
The Watching Window – Revisited
A report on upgrading the Watching Window

Date: 24 May 2004
Author: Rob Audenaerde, r.j.audenaerde@student.utwente.nl
Supervisors: Geoff Wyvill, Univeristy of Otago

Anton Nijholt, Universiteit Twente

2

Abstract
The Watching Window is an interactive 3D application. The users movement en
gestures are the input of the system.

During my internship I implemented a new vision system for it. It tracks people near
real-time, about 20 Hz. It finds the user’s head location and hand location. Both the
vision software architecture and the network architecture are changed and updated.
The system is now more reliable and easily extendable.

Hardware changes are made, switching from tiny TV cameras to Firewire, which are
more noise resistant.

3

Index

CHAPTER 1. PREFACE ...4

CHAPTER 2. GLOBAL DESCRIPTION..5

CHAPTER 3. COMPUTER VISION...8

CHAPTER 4. VISION SOFTWARE ARCHITECTURE32

CHAPTER 5. NETWORK ARCHITECTURE ..38

CHAPTER 6. SERVER SOFTWARE ARCHITECTURE.............................41

CHAPTER 7. CONCLUSIONS..44

CHAPTER 8. RECOMMENDATIONS...45

CHAPTER 9. EVALUATION...46

CHAPTER 10. REFERENCES..48

4

Chapter 1. Preface

In this document I describe what I did during my internship. I spent fourteen weeks at
the Graphics lab of the Computer Science department at the University of Otago, New
Zealand, where I have been working on the Watching Window project.

Firstly, I will give a global description of what the Watching Window is, and how I
have been involved in the development of it.

My main focus during the project has been the computer vision of the Watching
Window. The former implementation used a simple silhouette extraction method,
based on a brightly lighted background. I changed that to a somewhat more advanced
version. More information is found in the Computer Vision section.

Working on the old code base was difficult. There was almost no documentation and
the code was not well organised. I revised the architecture and re-implemented and
restructured almost all code. The results of that can be found in the Software
Architecture section.

The Watching Window used a rigid peer-to-peer network model to transfer
information from the cameras of the vision system to the display machine, to which
the projector is connected. I replaced this model with a more flexible and more robust
network implementation, which is described in the Network section.

Finally I give a short conclusion, some recommendations and an evaluation of my
internship.

5

Chapter 2. Global Description

2.1 The Watching Window
 “Computers have looked much the same for nearly twenty years. We are so used to
the screen, keyboard and mouse that we forget that this appearance is merely a fashion
and an accident of history. We should be able to communicate with a computer by
speech and by gestures. Instead of using special tools like a keyboard, the computer
can be programmed to determine our desires by watching and listening.” – Geoff
Wyvill

The Watching Window is an experiment in this idea of natural communication. The
user is 'watched' by two tiny TV cameras and the computer must deduce from
movement and gestures what the requirements of the user is.

Figure 1 The Watching Window booth is being assembled for exposition purposes

In the current implementation of the Watching Window, the user enters a booth, a box
about 3 × 2 × 2.5 meters, with a big screen on one side. The two cameras reside on the
walls on either side of the screen. The booth is painted white and has bright lights on
the walls. The user will become the one dark object in the booth, and in this way the
cameras are able to track your hands and head.

Figure 2 Top view of the watching window layout. The user stands in front of the screen and is
observed by two tiny TV cameras.

6

The screen displays a 3D virtual world. The display is changed in accordance with
how the user moves, and where the hands are. If the user moves the head, the
simulated world is shown from a different angle. Interaction with the display is
possible by pointing at simulated objects. The 3D effect is made even more
convincing when using stereo glasses and 3D stereo display.

7

2.2 My contribution
This is my assignment as I wrote it at the start of the project:

“During my stay at the Graphics Lab, I will build a different vision system to do the
eye tracking. The old system relies on a fixed white background and has some
problems with varying lighting conditions.

The new system should be less dependent on constant background and constant
lightning. The system should work real-time, or have at least an update rate of 15 Hz.

Several levels of improvement are possible. The hardware currently consists of two
TV cameras, connected through special interface cards. The maximum frame-rate
possible is 20 Hz. Is better hardware available? How can this be implemented in the
system? Should we add another camera, or more?

The second level of improvement can be found in the software. The current vision
system should be replaced, by a new system that does not depend on a fixed white
background, but uses different means of recognizing people, their heads, eyes and
hands.

My main focus will be on the software level. With my background and interest in
computer vision, a better system is to be developed.

8

Chapter 3. Computer Vision

In this section I discuss the facets of the computer vision part of my project.

The processing of a picture starts by acquiring the image data. Then a set of
operations is applied on the image data. The goal is to find such a set of operations,
also called filters, so information on the location of the body parts in the image can be
more easily deduced. The information that is found can be used to do more efficient
image processing.

Figure 3 The computer vision process. An image is acquired, and then it is processed. Information can
be extracted after processing, and used as feedback. Finally, body part coordinates are derived.

3.1 Data from the cameras
The first part of each vision system is the acquisition of the image data. This process
involves converting photon-bombardments to electrical currents in the CCD. The
currents are interpreted by a chip and converted to a signal for transport to the
computers, which then processes them into an image. During this process there are
many places where noise occurs.

3.1.1 Noise
This noise comes from different sources. The first real obvious one is that the image is
just a set of discreet samples. By taking samples information is lost. This loss of
information can influence the quality of the output image a great deal.

The second source of noise is the electromagnetic noise. We are working in a small
area, with two computers with monitors that cause the signal that is being transported
from the CCD to the PC to be influenced.

9

The third source of noise is the automatic balancing of the colours of the camera.
When bright light shines on the CCD, it adjusts itself to be less sensitive, like human
eyes do. The drawback in this is, that a pixels get a different colour value, although
they are an image of exactly the same. For example, a pixel that was medium grey
can become dark grey. The colour of people moving in front of the camera will thus
also depend on the total amount of light the camera catches.

The Watching Window used two tiny TV cameras. The signal of the cameras is
encoded as a TV signal, which consists of a 50 Hz interlaced signal. When trying to
reconstruct an image out of that signal, movement will have a significant distorting
effect, leaving one interwoven picture of the two interlacing passes. This causes
unnatural images. Besides, it reduced the maximum frame rate to be 25 frames per
second (fps).

