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Preface

These proceedings contain the papers of the SIGIR 2008 Workshop on Fo-
cused Retrieval held in Singapore on 24th July 2008. Nine papers were selected
by the program committee from fourteen submissions (64% acceptance rate).
Each paper was reviewed by two members of the program committee.

When reading this volume it is necessary to keep in mind that these papers
represent the opinions of the authors (who are trying to stimulate debate). It is
the combination of these papers and the debate that is will make the workshop
a success.

We would like to thank the ACM and SIGIR for hosing the workshop. Thanks
also go to the program committee, the paper authors, and the participants, for
without these people there would be no workshop.
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ABSTRACT
This paper introduces a theoretical framework for focused
retrieval, based on a formalism called the annotation graph.
Annotation graph-based retrieval provides a rich retrieval
representation that directly supports query-time constraint-
checking of arbitrary relations. This representation can sup-
port focused retrieval tasks, such as Question Answering
systems, which often have information needs containing con-
straint types that can not be queried easily under many re-
trieval models. The problem of annotation graph-based re-
trieval is mapped onto existing XML element retrieval func-
tionality in the Indri search engine. The remainder of the
paper serves to identify and discuss the issues that emerged
and illustrate by example what in our opinion constitutes
the upcoming research challenges facing the focused retrieval
community.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing; H.3.3 [Information Search and
Retrieval]: Information Search and Retrieval

General Terms
Theory, Design

Keywords
Focused retrieval, question answering, type systems, anno-
tation graphs

1. INTRODUCTION
The fundamental difference between focused retrieval tasks

such as Question Answering (QA), XML Element Retrieval
(XML-IR) and passage retrieval and the general ad hoc re-
trieval task is that the unit of retrieval is smaller than that
of a document. The document retrieval paradigm forces

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGIR 2008 Workshop on Focused Retrieval
July 24, 2008, Singapore
The copyright of this article remains with the authors.

users to read through the retrieved documents to locate the
information that satisfies their information needs. Focused
retrieval paradigms aim to ease this burden on the user by
locating and retrieving the relevant information directly.

Text retrieval systems score by measuring the similarity
between some representation of the text and a query, which
is expressed in that same representation and encodes the
constraints in the user’s information need. Modern docu-
ment retrieval systems use a lean text representation that
makes indexing and retrieval convenient, but that is not ca-
pable of fully encoding all information needs, or even most of
them. All they can represent is a notion of relevance based
on ordering, proximity and frequency of terms. Though this
representation can approximate many information needs well
enough to be successful on the ad hoc retrieval task, it is not
as well suited to the focused retrieval task.

The job of a focused retrieval system is significantly more
difficult. Because it must assign scores to small units of
text, it can not afford to ignore any of the constraints in
the information need. Focused retrieval systems aim to pro-
vide a rich internal representation, both for the query and
for the indexed texts, that reduces the mismatch between
the information need and the query by directly supporting
constraint-checking of more of the component constraints of
the information need.

This paper introduces a formalism called the annotation
graph, and a theoretical retrieval framework based on anno-
tation graph retrieval. The annotation graph-based retrieval
framework supports query-time constraint-checking of rela-
tions over information elements encoded in the annotation
graph. We argue that this kind of rich information repre-
sentation and powerful retrieval-time constraint-checking is
necessary to support focused retrieval tasks, such as QA.
This paper chronicles our experience mapping the annota-
tion graph-based retrieval task onto existing XML element
retrieval functionality in the Indri search engine. We con-
clude with a discussion of the issues that emerged, and a set
of examples that illustrate what are, in our opinion, impor-
tant research challenges in focused retrieval.

2. ANNOTATION GRAPH-BASED
RETRIEVAL FRAMEWORK

This section presents a theory of focused retrieval based
on a formalism called the annotation graph, which serves as
a shared representation for not only information needs, but
also the information content of texts.
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Type System T T =
`

Te =
˘

te1, te2, ..., te|Te|

¯

, T r =
˘

tr1, tr2, ..., tr|Tr|

¯´

Information Element Type tei tei = (name, parent) ∧ (parent ∈ Te ∨ parent = ∅)
Relation Type tri tri = (name, domain, range) ∧ domain, range ∈ Te

Annotation Graph G G =
`

E =
˘

e1, e2, ..., e|E|

¯

, R =
˘

r1, r2, ..., r|R|

¯

, ts
´

Information Element ei ei = (type) ∧ type ∈ Te ∧ ts = (Te, Tr)
Relation ri ri = (type, ed, er) ∧ type = (name, domain, range) ∈ Tr∧

domain, range ∈ Te ∧ ts = (Te, Tr) ∧ ed = (domain) ∧ er = (range)

Collection C C =
˘

g1, g2, ..., g|C|

¯

Query q q = f(g, C)

Figure 1: Formal definitions for the theoretical retrieval framework based on annotation graphs
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Figure 2: Example bag-of-words type system and annotation graph for the sentence, John loves Mary

2.1 Type Systems
Each annotation graph is defined with respect to a partic-

ular type system, which serves as a vocabulary for the types
of information elements that can exist in the graph, and the
relations that can be defined among those elements. A type
system T is defined as a tuple consisting of two sets, Te and
Tr, which contain all valid types for information elements
and relations, respectively. An information element type tei

is defined as a name and an optional parent type pointer. A
relation type tri is defined as a name, a domain type and a
range type. Both the domain and range types must be de-
fined in the same type system. See Figure 1 for the formal
definitions of type systems, information element types and
relation types.

2.2 Annotation Graphs
A piece of information of any type and complexity can be

represented as an annotation graph consisting of a set of in-
formation elements (vertices) and a set of relations (edges)
that hold between pairs of information elements. Although
it is often convenient to think of the annotation graph as a
representation of marked-up text, the formalism is general
enough to represent audio, images, or any other type of data
that can be viewed as a discrete set of elements with rela-
tions defined over them. An annotation graph is defined as
a tuple consisting of a set of information elements E, a set

of relations R and a pointer to the graph’s type system ts.
Information element is a general term used to describe

not only discrete units of raw content, such as the tokens
in a text document or the notes in a musical composition,
but also annotations representing higher-level or more com-
plex content obtained through human or automatic analysis
and mark-up of the raw content. An information element is
defined with a single attribute, the name of a type defined
within the type system of which the element is an instance.

Relations between pairs of elements are typed and asym-
metric, holding between an information element of the do-
main type and an information element of the range type as
declared in the type system. Many relations are overt in
the raw content, for example, adjacency and ordering infor-
mation between tokens in a text document or pixels in an
image. Other types of relations come from the annotation
process that adds higher-level information element types,
such as syntactic information for a text document or musical
phrase structure for audio data. See Figure 1 for the formal
definitions of annotation graphs, information elements and
relations.

An example of a simple bag-of-words type system and an
annotation graph for the sentence, John loves Mary, can be
found in Figure 2. The type system can represent words
enclosed by sentences, which are, in turn, enclosed by doc-
uments. Words can also be directly enclosed by documents,

2



q (g = (E, R, ts), C) =

1
|K|

P|K|
i=1



tf(ki,g)
df(ki,C)

, (encloses, document, ki) ∈ R

0, otherwise

K =
˘

k1, k2, ..., k|K|

¯

tf(ki, g) =
P|R|

i=1



1, ri = (encloses, document, ki)
0, otherwise

df(ki, C) =
P|C|

i=1



1, (encloses, document, ki) ∈ Rgi

0, otherwise

Figure 3: Bag-of-words retrieval as an instance of
the annotation graph-based retrieval framework

which provides for not only transitivity of enclosure, but also
the case in which words, such as section titles, occur out-
side the boundaries of sentences identified in the document.
Note that the type system can not represent ordering and
proximity constraints between pairs of words, and that as
such, it is not powerful enough to distinguish between the
sentences John loves Mary and Mary loves John.

