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Outline 

• This talk will be about the so-called phenomenological rules of  
synaptic plasticity (= rules of  changes of  synaptic weights) in 
biological neurons. 
 

• Phenomenological rules attempt to capture the phenomenon of  
synaptic plasticity on a higher level without going into details about 
molecular and biophysical processes that underlie these changes in 
synapses (albeit trying to have these in mind as much as possible). 
 

• The relationship between phenomenological rules of  synaptic 
plasticity and more detailed biophysical and biochemical models is 
similar to the relationship between thermodynamic equations and 
equations of  statistical physics. 
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Neurons that fire out of  sync lose their link.  

Cell A 

Cell C  

Neurons that fire together wire together. 

Output of cell B 

Cell A 

Cell C 

Output of cell B 
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Hebb rule (1949) 

• When an axon of  cell A 
is near enough to excite 
a cell B and repeatedly 
or persistently takes 
part in firing it, some 
growth process or 
metabolic change takes 
place in one or both 
cells such that A's 
efficiency, as one of  the 
cells firing B, is 
increased.” 
 



Hebb rule: mathematical formulas 

• The problem with weights growing to infinity has been 
solved by modifications like 
– Adding various forms of a decay term (e.g. Oja’s rule) or 
– Weigth re-normalization after each update or 
– Setting up the maximal value of the weight. 

 
• However, numerous neurobiological experiments have 

brought results that were in contradiction with the basic 
Hebb postulate. Therefore a new insight was needed. 
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Normal cortex 

Impaired cortex 

Results for somatosensory cortex of rats 
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Normal cortex 

Impaired cortex 

[Benuskova 
et al., PNAS 
1994, 2001] 



Experimental evidence for sliding TM 
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METAPLASTICITY: Position of  TM  depends on the neuron’s past activity 

(Term coined by Cliff  Abraham and Mark Bear, TINS, 1996)  



LTP/LTD = long-term potentiation/depression 

• LTP/LTD are the gold standard synaptic models for 
mammalian memory mechanisms for 4 decades; 

 
• LTP/LTD occur in hippocampus and in neocortex, which are 

brain regions involved in formation of long-term memories;  
 
• LTP/LTD are long-lasting synaptic changes; can last for hours, 

days, weeks even months; 
 
• LTP/LTD are synaptic activity-dependent. 

 
• There is a moving LTD/LTP threshold that depends on the 

average of postsynaptic activity 
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Protocol for induction of  LTP 

Stimulation 

tetanus 
test 

EPSP 
before tetanus             after tetanus     

Stimulating 
electrode 

Measuring 
electrode 

hours 
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LTP and LTD depends on frequency of  tetanus 

• The same synapse can become potentiated or depressed 
based on frequency of  tetanus:  

– high frequencies ~ 100 Hz induce LTP and  

– low frequencies  ~ 1�10 Hz induce LTD 
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Timing (Markram et al., Science, 1997) 

• In 1997, a new phenomenon was discovered – that the sign 
and magnitude of  synaptic weight change depend also on the 
relative timing of  pre- and postsynaptic spikes. 
 
 
 
 
 
 

• Experimental protocol of  Spike-Timing Dependent Plasticity. 
Pre and Post-synaptic neurons are forced to emit spikes with a 
pre-defined time difference, while the modification of  the 
synaptic strength is monitored. 11 



STDP: spike-timing dependent plasticity 

• Depending on the precise time difference 't between pre- and  
post-synaptic spike, the synaptic weight can be either depressed 
or potentiated and the magnitude of  change depends on 't. 

�

�

'
��

'�
��

 '

 '
W

W

/

/

t

t

eAw
eAw

��������'t = tpost ��tpre       (ms) 



But which spike pairings contribute? 
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(a) Symmetric interaction – each 
presynaptic spike is paired with 
the last postsynaptic spike and 
each postsynaptic spike is paired 
with the last presynaptic spike.  
 

(b) Presynaptic centred interaction 
– each presynaptic spike is 
paired with the last postsynaptic 
spike and the next postsynaptic 
spike.  
 

(c) Reduced symmetric interaction 
– the same as in (a) but only the 
closest pairings are considered. 
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STDP fails 

• It has soon become apparent that the STDP fails to account for a 
number of  neurobiological experiments that involve frequency based 
protocols. (Assumption: if  STDP is universal then it underlies all 
forms of  synaptic plasticity.) 
 

