Faults & Failures in
Novice GOAL Programs

Michael Winikoft
University of Otago, New Zealand

‘Novice Programmers' Faults & Failuresin GOAL Programs:
Empirical Observations and Lessons’

1

“In contrast to remote control, this
sophisticated set of computer prograrj}%%éts
a0 agent of the operations tea//%%/ﬁoard

te Spacecraft. Rather t W%ﬁave
e detailed"plannin g necessary
to carry out € S|red tasks, remote agent will

formulate its own plang“;;uémgmlgh level

goals provided by 80 peraiions team.
Remote agent Jef s Its plan by combining

those goals w ///s detailed knowledge of

4
both the %f’én of the spacecraft and how
G0
to con / http://nmp.nasa.gov/ds1/tech/autora.htmi
7 /4

/////////////

Deep Space 1 Is an agent

 Situated (“placed on board”)
* Autonomous ("In contrast to remote control”)

* Proactive ("... formulate its own plans, using high
level goals™)

* Reactive (“If problems develop, remote agent in
many cases will be able to fix them or work around
them. ...")

* Social (... If it cannot, it can request help from its
sentient terrestrial collaborators™)

Also Multi-agent systems (MAS) and agent societies.

"Human-inspired computing"

g cer e SR [!
: A s :
s s e
‘ sdonasel e s
i .’ @ :’ //
/i 5 \
i 9‘,

o’ g ‘*
Y €9 ,
~»" N
,)i
:

Human-inspired PLs

Based on models of human decision making and
planning

Belief Desire Intention (BDI) model influential
Plans and Goals

Need to provide means for persistently achieving
goals while responding to changes

Examples: JACK, Jadex, Jason, 3APL, 2APL,
Brahms, GOAL ...

Research Question

What are the types of faults that novice
programmers create when using Agent-
Oriented Programming Languages
(AOPLs) and how do they manitest as

failures”

e Fault: mistake in the program

e Failure: run-time manifestation of an error

v

Vliotivation

e Potential iImplications to language design, tool
design, teaching programming

e Novices” If agent programming Is to take off,
need to teach AOPL to lots of agent-
NOVICES ...

Contributions

e Jaxonomies for faults and for failures

e Empirical data on fault and failure occurrences

e |mplications for debugging tools, language
design, and teaching

laxonomies

e Bottom-up vs. Top-down?
e Principles for systematic derivation:
> Fault: (syntactic) language features

> Failure: language semantics

10

laxonomies

e Bottom-up vs. Top-down?

e Principles for systematic derivation:
> Fault: (syntactic) language features
> Failure: language semantics

e Faultand Failure locations expected to correlate, but
... €.9. Incorrect action selected due to error in
domain knowledge

if C then insert(¢)+adopt(y)

SN\

Faultin condition . exhibits multiple failure types

Fault laxonomy

e Considerrules: whole rule,
condition, action, order

e Consider other parts of
program: domain
knowledge, initial beliefs/
goals, action definition

¢ [ypos and other error

e Augment with
observations ...

12

- .goal = domain knowledge
(Prolog rules) + initial
beliefs + initial goals +
action definitions (pre/post
conditions) + rules ...

* Rules: percept and main
module

 Rule: if condition then

action(s) [also forall-do]

Example GOAL Rule

if bel(in(Room), color(Block,Color)),
not(goal(deliver(ABlock))) then
adopt(deliver(Block))

-allure laxonomy

e Percepts, Actions, Goals
Can...
¢ Failto do what should be done

e Do what shouldn't be done

14

1. Clear percepts

2. Update percepts
(execute event module)

3. Select rule in main
module and execute it

4. Drop believed goals

laxonomies

Fault Taxonomy
a:
b:
C:

OB AT TR e A

missing rule P1:
additional (wrong) rule P2:
condition on rule wrong - specific variants: Gl:
cs: condition too strong (EO) G2:
cw: condition too weak (EO) G3:
action(s) of rule wrong (but legal) G4
rule includes two user-defined actions

rule order wrong (EO) G5:
action definition wrong Al:
using “if then” instead of “forall do” (EO) A2:
missing action in a rule (special case of “d”, EO) A3:
fault in domain knowledge

fault in initial beliefs/goals A4:
typo (e.g. atblock instead of atBlock) O:

other fault not classified above

Failure Taxonomy

failure to deal with percept

other incorrect percept processing

failure to add goal that should be added

failure to drop goal that should be dropped
adding a goal that shouldn’t be added

incorrectly adding a second goal of the same type
(special case of G3, EO)

dropping a goal that shouldn’t be dropped
selecting wrong (user-defined) action

beliefs not updated correctly when action performed
action selected when should be doing nothing
(waiting for environment, EO)

action interface mismatch (EO)

other failure not classified above

Figure 2: Fault Taxonomy (left) and Failure Taxonomy (right). “EO” denotes Empirical Observations.