2.3 The Retrieval Process
Let a collection be defined as a set of annotation graphs

sharing the same type system, each of which serves as a
representation of a retrievable item that can be scored in re-
sponse to a query. In this framework, a query is defined as an
arbitrary function over an annotation graph and the collec-
tion. The query can represent any kind of operation, includ-
ing but not limited to set operations, such as intersection
and union; score combination techniques, such as sum or
average; probabilistic operations such as Noisy-OR and not;
and weighting schemes, such as tf.idf and language models.
Query evaluation is a recursive procedure in which queries
are broken down into sub-queries, the results of which are
then combined by the query function. The queries at the
leaves of the tree implement the matching of individual con-
straints against the annotation graph.

2.4 Example: Bag-of-Words Retrieval
This section describes an example instantiation of the

above-proposed retrieval framework. Consider a simple bag-
of-words retrieval system that scores the annotation graph
g corresponding to a document based on whether the docu-
ment encloses each ki of a set of specific keyterms K. One
possible implementation is shown in Figure 3. The query q

scores the annotation graph g by an arithmetic average over
the set of keyterms K, such that the value for each ki is set to
a weight if g contains an encloses relation between the docu-
ment and ki, and zero otherwise. In this case, the weight is a
tf.idf-style weight, but any other weighting scheme could be
used, or Boolean retrieval could be implemented by setting
the weight to 1.

2.5 A Note about Implementation
The retrieval framework proposed in this section relies on

a graphical representation, which, while convenient from a
formal perspective, might seem to be inefficient both com-
putationally at query-time and also in terms of the size of the
index footprint on disk. Without getting into implementation-
specific details, it bears emphasizing that this theoretical
framework is a view of the retrieval problem meant to aid

in understanding the process. The discussion of annotation
graph-based retrieval should not be taken as an argument for
implementing retrieval systems as full-blown graph similar-
ity engines. The actual index structures in a real implemen-
tation could be thought of as a compilation or distillation of
the annotation graph representation, and could be tuned to
minimize space on disk and maximize the efficiency of query
evaluation algorithms operating over them.

3. APPLICATION TO THE QA TASK
Question Answering (QA) is a focused retrieval task that

aims to retrieve snippets of text satisfying certain constraints.
It can be considered similar to a passage retrieval task, ex-
cept that the passage size is smaller [2]. The constraint
in a QA task is that the passages must contain answers to
an input question. QA systems are often implemented as
a cascade of document retrieval and an optional passage
re-ranking step, followed by answer extraction. The core
of a QA system can be thought of as focused retrieval ap-
plication, bookended by language understanding tools, with
question analysis at the beginning and answer selection, val-
idation and presentation at the end.

All QA systems perform some kind of linguistic and se-
mantic analysis on the input question as an initial step to
determine how to proceed. The result of this analysis consti-
tutes a specification for an answer to the question, phrased
in terms of linguistic and semantic constraints that must
hold over a piece of text for it to contain an answer to the
question. This rich representation of the information need
becomes the input to the focused retrieval task at the core
of a QA system, and also, along with the retrieved results,
to the answer selection, validation and presentation tasks at
the end of the QA process.

Many QA systems, however, rely on a text retrieval com-
ponent that can not handle this representation directly. These
systems are forced to map their information needs into the
query representation supported by their text retrieval com-
ponents, potentially weakening the constraints. Recall the
bag-of-words retrieval example introduced earlier. What
if a QA system, trying to answer the question, Who does
John love?, formulated a bag-of-words query consisting of
the keyterms John and love. Under the bag-of-words re-
trieval model, pieces of text containing those two keyterms
would be retrieved, but it is difficult to distinguish between
relevant text, such as John loves Mary and non-relevant text,
such as Mary loves John. To filter out these false positives,
QA systems often perform on-the-fly linguistic and seman-
tic analysis of the retrieved text, comparing it against the
information need and discarding those results that do not
satisfy the constraints.

Recently, there has been interest in building a text re-
trieval interface for QA applications that provides a richer
query representation that can directly support retrieval-time
checking of certain types of information need constraints [1].
Suppose that a love event is a primitive element in the se-
mantics of a QA system to which the same question was
asked, Who does John love? Provided the collection was
properly annotated off-line for instances of love events, a
text retrieval component capable of query-time constraint-
checking would retrieve John loves Mary, but Mary loves
John would not match the query, because John is not the
actor of the love event.

Retrieval-time constraint-checking can also apply to QA

3
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Figure 4: PropBank-style semantic analysis of the
sentence, John loves Mary, with the corresponding an-
notation graph

systems that do not use a full-blown semantic representa-
tion internally. Consider a QA system that uses grammat-
ical functions such as subject, object and oblique that can
be obtained without semantic analysis. For the question,
Who does John love?, an answer constraint would require
that John be the subject of the verb love. The grammati-
cal function-based representation is sufficient to distinguish
between the relevant and non-relevant text in this case.

These examples can be related back to the annotation
graph-based retrieval framework outlined in this paper. The
internal representation for information needs used by a QA
system is equivalent to a type system. As illustrated, the
choice of a type system can range from a simple representa-
tion derived from syntax to a full-blown semantic representa-
tion, in addition to token-based representations widely sup-
ported by text retrieval technology. Analysis of the text in
the collection would yield annotation graphs containing rela-
tions such as (loves, John, Mary), or (subject, John, loves)
and (object, Mary, loves), which could be checked at query
time. Query functions could implement operators that can
combine or weight individual constraints, as well as account
for partial matches, such as (adores, John, Mary).

4. IMPLEMENTATION
This section describes features of the freely-available In-

dri search engine [5], a part of the Lemur toolkit,1 used to
support annotation graph-based retrieval. The current ver-
sion of Indri provides support for indexing and retrieval of
arbitrary, hierarchical, overlapping fields that was originally
added to address the needs of an XML-IR task [4].

1See: http://www.lemurproject.org

#combine[sentence]( john loves )

#combine[sentence]( #max( #combine[target]( loves
#max( #combine[./arg0]( john )))))

Figure 5: Bag-of-words (upper) and PropBank-style
(lower) Indri queries for the question, Who does John
love?

Indri’s existing fielded retrieval support can be thought
of as an implementation of annotation graph retrieval for
a subset of type systems, those under which at most one
relation type can be defined to hold over any pair of element
types. This relation is implemented in the Indri index as
field enclosure; if a field instance of the domain type encloses
a field instance of the range type, it is said that the relation
holds between the elements corresponding to those fields.
At retrieval time, these relations can be checked using query
operators that enforce enclosure constraints between fields.

