractor effects are modality specific.)
4. The episodic buffer plays a role in the storage of episodic memories.

- Experienced episodes are initially stored in the episodic buffer.
- From there they are relayed to longer-term storage.

We’ll look at this process in the next lecture.
5. Material in the episodic buffer is rehearsed by a process of ‘sequential attention’.

- Rehearsal in the phonological buffer involves ‘producing’ each item in the sequence.
- There must be a way in which items in the episodic buffer are sequentially ‘produced’.
Baddeley’s model of WM

6. The episodic buffer is probably implemented in a network involving frontal cortex.

fMRI study by Prabhakaran et al. (2000):

- A task requiring retention of integrated verbal and spatial information activates a right frontal area.
- More posterior areas are activated by tasks requiring retention of unintegrated material.
WM representations of prepared actions

Behavioural psychologists often use the term WM to refer to the place where an animal holds its current task set.

- In many circumstances, an animal maintains a set of prepared actions, or a set of prepared responses to stimuli.
- These are assumed to be held in ‘working memory’.

In Lecture 4, I associated top-down action preparation with PFC.

- PFC imposes top-down biases on *attentional operations*
- PFC imposes top-down biases on *action categories*.
Task set and prefrontal cortex

General support for the idea that PFC is involved in establishing cognitive set:

- PFC provides top-down executive control of an agent’s actions (see e.g. Roberts et al., 1996).
- Patients with PFC damage have a hard time switching task (see e.g. Stuss et al., 2000).
Miller and Cohen’s model of PFC

Miller and Cohen (2001) developed an influential model of PFC.

- There are many different pathways from stimuli to motor responses. (Visual \rightarrow parietal \rightarrow premotor \rightarrow motor cortices.)
- Intermediate units in these pathways compete with one another.
- PFC units can bias this competition towards one pathway or another.
Miller and Cohen’s model of PFC

Miller and Cohen (2001) developed an influential model of PFC.

If the PFC1 assembly is active, this biases the agent towards responding to S1 with R1.
Miller and Cohen’s model of PFC

Miller and Cohen (2001) developed an influential model of PFC. If the PFC2 assembly is active, this biases the agent towards responding to S1 with R2.
Miller and Cohen’s model of PFC

Miller and Cohen (2001) developed an influential model of PFC.

If the PFC2 assembly is active, this biases the agent towards responding to S1 with R2.

- Since pathway units compete with each other, either bias makes the agent tend to ignore S2.
WM representations of prepared action sequences

Recall: our cup-grabbing action is actually a sequence of actions. How can an agent prepare a sequence?

There is good evidence that PFC is involved in planning action sequences.

- Lesion studies in monkeys (e.g. Petrides, 1991) and humans (Petrides and Milner, 1982)
- PFC cells in monkeys sensitive to specific prepared sequences (e.g. Barone and Joseph, 1989)

An influential model of sequence preparation in PFC is called competitive queueing (see Grossberg, 1978; Houghton, 1995; Rhodes et al., 2004).
Each action is represented at a **planning level** and a **competitive level**.

- A sequence plan is a gradient of activation in the planning level.
- This gradient is passed to the competitive level, where the most active action is selected and executed.
- The winning action inhibits its counterpart in the planning level, and the next-most-active action is the next to win. (And so on.)
There is good evidence for competitive queueing.

- It provides a good account of reversal errors, where the order of two successive actions is swapped.
- Averbeck et al., 2002 found PFC cells that behave exactly like actions in the planning level.
Averbeck *et al.*’s experiment

Averbeck *et al.* (2002) trained monkeys to draw a number of different shapes in response to cue stimuli.

- Drawing each shape involved a sequence of motor movements.
- After the cue appeared, there was a delay before the monkey could begin to draw.

- PFC cells were recorded during the wait and drawing periods.
Averbeck *et al.*’s experiment

Different PFC cells were sensitive to different movements.

Note: the *activity level* of cells during the delay period encodes the *order* in which movements will occur.