15

laxonomies

Fault Taxonomy

a:
b:
C:

Q TE TN PO A

missing rule

additional (wrong) rule

condition on rule wrong - specific variants:
cs: condition too strong (EO)

cw: condition too weak (EO)

action(s) of rule wrong (but legal)

rule includes two user-defined actions

rule order wrong (EO)

action definition wrong

using “if then” instead of “forall do” (EO)
missing action in a rule (special case of “d”, EO)
fault in domain knowledge

fault in initial beliefs/goals

typo (e.g. atblock instead of atBlock)

other fault not classified above
16

Failu
P1:
P2:
Gl:
G2:
G3:
G4

G5:
Al:
A2:
A3:

A4

laxonomies

, EO)

Failure Taxonomy

Pl1:

P2:
Gl:
G2:
G3:
G4

G35:
Al:
A2:
A3:

A4

O:

failure to deal with percept

other incorrect percept processing

failure to add goal that should be added

failure to drop goal that should be dropped
adding a goal that shouldn’t be added

incorrectly adding a second goal of the same type
(special case of G3, EO)

dropping a goal that shouldn’t be dropped
selecting wrong (user-defined) action

beliefs not updated correctly when action performed
action selected when should be doing nothing
(waiting for environment, EO)

action interface mismatch (EO)

other failure not classified above

17

Contributions

e Jaxonomies for faults and for failures

e Empirical data on fault and failure occurrences

e |mplications for debugging tools, language
design, and teaching

18

Vethodology

e Obtained 55 student-written assignments (single
agent BWA4T), but 4 didn't run so excluded

e Students were provided with skeletal program (one
action detinition, 2 rules to explore, some percept
processing rules)

* Programsranged from 172 to 378 lines (mean 225.5,
median 220)

1. Test 2. Debug 3. Re-test 4. Sum. 5. Classify
Program Program Program Changes faults & failures

Yes Yes No
Bugs More

found?
bugs? 6. Aggregate
o Exclude counts
Program 19

BW4 1

e Blocks World for Teams

e Aim: deliver coloured blocks
IN desired order

e Actions: goTo(Locn),
goToBlock(BlocklID), pickUp,
putDown

e Pec
CO
ho

rcepts: in(Room),
or(BlocklID, Color),

ding(BlockID),

20

BEGEE TR

|

= e e we W

O O T

LeftHala Frontal Frontaz FrontA3 Right

LeftHalB FrontB1 FrontB2 FrontB3

LeftHalC FrontCl FrontC2 FrontC3 Right

LeftHalD FrontDropZone

5. Classify
faults & failure

2. Debug 3. Re-test 4. Sum.
Program Program Changes
Yes

Exclude
Program

1:tested with >7300 tests; 41 buggy, 10 bug-free

1. Test
Program

6. Aggregate
counts

2. In debugging, considered alternatives ...
Excluded 5 very buggy programs (>10 changes)
5:"What failure ... if this was the only fault?”

6: Counted how many programs had >0 occurrences

21

Example

e Behaviour: goTo(RoomA1), goToBlock(44), pickUp,
goTo(DropZone), putDown, goTo(RoomA1),
goToBlock(44), goToBlock(44), ...

e Culprit: if bel(in(Room), nextColorinSeqg(Color),

color(

Block,Co

pos(Block,Roo

or), not(holding()),

mM)) then adopt(atBlock(Block))

e Fix: add not(gone(Block))

e Classification: Error: too weak condition (cw), Fault:
adding goal incorrectly (G3)