For an XML-IR task, the type system would include the
elements found in an XML document, but for a QA task, it
is the linguistic and semantic annotations on text that the
system uses to locate answers that need to be indexed so
that constraints can be checked at retrieval time. One ex-
ample of a type system for QA is the one used in [1], which
supports verb predicate-argument structures with semantic
role labels in the style of PropBank [3], as well as common
named entity types. Some QA systems use this semantic
representation internally throughout the system, annotating
text retrieved by a bag-of-words retrieval system on-the-fly
and comparing it against an analysis of the question to lo-
cate answers. The goal of supporting constraint-checking
against this representation at the retrieval stage of the QA
process is to reduce the occurrence of false positives, or text
that scores well on a keyterm match, but that does not unify
with the QA system’s expectations for an answer.

Figure 4 shows the example sentence John loves Mary
with its PropBank-style semantic analysis and the equiva-
lent annotation graph. The root of a verb predicate-argument
structure is identified as the Target. In the figure, the
bracketed arguments are labeled as Arg0 and Arg1, which
correspond to the agent or doer of the action, and the pa-
tient or the person for whom the action is done, respec-
tively. Though all argument roles are verb-dependent, users
of PropBank have found that Arg0 and Arg1 can be relied
upon to have been consistently labeled across verbs.

Figure 4 introduces a new type of relation called child
that relates the target verb to its arguments. Because the
verb does not actually enclose its arguments, Indri supports
an additional representation for relations between field in-
stances. In [1], an extension that has subsequently been
integrated into the main trunk was made allowing Indri to
store an arbitrary pointer to another field instance, called
the parent field, in the posting for a particular field instance.
Representing a relation type in the index in this way is called
a parent-child relation, as opposed to an enclosure relation.

When Indri indexes a corpus annotated off-line with Prop-
Bank-style predicate-argument structures, target verbs are
represented as field instances of type Target in the index.
There are also separate field types for each type of argument,

4



s1 John loves Mary. [Arg0 [Person John]] [Target loves] [Arg1 [Person Mary]]

s2 John loves Mary. [Arg0 [Person John]] [Target loves] [Arg1 Mary]

s3 John loves Mary. [Arg0 [Person John]] [Target loves] [Arg2 [Person Mary]]

s4 John says he loves Mary. [Arg0 [Person John]] [Target says] [Arg1 [Arg0 he] [Target loves]
[Arg1 [Person Mary]]]

s5 John adores Mary. [Arg0 [Person John]] [Target adores] [Arg1 [Person Mary]]

s6 Bill loves Jane. [Arg0 [Person Bill]] [Target loves] [Arg1 [Person Jane]]

s7 John gave Jane’s book to Mary. [Arg0 John] [Target gave] [Arg1 [Person Jane’s] book] [to [Person Mary]]

Figure 6: Text collection referred to by the examples in Section 5. The verb predicate-argument structure
with PropBank-style semantic role labels and named entity recognition is shown below each sentence.

including numbered complement arguments such as Arg0,
Arg1 and Arg2, as well as adjunctive arguments such as
Argm-Tmp and Argm-Loc, which represent temporal and
locative modifiers, respectively. Arguments are related to
their respective targets by use of the parent-child strategy,
and enclosure relationships exist between sentences and tar-
get verbs, sentences and arguments, sentences and named
entities, and arguments and any nested fields, which can
include nested named entities as well as targets and argu-
ments.

At query time, Indri provides two different pieces of query
syntax to support checking of enclosure and parent-child
constraints. Figure 5 shows two queries that might be for-
mulated for the question, Who does John love? In the
bag-of-words (upper) query, the #combine[sentence] op-
erator is used to enforce that the terms john and loves must
be enclosed by the same Sentence field instance. In the
PropBank-style (lower) query, the nested #combine opera-
tors tell Indri to look for a Sentence enclosing a Target

enclosing loves. In #combine[./arg0], the dot-slash syntax
is used to require that the target verb have a child Arg0

field instance enclosing john. Throughout, the #max opera-
tors are used to select the best field instance in the event
that more than one match.

Both enclosure and parent-child constraints map to struc-
tured query operators in Indri’s underlying inference net-
work retrieval model [6]. The query operators restrict key-
term matches to occurring field instances of the specified
type. When scoring an field instance, the score contribu-
tion of specific keyterm is the number of occurrences of that
keyterm over the size of the field instance, smoothed by
linear interpolation with a background model based on the
document containing the field extent, and also with another
model based on the collection as a whole. If the field instance
contains no occurrences of the requested keyterm, its score
defaults to the background score made up of the document
and collection smoothing components.

5. CHALLENGES
The process of building and testing Indri’s support for

annotation graph-based retrieval revealed some non-trivial
issues inherent in implementing this kind of retrieval solu-

tion. This section asks the questions as to why the obvious
approach of mapping the task of retrieval for QA onto a
field-based XML-IR approach did not work well, and what
are the requirements a retrieval engine would have to satisfy
to be able to support annotation graph-based retrieval. The
narrative in this section is centered around a series of ex-
amples that illustrate the emergent issues and motivate the
discussion. For convenience, our examples involve matching
sentences in the sample text collection shown in Figure 6.

5.1 Partial Matching of Structures
Indri’s current constraint-checking implementation penal-

izes missing constraints harshly. Consider the query shown
in Figure 7, which describes a love event between John and
some other person. Sentence s1 is a complete match for this
query, and is ranked first. If a requested argument role does
not appear in a predicate-argument structure, a background
score, which can be quite low, is combined into the overall
score.

#combine[sentence](

#max( #combine[target]( loves
#max( #combine[./arg0](

#max( #combine[person]( john ))))

#max( #combine[./arg1]( #any:person )))))

Figure 7: This query requests love events in which
John is the agent, and any person is the patient.

Linguistic and semantic analysis tools occasionally make
mistakes, sometimes as a result of legitimate ambiguities in
the language, such as prepositional phrase attachment, and
other times because of a lack of coverage in a rule base or
in a training data set. In sentence s2, the named entity
recognition tool failed to identify Mary as a person, giving
the sentence a structure similar to that of, John loves his
dog. When scoring s2, the enclosed Person field instance
is not found, so the score defaults to a background score
made up of document-specific and collection-wide scores for
Mary occurring inside field instances of type Person. In the
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current implementation, it is not possible to directly smooth
with the enclosing Arg1 instance.

Sentence s3 represents a role-labeling error in which the
argument corresponding to Mary is labeled Arg2, which
generally represents a recipient or beneficiary, as opposed
to the correct Arg1, which indicates the patient. There is,
in fact, no prescription for an Arg2 in the love frame in
PropBank, which means that the training data for the se-
mantic role labeling tool does not contain this example in its
entirety, but errors like this can happen when the semantic
role labeling process is decomposed into argument identifica-
tion, attachment and labeling as separate steps to maximize
use of training data. As with sentence s2, the missing field
instance causes a background score to be combined into the
overall score. The current implementation will only score
field instances of the requested type; it is not able to pro-
pose the Arg2 as a match for the #combine[./arg1] query
clause with some discount factor despite the fact that the
Arg2 field instances satisfies the #any:person constraint.

As partial matches, sentences s2 and s3 are ranked be-
hind s1. The relative order in which sentences s2 and s3

are ranked depends primarily on the document models used
for smoothing; in this case, if the documents contain more
occurrences of Mary tagged as a Person than as an Arg2,
then s2 would come first.

5.2 Combining Evidence from Partial Matches
Sentence s4 is semantically similar, but not equivalent, to

sentence s1. Setting aside the issue of whether the source,
in this case John, is to be believed when he asserts that he
loves Mary, this sentence is clearly relevant to a QA system
faced with determining an answer to Does John love Mary?
or Who does John love?