• Over last 10 yrs, about 50 modifications of  the basic rule have been 
proposed (for a review see Christian G. Mayr and Johannes Partzsch, 
Frontiers in Synaptic Plasticity, doi: 10.3389/fnsyn.2010.00033). 
 

• E.g., one of  the recent modifications is the suppression model of  
Froemke et al. (2006), which proposes that A+ and A− scale as a 
function of  the complete history of  the presynaptic spike train (what 
would be the biological mechanism for this is quite questionable). 
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Pfister & Gerstner’s 3plet model w hidden variables (‘06) 

• Schemes of  the triplet learning rules. A, Schematic of  the two terms contributing to 
LTD controlled by A�

2 and A�
3 and the LTP terms controlled by A+

2 and A+
3 . A 

presynaptic spike after a postsynaptic one (postopre) induces LTD if  the temporal 
difference is not much larger than W�. The presence of  a previous presynaptic spike 
gives an additional contribution (2-pre-1-post triplet term, A�

3) if  the interval between 
the two presynaptic spikes is not much larger than Wx. Similarly, the triplet term for LTP 
depends on one presynaptic spike but two postsynaptic spikes. The presynaptic spike 
must occur before the second postsynaptic one with a temporal difference not much 
larger than W+. B, and C, time courses of  hidden variables o and r.  
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Pfister & Gerstner’s 3plet model w hidden variables (‘06) 

• The weight decreases after presynaptic spike arrival by an amount that is 
proportional to the value of  the (hidden) postsynaptic variable o1 but 
depends also on the value of  the presynaptic detector variable r2. Hence, 
presynaptic spike arrival at time tpre triggers a change 
 
 

• A postsynaptic spike at time tpost triggers a change that depends on the 
presynaptic variable r1 and the second postsynaptic variable o2 as 
follows: 
 
 

• Here all A’s are constant amplitudes of  change and variables o’s and r’s 
obey there own differential equations, and H is a small positive constant.  
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Critique of  STDP as a unifying principle  

• All these modifications of  STDP explain results of  different 
experimental protocols, different experimental conditions (in vitro vs. in 
vivo, etc), and experiments in different brain areas and sub-areas. 
 

• Lisman, J., and Spruston, N. (2010). Front. Syn. Neurosci. doi: 
10.3389/fnsyn.2010.00140, argued that postsynaptic depolarization 
rather than a spike is necessary and sufficient for the explanation of  
most experimental results that have usually been interpreted within the 
STDP framework. 
 

• Direct evidence for STDP in vivo is limited. The studies use long-
lasting large-amplitude postsynaptic potentials (PSP), and pairing usually 
involves multiple postsynaptic spikes or high repetition frequencies.  
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Clopath, Büsing, Vasilaki, Gerstner (Nat. Neurosci. 2010) 

• (a) The synaptic weight is decreased if  a presynaptic spike x (green) 
arrives when the low-pass-filtered value ū− (magenta) of  the membrane 
potential is above θ– (dashed horizontal line). (b) The synaptic weight is 
increased if  the membrane potential u (black) is above a threshold θ+ 
and the low-pass-filtered value of  the membrane potential ū+ (blue) is 
higher than a threshold θ– and the presynaptic low-pass filter x (orange) 
is nonzero.  18 



Voltage-based STDP with homeostasis 

• The final weight change formula in combination with the hard 
bounds wmin ≤ w ≤ wmax is 
 
 
 

• Where ALTP , θ– and θ+ are constants, ALTD is proportional to the 
average of  a recent postsynaptic voltage, i.e. ALTD = A0 <u> 
(homeostasis), variable X is the series of  presynaptic spikes occurring 
at times tn, i.e.  
 
 

• And all other membrane voltage u variables obey exponential 
differential equations. 
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Our contribution to the chaos 

• Us: Me, Cliff  Abraham (Otago U) + Peter Jedlička (Goethe U) + 
our students (Azam Shirrafi Ardekani, Nick Hananeia) 
 
 
 
 
 
 
 

• Our strategy: Keep it simple as possible, but not any more simple. 
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STDP leads to BCM frequency threshold 

• In 2003, Izhikevich and Desai showed the presynaptically centered 
(scheme b, slide 13) classical pair-wise STDP yields LTD / LTP 
threshold in the frequency domain: 
 
 
 
 
 

• Amplitudes A’s and decays W’s of  potentiation and depression 
windows, are constants. 