22

Results: Faults

Fault Count Fault

rule order (1) 19 other (0) 4
weak cond (cw) 15 extrarule (b) 3
2 user actions (e) 9 wrong action (d) 2
miss act ()) 8 ifthen/forall (i) 2
strong cond (cs) 7 typo (t) 2
actiondef (Q) 6 domain (k) (1)
missrule (a) 5 initial bel/goal (n) 0

othercond (c) 5

23

Results: Faults

Fault Count Fault
rule order (f) 19 other (0) 3
weak cond (cw) 15 extrarule (b) 3
2 user actions (e) 9 wrong action (d) 2
miss act ()) 8 ifthen/forall (i) 2
strong cond (cs) 7 typo (t) 2
actiondef (Q) © domain (k) 0(™)
missrule (a) 5 initial bel/goal (n) 0
othercond (c) 5

Almost all faulttypes seen ... but only 8 in >10% and
only 4 in >20% of programs

Results: Faults

Fault Count Fault
rule order (f) 19 other (0)
weak cond (cw) 15 extrarule (b)
2 user actions (e) 9 wrong action (d)
miss act ()) 8 ifthen/forall (i)
strong cond (cs) 7 typo (t)
actiondef (Q) 6 domain (k)
missrule (a) 5 initial bel/goal (n)
othercond (c) 5

Most common issue: rule order

25

Results: Faults

Fault Count Fault
rule order (f) 19 other (0) 3
weak cond (cw) 15 extrarule (b) 3
2 user actions (e) 9 wrong action (d) 2
miss act ()) 8 ifthen/forall (i) 2
strong cond (cs) 7 typo (t) 2
actiondef (Q) © domain (k) 0(™)
missrule (a) 5 initial bel/goal (n) 0
othercond (c) 5

Condition faults common - if merge cw and cs, then 20 programs
260

Results: Faults

Fault Count Fault
rule order (f) 19 other (0) 3
weak cond (cw) 15 extrarule (b) 3
2 user actions (e) 9 wrong action (d) 2
miss act ()) 8 ifthen/forall (i) 2
strong cond (cs) 7 typo (t) 2
actiondef (Q) 6 domain (k) 0(™)
missrule (a) 5 initial bel/goal (n) 0
othercond (c) 5
llegal(*) GOAL usage (two user () This is no longer illegal: the user is

responsible for ensuring that two

defiﬂed aCtiOﬂS) QUi’[e CommOn! (e) actions can be done simultaneously

Results: Faults

Fault Count Fault

rule order (f) 19 other (0) 3

weak cond (cw) 15 extrarule (b) 3

2 user actions (e) 9 wrong action (d) 2

miss act ()) 8 ifthen/forall (i) 2

strong cond (cs) 7 typo (t) 2
actiondef (g) 6 domain (k) 0(™)

missrule (a) 5 initial bel/goal (n) 0

Most faults observed relate to rules (g, n, k exceptions)

action det issues relate to async environment ...

0O

Results: Faults

Fault Count Fault
rule order (f) 19 other (0)
weak cond (cw) 15 extrarule (b)
2 user actions (e) 9 wrong action (d)
miss act ()) 8 ifthen/forall (i)
strong cond (cs) 7 typo (t)
actiondef (Q) 6 domain (k)
missrule (a) 5 initial bel/goal (n)
othercond (c) 5

Typos (t) rare, only a few "other" (0)

29

Results: Fallures
e 17 of 36

P1:fail to deal with percept 12 prOgramS had 9
P2: other percept 10 Percep’[
G1:fail to add goal 5 :
| Processing error
G2: fail to drop goal 4 o
| (47 %)
G3: adding a goal wrongly 7
G4: add duplicate goal 7

e 1/ had Goal error

G5: dropping goal wrongly 1
A1:wrong action 29
A2:incorrect belief update 10 ° 31 (86%) had
A3: should've done nothing 2 AC’[IOH error
A4 action-interface mismatch 1

O: Other 0
30

Implications

- Language design: (1) Percept processing is a
source of faults - find simpler way to specity
percept processing? (2) Extending GOAL to allow
multiple sequential user-defined actions ...

» Teaching: Don't use explicit drop(goal); use
conditions so single rule applicable

 Tool design: condition checking, debugging
percept processing

31

Validity

e |[nternal: only one problem (

agent, oo
already re

<ed at final subm

3W4T), on

ISSion (eas

moved - but this Is good)

e External: GOAL only ...

32

y single

er bugs

Future Work

e More programs, and not just BW4T
e Different AOPLS

e Applyinglessons learned

33

Conclusions

e Derived taxonomies for faults and failures

-mpirical investigation of occurrences

mplications to language design, tool design,

teaching

e [hanksto Sharmila, and Delft colleagues

(Koen and Maaike)!

34