Sentence s4 is a partial match for the query shown in Fig-
ure 7 because it contains two distinct predicate-argument
structures, and the query’s constraints are distributed be-
tween the two structures. The outer structure satisfies the
constraint that John occur inside a Person nested inside
an Arg0, and the inner structure satisfies the constraint on
the target verb and the attached Arg1 containing any field
instance of type Person.

The query uses a #max operator to score a sentence based
on the single best-matching predicate-argument structure it
contains, because the current implementation has no way to
aggregate belief across multiple structures. Therefore, s4 is
scored on the basis of the inner predicate-argument struc-
ture, because it satisfies more of the constraints. In fact, s4

would get the same score even if it were Jack said that he
loves Mary, because the #max operator hides the effect on
the score corresponding to the query’s John constraint.

5.2.1 Balancing Structural Constraints
The query shown in Figure 7 contains three unweighted

constraints. Intuition would suggest that the person or QA
system formulating the query intended that the constraints
be equally important. The current Indri implementation
of Jelinek-Mercer smoothing leads to an interesting phe-
nomenon where s5, which is a relevant partial match, is
ranked behind s6, which is not relevant at all, but satis-
fies the target verb constraint. This ranking suggests that,
for some reason, Indri is considering the target verb con-
straint much more important than the other constraints in
the query.

The reason for this behavior is that the vast majority
of target verb field instances are of length one. The score
contribution of the target verb constraint is computed by
taking the smoothed count of the number of occurrences of
the keyterm divided by the length of the field instance being
scored. This means that if the target verb does match, a
very high belief is combined into the overall score, and if
the target verb does not match, the portion of the score
corresponding to the target field instance is zero, resulting
in a very low background score based on smoothing with
the document and the collection. As a result of this scoring
method, the target verb mismatch on s6 pushes it below s5,
which has mismatches on two constraints.

It may be that certain smoothing methods that are appro-
priate to fielded retrieval in general may not be optimized for
tasks in which assumptions can be made about the nature of
the fields. A recent proposal to address this problem is two-
level Dirichlet smoothing, an extension of Indri’s existing
Dirichlet smoothing method to include a smoothing com-
ponent for the document. This method is less sensitive to
the length of the field instance being scored, so the variance
of the scores produced by the query operator corresponding
to the target verb constraint is reduced. This results in a
more sensible ranking that relaxes all constraints on partial
matches simultaneously after all partial matches have been
retrieved. Under two-level Dirichlet smoothing, sentence s5

is correctly ranked ahead of sentence s6.

5.3 Multiple Potentially Relevant Structures
In process of the question analysis, a QA system uses deep

linguistic and semantic processing to build a fairly rich rep-
resentation of the answer it is looking for. Sometimes, a
system is able to posit multiple structures that can poten-
tially contain answers. The queries shown in Figures 8, 9
and 10 attempt to retrieve more of the relevant sentences in
a single pass.

5.3.1 Combining over Keyterms
The query shown in Figure 8 maintains the same predicate-

argument structure as the one shown in Figure 7, but uses a
controlled synonymy to specify target verb alternatives that
are semantically related. The #combine[target] operator
is intended to be able to match sentences such as s1 and s5

by being flexible about the target verb constraint.

#combine[sentence](

#max( #combine[target]( loves adores
#max( #combine[./arg0](

#max( #combine[person]( john ))))

#max( #combine[./arg1]( #any:person )))))

Figure 8: This query is the same as the one shown
in Figure 7, except that it requests adore events in
addition to love events.

The implementation of the #combine operator essentially
performs an arithmetic average in log space over the two
score components, each of which is computed as the smoothed
count of matching term occurrences over the length of the
field instance. As written, the query clause prefers loves and
adores to any other verbs, but it also prefers both verbs to
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just one of them alone. Knowing how the text collection
was annotated, it would be impossible for a Target field
instance to contain both of those terms. In fact, the only
times when a Target is longer than length one is the case
referred to as the phrasal verb, where a verb and a particle
occur in the Target together. The query clause will not
perform as intended because every Target field instance
that matches one of the verbs will have a background score
combined in from the other verb that does not match.

One potential mitigation for this phenomenon is to wrap
the alternate keyterms in a #syn operator, which treats oc-
currences of each term equivalently. One side effect of this
choice of operator is that the smoothing values are skewed,
particularly for #syn operators with large numbers of argu-
ments. Document frequency is computed as the union of the
arguments of the #syn clause, which can have an affect on
the ranking. Another operator choice is #or, which imple-
ments the probabilistic Noisy-OR. Rankings are a bit easier
to understand with #or, but it does not really capture the
intent of query. Some kind of exclusive-OR operator may be
more appropriate, but the question as to how to build such
an operator for this task is still open.

5.3.2 Combining over Full Structures
Figure 9 shows a query that wraps an outer #combine

operator around two full predicate-argument structures in
an attempt to match both sentences s1 and s4. This query
will not perform as expected, because the scores coming out
of the two inner #combine[sentence] clauses are not, in
general, directly comparable. The variance in the document
scores for a particular query operator is inversely related
to the number of arguments that operator has. The more
complex constraints translate to query operators with more
arguments, which provide scores on a smaller scale that vary
over a more narrow range than do the scores corresponding
to simpler constraints.

#combine[sentence]( #max(

#combine[sentence](

#max( #combine[target](

#max( #combine[./arg0](

#max( #combine[person]( john ))))

#max( #combine[./arg1](

#max( #combine[target]( loves
#max( #combine[./arg1]( #any:person )))))))))

#combine[sentence](

#max( #combine[target](

#max( #combine[./arg0](

#max( #combine[person]( john ))))

#max( #combine[./arg1]( #any:person )))))))

Figure 9: This query requests two potentially rele-
vant structures, the simpler structure contained in
sentence s1, below, and the nested version shown in
sentence s4, above.

This type of query can be difficult to reason about. Con-
sider sentence s1, which is a complete match for the second
#combine[sentence] clause in the query. It is also a partial
match for the first such clause in the query, as it satisfies
the Arg0 constraint on John. Although s1 has an Arg1,

that field instance does not enclose any Target instances,
and so a background score will be combined into the overall
score. Even though smoothing with the document will yield
at least one match for loves inside a Target field instance,
the background score is low enough in comparison to the
matching scores produced by the query clauses correspond-
ing to the constraints that are satisfied to significantly affect
the overall score.

5.3.3 Combining over Partial Structures
Given the difficulty in scoring disjunctions over full struc-

tures, not to mention the linguistic and semantic analysis
task inherent in positing those structures in the first place, a
QA system might decide to try specifying a single structure,
but allow variations to mitigate annotation error, improve
recall or simply to be able to control the relaxation of the
constraints. It seems natural to take this approach, because
if one constraint fails to match, a background score could be
avoided if there is an alternate path for belief in the query.

#combine[sentence](

#max( #combine[target]( loves
#max( #combine[./arg0](

#max( #combine[person]( john ))))

#max( #combine[./arg1]( #any:person ))

#max( #combine[./arg2]( #any:person )))))

Figure 10: This query is the same as the one shown
in Figure 7, except that it tries to compensate for
annotation error by allowing the patient of the love
event to occur in the Arg1 or Arg2 positions.

