COSC451: Artificial Intelligence
Lecture 16: How infants learn syntax

Alistair Knott
Dept. of Computer Science, University of Otago
Recap

Last lecture, we looked at how infants learn single words.

- Cross-situational learning, and the role of the phonological loop
- The role of joint attention and intention recognition

Recall from Lecture 15: word-meaning mappings and syntactic processing appear to involve different brain areas.

- Word meanings: ‘Wernicke’s area’ and associated temporal areas
- Syntax: Broca’s area.

Today: a model of what’s happening in Broca’s area.
Outline of today’s lecture

1. Learning syntax: early developmental stages
2. The nativist-empiricist debate
3. Empiricist models of syntax
4. A new model of syntactic processing
Outline of today’s lecture

1. Learning syntax: early developmental stages
2. The nativist-empiricist debate
3. Empiricist models of syntax
4. A new model of syntactic processing
Learning syntax: early developmental stages

Early syntactic development has some fairly well agreed stages.

Utterances in service of specific *goals*.

- The goal can be ‘declarative’ (e.g. *car!*)
- The goal can be ‘imperative’ (e.g. *doggy! more!*)

It’s only when children have learned the mapping between meanings and words that such utterances become effective.

- But children still have to learn that (in some situations) ‘entering verbal mode’ can be a means to achieving their goals.
2. Simple two-word utterances.

Word combinations: unstructured collections of words.
- E.g. *my ... cup! cup ... my!*

Pivot schemas: two word units structured around a single word
- E.g. *my cup! my cake! [my X]*

Tomasello: pivot schemas support some generalisation, but are mainly based on surface word ordering conventions.
3. **Item-based syntactic constructions**

At 18 months, children begin to understand simple transitive sentences.

Around 24 months: the earliest ‘syntactic constructions’.
- Children begin to produce transitive sentences.
- Children begin to use syntactic *function words* (e.g. *the*, *of*) and inflections (e.g. *likes*).

The interesting thing about early constructions is that they tend to be *tied to specific words*.
- *Open it with this*.
- *He hit me this*.
Learning syntax: early developmental stages

4. Progressively more complex syntactic constructions.

At this point, utterances are complex enough that you need a proper syntactic theory to chart development.

That’s where things start to get contentious.
Outline of today’s lecture

1. Learning syntax: early developmental stages
2. The nativist-empiricist debate
3. Empiricist models of syntax
4. A new model of syntactic processing
There’s a huge debate between **nativists** and **empiricists** in developmental linguistics.

- Nativists believe that infants are born with ‘knowledge’ of the universal properties of language. All they have to learn from their environment are the **parameter settings** which define their particular language.

- Empiricists believe that infants use *general-purpose learning mechanisms* to acquire language. They learn language ‘from scratch’.
An example of a nativist model: Minimalism

Recall:

- The Minimalist model of ‘The man grabbed a cup’ holds that the same **LF** structure underlies this sentence in every language.
- This LF structure contains multiple positions for the agent, patient and inflected verb. (Because these items ‘move’ during derivation.)
- Children are born knowing how to derive the LF representation.
- What they have to learn is the *mapping from LF to PF*. I.e. whether to ‘read out’ items before or after movement.
An example of a nativist model: Minimalism

Here’s the LF derivation of our example sentence.

```
V
grabbed
IP
AgrP
VP
I'
Agr'
V'
I
Agr
DP
a cup
the man
Spec
Spec
Spec
```
An example of a nativist model: Minimalism

Here’s the LF derivation of our example sentence.

```
V  grabbed
IP
AgrP
VP
I'
Agr'
V'
I
Agr
DP
a cup
Spec
Spec
Spec
the man
```

Alistair Knott (Otago)
COSC451 Lecture 16
An example of a nativist model: Minimalism

Here’s the LF derivation of our example sentence.
An example of a nativist model: Minimalism

Here’s the LF derivation of our example sentence.
An example of a nativist model: Minimalism

Here’s the LF derivation of our example sentence.

```
IP
   Spec  I'
        the man
   I   AgrP
      Spec  Agr'
      Agr  VP
      Spec  V'
         V grabbed  DP a cup
```
An example of a nativist model: Minimalism

Here’s the LF derivation of our example sentence.

```
IP
   Spec
   the man
   I’
   AgrP
   I
   Spec
   a cup
   Agr’
   Agr
   VP
   Spec
   V’
   V
   V grabbed
   DP
```
An example of a nativist model: Minimalism

Here’s the LF derivation of our example sentence.