3.1.2 Fighting the noise
It is not possible to take images without any noise. But is it possible to eliminate
certain factors that cause noise. In the new set-up the TV cameras are to be replaced
by Firewire cameras (IEEE-1394). The new Firewire cameras can grab images up to
30 fps, non-interlaced. In the implementation section I describe how to get the data
from the cameras. To illustrate the differences between the cameras, I created a quick
comparison.

3.1.3 Camera Comparison

TV cameras Firewire Cameras
Resolution(s) 320 x 240 320 x 240, 640 x 480
Colours 24 bit RGB 24 bit RGB
Signal Transport Analog Digital
Image Structure Interlaced Non-interlaced
Maximum speed 25 fps 30 fps (15 @ 640 x 480)

There is another difference: the colour saturation. I did not measure that, but I can say
that the Firewire cameras have more colour saturation. This will benefit the vision
process, because there is more information available.

3.2 Image Processing
In the next section I cover the image processing. I go through the different filters I
implemented, and how they work. After that, I discuss how I combined those filters to
extract useful information out of an image-sequence.

3.2.1 Movement
The first filter I implemented was the movement filter. It is based on the fact that it is
only necessary to update the position of body parts when movement occurs. The
problem is that movement is hard to define. The only thing that is measurable is the
difference in colour of all the pixels. So I define movement as a difference in intensity
(i) in each colour channel of each separate pixel. Then the amount of movement is
encoded back in the pixel. To calculate the amount of movement (m) there are
numerous different approaches available. I chose a computationally cheap one:

10

mchannel(t) =| ichannel (t) – ichannel(t-1) |

I calculate this for every colour channel: for red, green and blue. The total movement
becomes:

total(t) = mred(t) + mgreen(t)+ mblue(t) (sum)

Another method:

total(t) = max (mred(t), mgreen(t), mblue(t)) (max)

Both methods have properties why they should be used. The first method picks up
more refined levels of movement. If there is movement in blue and green, the first one
adds them together, so it results is a larger movement score. If there would only be
movement in green, there would be less movement. Still, it should get noted as
movement as well. The max version is in that realistic than the sum version.

When applying a threshold over this movement image, a binary image is formed, with
areas that are moving, and areas that are not moving.

For the sum version:

ichannel = 255, if mchannel > θ
0, otherwise

For the max version:

i = 255, if total > θ
0, otherwise

Figure 4 Movement filter in action. The movement is displayed with an applied threshold over each
colour channel, using the sum method.

11

3.2.2 Skin colour
A common used technique in face detection is to find all parts in the image that are
skin coloured. Studies (for example [1,6]) have shown the skin colour can be
modelled as a single Gaussian distribution, or a mixture of them. I used only one,
since research has shown that one is sufficient, considering all the noise effects.

To create such a distribution more effectively, the colour-space can be transformed to
a chromatic colour space, where illumination (brightness, luminance) is removed. To
achieve that, the colours can be converted to a chromatic colour space.

To convert a colour from RGB to the chromatic colour space, the following formulae
apply:

cred = red / (red+ green+ blue)
cgreen = green / (red+ green+ blue)
cblue = blue / (red+ green+ blue)

cred + cgreen + cblue = 1

where cred , cgreen and cblue are the chromatic red, green and blue.

The Gaussian distribution is found by analysing 76,800 samples of skin colour, taken
from different persons, under different lighting conditions.

For every pixel the change of that pixel being skin coloured, Pskin , is evaluated under
the Gaussian. This results in a 256 level greyscale image, where 0 denotes a Pskin = 0,
and 255 a Pskin = 1.

By applying a threshold this image can be converted to a binary image, with the non-
skin colour class pixels as black, and the skin colour class as white.

Figure 5 The original image

12

Figure 6 The image displays the Pskin of all pixels

3.2.3 Edge detection
Finding boundaries for body parts, like the head, can be done by edge-detection. A
standard way of implementing edge-detection is by doing a convolution over the
image with the Sobel kernels.

Figure 7 The Sobel kernels

When applying the first of the Sobel kernels, a resulting image will contain the
gradient of the image in the y – direction (Gy), the second one gives the gradient in x –
direction (Gx).

Combining both the gradient images can be done in two ways:

Strength:

i = sqrt(Gx
2 + Gy

2)

Orientation:

i = arctan(Gx / Gy)

13

Figure 8 Edge strength filter in action

For edge orientation I use a slightly modified formula:

i = | arctan(Gx / Gy) | , if strenght > θ
0 , otherwise

Figure 9 Edge orientation performed on an image. Red denotes a dark to light gradient from top to
bottom and green a gradient from bottom to top. Horizontal direction has less significance and is
therefore not coloured separately.

3.2.4 Silhouette from mask I
This Silhouette from mask I filter uses the movement-filter to create an image with
only moving pixels.

For each row in the image, the first and the last moving pixel are found. All the pixels
between them are filled with they original colour. The same operation is applied in the
vertical direction. The resulting pictures will look like this:

14

Figure 10 Silhouette from mask I filter in action

3.2.5 Silhouette from mask II
The Silhouette from mask I filter, which result is show in fig. 10 is not really reliable;
it is much too sensitive to noise. As can be seen in the figure, there is a large part
visible that is actually not moving. Another disadvantage of the Silhouette from mask
I method is that it is computationally slow, as it needs to scan the entire picture.

Therefore I developed a rather simple, but robust method. It is based on simple binary
image logic.

For each pixel the next is considered: if the pixel itself is moving, and at least 2
neighbours are moving, it will cause a 16 by 16 area around the pixel to be filled in
the output image.

Afterwards, a quick horizontal scan is done to try to fill small gaps still appearing in
the output image. Each pixel is checked if it is lit. If it is, the pixel at distance window
away is scanned as well. If both pixels are lit, the entire gap is filled.

Figure 11 Result of Silhouette Masking II. Although the result may look a little worse than the other
silhouette masking routine, it is more consistent and more useful.

15

3.2.6 Head finding in silhouette

3.2.6.1 Top finding
Top finding is a relatively easy process; the image is scanned from top to bottom and
from left to right. As soon as a pixel is found with a non-background colour, it is
marked as the top pixel. From the top pixel, we start the head-region finding [4].