Figure 10 shows an example of a query that matches love
events in which John is the agent, having another Person in
an argument labeled Arg1 or Arg2. As written, however,
the query does not express the system’s intent. Because
the Arg1 and Arg2 constraints are written in two sepa-
rate #max clauses that are children of the #combine[target]
clause, this query will rank any sentence satisfying both con-
straints, such as sentence s7, ahead of any sentence satisfying
only one of them, such as sentences s1 and s3.

The current implementation of Indri makes it difficult
to encode the notion of alternative constraints. The back-
ground score coming from the non-matching query branch
will drag the overall score down. An alternative query for-
mulation would but the Arg1 and Arg2 constraints into a
single #max clause within the #combine[target] clause. The
#max operator has the benefit that the low-scoring query
branch is pruned, but it must be used with caution. The
query operators inside a #max operator must produce scores
that are comparable; otherwise, one element may consis-
tently win out in a way that does not necessarily reflect the
quality of the match, but instead, an artifact of the scoring
model. One way to address this would be to build in the
notion of a discount factor, allowing the user to not only
specify precedence over the alternatives in a #max operator,
but also to potentially compensate for a mismatch in the
scale of the scores produced by one of the elements of the
#max.

6. CONTRIBUTIONS
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This paper proposed a theory of focused retrieval based
on a formalism called the annotation graph. We motivated
the potential of the approach using a Question Answering
example, arguing that the annotation graph representation
addresses the requirements of focused retrieval applications
by providing for rich retrieval-time constraint-checking. We
tested Indri’s support for annotation graph-based retrieval,
and discovered that the obvious approach of mapping the
problem onto existing XML-IR machinery presented a num-
ber of challenges. The identification of these challenges,
along with the discussion of specific examples, serves to
bring attention to the fact that the focused retrieval prob-
lem is not solved and fertile research ground lies ahead. We
share our experiences with other interested researchers in
the hopes that they will prove useful to those grappling with
similar problems.
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ABSTRACT
In this paper, we study and discuss the usage of phrases
in the INEX evaluation of XML retrieval as well as in re-
lated research. We find that the INEX framework could
easily become a unique testbed for researchers interested
in the exploitation of complex terms in IR, while trigger-
ing interest from others. Unfortunately, our analysis of the
use of keyphrases in INEX topics shows a downwards trend
over the years that impacts on the attention of participants.
While NEXI, the official query format of INEX, does indeed
support keyphrases, its full potential does not materialize,
as topic contents show a lack of consistency in their markup.
In 2007, 87% of the INEX queries contained keyphrases, but
only 11% of those were marked up. We present simple and
low-cost solutions to let the INEX collections deliver their
full potential in keyphrase retrieval.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Storage and Retrieval]: Information Search and Re-
trieval

General Terms: Theory

Keywords: XML Information Retrieval, Phrase, Keyphrase

1. INTRODUCTION
Keyphrases are important for IR tasks. When used in

queries they are matched with similar phrases in the docu-
ments. Advanced approaches are based on a keyphrase index
which contains the most important if not all phrases of the
document collection. INEX has provided excellent testbeds
for keyphrase search. The document collections with marked
up phrases and queries with explicitly marked keyphrases
have inspired researchers to develop methods for parsing, in-
dexing, and matching the phrases in order to improve from
the basic keyword search. However, the annual evaluation
is subject to criticism regarding keyphrase search. Even if
a system with support for keyphrases outperforms the same
system without keyphrases, we cannot conclude that the
keyphrases actually improve the results as the number of
queries involved is too low to make a statistically significant
difference. Moreover, systems that can make the most out
of keyphrases may not excel in the overall evaluation as they
are not given any keyphrases for most of the queries.

Our analysis of the INEX data shows that keyphrases have
been seriously neglected in the topic development of the re-

Copyright is held by the author/owner(s).
SIGIR 2008 Workshop on Focused Retrieval
July 24, 2008, Singapore.
ACM .

cent INEX evaluations. Only 8% of the INEX 2007 topics
define keyphrases, whereas the corresponding numbers were
around 70% for the INEX 2003–2004 topics. In order to
prevent keyphrases from going into complete oblivion, we
suggest that the future topic authors of INEX be encour-
aged to mark keyphrases explicitly in the topic statements.

This paper is organized as follows. Essential previous re-
search and statistics of phrase searching are presented in
Section 2. Keyphrases in the INEX topics over the years
are analysed in Section 3. Other connections between INEX
and keyphrases are summarized in Section 4 including a brief
overview on the document collections and methodology. In
Section 5, we discuss the simple ways in which INEX could
offer a unique testbed for the use of keyphrases in IR. We
conclude the paper in Section 6.

2. KEYPHRASES AND IR TASKS
Numerous information retrieval systems rely on a “bag

of words” representation of documents, and thus ignore the
relative position of words. It is intuitively clear that taking
phrases and collocations into account improves text under-
standing (for computer-based systems as well as for human
readers). Zhai et al. [25] mention many subsequent prob-
lems. The biggest one is that of complex lexical units: The
meaning of a word association is different from that of the
“sum”of the meanings of the individual words they compose
of. For instance, the expression “hot dog” is seldom used to
refer to a dog. Another example is “to kick the bucket”, an
expression that means “to die”, while “to kick” means “to
strike out with the foot”, and a “bucket” is a “cylindrical
vessel used for holding or carrying liquids or solids”. In such
cases, it is clear that it is crucial to grasp the meaning of the
expressions rather than solely that of the word components.
Naturally, there have been numerous attempts to exploit
lexical cohesion in IR.

2.1 Definition of a keyphrase
In this paper, we define a keyphrase as a set of adjacent

terms, that are intended as a single lexical unit by the user.
A keyphrase may be explicit (that is, clearly delimited with
quotation marks or commas, for instance), or implicit, with
no way to know, a priori, which sets of words the end user
meant as phrases. Sample implicit and explicit keyphrases
are shown in Table 1.

2.2 Previous research
Work on the use of phrases in IR has been undergone for

over 30 years with mitigated success. Early results were very

9



promising. Unexpectedly, however, the constant growth of
test collections caused a drastic fall in the quality of the re-
sults. In 1975, Salton et al. [16] showed an improvement
in average precision over 10 recall points between 17% and
39% over a keyword-only baseline. In 1989, Fagan [3] reit-
erated the exact same experiments with a 10 Mb collection
and obtained improvements from 11% to 20%. This neg-
ative impact of the collection size was lately confirmed by
Mitra et al. [13] over a 655 Mb collection, improving the av-
erage precison by only one percent ! Turpin and Moffat [19]
revisited and extended this work to obtain improvements
between 4% and 6%.

A conclusion from this historical work is that keyphrases
improve results at low levels of recall, but are globally inef-
ficient for the n first ranked documents. According to Mitra
et al. [13], such modest benefit from phrases to the best
answers is explained by the fact that phrases promote doc-
uments that deal with only one aspect of possibly multi-
faceted queries. For example, one of the TREC-4 topics
is about “problems associated with pension plans, such as
fraud, skimming, tapping or raiding”. Several top-ranked
documents discuss pension plans, but not any related prob-
lem. Mitra et. al call this problem inadequate query cover-
age.

More recently, Vechtomova [20] started to investigate user-
selected keyphrases, which puts aside the problem of phrase
recognition so that we can focus on the usage of keyphrases
in search tasks. The results show a consistent performance
improvement in terms of average precision, and confirm the
observation that the improvement is mainly built at low re-
call levels, while the impact is negative at higher levels.