IP
 Spec
 the man
 I'
 I
 AgrP
 Spec
 a cup
 Agr'
 Agr
 VP
 Spec
 V'
 V
 grabbed
 DP
An example of a nativist model: Minimalism

Here’s the LF derivation of our example sentence.
An example of a nativist model: Minimalism

Here’s the LF derivation of our example sentence.

\[\text{IP} \rightarrow \text{AgrP} \rightarrow \text{VP} \rightarrow \text{I'} \rightarrow \text{Agr'} \rightarrow \text{V'} \rightarrow \text{I} \rightarrow \text{Agr} \rightarrow \text{DP} \rightarrow \text{Spec} \rightarrow \text{grabbed} \rightarrow \text{the man} \rightarrow \text{a cup} \]
An example of a nativist model: Minimalism

Here’s the LF derivation of our example sentence.

```
IP
  Spec
    the man
  I’
    I
      grabbed
  AgrP
    Spec
      a cup
    Agr’
      Agr
        VP
          Spec
            V
              DP
```

Alistair Knott (Otago)

COSC451 Lecture 16
An example of a nativist model: Minimalism

Here’s the LF derivation of our example sentence.

```
IP
  Spec
    I
      AgrP
        I
          grabbed
        Spec
          a cup
        Agr
          VP
            Spec
              V
                V
                  DP
```
An example of a nativist model: Minimalism

Here’s the LF derivation of our example sentence.
An example of a nativist model: Minimalism

Both agent and patient can be read out before or after movement. The inflected verb can be read out in three positions. All the child has to learn is ‘when to read out each item’.
An example of a nativist model: Minimalism

In English, we read out as follows:

```
Spec the man
I grabbed
Spec a cup
Agr grabbed
Spec the man
V grabbed
V
VP
Agr
Spec a cup
Spec

IP
AgrP
VP
I'
Agr'
V'
I
Agr
DP
a cup
the man
grabbed
grabbed
the man
a cup
Spec
Spec
Spec
V
```
An example of a nativist model: Minimalism

In Maori, we read out as follows:

```
IP
 A’
 VP
 I
 Agr
 Spec
 the man
 I
 grabbed
 AgrP
 Spec
 a cup

Agr
 grabbed
 VP
 V
 Spec
 the man
 V
 grabbed
 DP
 a cup
```
An example of a nativist model: Minimalism

In French/Italian, we read out as follows:
The nativist-empiricist debate

Some arguments for a nativist position

1. ‘Poverty of the stimulus’ arguments. (Chomsky, 1980)
 - ‘There’s not enough information in language exposure data to learn a language.’
 - ‘Language is just too complex to be able to learn from data.’

2. Arguments from pidgins and creoles (Bickerton, 1981)
 - Pidgins are languages which are ‘invented’ when two language communities meet, and need to communicate. They are not true natural languages.
 - Children who grow up in communities speaking a pidgin language develop a creole. Creoles have all of the syntactic complexity of ‘established’ natural languages.
Outline of today’s lecture

1. Learning syntax: early developmental stages
2. The nativist-empiricist debate
3. Empiricist models of syntax
4. A new model of syntactic processing
Empiricist models of syntax

Empiricist linguists argue that children have very powerful general-purpose learning mechanisms.

- These are sufficient to acquire a language without (much) innate language-specific machinery.

The training data: utterances occurring in communicative contexts.

- There are regularities within utterances.
- There are regularities linking utterances and contexts.

Children have pattern-finding mechanisms which pick up these regularities.
What pattern-finding mechanisms are involved?

1. A mechanism which finds regularities in sequential data.
 Consider the following sequence:
 John went to the. . .
 What word comes next?
 We've already seen that infants can pick up regularities in a stream of phonemes (Saffran et al.).

2. A mechanism which finds mappings between pairs of complex patterns.
 We've already hypothesised such a mechanism in our accounts of the mirror system.
 It's also attested in our ability to perform analogical reasoning.
What pattern-finding mechanisms are involved?