3.2.6.2 Head-region finding
Starting from the upper-left pixel, the image is scanned with the following algorithm:

dy=0, x=top.x, y=top.y

while (dy < maxdy)
{

if (x == left) return false;
if (y == bottom) return false;
if (pixel(x, y) == FOREGROUND)
{

x--;
dy=0;

}
else
{

y--;
dy++;

}
}
left = x;

The image is scanned form the top pixel left. As soon as a pixel is found that does not
belongs to the silhouette, scanning down starts. When a pixel of the silhouette is
found, the algorithm start scanning left again. However, when after a number of steps
no pixel is found while scanning down (it found a gap), a side of the head is found.
This is most likely to be the side of the head on the left side.

The same algorithm is applied on the right side, finding the right side of the head.
When instead of finding a gap the algorithm scans to the bottom, or to the edge, it can
be safely assumed there is no interesting head to be found.

An example is shown in fig. 12.

16

Figure 12 A head in pixels

3.2.7 Finding blobs
A binary image very often contains fields of pixels that are connected and somehow
belong together. To find those connected-pixel fields, an algorithm is performed that
finds those fields. It could be implemented by storing all pixel locations in a special
container, but that would be to computationally too intensive. A work-around is to
label all pixels belonging to the same class the same colour in an image.

As well as a separate label, there is other meta-data on the pixels. The algorithm also
calculates the centre of mass of the pixel field, the bounding box and the number of
pixels in the field.

3.2.8 Edge bending analysing
To try and find more information in the head silhouette, the shape of the edges from
the top of the head to the neck can be analysed. As a person is seen “en profile”, this
method can be used to find likely locations of the nose. If constraints are taken into
account, for example that the nose is somewhat in the vertical centre of the head, this
method can make a fair estimate of the nose location.

The method scans along the edge and marks the locations where the edge changes
direction from left to right and vice versa. The nose is of course a profound landmark
on the face and will introduce a nice bend in the edge.

An example of how this process works:

17

Figure 13 Edge bend analysis. Green crosses represent a change in direction in one way, purple
represent a change in direction in the other way. The nose is characterised as having both changes in
direction, at a certain distance from each other, and in a certain region in the head.

3.2.9 Enhance contrast
Eyes are the dark spots inside a head-region. To find eyes it would be useful to
enhance the contrast in the head region, in order to make the eyes even darker. The
method used for the enhancement of contrast is histogram equalization. [2]

Figure 14 Histogram equalization in action. On the left an image that is lacking good contrast. In the
histogram below the image it can bee seen that there are no real dark, nor real light colour in the image.
If the histogram is stretched, as can be seen in the lower right image, the resulting image has more
contrast.

18

Figure 15 Histogram equalization on a test subject

3.2.10 Enhance local contrast
Another way of enhancing local contrast can be done in the method described next.

For each pixel the region around it is examined. The maximum and the minimum
values of the region are stored. The distance from the pixel to the max value and the
min value is calculated. The pixel will get the colour of whichever extremum it is the
closest to.

In formula-form:

Pixel = max, if |max –pixel| > |min-pixel|
min, otherwise

Examples:

Figure 16 Local contrast enhancing

Figure 17 Both methods combined

3.2.11 Fast blur
The fast blur filter only is faster than the normal blur, if the area that is averaged is
greater than 2x2 pixels, and if it is done on many location in the image.
[REFERENCE]

19

For each location in the image, the sum of all pixels that are in the rectangle formed
by the pixel and the upper-left of the image, is stored.

Figure 18 In the left square the values of pixels before calculation the sum. In the right image each
pixel contains the sum of itself and all neighbour pixels in the upper-left area of the image.

The brightness in an area around a pixel can then be calculated using the following
formula:

avg = (upper_left_limit + lower_right –
lower_left_limit – upper_right_limt) / size

In fig 18 the average brightness of the coloured square is, calculated using
conventional blurring:

(5 + 6 + 8 + 9) /4 =7

This is equal to the fast blur result:

(45 + 1 – 12 – 6) / 4 = 7

The lower_right value has to be lessened by the lower_lef t_l imit and the
upper_right_limit to calculate the value in the area. But then the value of
upper_left_limit is subtracted twice, so it has to be added that back to the total. Then
to normalize the value, it is divided by the size.

This process is done for the total intensity, but can easily be extended to process each
colour channel separately.

Figure 19 Geoff. In the left image, he is shown as the cameras see him. In the right image fast blur and
a grey scaling is applied.

20

3.2.12 Face division
This filter is capable of roughly finding which way the user is looking. To do this, an
area in the image where the head is most likely to be found is examined.

The area is divided in two triangular parts, by drawing a line from the upper left to the
lower right, see also fig. 20. For each of the areas the average brightness and the
average hue are calculated. The same operation is performed on the other division,
with a line from the upper right to the lower left.

Then the division that causes the biggest difference is considered the division that
decides where the head is looking. If the division was made using a line from the
upper left to the lower right, the user is assumed to look left. If the differences are
minimal, within a certain range, the user is assumed to look frontal (facing the camera
or looking away from it), else the user is assumed to look right.

Figure 20 Division in left image has a greater brightness and hue difference than division in the right
image, so the user is assumed to look to the left.

3.2.13 Mixing filter
The mixing filter takes in two images, taking a weighted average of them both.

It uses the formula:

new = α _ incoming + (1 - α)_ old

An example if found in fig. 21.

Figure 21 Mixing frames (notice the fading arm).

21

Images that are slowly updated and used for tracking are called Temporal Textures. It
is like a photograph that is taken from (for example) the head. When the head is found
again in the next frame, the photograph is updated a little to match the current match
better. So in time the photograph, the texture, is slowly updated. Therefore it is given
the name “Temporal Texture”.

3.2.14 Spiral matching
The spiral matching is used to find a small image in a large image. It uses a hint where
the small image can be found. This hint is in general the position where the small
image was found in the previous frame.

If for example we found the head in the last frame, take a small “photograph” of it.
We try to find that piece of image again in the next frame. The search starts at
previous location where the photograph is taken. Then it searches around that
location, in a spiralling fashion.

Figure 22 Spiral matching described schematically.

A maximum number of searches is defined, and the result of this filter will be the
coordinates of the best match. Ideally, when the user is not moving, the coordinates
are exactly the same as in the last frame.

3.2.15 Snakes

Snakes, or Active Contour Models, are used in several computer vision projects [5].
They allow searching for structures in the image that are not rigidly defined. In this
project, they are perfect for finding the silhouette of the head. Although I have not
completely implemented snakes, I think they can be a great help to find a nice head
silhouette.