2.3 Keyphrases in web search
An analysis of the query logs of the Excite search engine by

Williams et al. [22] indicated that 5–10% of the web queries
were phrase queries and that 41% of the rest also matched
a phrase. In our terms, 5–10% of the queries are explicit
keyphrases, and 41% of the rest may be implicit keyphrases.
Unfortunately, commercial search engines are seldom using
keyphrases per se, rather, they rely on proximity search or
n-grams.

The generally recognized reason is that taking phrases into
account is useful in some cases, while in others it only wors-
ens retrieval performance. The key problem is that no way
has yet been found to distinguish, a priori, the cases where
keyphrases are useful from those where they are not. There-
fore, it has been considered safer to rely on keywords and
proximity search. From the current state of the art, it is
straightforward to draw the conclusion that there is still
plenty of room for future research on keyphrases in both
web search and other search tasks.

3. KEYPHRASES IN INEX TOPICS
In this section, we study the usage of keyphrases in INEX

topics over the 6 editions of the evaluation initiative (from
2002 to 2007). Two sample topics, respectively from INEX
2002 and INEX 2007 are presented in Figure 1 and Figure 2.

We have analysed all the accepted topics since 2002, and
counted how many of them contain at least one implicit
keyphrase and how many of them contain at least one ex-
plicit keyphrase. For this, we relied solely on the content of
that XML element of the topic that was the most similar
to a short, web-like, query. For the 2002–2004 campaigns,

Year Topics explicit KP implicit KP no KP
2002 60 20 (33%) 30 (75% *) 10 (17%)
2003 66 47 (71%) 13 (68% *) 6 (9%)
2004 74 51 (69%) 18 (78% *) 5 (7%)
2005 87 29 (33%) 52 (90% *) 6 (7%)
2006 125 43 (34%) 70 (85% *) 12 (10%)
2007 130 11 (8%) 102 (86% *) 17 (13%)

Total 542 201 (37%) 285 (84% *) 56 (10%)

Table 2: Number of accepted topics with explicit
and implicit keyphrases. *) The percentage of im-
plicit keyphrases is relative to the total number of
topics without explicit keyphrases.

we used the <keywords> element, while for 2005 to 2007, we
looked at the content of the <title> element.

If the sequence of words was separated by some kind of
delimiters (e.g., commas or quotations), and several words
were found between those markers, we considered that the
topic contained an explicit keyphrase. If the sequence of
words contained no delimiters at all, and some adjacent
words were clearly meant to be components of a complex
lexical unit, the topic was considered to contain an implicit
keyphrase. Typical examples are word pairs such as “infor-
mation retrieval” or “firstname lastname”.

In Table 1, we describe how we judge the first 5 topics
of INEX 2002. In topic 1, we can easily understand that
“description logic” is meant to be a phrase, since the cor-
responding acronym, “DL” is also included. In topic 3, it
is clear that “visualizing large information hierarchies” is an
entity. We get a hint at this fact from the repetition of the
word “information”, hence, “information spaces” is also in-
tended as a phrase. In some cases, deciding whether or not
a sequence of words was meant as an implicit keyphrase re-
quires more consideration, but then, the topic description
and narrative help us find the correct interpretation.

The per year statistics on the number of INEX topics con-
taining explicit and implicit keyphrases are presented in Ta-
ble 2.

We immediately notice that the proportion of topics con-
taining keyphrases is much higher than that reported by
Williams et al. [22] for web queries (37% of explicit keyphrases
versus 5 to 10%, and 84% of implicit keyphrases amongst the
rest instead of 41%). This is natural, as the INEX topics are
much longer than web queries, and, unlike them, they were
carefully thought up, reviewed, and selected by the organiz-
ers of the forum. This is actually one reason why it would
take little additional effort to formalize keyphrase markup.

In 2003, the use of comma to separate entities in the
<keywords> element was systematic. This certainly explains
the surge in the ratio of explicit keyphrases. But the element
name “keywords”was perhaps sometimes taken too literally,
as in “keyword versus keyphrase”. Much to our surprise,
several topics are using commas to separate words that are
clear phrases. One of many examples is topic 101 shown in
Figure 1, where it is very clear that “information retrieval”
is a central concept, but the words “information” and “re-
trieval” are comma-separated in the <keywords> element!

The same phenomenon occurred in 2004, with numer-
ous explicit keyphrases on one hand, and comma-separated
keyphrase components on the other. The consistency of the
comma-separation markup is additionally fading, as several
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Topic Word Sequence explicit KP implicit KP

1 description logic DL ABox TBox reasoning no yes
2 funding america DARPA US no no
3 visualizing large information hierarchies information spaces no yes

text multidimensional data datamining databases
4 ’extreme programming’ experiences results yes no
5 QBIC, IBM, image, video, content query, retrieval system yes no

Table 1: The “web-like queries” of the first 5 topics of INEX and our interpretation of whether a keyphrase
is present or not.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE inex_topic SYSTEM "topic.dtd">

<inex_topic topic_id="101" query_type="CO" ct_no="37">

<title>+"t test" +information </title>

<description>use of the t-test in information retrieval </description>

<narrative>Information retrieval experimenters are advised to compare their new mean-average-precision

results with the baseline using a t test. We have reason to believe that this may be bad, even very bad,

advice, and are interested in papers that apply the t-tests to information retrieval (and possibly other

software engineering tasks). We are also interested in papers that mention alternative statistical

techniques to determine significance. </narrative>

<keywords>t-test, information, retrieval </keywords>

</inex_topic>

Figure 1: Topic 101, from INEX 2003.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE inex_topic SYSTEM "topic.dtd">

<inex_topic topic_id="522" ct_no="190">

<title>April 19th revolution peaceful revolution velvet revolution quiet revolution</title>

<castitle>//*[about(.,"April 19th revolution" "peaceful revolution" "velvet revolution" "quiet revolution")]

</castitle>

<description>Find information about how the April 19th revolution differs from the peaceful,

velvet and quiet revolutions.</description>

<narrative>As a history buff, you have heard of the quiet revolution, the peaceful revolution and the

velvet revolution. For a skill-testing question to win an iPod you have been asked how they differ from

the April 19th revolution.</narrative>

</inex_topic>

Figure 2: Topic 522, from INEX 2007.
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explicit phrases are double-marked with both commas and
quotations marks, as in topic 158, where the <keywords> el-
ement contains:
turing, test, consciousness, intelligence,

"imitation game".
In 2005, there was no more element dedicated to key-

words, which caused the beginning of a severe downwards
trend on the number of explicit keyphrases. In 2006, an
<ontopic_keywords> element was inluded in the topic for-
mat. Its influence is visible as the downwards trend was
temporarily interrupted. Several participants have indeed
included keyphrase delimiters in the <ontopic_keywords>

element, that they then carried over to the <title> ele-
ment. In 2007, unfortunately, the <ontopic_keywords> el-
ement disappeared, leading to a sharp fallout in terms of
explicit keyphrases.

In conclusion, we make two major observations: 1) year af-
ter year, the number of explicit keyphrases has been decreas-
ing, 2) the number of implicit keyphrases has been steady
during the 6 INEX campaigns, notably, regardless of the
topic format and guidelines.