1. A mechanism which finds regularities in sequential data.
 - Consider the following sequence: *John went to the*... What word comes next?
 - We’ve already seen that infants can pick up regularities in a stream of phonemes (Saffran *et al.*).

 \[
 ga\ bi\ ro\ to\ ba\ di\ ga\ bi\ ro\ to\ ba\ di
 \]
What pattern-finding mechanisms are involved?

1. A mechanism which finds regularities in sequential data.
 - Consider the following sequence: *John went to the*... What word comes next?
 - We’ve already seen that infants can pick up regularities in a stream of phonemes (Saffran *et al.*).

     ```
     ga bi ro to ba di ga bi ro to ba di
     ```

2. A mechanism which finds mappings between pairs of *complex patterns*.
 - We’ve already hypothesised such a mechanism in our accounts of the mirror system.
 - It’s also attested in our ability to perform analogical reasoning.
Empiricist models of syntax

What sorts of pattern are found?

1. Patterns are statistical tendencies, rather than universal rules.
 A traditional grammar divides sentences discretely into 'well-formed' and 'ill-formed'.
 Empiricist language models often assign probabilities to sentences.

 John went to the pub
 John went to the ??
 cup

 Traditional grammar works with 'cleaned-up' sentences, with pauses, false starts, repetitions etc removed.

 Chomsky distinguished between syntactic competence and performance. He saw grammar as modelling competence.

 Empiricist grammars tend to be trained on 'real' language data.
Empiricist models of syntax

What sorts of pattern are found?

1. Patterns are *statistical tendencies*, rather than universal rules.

A traditional grammar divides sentences discretely into ‘well-formed’ and ‘ill-formed’.

Empiricist language models often assign *probabilities* to sentences.

- *John went to the pub*
 John went to the ?? cup

Traditional grammar works with ‘cleaned-up’ sentences, with pauses, false starts, repetitions etc removed.

- Chomsky distinguished between syntactic *competence* and *performance*. He saw grammar as modelling competence.

Empiricist grammars tend to be trained on ‘real’ language data.
What sorts of pattern are found?

2. Patterns are often patterns in *surface language*.

In generative grammar, most of the rules are about deriving LF.
- There are no rules about the ‘surface form’ of a sentence.

However, in language, there appear to be lots of regularities which can *only* be expressed as surface regularities.
- The classic example is *idioms*.
Idioms

An idiom is an arbitrary sequence of words which collectively have an arbitrary semantic interpretation.

E.g. *by and large* (meaning ‘typically’).
- The meaning of this phrase doesn’t come from the meanings of its individual words.
- It doesn’t conform to any general syntactic rules.

Idioms often have ‘slots’, which can be filled by syntactically regular constituents.
- *Far be it from NP to VP.*

Idioms are often syntactically regular, even though their meaning is not compositional.
- *NP kicked the bucket.*
Empiricist models of syntax

Idioms in the nativist-empiricist debate

Empiricist linguists argue that idioms are very common in language.

They argue that there’s a *continuum* of idiomaticity.

- At one end, there are ‘pure’ idioms (e.g. *by and large*).
- In the middle there are idioms containing ‘slots’, and grammatically regular idioms.
- At the other end there are statistical tendencies.
 E.g. *went to the pub, give up, pull over* . . .

Empiricist models are well-suited for capturing idioms.

- Idioms are *statistical* regularities in *surface language*, mapped to arbitrary semantic/pragmatic patterns.

Minimalist models have real difficulties with idioms.
Idioms in a Minimalist model

If idioms are *continuous*, they can simply be treated as *multi-word* lexical items.

- E.g. *Winnie-the-Pooh*, *by-and-large*...

The difficulty is with *non-continuous idioms*, and with idioms which retain some degree of syntactic regularity.

- *Take NP to task* (≡ criticise NP)
- *NP let the cat out of the bag*

 The cat was let out of the bag by NP

There’s nothing in Minimalism which can explain these constructions.
Empiricist models of language acquisition have an easier time explaining the different stages of syntactic development.

- Infants begin by detecting simple statistical regularities in surface language, and map these to semantic representations.
- Then they identify progressively more complex regularities.