Snakes could be used in a very simple form. They consist of a set of control points,
connected by straight lines. Each control point has a position, given by its coordinates
in the image. The number and coordinates of its control points specify the snake.
Moving the control points makes adjustments to the snakes.

The snake to be used has a closed loop in the image, though this is not necessarily true
of snakes in general.

22

The points can be seen as mass points in a mass-spring system. In this system there
are two forces that are applied to the mass points

1. Points move towards the line defined by its closest neighbours
2. Points move along the image gradient

Figure 23 Snake in initial position

When starting in a position like fig 23, the points tend to move closer together.
Because there is no profound gradient, they will keep moving until they reach the
clock.

Figure 24 Snake during iterations

Once the points of the snake are close to the clock, they are pushed back by the strong
gradient that is caused by the colour difference between the wall and the clock

Figure 25 Snake after 20 iterations

After a certain number of iterations there is only a small amount of movement left of
the control points of the snake. When the amount of movement falls under a certain
threshold, the snake is said to be stable, and is no longer updated.

The snake system could be used after the first (rough) movement filtering. The
bounding box around the head, found after analysing the silhouette, can be a good

23

start. To make the snake work optimally, there has to be an artificial separation
between the head and body.

The control points of the snake then define a good approximation of the head shape
and can serve as basis for better algorithms.

3.3 Information Extraction

In this section I cover the Information Extraction phase of the computer vision
process. A short explanation of the difference between localization and tracking is
given. After that I discuss how to apply localization and tracking on the head. Then
the same is done for the hand and the eyes.

3.3.1 Localization and tracking

When a specific body part is not know in the previous frame, the body part has to be
found, to be located. If the body part is known however, we can switch to tracking.
These two modes differ a lot. Localization tends to be slow and cumbersome, and
tracking is generally fast and simple to understand. In the next sections I discuss how
localization and tracking are done for head, hand and eye.

3.3.2 Head finding

In the next part I describe how I do the head finding. There are two approaches; each
of them uses a combination of filters described before.

3.3.2.1 Method I: Movement, Skin colour and Finding Blobs

Localization
In short the localization algorithm looks like this:

1. Find the moving pixels.
2. Find all skin colour pixels.
3. Find all connected pixel areas with size greater than θ1.
4. Find the topmost area.

a. Take the centre of that area and label it the position of the head.
b. Take the bounding box around that area and label it as head-box.

In step 1 the moving pixels are found. The threshold for moving pixels is set very low,
so there is also a little noise that is picked up as movement. Because humans don’t
stand entirely still even if they try, there will be a little movement, and the cameras
will pick that up.

Step 2 eliminates all pixels that were found in step 1, but don’t have skin colour. This
removes a large part of the noise.

After step 3 most of the noise is removed. Only large areas of skin coloured and
connected pixels are left. It is very likely that a head and hands are found in these
pixels.

24

Step 4 labels the found connected pixels as head .

Tracking
When the head is known the algorithm works in a similar way, but instead of looking
through the whole image, it only scans a small area around the last found head and
hand locations.

Results

Figure 26 Head correctly localized. It has a green cross on it.

Figure 27 Head in tracking mode.

Disadvantages
This method has several disadvantages. The main weakness is the skin colour
segmentation. It will classify pixels as skin colour when the user is wearing reddish or
beige clothing. And the method, although using chromic colour space, is sensitive to
lighting changes, due to the automatic level correction of the cameras.

25

Another disadvantage is that the movement-threshold cannot be too high; otherwise
no moving pixels will be left. But if set to low, the carpet on the floor will be
identified as moving skin as well.

The blob finding is computationally slow, and its speed will decrease dramatically if
there is a lot of movement in the image.

Conclusion

This filter works, but not good enough. It can only be used to gain some information,
but it is not reliable enough to deduce the head location, nor do head tracking. Useful
as a start, but better method has to be found.

3.3.2.2 Method II: Silhouette masking, Head finding in
silhouette, Spiral matching of Temporal Textures
The second combination of filters combined movement into silhouette, finding the
head in the silhouette and doing tracking by using temporal textures and spiral
matching.

Localization
In short the localization algorithm looks like this:

1. Find the moving pixels.
2. Find a silhouette
3. Find the head, using the top down edge walk
4. Check if the head has a head-size
5. Check if the head is skin coloured
6. If all checks are OK, assume the head is found and create a temporal texture,

and update the TipTable

In step 1 the interesting objects are located. Not only the main moving person will be
found, but most likely also the shadow and some other noise. If the threshold is
chosen carefully, most noise will disappear. A good value for the movement threshold
is proved to be 50, which means the total difference must be 50 or greater for a pixel
to be marked “moving”.

Step 2 and step 3 will find a head shape as described in Head finding in silhouette.
This head shaped object may in fact be not a head at all. To make the system more
robust, the found object has to be verified. This verification process consists of two
fast tests: size and skin colour check.

The size of the object found has to be a reasonable head size. This size can be
adjusted in the program, minimum width of 20 pixels, and maximum of 100, are
useful borders. These border values are not too strict, but offer the flexibility needed
for the user to move closer to and away from the camera, and still be detected.

If all succeeds, a snapshot of the head is taken as a basis for the Temporal Texture. All
the information found in the head detection process is stored in the TipTable.

26

Tracking
The tracking takes place when the head was known in the previous frame. It is based
on the temporal texture of the head.

The algorithm:
1. Start to match the texture at the old position of the head
2. Try to match it to the neighbours, in a spiralling way
3. Stop after a certain number of searches.
4. Consider the highest match:

a. If bigger than a threshold θ , then
 i. Make sure there is no movement above the found match
 ii. Make sure the found match contains enough skin colour.
 iii. Update the new position to be the position of this match.
 iv. Update the temporal texture to the new found match

b. If smaller, consider the head “not found anymore” and start localizing
it again

In step 1 the temporal texture is matched to the sub image in the new frame, at the
position where the head was found in the previous frame.

The match is calculated using the following score:

total_difference = sumpixels (difference (pixel1 , pixel2))

score = 1.0 / ((total_difference/size) + 1.0)

The difference method used is the same as in the movement filter.

In step 2 this process is repeated for all the pixels in the neighbourhood of the old
head position. The head will most likely not have moved much. So it is good to start
looking around the old position and slowly spiralling outside. After a number of those
matching steps, the search is stopped and the scores will be considered.
If no score was greater than a certain minimum value, then the head is considered lost,
and the system will try to localize the head in the next frame. Otherwise, when there is
a valid score there is a series of fast checks that try to make sure the head has been
found, in the right position.