That’s exactly what competitive queueing predicts.
Extensions to competitive queueing

CQ models cannot deal with **repeated actions** (e.g. A1, A1, A2).

- To allow repeated actions, CQ models are often augmented with an extra **context signal**, which evolves independently in time (see e.g. Houghton and Hartley, 1995).
CQ models cannot deal with repeated sequences, since plans are destructively updated as a plan is executed.

- To fix this, we can introduce a tonically active version of the planned sequence, which can restore the planning level pattern.
- Averbeck and Lee (2007) find cells in PFC which encode a planned sequence in the intervals between repeated executions.
Varieties of context signal

The context signal described above evolves as a function of time. But some actions take an unpredictable amount of time.

Another model of sequence preparation is based on Miller and Cohen’s pathway-biasing model of PFC.

- Assume some stimuli are reafferent consequences of the agent’s own actions.
- Biasing pathways from these stimuli to other actions effectively prepares action sequences.
There are often several alternative plans an agent could adopt.

- Ultimately, only one of these plans should become active.
- But it is useful to envisage a stage at which sub-threshold support for several alternative plans is gathered (see e.g. Cooper and Shallice, 2000).

Averbeck et al. (2006) show that PFC cells can represent two alternative action sequences simultaneously.
- c.f. Schall’s (2001) findings in FEF
Changing PFC plans

PFC states are typically assumed to be quite stable.

- This creates a problem: how do PFC plans get changed?

Some interesting proposals:

- Changing plan might be triggered by an anticipatory dopamine signal (Braver and Cohen, 2000).
- Terminating the current plan might involve self-inhibition.

Mayr and Keele (2000)’s backward inhibition effect:

- Agents successively adopted three task sets: e.g. A, B, C.
- Responses in the final set were slower for A, B, A than for A, B, C.

Maybe when the current plan succeeds, it inhibits itself.
WM representations of actions and events

Executing a planned action sequence: summary

It is likely that planned sequences involve a mixture of CQ and pathway-biasing mechanisms.

When an agent is executing a planned sequence:

- There will be a **sustained signal**, representing all the actions in the selected plan simultaneously.
- There will be a sequence of **transient signals**, interleaving actions and their reafferent consequences.

<table>
<thead>
<tr>
<th>Action1-then-Action2 plan</th>
<th>Action1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SensoryConsequence</td>
</tr>
<tr>
<td></td>
<td>Action2</td>
</tr>
<tr>
<td></td>
<td>SensoryConsequence</td>
</tr>
</tbody>
</table>
PFC plan activation during action recognition
Recall the different role of PFC in action execution and action observation.

In action execution, PFC activity *causes* activity in premotor areas.
Recall the different role of PFC in action execution and action observation.

In action observation, premotor activity \textit{precedes} PFC activity.

- The observer is making an \textit{abductive inference}: from the observed agent’s \textit{actions} to their likely \textit{causes}.
PFC plan activation during action recognition

Recall the different role of PFC in action execution and action observation.

In action observation, premotor activity *precedes* PFC activity.
- The observer is making an *abductive inference*: from the observed agent’s *actions* to their likely *causes*.
- The inferred plan can then function to make predictions about the agent’s next actions.
Many PF/PFG cells appear to encode *sequences* of actions, rather than just individual actions (Gallese *et al.*, 2002).

- E.g. a cell may fire when the monkey picks up an object *and brings it to his mouth*, but not when the monkey picks up an object *and puts it in a box*.

- Many sequence-encoding cells also have mirror properties. These cells encode *predictions* about the agent’s *forthcoming actions*, which appear to derive from a recognition of the agent’s intentions.
PFC state after action execution / recognition

When an observer has successfully *recognised* an action sequence, the observer has the inferred sequence plan in PFC.

When an agent has successfully *executed* an action sequence, the agent still has the sequence plan in PFC.
When an observer has successfully \textit{recognised} an action sequence, the observer has the inferred sequence plan in PFC.