Although it is harder to quantify, a third point should be
made about the growing inconsistency of the phrase markup,
whenever it was present. Some explicit keyphrases are marked
with semi-columns, others with commas, and the rest with
single or double quotation marks. Several keyphrases are
double-marked (commas plus quotes).

It even seems that participants are confused about whether
they are actually allowed to mark keyphrases. This impres-
sion is supported by examples such as topic 101, which we
already mentioned (Figure 1), where two clear keyphrase
components are comma-separated. Topic 522 is even more
confusing (Figure 2), because the same keyword sequence
is used in the <castitle> and in the <title> elements,
with the exception that keyphrase delimitors are used in the
<castitle> and removed in the <title> element. This is
very hard to explain. Did the topic author have any reason
to doubt that quotation marks were allowed inside <title>

elements?

4. KEYPHRASES IN INEX RESEARCH
Keyphrases have been taken into account in various ways

in the systems developed by INEX participants in the past
years of INEX, e.g. when indexing and ranking the doc-
uments, or parsing the queries, or even generating formal
queries from queries in a natural language. Examples of the
different roles of keyphrases in INEX-related research are
presented in this section.

4.1 XML documents
Any document with text in a natural language contains

enough phrases to make it suitable for research on keyphrase
search. From the keyphrase perspective, hypertext docu-
ments add an interesting feature to plain text documents:
many phrases — the anchor texts — are now marked up
with designated markers. HTML documents go even further
down the road as they allow titles, emphasized content, list
items etc. to be marked up with designated tags in addition
to the anchor texts. However, HTML documents are com-
putationally challenging to process for someone searching
for phrases as the quality of the HTML code varies. In this
sense, XML is the perfect document format for keyphrase
search as the markup is highly regular and always well-

formed1.
The collections of XML documents provided by INEX

2002–2007 contain plenty of marked up phrases. In the
collection of articles from IEEE journals, phrases are typ-
ically marked up because of an intended emphasis on the
phrase, whereas the most common marked up phrases in
the Wikipedia XML articles are anchor texts of hyperlinks.
Both collections provide an interesting playground for meth-
ods on indexing and searching keyphrases. The methods
that did not convince with plain text documents might have
lots of unmaterialized potential with XML documents — if
given a second chance.

4.2 Adhoc retrieval
Although some explicitly split the keyphrases of INEX

queries into unordered sets of individual keywords [1], many
others parse them and match them with similar phrases in
the documents. Both Raja et al. and Lehtonen and Doucet
compute a separate score for keyphrase similarity in the vec-
tor space model which is combined with a keyword similar-
ity score into a single Retrieval Status Value [15, 12]. A less
strict interpretation of the concept of a keyphrase is defined
in the TRIX system where the words of the keyphrase are
only required to appear in a mutual XML element [8].

Approaches where the documents are stored in an XML
database [14, 21] inherently support constraints on the or-
der and distance of the keywords. Other database systems
supporting keyphrase queries include Cheshire II with prox-
imity indexes [11] as well as TopX with term offsets stored
in an auxiliary database table [17].

Phrases are also part of the document representation in
several systems for XML IR, e.g. Maximal Frequent Se-
quences of EXTIRP [2], Rich Document Representation of
the extended PLIR [10], and bigram language models of TI-
JAH [9]. Despite the quite widespread interest in parsing
and matching keyphrases, most of the efforts originate in
the early years of INEX. The obvious explanation for the
recent lack of interest lies in the diminishing proportion of
explicitly marked keyphrases in the INEX topics.

4.3 The NLP Track prospect
Besides the adhoc track queries, keyphrases have had an

important role in the experiments of the NLP track of INEX.
The main challenge of the track has been to convert a nat-
ural language query into a formal NEXI query which is the
official query format of INEX [18]. One of the earliest sys-
tems participating in the track was NLPX which segments
sentences into disjoint chunks that eventually converge into
NEXI keyphrases [23, 24]. Zargayouna et al. go along the
same lines as they “prefer complex terms to simple ones”
as they generate NEXI queries [7]. However unfortunate it
may seem that the official NEXI queries created by INEX
participants come with so few explicitly marked keyphrases,
the NLP track may regard this as an opportunity to assist
by applying various chunking methods to the topic titles.
The other option is to have the keyphrases marked by topic
developers, but few participants are currently doing it.

5. DISCUSSION
In information retrieval, the use of phrases includes two

problems: the first one is that of the detection of phrases

1Other than well-formed XML is not defined.
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in the document collection, while the second one is to find
ways to improve retrieval effectiveness, given good phrases.

As we have seen in Section 4.1, XML mark-up has po-
tential to ease the extraction of phrases, which is a way to
isolate the problem of phrase exploitation, that no other
evaluation framework provides, even when they show spe-
cific consideration for phrase usage. For instance, the top-
ics of NTCIR collections2, have systematically included a
<CONC> element, with a list of keywords in which keyphrases
are clearly and consistently delimited, but the documents
themselves have no comparable phrase-related markup.

As opposed to most IR evaluation forums, we must point
out a specificity of INEX, which is that topics are collabora-
tively contributed by participants. The plentiful of authors
makes it naturally harder to keep consistent notation across
the topic set, especially when keyphrase markup has barely
ever been mentioned in the topic creation guidelines.

Unfortunately, while the XML mark-up of the INEX col-
lections permits to ease phrase extraction from documents,
keyphrases have seemingly been abandoned in the topics.
This has naturally led to a drop in their usage by INEX
participants. As detailed in Section 4, while several made
use of complex terms in the first years, when more explicit
phrases were available, the interest in keyphrases has lately
diminished drastically: Most new participants are not taking
phrases into account.

An easy way to solve the issue mentioned here is to de-
fine a strict way to mark keyphrases, and request topics to
conform to it. The goal would be to replace all the implicit
keyphrases with explicit ones, which could even be corrected
by the organizers, although leaving it to the participants is
certainly preferable. Clearly, the additional amount of work
is small, nearly negligible.

Having a large set of clearly marked up phrases, together
with the implicit phrases contained in the document col-
lection should make INEX a unique testbed for researchers
interested in the use of complex terms in IR. At the same
time, it makes no harm to others, who can very easily ignore
the keyphrase delimitors.

However, we must point out that our goal is not only
to please participants interested in the use of keyphrases,
but to avoid causing any inconvenience to others. We hope
that the generalization of explicit keyphrases will encour-
age all participants to get involved, which should come nat-
urally when statistically siginficant performance improve-
ments are achieved (retrieval performance has reportedly
been improved, but the small number of keyphrases does
not leave a chance to statistically significant results without
a massive performance surge).

6. CONCLUSION
The topic definitions of the past INEX evaluations have

had several shortcomings regarding the formulation of key-
phrases. An INEX evaluation of keyphrase queries is cur-
rently a lost opportunity despite its potential. Nonetheless,
we are not far from solving the major problems and seeing
a brighter future for the research on searching XML docu-
ments for keyphrases. The key facts that we have shown in
this paper are the following:

• Keyphrases are common in real world queries, but the

2“NII Test Collection for IR systems”,
http://research.nii.ac.jp/˜ntcadm/index-en.html

methodology for processing them is not yet mature.

• INEX document collections are rich in phrases, but
regarding the INEX topics, keyphrases are about to
become extinct.

• Several systems with result submissions to the past
INEX evaluations support keyphrase queries.