When the user in the booth is wildly banging his or her head, and wearing clothes that
resemble the face colour, it may occur that the algorithm matches an area around the
chest. To verify if it has indeed found the head, the area above the match is scanned
for movement. The head should be the highest moving object in the image. If there is
movement above the found match, it is likely a mismatch was found. Localization is
then done in the area above the match, and if a head-like object is found in that area,
the process starts again, considering the new possible head position.

If condition 4.a.ii. fails, if there is no skin colour found, the head is considered lost,
and the localization step is taken again.

27

Results

Figure 28 Localizing the head (green circle).

Figure 29 Example of filter combination (Tracking).

Disadvantages

The main weakness in this method is the computational power it takes to do the
matching. To compare an image with another currently requires all pixels to be
considered. This can be solved using Monte Carlo matching.

Conclusion

This filter works well. It can be used for head localization and tracking.

3.3.3 Hand finding
Finding the hands in the image is more difficult than finding the head. The head is
bigger, has a certain size that does not change much over time, and does not move
around fast.

Hands on the other side, can move fast, can change shape quickly, and are smaller
than the head.

28

For hand finding I use almost the same techniques as head finding Method II:
Silhouette masking, Head finding in silhouette, Spiral matching of Temporal Textures.

The main difference is the direction to start looking for moving pixels. While in head
finding this will be fro the top, in hand finding it will be either form the left, or from
the right, depending on the direction the user is assumed to look.

Figure 30 Head and hand tracking.

Figure 31 Head and hand tracking.

When the hand moves fast, the movement silhouette is not the best approximation.
Movement includes the place where the hand was in the frame before and the
movement becomes bigger than it is in reality. A snake around the hand, just as
proposed to use in the head finding would increase the reliability.

In the images above the purple cross indicates the hand position as the system sees it.
Note the interlace effects on the arm.

3.3.4 Eye Finding
Once the head is found, it is time to go and look for the eyes. To find eyes in a head,
some assumptions can be made:

• The eyes are dark compared to its surroundings

29

Figure 32 In the left image Geoff’s head is shown normally. Eyes and eye sockets are seen as dark
patches in the face area. Normally it would not be easily noticed, because the human brain
automatically compensates for this. But when an image is turned upside down (right image), it becomes
clearer.

Other assumptions:

• An eye is not bigger than 1/10 of the total head size
• An eye is bigger than 3 x 2 pixels
• Eyes are vertically located halfway the face

With these assumptions the search for the eye becomes less difficult.

3.3.4.1 Using local contrast

Localization
My first approach was just to look for dark areas in lighter areas. Ideally, the
resolution to look for eyes is dependant on the head size. But because the head size is
not really accurate, only an approximation can be made. To find eyes the head is
scanned at several resolutions, and the results are added.

The area is scanned, and for each n × m block of pixels the average brightness is
calculated. Then the average brightness of all the surrounding blocks is calculated as
well.

Figure 33 Centre area and neighbours

There are several methods of calculating the matching score. The first:

score = sumneighbours (| c-neighbour |) / size

This scoring method had a big disadvantage: if there was an average centre, with light
and dark areas around it, it gets a high score as well.
The second method:

30

score = c - avgneighbour

This function works reasonably well, but also has the drawback that one extreme
neighbour can confuse the entire system.

The third method:

score = sumneighbours (c - neighbour) / size

In this method, if there are light and dark neighbours, they cancel each other out,
lowering the total score and thus preventing false hits. This is the method I finally
used.

To maximize the results, the area that is looked at processed using both the contrast
enhancement filters.

Results

Figure 34 Before and after finding dark in white

Conclusion

I implemented both the contrast enhancing filters, but they did not improve the
situation. Even on a person with a high contrast ratio between eyes (eyebrows) and
face, it does not give a clear result.

3.3.4.2 Using edge information

Instead of looking at whole areas, it might be more useful just to look at gradients in
the area. First only strength is considered; later on orientation is also used.

Edge strength

Filtering based only on edge strength. As can bee seen in the images below there is no
clear eye found in the image.

31

Figure 35 Edge strength results. The left images are the original; the right images represent the edge
strength. The darker pixels represent the stronger edges.

Even though an image of a person with a high skin – eye contrast is processed, the
information in the output image is not of high enough quality to extract information.

Edge orientation

Using edge orientation proved to be the most successful method I tried. The
functionality is about the same as looking for dark areas in white areas. Instead of
looking for white areas however, in this version areas that are red and green are
considered.

The finding algorithm searches for areas where the top half of pixels are red, and the
bottom half of the pixels are green. Areas with many red and green pixels get a higher
score.

Figure 36 Results of the edge orientation method. Left the original images. In the middle the result of
the edge orientation filter. In the right are the head area is scanned for eye-patches with size 4x4, 6x6
and 8x8. The scores are added together. The lighter the pixel is, the higher the chance is that it belongs
to an eye. No extra information is used. When filtering the images on the right on for example the
position within the head, and the head orientation, a fair estimate can be made on the eye position.

Conclusion

Edge strength alone is not enough to extract useful information. Edge orientation
gives a fair result. However, when the methods are applied to a person with blond or
grey hair, the results will become worse. This is the reason for not using eye finding
in the final product.

32

3.3.5 TipTable and deciding where the head and hands are
All information is stored in the TipTable. After a complete image-processing step the
TipTable can be used to look up information, like region of interest, head bounding
box, head centre, temporal textures etc. This information can also be used in the next
image processing iteration, so the image can be analysed more effectively.

Currently there is just one method used to determine the position of the head and the
hand. In later versions, more algorithms may run in parallel and then all the
information in the TipTable can be used to do an average, or a voting algorithm.

Chapter 4. Vision Software Architecture

4.1 Former situation

In the former situation there was no real architecture. Most functionality was stored in
two big files. Then there was a separate tracker module, and a separate network
module. For the camera calibration information there was a separate structure, and
there was a structure for holding all the information on the frame grabbing. In short it
could be viewed as this:

Figure 37 The former architecture as I reconstructed it. All the camera handling, display-mode
information, background subtracting was done in the one main module. The image-processing code
was stored in a separate file.

4.2 Current situation: separation of concerns
In the old system there was no separation of concerns. Different functionality was
implemented in the same files and classes and it was not clear which class should be
responsible for what tasks. I improved that situation.