Minimalism is an account of ‘mature’ language competence; it’s not clear how this emerges during development.
Obviously, empiricists need to propose models of the learning architectures which infants are using to learn patterns in language.

- One of the key models is the simple recurrent network (SRN; Elman, 1990).

A SRN takes as input a sequence of words (one word at a time). It is trained to predict the next word in the sequence.
A SRN maintains a context representation, which is a copy of its hidden layer at the previous timestep.

- The context rep holds a history of recent inputs.
- After training, the context units can be interpreted as holding a representation of the most common sequences in the training data.
A trained SRN can’t (normally) predict exactly which word will come next.

- It can distinguish between those words which are likely to come next, and those which are unlikely.
- It’s basically a model of syntax.
Empiricist models of syntax

Simple recurrent networks

Interestingly, after training, words from the same syntactic (and even semantic) categories generate similar patterns of activation in the hidden layer of an SRN.

- This is because words from the same syntactic/semantic categories tend to occur in the same (surface) contexts.

Overleaf is a diagram showing how the activities hidden-unit word representations cluster after training.
Simple recurrent networks
Adding semantics to simple recurrent networks

As just described, SRNs can learn two things (from scratch):
 - A (very surface-y) model of syntactic structure.
 - A taxonomy of syntactic / semantic word categories.

That’s very useful…
However, if we want to model the mapping between syntax and semantics, we need to extend the model.
Outline of today’s lecture

1. Learning syntax: early developmental stages
2. The nativist-empiricist debate
3. Empiricist models of syntax
4. A new model of syntactic processing
A new model of syntactic processing

We already have an account of what semantic representations look like. (For concrete sentences.)

- When we ‘entertain the meaning’ of a concrete sentence, we internally rehearse a SM sequence stored in WM.

I need to give a model of how children learn to generate surface word sequences from these SM replay operations.

I.e. of how children learn the mapping from LF to PF.

- The model should ideally include an account of learned surface patterns in language.
- It should also support an account of the different stages in syntactic development.
The basic idea

In our account, the semantics (LF) of a sentence takes the form of a rehearsed SM sequence.

- We need a network which learns to map a SM sequence onto a sequence of words.
- The network needs to learn which SM representations in the sequence need to be ‘pronounced’, and which need to be skipped.

I’ll introduce the network bit by bit.
The basic idea

I’m thinking of the LF representation as a sequence of contexts, with two SM representations evoked in each context.
The basic idea

I’m thinking of the LF representation as a sequence of contexts, with two SM representations evoked in each context.
The basic idea

I’m thinking of the LF representation as a sequence of contexts, with two SM representations evoked in each context.
I’m thinking of the LF representation as a sequence of contexts, with two SM representations evoked in each context.
The basic idea

I’m thinking of the LF representation as a sequence of contexts, with two SM representations evoked in each context.
The basic idea

I’m thinking of the LF representation as a sequence of contexts, with two SM representations evoked in each context.
I’m thinking of the LF representation as a sequence of contexts, with two SM representations evoked in each context.
The basic idea

I’m thinking of the LF representation as a sequence of contexts, with two SM representations evoked in each context.
The basic idea

I’m thinking of the LF representation as a sequence of contexts, with two SM representations evoked in each context.
The basic idea

I’m thinking of the LF representation as a sequence of contexts, with two SM representations evoked in each context.
The basic idea

I’m thinking of the LF representation as a sequence of contexts, with two SM representations evoked in each context.
I’m thinking of the LF representation as a sequence of contexts, with two SM representations evoked in each context.
A new model of syntactic processing

A network for syntactic processing

Here’s the network for learning word meanings from last lecture.
A new model of syntactic processing

A network for syntactic processing

We can be more precise about where the semantic reps come from: They’re generated when WM episodes are *rehearsed*.
A network for syntactic processing

We can be more precise about where the semantic reps come from:

- Rehearsal evokes a sustained *episode plan*, and transient *object reps*. (With an updating SM context.)
A network for syntactic processing

We can be more precise about where the semantic reps come from:

- Rehearsal evokes a sustained episode plan, and transient object reps. (With an updating SM context.)
A network for syntactic processing

We can be more precise about where the semantic reps come from:

- Rehearsal evokes a sustained episode plan, and transient object reps. (With an updating SM context.)
A network for syntactic processing

We can be more precise about where the semantic reps come from:

- Rehearsal evokes a sustained episode plan, and transient object reps. (With an updating SM context.)