When an agent has successfully \textit{executed} an action sequence, the agent still has the sequence plan in PFC.

PFC ends up in a similar state whether the action is executed or recognised.
Replaying PFC plans: simulation mode

There is some evidence that agents can ‘internally replay’ stored sensorimotor sequences.

(We’ll look at this in the next lecture.)

Imagine a simulation mode, in which a prepared SM sequence can be internally replayed, with no external effects.
Simulation mode

Simulation is easy in a competitive queueing model.

\[\text{Planning level} \quad \begin{array}{c} \text{A1} \\ \text{A2} \\ \text{A3} \end{array} \quad \text{Competitive level} \quad \begin{array}{c} \text{A1} \quad \text{A2} \quad \text{A3} \end{array} \quad \text{Motor cortex} \quad \begin{array}{c} \text{A1} \\ \text{A2} \\ \text{A3} \end{array} \]

\[\text{inhibitory link} \quad \rightarrow \quad \text{excitatory link} \]

’ACTION MODE’:

- If you execute a prepared action sequence, each winning action activates an action in the motor cortex.
Simulation mode

Simulation is easy in a competitive queueing model.

If you **execute** a prepared action sequence, each winning action activates an action in the motor cortex.

If you **simulate** a prepared action sequence, you just need to switch off the links to the motor cortex.
Simulation mode

In an associative chaining model, simulation is a bit more tricky.

- We have to switch off links to overt actions (as for CQ).
Simulation mode

In an associative chaining model, simulation is a bit more tricky.

- We have to switch off links to overt actions (as for CQ).
Simulation mode

In an associative chaining model, simulation is a bit more tricky.

- We have to switch off links to overt actions (as for CQ).
- We must also find a way for a simulated action to trigger its own reafferent consequence.
Simulation mode

In an associative chaining model, simulation is a bit more tricky.

- We have to switch off links to overt actions (as for CQ).
- We must also find a way for a simulated action to trigger its own reafferent consequence.
Simulation mode

In an associative chaining model, simulation is a bit more tricky.

- We have to switch off links to overt actions (as for CQ).
- We must also find a way for a simulated action to trigger its own reafferent consequence.

There are ways this could be done, both for motor actions and for attentional actions.
The episodic buffer revisited

A stored sensorimotor sequence plan which supports internal replay sounds a lot like Baddeley’s episodic buffer.

- It accesses representations in several sensory modalities
- It has the form of a sequence, which can be ‘rehearsed’
- It buffers observed actions as well as executed actions
- It is implemented in frontal areas.

Maybe the two senses of WM aren’t as distinct as Baddeley suggests.
The episodic buffer revisited

A stored sensorimotor sequence plan which supports internal replay sounds a lot like Baddeley’s episodic buffer.

- It accesses representations in several sensory modalities
- It has the form of a sequence, which can be ‘rehearsed’
- It buffers observed actions as well as executed actions
- It is implemented in frontal areas.

Maybe the two senses of WM aren’t as distinct as Baddeley suggests.

Note: The episodic buffer interfaces with phonological WM.
An event is *experienced as a SM sequence*.

It is stored in *working memory* (in PFC) as a *planned SM sequence*.

PFC storage probably involves a mixture of competitive queueing, context-based and associative chaining mechanisms.

The planned SM sequence can be *internally replayed*.

The process of *internally replaying a planned SM sequence* is the key process in the linguistic model I’ll propose.
Replaying a planned sequence: timecourse of signals

<table>
<thead>
<tr>
<th>Sustained PFC signal</th>
<th>Transient signals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Context signals</td>
</tr>
<tr>
<td>$plan_{\text{attend_agent/attend_cup/grasp}}$</td>
<td>C_1</td>
</tr>
<tr>
<td></td>
<td>C_2</td>
</tr>
<tr>
<td></td>
<td>C_3</td>
</tr>
<tr>
<td></td>
<td>C_4</td>
</tr>
</tbody>
</table>