4.3 Information flow
To better understand how the architecture works, it is useful to know how the
information flows through the program. In the next diagram I will show this. The

33

image data is captured in the Frame source. Then it is passed on to the Frame
grabber. The Display mode selects which Image Functions are to be applied to the
image data, and how. The result will be shown in the Output window.
After the information on the location of the body parts is available, it is send to the
Camera client, who will transfer it over the network to the 3D server.

Frame source Frame grabber Output window

Display mode

Camera client

Image functions

Figure 38 The information flow.

4.4 Class description
To show the new architecture, first a (slightly simplified) class diagram is given in fig.
39. Then I will go into some more detail in how the classes work.

4.4.1 Class diagram

Main Interface

FrameSource

DiskFramesource DirectXFrameSourceCameraFrameSource

FrameGrabber

CameraClient

TipTableFrame
CButton

CTrackBar

DisplayMode

ExtendedTrackerMode SimpleSkinMode

2...*

1

1 2..*

1

1..*

CameraCalibration

TCPSocket

Figure 39 Simplified software architecture. Some classes are omitted to increase readability.

4.4.2 Blob
A blob is an information object; it currently describes an area of pixels (rectangle) in
an image that have certain attributes in common. The pixels in the area that fulfil the
requirements are known collectively as the blob. However, I do not store the pixels

34

themselves in the blob, but only some information, for example: BoundingBox,
CenterOfMass, NumberOfPixels, TotalX and TotalY.

4.4.3 BoundingBox
Simply said, a bounding box is just a rectangle. Most of the times it is used as the
smallest rectangle that fits around a clouds of pixels.

4.4.4 CameraClient
The camera client class is responsible for the connection to the 3D server. It uses a
TCP/IP connection to connect, and has its own protocol for talking to the server. More
information on the network part in found in the Network chapter. For each
framegrabber a camera client is defined.

4.4.5 CButton and CTrackBar
Graphical interface classes used to display trackbars (sliders) and buttons on the
application.

4.4.6 DisplayMode
DisplayMode is the base class for all the display modes. The main program has a
currentdisplaymode, which decides what to do with the incoming frames, how to
process them and what to output.

In the current implementation the subclasses are the next:

4.4.6.1 ColorNormalizeMode
In this mode the normalized colours are displayed. The colours are normalized by
removing the effect of brightness on a pixel.

4.4.6.2 EdgeDetectionMode
This mode performs the edge detection, strength based. The resulting image contains
pixels with a grey-level between 0-255, where 0 is a zero-strength-edge, and 255 is
the maximum edge.

4.4.6.3 EdgeOrientationMode
This mode performs the edge detection, based on orientation. The resulting image
contains pixels with a red to green level, where red means an edge is top to bottom,
and green the other way around.

4.4.6.4 EnhanceContrastMode
In this display mode, the contrast is enhanced by histogram equalization.

4.4.6.5 ExtendedTrackerMode
This is the main mode, where head and hand tracking are implemented.

4.4.6.6 GrayScaleOutputMode
Converts the image to greyscale.

35

4.4.6.7 MixMode
MixMode alpha blends the new frame to the current state frame using the mixing
filter.

4.4.6.8 MovementMode
Uses the movement filter to display the images.

4.4.6.9 RawOutputMode
Displays what the cameras see. This mode is useful for making screen dumps.

4.4.6.10 SilhouetteMode
Displays the silhouette, based on the Silhouette for Mask I filter

4.4.6.11 SkinColorMode
Uses the Skin colour filter and applies a threshold to it that is adjustable in the GUI.

4.4.6.12 TrackerMode
Allows the user to click in the image, and the program will try to track the point that is
clicked by using the Spiral matching filter.

4.4.7 Frame
Frame is the basic frame holder. It contains the raw image data, and some meta-
information, like width, height and pixel-type. This class also contains low-level
functionality to clear the image.

4.4.8 FrameGrabber
The FrameGrabber is the class responsible for handling the frame, and holding all
meta information on the image processing that is done on the frame.
It holds the TipTable, which contains information on body part locations, a
CameraClient instance, and a pointer to a FrameSource.

4.4.9 FrameSource
FrameSource is the base class for all the possible frame sources. Currently there are
three different frame sources.

4.4.9.1 CameraFrameSource
The TV cameras are handled in this class. The TV cameras are attached to a special
capture card, the PXC series card.

4.4.9.2 DirectXFrameSource
The new Firewire cameras can be accessed through this class. It uses Microsoft
DirectX DirectShow to interface with the camera. DirectShow has become a standard
in computer vision projects, because all new cameras have support for DirectShow.
This makes systems built on DirectShow flexible, for they can use a wide range of
cameras.

Another advantage the DirectShow has, is that as well as getting data from cameras, it
also reads movie files. DirectShow uses the video decoders that are used in Microsoft

36

Windows, which are easily installed. A large variety of video formats are available as
input sources for the vision project, when using this frame source.

4.4.9.3 DiskFrameSource
This class can generate frames by reading them from the disk. Currently only reads
BMP files.

4.4.10 ImageFunctions
This class has all the filter implementations, and is therefore a very big class. All
image-processing functions are static.

4.4.11 Pixel
Pixel is a basic structure for the red, green and blue values of a pixel. There are some
operations defined in this class, such as getting the intensity, or normalizing the
colour.

4.4.12 Point2d, Point2i, Point3d
Basic types for passing on point information.

4.4.13 Snake
Snake is the class that implements snakes. The snake is effectively just a list of points.
The class has its own update function. When the update function is called, one
iteration is carried out.

4.4.14 TipTable
The TipTable is the class for holding all interesting information that is found during
the image processing.

In future, voting algorithms may be added to deduce information from the tips, and
create even more reliable information.

37

4.5 User Interface

The user interface as it is currently implemented. It is built to easily adjust certain
parameters.

Figure 40 This is the main user interface. On the left there are the two images, as produced by the
cameras. On the right there is a large section of sliders, used to adjust all kinds of filter-settings. The
NEXT and TOGGLE buttons are used in interactive mode. The NEXT button takes the next image, the
TOGGLE button switches between automatic mode and interactive mode. In the menus above, all other
things can be adjusted, the connection to the server can be (re-) established, and so on.