![Diagram showing a network with labels such as associated word, word-semantics network, attend-agent, attend-cup, grasping, attending cup, and C4.]
A new model of syntactic processing

A network for syntactic processing

Currently the word-semantics network generates *pairs* of words.

- It really needs to deliver words one at a time.
- Idea: a *pattern generator* can alternate between semantic signals.

![Diagram](image-url)
A network for syntactic processing

The pattern generator alternately sends the object representation and the episode plan to the word-sem network.
A new model of syntactic processing

A network for syntactic processing

The pattern generator alternately sends the object representation and the episode plan to the word-sem network.
A new model of syntactic processing

A network for syntactic processing

The pattern generator alternately sends the object representation and the episode plan to the word-sem network.
A network for syntactic processing

Assume that the pattern generator also ‘advances’ a rehearsed SM sequence (at the end of every cycle).
A new model of syntactic processing

A network for syntactic processing

Assume that the pattern generator also ‘advances’ a rehearsed SM sequence (at the end of every cycle).

- Now we get a unique word at each time step.
A new model of syntactic processing

A network for syntactic processing

Assume that the pattern generator also ‘advances’ a rehearsed SM sequence (at the end of every cycle).

- Now we get a unique word at each time step.
A network for syntactic processing

Assume that the pattern generator also ‘advances’ a rehearsed SM sequence (at the end of every cycle).

- Now we get a unique word at each time step.
A new model of syntactic processing

A network for syntactic processing

Assume that the pattern generator also ‘advances’ a rehearsed SM sequence (at the end of every cycle).

- Now we get a unique word at each time step.

![Diagram of network components: Word-semantics network, Episode rehearsal system, attend-man, attend-cup, grasp, Man, rep, "GRABBED", C2, 'advance']
A new model of syntactic processing

A network for syntactic processing

Assume that the pattern generator also ‘advances’ a rehearsed SM sequence (at the end of every cycle).

- Now we get a unique word at each time step.
A new model of syntactic processing

Assume that the pattern generator also ‘advances’ a rehearsed SM sequence (at the end of every cycle).

- Now we get a unique word at each time step.
A network for syntactic processing

Assume that the pattern generator also ‘advances’ a rehearsed SM sequence (at the end of every cycle).

- Now we get a unique word at each time step.
A network for syntactic processing

Now we can envisage a filter network which learns when to ‘produce’ words generated by the word-semantics network.
A new model of syntactic processing

Now we can envisage a filter network which learns when to ‘produce’ words generated by the word-semantics network.

- The network is trained in joint attention situations.

A network for syntactic processing

Diagram:

- Predicted next word (wd sem)
- Word-semantics network
- Filter network

Joint attention situations:

- Episode plan
- Object rep
- Context
- ’advance’

Error term (Err)

Actual next word
A new model of syntactic processing

Now we can envisage a filter network which learns when to ‘produce’ words generated by the word-semantics network.

- The agent observes an episode, and hears an utterance.
A new model of syntactic processing

A network for syntactic processing

Now we can envisage a filter network which learns when to ‘produce’ words generated by the word-semantics network.

- The agent *replays* the episode and the utterance in synch.
A network for syntactic processing

Now we can envisage a filter network which learns when to ‘produce’ words generated by the word-semantics network.

- The network is trained to predict the next word in the utterance.
A network for syntactic processing

Now we can envisage a filter network which learns when to ‘produce’ words generated by the word-semantics network.

- Its input is the context (C1...C4) and the oscillator.
A new model of syntactic processing

A network for syntactic processing

Now we can envisage a filter network which learns when to ‘produce’ words generated by the word-semantics network.

- If word-sem network output matches the next word, it's passed on.
A new model of syntactic processing

A network for syntactic processing

Now we can envisage a filter network which learns when to ‘produce’ words generated by the word-semantics network.

- If not, it’s blocked.
A network for syntactic processing

Now we can envisage a filter network which learns when to ‘produce’ words generated by the word-semantics network.

- Example: training in English (*man, grabbed, cup*).
A new model of syntactic processing

Now we can envisage a **filter network** which learns when to ‘produce’ words generated by the word-semantics network.