• However, in the original BCM theory, TM changes as a function of  
the average previous activity of  a neuron.  
 
 

= 0 TM�
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STDP with “metaplasticity” 

• Benuskova and Abraham (2007) introduced changing LTD/LTP 
amplitudes according to average postsynaptic activity: 
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Experimental data: tetanus of  MPP leads to homosynaptic 
potentiation of  MPP and heterosynaptic depression of  LPP  

1   2   3  4  5 

Synaptic 
change 

potentiated 

depressed 

MPP 

LPP 

hours 
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 lpp To subiculum  

from cEC 
 

     mpp 

To entorhinal 
cortex (EC) 

 GC 

 CA3 

CA1 

Dentate gyrus 

Hippocampus 

[Abraham et al, 
PNAS 2001] 



Izhikevich model of  spiking neuron 
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Assumptions of  the model 

• The STDP rule is allowed to dynamically change the amplitudes of  
LTP and LTD according to the previous mean spike count of  the 
postsynaptic neuron or the average of  previous membrane voltage 
over short time ~ 1min (the results are the same). 
 

• We simulate the pre- and postsynaptic  spontaneous spiking 
activity, which is random but correlated between LPP and MPP at 
the theta frequency because experiments were done in vivo. 
 

• We temporarily de-correlate the spiking activity of  MPP and LPP 
pathways during LTP induction (Benuskova & Abraham, J. Comp. 
Neurosci., 2007). 
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a b 

c d 

MPP 

LPP 

Results of  STDP with metaplasticity (homeostasis) 
• Tetanus consisted of  1440, 50 or 10 trains of  ten pulses at 400 Hz. It 

was delivered in bursts of  5–6 trains at 1-s intervals, with 30–120 s 
between bursts, depending on the protocol. 
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Prediction from this model:  
if  the spontaneous activity (noise) is blocked so is the 

hetero-plasticity 

Abraham WC, Logan B, Wolff A, 
Benuskova L : 

"Heterosynaptic" LTD in the dentate 
gyrus of anesthetized rat requires 
homosynaptic activity.  

Journal of Neurophysiology, 98: 
1048-1051, 2007.  
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Interplay between frequency and STDP 
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Simulations of  in vitro 
results from Lin et al., 
J. Eur. Neuroscience, 
2006.  



Compartmental model of  granule cell 

• Aradi and Holmes (1999) developed a realistic compartmental model 
of  the granule cell and Schmidt-Hieber implemented it in NEURON.  
 
 
 
 

• In the reduced morphology model there are six regions of  the DG 
cell having different distributions of  voltage-activated channels—the 
soma, axon, granule cell layer dendrites, proximal, middle, and distal 
dendrites. Parameters l denotes the length in Pm of  a segment where 
channels are distributed uniformly, and n is the number of  
compartments.  

• 150 MPP synapses are created at the middle parts of  the dendrites and 
150 LPP synapse are created at the distal parts of  the dendrites. 29 



Compartmental model of  granule cell 

• Differential equation for the membrane voltage reads: 
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Compartmental model of  granule cell 

• Equations for the excitatory synaptic current are as follows: 
 
 
 
 
 
 

• Where X stands for MPP or LPP, E is the equilibrium potential for 
excitatory synapses, Vk is the membrane voltage at synapse k, g is 
membrane conductance, which obeys the double exponential equation 
with rise W2 and decay W1 constants.  

• Parameter w is the synaptic weight that is updated according to our 
STDP rule with metaplasticity (implemented by Peter Jedlička).  
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STDP with “metaplasticity” 

• Since now we have dendrites with passive membrane properties and 
spatio-temporal summation of  PSPs, DT is calculated as 
 
 

• Where tpost = time when Vk > -37 mV. This can happen either as a result 
of  backpropagating AP and/ or spatio-temporal summation of  PSPs. 
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Results 
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Summary 

• Hebbian rules 
 

• BCM rule 
 

• STDP rules 
 

• Postsynaptic voltage-based rules 
 

• What’s next ??? 
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Conclusion? 

• “As far as the laws of  mathematics refer to reality, 
they are not certain, and as far as they are certain, 
they do not refer to reality.” (Albert Einstein) 
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