38

Chapter 5. Network Architecture

5.1 Introduction

In this chapter I shortly discuss the former situation, as it was before I stared working
on the Watching window project, and how I solved most of the problems it came with,
on a top level. More details, for example the network protocol, can be found in the
appendix.

5.1.1 Former situation
The network implementation was basic. There was one computer responsible for the
display and acting as server, receiving coordinates from the vision machine.

Figure 41 The old network architecture. Only one vision system and one dislay server are supported

Drawbacks were:

1. Only two cameras were supported.
2. All cameras had to be attached to the same machine.
3. The network connection code was unstable.
4. The method used to transfer coordinates contained a lot of overhead.

The support for two cameras is a drawback, because the more cameras that can be
added, the more reliable the 3D position of body parts can be estimated.

The second problem has to do with computational power. Both of the images have to
be processed by the same machine. When using algorithms that require a lot of
calculations, the system responds more slowly.

The network connection code was not well structured, and unstable. Sometimes when
connection failed, it would not try again, and sometimes the system could not connect
at all. The reason behind this was unknown, but I didn’t spend time on debugging the
code, because from experience I know it is faster to completely replace it with
something new.

The coordinate transfer system involved a lot of synchronizing overhead, because it
was trying to add a timestamp to the network packets and synchronize both machines.
There was no apparent reason for this, so I left it out.

39

5.1.2 New situation: Solving the problems
I changed from a single client, single server architecture to a different one where the
server would be the machine that receives 2D coordinates from one or more vision
machine (cameras). The server is also responsible for sending the data to the display
clients, upon request.

5.2 Design
The new architecture is illustrated in fig. 42.

3D serverVision System

Display Client

Display client

Vision System

Vision System

Figure 42 The network architecture. The system can easily be extended with extra cameras and extra
displays.

5.2.1 Responsibilities
All the entities in the network structure have their capabilities and responsibilities.
These responsibilities define what should be implemented where.

5.2.1.1 Camera client

• Know its camera’s calibration, and be able to send it
• Be capable of processing the image
• Transferring the body-part data to the server
• Request the re-projected positions of the body-parts and use it for processing

5.2.1.2 3D Server

• Keep administration on camera’s and displays
• Use multiple camera’s to deduce the 3D location of body parts
• Transmit data to either client when requested

5.2.1.3 Display client:

• Know its own location in world space
• Retrieving 3D location of body-parts from 3D Server

40

• Do something appealing with the data

See the appendix for more detailed information on interactions.

41

Chapter 6. Server Software Architecture

6.1 Introduction
As part of the total Watching Window project, the 3DServer functions as the link
between the vision part and the display part.

The 3DServer performs the necessary calculations to transform a set of points in
camera space to world space. The camera clients upload their points. The display
clients can request the calculated points in world space.

The server takes care of connecting, administration and calculation necessary for this
functionality.

In this chapter I tell how the server is designed, and what the functions of all classes
are.

6.2 Class description
In this section I describe each class shortly.

6.2.1 Class diagram

Figure 43 Class diagram of the server software

6.2.2 Camera
This class is responsible for administration of the camera. It therefore stores the
calibration information, as well as a history of received camera space points.

6.2.3 Calibration Information
Each camera has its own calibration information. The calibration information consists
of parameters that describe how a transformation form world space to camera space is
made. It can also be used to calculate the line in world space when starting with a
point in camera space.

42

6.2.4 2D to 3D Calculator
This class is the one that performs the calculation of the point in world space, using
points in camera space of two cameras.

For each body part that is correctly found the next procedure is executed:

1. For each camera, a line is created from the projected body part through the
focal centre into world space.

2. The two lines that are formed in that way are analysed
3. The shortest distance between the two lines is found
4. The point halfway that distance is taken as approximation of the world space

point

Focal point

Image point Camera plane

3D line

3D point

Matching image point

Figure 44 The top view of the construction of a 3D point out of two 2D points.

6.2.5 TCPSocket
This class listens to the network and creates a ClientHandler if there is an incoming
connection.

6.2.6 3D Server
This is the main class. On creating this class a TCPSocket is created to listing to
incoming network traffic. The 3D server is responsible for the administration of the
ClientHandlers.

6.2.7 ClientHandler
ClientHandlers handle the communication with the clients. They check the incoming
messages and handle in accordance to them. Each client is appointed to a
ClientHandler.

6.2.8 BodyPartCoordinates
Body part coordinates are information objects in the 3D Server. They contain the 2D
or 3D location of the body parts. They are receives from the camera clients and send
to the display clients.

43

44

Chapter 7. Conclusions

The new vision system for the Watching Window tracks people close to real-time. It
finds the user’s head location and hand location. The system is not yet capable of
finding eyes in images, but basic functionality is provided to build such a system on.

Both the vision software architecture and the network architecture are improved; they
are more flexible and reusable, they make developing easier. The entire system is now
more reliable, maintainable and easily extendable.

The Firewire cameras provide a better signal for the computer. They are more noise
resistant. Another advantage is that they have a higher frame throughput.

45

Chapter 8. Recommendations
This project has some loose ends, and some thing that can be improved

8.1 Computer Vision

8.1.1 Fully implementing snakes
Snakes provide very useful information at very low cost. Better head and hand
silhouettes can be found. This will benefit the recognition process.

8.1.2 Eye localization and tracking
The eye localization and tracking should be made to work. It is currently unreliable. A
complete different approach may be taken. It may provide more useful to create a
database with faces, and create face models out of it. Then the head found in the
image can be matched against the database, to find the eye position.

8.1.3 Adding cameras
Adding cameras could also increase the performance of the system.

8.1.3.1 Top of screen
A camera on top of the screen looking in the direction of the user will be able to get
user-images that are most of the time frontal. Frontal images can then be used to do
face detection on. Face detection on frontal views is a widely covered in the computer
vision community; many papers are available on this subject.

8.1.3.2 Top of booth
A camera on top of the booth looking down along the screen enables the system to
make more accurate approximation of the hand positions. Because the user in seen
from a top view, it is easily detected if the hands are before the body, or above, or at
the sides.

8.2 3D Server

8.2.1 Re-projection
Basic functionality is implemented to request a projection from a found body part in
world space back to camera space. This code is untested, but theoretically it could
provide very useful information. Once a world coordinate is found and it is a good
approximation, the projected point in camera space can reduce the amount of image
data that have to be searched. Instead of looking in a certain area the search can be
refined to look only along the projected line or point.