- **Output matches**: train C1/1 → PASS.

![Diagram](image-url)
A new model of syntactic processing

A network for syntactic processing

Now we can envisage a filter network which learns when to ‘produce’ words generated by the word-semantics network.

Output matches: train C1/2 → PASS.

[Diagram of network with nodes labeled: GRABBED, Word-semantics network, Filter network, ‘advance’, attend-man, attend-cup, grasp, Man rep, C1, Episode rehearsal system.]
A new model of syntactic processing

A network for syntactic processing

Now we can envisage a filter network which learns when to ‘produce’ words generated by the word-semantics network.

- Output matches: train C2/1 → PASS.

Diagram:

- **Word-semantics network**
- **Filter network**
- **Episode rehearsal system**

- **Actual next word**
 - CUP

- **Output word**
 - CUP

- **Err**

- **‘advance’**

- **Episode rep**
 - attend–man
 - attend–cup
 - grasp
 - Cup
 - C2
A network for syntactic processing

Now we can envisage a filter network which learns when to ‘produce’ words generated by the word-semantics network.

Output doesn’t match: train C2/2 → BLOCK.
A new model of syntactic processing

A network for syntactic processing

Now we can envisage a filter network which learns when to ‘produce’ words generated by the word-semantics network.

- Output doesn’t match: train C3/1 → BLOCK.

```
   Err   EOS
       | Actual next word
       |
  MAN    
       | Output word
       |
Word-semantics network
       |
attend-man
| attend-cup
| grasp

'advance'

MAN
rep

Man

C3

Episode rehearsal system
```
A new model of syntactic processing

Now we can envisage a filter network which learns when to ‘produce’ words generated by the word-semantics network.

- Output doesn’t match: train C3/2 → BLOCK.

![Diagram of the network](image-url)
Now we can envisage a filter network which learns when to ‘produce’ words generated by the word-semantics network.

- Output doesn’t match: train C4/1 → BLOCK.
A network for syntactic processing

Now we can envisage a **filter network** which learns when to ‘produce’ words generated by the word-semantics network.

- **Example:** training in a VSO language (*grabbed, man, cup*).
A new model of syntactic processing

A network for syntactic processing

Now we can envisage a filter network which learns when to ‘produce’ words generated by the word-semantics network.

- Output doesn’t match: train C1/1 \rightarrow BLOCK.
A new model of syntactic processing

A network for syntactic processing

Now we can envisage a filter network which learns when to ‘produce’ words generated by the word-semantics network.

- Output matches: train C1/2 → PASS.
A network for syntactic processing

Now we can envisage a filter network which learns when to ‘produce’ words generated by the word-semantics network.

- Output doesn’t match: train C2/1 → BLOCK.

![Diagram of a new model of syntactic processing](image-url)
A new model of syntactic processing

Now we can envisage a **filter network** which learns when to ‘produce’ words generated by the word-semantics network.

- Output doesn’t match: train C2/2 → BLOCK.

![Diagram showing the network structure with nodes and connections for syntactic processing](image_url)
A new model of syntactic processing

Now we can envisage a filter network which learns when to ‘produce’ words generated by the word-semantics network.

- Output matches: train C3/1 → PASS.

![Diagram showing a network for syntactic processing]
A network for syntactic processing

Now we can envisage a filter network which learns when to ‘produce’ words generated by the word-semantics network.

- Output doesn’t match: train C3/2 → BLOCK.
A network for syntactic processing

Now we can envisage a filter network which learns when to ‘produce’ words generated by the word-semantics network.

- Output matches: train C4/1 → PASS.
A new model of syntactic processing

A network for syntactic processing

This network generates sentences ‘compositionally’:

- it uses mappings from semantic reps to words, and a mechanism for rehearsing episode plans.

```
Word−semantics network
```

```
Err
```

```
Actual next word
```

```
Predicted next word (wd sem)
```

```
Predicted next word
```

```
Word−semantics network
```

```
Filter network
```

```
Episode rep
```

```
Object rep
```

```
Context
```

```
Episode plan
```

```
Episode rehearsal system
```

Alistair Knott (Otago)

COSC451 Lecture 16
A network for syntactic processing

But remember that there’s probably another mechanism for generating word sequences, which doesn’t rely on word semantics.
A network for syntactic processing

Proposal: an Elman-style word-sequencing network operates in parallel with the word-semantics/filter network.
A new model of syntactic processing

Both networks generate predictions about the next word in an utterance.
A new model of syntactic processing

A network for syntactic processing

For ‘compositional’ language, the episode-rehearsal/word-meaning network’s predictions are more accurate.
A network for syntactic processing

But for idiomatic language, the word-sequencing network’s predictions are more accurate.
A network for syntactic processing

The filter network has to learn when to rely on which predictor.