8.2.2 History
Currently there is a history of one point per body part per camera stored as history. In
other words, only the last point is remembered. This could be extended to a certain
number, for example 10. This would enable the system to do movement-
approximation on those points, which could in turn be used as feedback to the image
processing, or to filter out noisy results.

46

Chapter 9. Evaluation

In here I will describe how my internship went, how things where organized and I
give my personal opinion on how things went.

9.1 Product progress
At the start of my internship the goal of it was still little vague. After the first meeting
Geoff and I decided it should be “eye tracking” for the Watching Window. A German
student, Hanna von Tenspolde, also worked on the Watching Window, but she
focussed on the display functionality.

The first weeks I mainly focused on getting into the code, and trying to understand
what it actually did, or tried to do. I began replacing bit and pieces, and I threw out
everything that did not make sense or did not have an apparent reason to be there.

While working on the code I started implementing new vision functionality. I started
out using skin colour, but that was not the right way to go. So I changed this and I got
quite good results for finding the head.

Then I spend a long time on finding the eyes. This was difficult, and I did not get
results that satisfied me enough.

The process of building filters to find the head and eyes took several weeks; during
these weeks I also gradually replaced old design with new design.

During the last two weeks I spend time on writing the DirectX DirectShow code,
writing basic hand detection and improving the speed en quality of the head finding
process.

At the time of writing this report there is a new Watching Window code base. It is
faster and more flexible than the old system.

9.2 Communication
Each week there was a special meeting with Geoff, Hanna and Jayson Mackie. Jayson
is the person who was responsible for making the Watching Window run and knew
most about it. He also was the one that did searching for new cameras.

Every Monday we evaluated what we did the past week and updated our plans for
next few weeks, working towards the end goal.

I worked with Hanna in one room, so we had plenty of opportunity to discuss things.
Because she had little programming experience, many times I was helping her out
explaining how to do the design and programming of code.

9.3 Personal opinion
I enjoyed my stay at the University of Otago. I worked hard and although I did not
reach all my initial goals, personally I find the result is satisfying. There is a working

47

product with a lot of opportunities. I had a wonderful time with all the other people
around in the lab. There was a good atmosphere to work in.

Besides from just working, I broadened my knowledge on the subjects I covered.
Unfortunately, one of the computer vision experts, Dr. Brendan McCane, was one a
sabbatical year. I could probably have more information exchange with him, if he
were around.

48

Chapter 10. References

[1] Rogério Schmidt Feris, Teófilo Emídio de Campos, Roberto Marcondes
Cesar Junior. “Detection and Tracking of Facial Features in Video
Sequences”. Lecture Notes in Artificial Intelligence, vol. 1793, pp. 197-
206, April 2000, Springer-Verlag press,
http://www.springer.de/comp/lncs/index.html (MICAI-2000, Acapulco)

[2] K. R. Castleman. Digital Image Processing. Prentice Hall, 1996

[3] Bernhard Fröba, Andreas Ernst and Christian Küblbeck, Real-Time Face
Detection. http://www.embassi.de/publi/veroeffent/Froeba.pdf

[4] Ghidary, S.S., Nakata, Y., Takamori, T. and Hattori, M. “Head and Face
Detection at Indoor Environment by Home Robot.” Proceedings of
ICEE2000, May 2000, Iran

[5] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes - Active Contour
Models'” International Journal of Computer Vision, 1(4): 321-331, 1987.

[6] J. C. Terrillon, M. N. Shirazi, H. Fukamachi, S. “Comparative
Performance of Different Skin Chrominance Chrominance Spaces for the
Automatic Detection of Human Images,” Proceedings of 4th IEEE
International Conference Face and Gesture Recognition, pp. 54-61, 2000.

49

Appendix A Network Details

A.1 Interactions

Figure 45 Network interaction between Camera Client and 3D Server

50

Display Client 3D Server

Connect

Request information

Identify as display

Request 3D body-part coordinates

Send coordinates

Connection

Request
Coordinates

Figure 46 Network interaction between Display Client and 3D Server

A.2 Protocol - Packages

CAMERA_CALIBRATION_PACKET 1
CAMERA_COORDINATES_PACKET 2
CAMERA_REQUEST_2D_PACKET 3

CAMERA_LOGON

Field Offset Length Type Value
Name 0 6 ASCII -String “CAMERA”

CAMERA_CALIBRATION

Field Offset Length Type Value
Type 0 1 BYTE CAMERA_CALIBRATION_PACKET
Calibration matrix 0 ? Matrix

CAMERA_PUSH_2D_INFO

Field Offset Length Type Value
Type 0 1 BYTE CAMERA_COORDINATES_PACKET
Packed 3d points 1 85 Body 3d

CAMERA_REQ_2D_INFO

Field Offset Length Type Value
Type 0 1 BYTE CAMERA_REQUEST_2D_PACKET
Packed 2d points 1 85 Matrix

DISPLAY_LOGON

Field Offset Length Type Value
Name 0 7 STRING “DISPLAY”

51

DISPLAY_REQ_3D_INFO
Field Offset Length Type Value
Name 0 3 STRING “REQ”

SERVER_CAMERA_CALIBATRION_CONFIRMATION

Field Offset Length Type Value
Acknowledge 0 27 STRING "Got calibration info!\r\n"

SERVER_CAMERA_COORDINATES_CONFIRMATION

Field Offset Length Type Value
Acknowledge 0 16 STRING "Got body info!\r\n"

SERVER_DISPLAY_3D_INFO

Field Offset Length Type
Packed 3d information 0 125 Body3d

POINT3D

Field Offset Length Type
X value 0 8 double
Y value 8 8 double
Z value 16 8 double
Known value 24 1 bool

POINT2D

Field Offset Length Type
X value 0 8 double
Y value 8 8 double
Known value 24 1 bool

BODY3D

Field Offset Length Type
Head 0 25 Point3d
Left hand 25 25 Point3d
Right hand 50 25 Point3d
Left eye 75 25 Point3d
Right eye 100 25 Point3d

BODY2D

Field Offset Length Type
Head 0 17 Point2d
Left hand 17 17 Point2d
Right hand 34 17 Point2d
Left eye 51 17 Point2d
Right eye 68 17 Point2d

52

Appendix B Important class diagrams

B.1 FrameGrabber

Figure 47 The class diagram of the FrameGrabber

53

B.2 FrameSource

Figure 48 The class diagram of the FrameSource