A new model of syntactic processing
A new model of syntactic processing

A network for syntactic processing

It can use the entropy of the word-sequencing network to decide this.

- Entropy is a measure of the confidence of the word-sequencing network in its prediction.
A network for syntactic processing

Here’s an example of a sentence containing an idiom:

- *Winnie the pooh grabbed cup*
A new model of syntactic processing

A network for syntactic processing

For the first word, the compositional network is more accurate.
A new model of syntactic processing

A network for syntactic processing

For the first word, the compositional network is more accurate.
A network for syntactic processing

For the second word (part of an idiom), the word-sequencing network is more accurate. So its output is chosen.
A new model of syntactic processing

A network for syntactic processing

For the second word (part of an idiom), the word-sequencing network is more accurate. So its output is chosen.
A new model of syntactic processing

Likewise for the third word (still part of the idiom).
A new model of syntactic processing

A network for syntactic processing

Likewise for the third word (still part of the idiom).
A new model of syntactic processing

For the fourth word (no longer part of the idiom), the compositional network is again more accurate.
A new model of syntactic processing

A network for syntactic processing

For the fourth word (no longer part of the idiom), the compositional network is again more accurate.
A new model of syntactic processing

Discontinuous idioms are a bit more tricky.
- E.g. John *takes Bill to task*.
A new model of syntactic processing

A network for syntactic processing

One way of dealing with these is to allow word semantics to contribute to the context representation of the word-sequencing network.
A new model of syntactic processing

A network for syntactic processing

The first word of the idiom is produced compositionally.
Then another compositional expression is produced. And the word-sequencing network’s context is updated.
A new model of syntactic processing

A network for syntactic processing

For the second part of the idiom, the word-sequencing network is again confident.

Alistair Knott (Otago)
COSC451 Lecture 16
A new model of syntactic processing

A network for syntactic processing

How does this network map onto the brain?

Err

Actual next word

Err

Predicted next word (wd sem)

Predicted next word

Predicted next word (wd seq)

Word–semantics network

Filter network

Word–sequencing network

Episode rehearsal system

Episode plan

Object rep

Context

Current word

Current surface context

'advance'

Ent

Alistair Knott (Otago)

COSC451 Lecture 16
A new model of syntactic processing

The filter network is part of Broca’s area.

- Language is about learning control/gating strategies. (C.f. Earl Miller’s model of PFC.)
A new model of syntactic processing

A network for syntactic processing

The word-sequencing network is also part of Broca’s area.

- Language is about sequencing abilities.
 (C.f. Elman and many others).

![Diagram of word-sequencing network]

Alistair Knott (Otago)
A new model of syntactic processing

A network for syntactic processing

The episode-rehearsal system is also part of Broca’s area.

- Language is about **working memory episode representations.** (C.f. Baddeley and many others).
A network for syntactic processing

The word-semantics network is part of ‘Wernicke’s area’ (and associated temporal regions).
A new model of syntactic processing

A network for syntactic processing

What can the network say about the developmental stages of syntax in childhood?

Predicted next word (wd sem) -> Word–semantics network

Predicted next word -> Filter network

Actual next word

Word–sequencing network

Current word

Current surface context

Episode rehearsal system

Filter network

‘advance’

Object

Episode plan

Episode rehearsal system

Err

Ent

Alistair Knott (Otago)
A network for syntactic processing

The single-word / holophrase stage:

- Children represent their *own intentions* in the ‘episode plan’ medium. And they attend to what they want...
A new model of syntactic processing

A network for syntactic processing

The pivot-schemas / item-based constructions stage:

- Perhaps there can be direct connections from semantic representations to the word-sequencing network.