The only thing needed for a decent INEX evaluation of
keyphrase search are more queries — INEX topics — with
explicitly marked keyphrases. The additional effort required
is minimal but invaluable as it has the potential to revive
the research activity in the area of keyphrase search. The
first step entails writing more detailed guidelines for topic
development, and the second step, collective topic authoring
by the INEX participants.
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ABSTRACT
We argue that ranking algorithms for XML should reflect
the actual combined content and structure constraints of
queries, while at the same time producing equal rankings
for queries that are semantically equal. Ranking algorithms
that produce different rankings for queries that are seman-
tically equal are easily detected by tests on large databases:
We call such algorithms not sound. We report the behaviour
of different approaches to ranking content-and-structure que-
ries on pairs of queries for which we expect equal ranking re-
sults from the query semantics. We show that most of these
approaches are not sound. Of the remaining approaches,
only 3 adhere to the W3C XQuery Full-Text standard.

1. INTRODUCTION
Models for ranked retrieval of XML data should comprise
four parts: 1) a model of the text, 2) a model of the struc-
ture, 3) a query language, and 4) a ranking algorithm. Rank-
ing is of the utmost importance if an effective XML search
system is needed. Some queries might match millions of el-
ements from the text database, but users will only be able
to inspect a few. Many of the early structured text retrieval
models do not consider ranked retrieval results, or if they do
only as an afterthought, i.e., by ranking the retrieval results
using a text-only query disregarding the structural condi-
tions in the query [6]. A simple but powerfull way to take
the structure of the results into account is to apply a stan-
dard information retrieval model to the retrieved content,
and then propagate or aggregate the scores based on the
structure [7, 13]. In several of these approaches to ranking,
the propagation is guided by weighting paths to elements dif-
ferently by so-called augmentation weights [8, 9], to model
for instance that a title element is more likely to contain
important information than a bibliography item. Instead of
propagating or aggregating the scores from the leaf nodes,
algebraic approaches include the ranking functionality in-
side each operator of the query language [2, 16]. Ranking
might also include relaxation of the queries’ structural con-
ditions, for instance by rewriting complex queries step-wise
to simpler queries [4]. The development of effective rank-
ing algorithms for XML information retrieval is studied in
the workshops of the Initiative for the Evaluation of XML
retrieval (INEX) [14].

This paper studies mathematical properties of ranking algo-
rithms. While we pursue effective algorithms as described
above, in this paper we additional pursue sound ranking al-

gorithms. Ranking algorithms for structured information
retrieval are sound if the following two conditions are met:

1. Ranking should reflect the actual, combined content
and structure constraints;

2. Two queries that are semantically equal (from a stan-
dard –unranked– XPath or XQuery perspective) should
produce the same ranked results.

An example of a system that violates Condition 1 would
be a system that first runs the query as a Boolean selec-
tion, and then ranks the resulting elements using a standard
text retrieval model, i.e., a ranking algorithm that ignores
the structure. Suppose we are looking for articles that talk
about ranked xml retrieval which were supported in one way
or another by John Doe. This might be formulated as fol-
lows using the NEXI query language [18] (Similar examples
will be provided for XQuery Full-text [1] below).

//article[about(.//p, ranked xml retrieval) and

about(.//ack, john doe)]
(1)

NEXI stands for Narrowed Extended XPath I, a version of
XPath that only supports the descendant and self steps, but
that is extended by a special about() function. The results
of a NEXI query are not in document order, but ranked
by estimated relevance to the about() parts. If the system
first performs a Boolean selection, then it suffers from the
well-known disadvantages of Boolean systems: if we inter-
pret the about() function as a conjunctive query for which
all three words ranked, xml and retrieval should occur in
the document, then it is for long queries unlikely that any
article matches the query (not because there are no relevant
articles, but because they discuss for instance probabilistic
xml retrieval, or ranked structured retrieval, or ranked xml
search, etc. In that case the result would be empty. If
we however interpret the about() function as a disjunctive
query for which the matching of a single word suffices, then
the ranking (i.e., a ranking that ignore the structure) would
ignore the paragraphs and acknowledgments. In this case,
the top document might very well discuss the holiday di-
ary of John Doe, in which he acknowledges the top ranked
XML systems for retrieval (i.e., it might be the paragraph
the matches john doe and the acknowledgments that match
ranked xml retrieval).

We believe a true XML retrieval system should meet Condi-
tion 1 above. Suppose such a system executes the following
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query.

//article[about(.//p1, xml)]|//article[about(.//p, xml)] (2)

If Condition 1 is met then the system’s ranking reflects the
actual, combined content and structure constraints, so the
ranking will reflect a match in the p1 elements or a match
in the p elements. These queries occur a lot in complex
documents, such as the IEEE journal data used in the Ini-
tiative for the Evaluation of XML Retrieval (INEX) from
2002 to 2005 [14]. In this collection the elements p1 and
p both refer to types of paragraphs, as do the elements p2,
ip1, ip2, etc. In queries, the user usually does not want to
distinguish these different kinds of paragraphs, hence the
query above. In fact, such cases were that frequent in INEX
that the organization introduced tag equivalence classes [14],
and additional query syntax to ease the formulation of such
queries (which is also allowed in XPath 2.0). The following
NEXI query is equivalent to the query above:

//article[about(.//(p1|p), xml)] (3)

Suppose the system ranks the returned articles for the sec-
ond query differently than for the first query, resulting in
8 articles in the top 10 that were previously not in the top
10. In that case, the system violates Condition 2: Because
the queries are semantically equal, they should result in the
same ranking. In order for a ranking algorithm to be sound
it should meet Condition 1 and Condition 2. We will show
in this paper that for systems that meet Condition 1, it is
not trivial to meet Condition 2 as well. In fact, we believe
it might be impossible to come up with a ranking approach
that meets Condition 2 in all cases, especially in the case of
XQuery full-text for which there are many ways of formu-
lating the same query.

In this paper, we will investigate the soundness of ranking
algorithms by systematically comparing the retrieval results
of ranking algorithms that meet Condition 1 for two queries
that are semantically equal. As a starting point of our study,
we hypothesize that all ranking algorithms meet Condition
2 as well. Only if we find an example that violates Condition
2 we will drop the hypothesis. We will show that for almost
all reasonable ranking algorithms, there are examples of two
semantically equal queries and a data set for which the two
queries produce a different ranking.

The paper is organized as follows. Section 2 describes the
queries used for analysing the soundness of ranking algo-
rithms, and how they are executed. Section 3 presents the
test data used. Section 4 presents the ranking approaches
we evaluated. In Section 5 the experimental results are pre-
sented. Finally, Section 6 concludes this paper.

2. THE TEST QUERIES
Our analysis of the problem follows that of Mihajlovic [15,
Chapter 3], who identifies three requirements for scoring
in structured retrieval models. XML ranking algorithms
should provide:

Score computation: Given a text query and a set of nodes,
compute the score of each node. This is provided by
traditional information retrieval models.

Score propagation: This is needed for all XPath axis steps.
To do an axis step from a node for which a score was
computed, the scores need to propagate to the result
nodes. For some axis steps, for instance the parent
step, the score of several children needs to propagate
to a single result node.

Score combination: Score combination is needed if the
same set of nodes is scored multiple times and the fi-
nal score should reflect the scores of the nodes in both
sets.

As an example, consider the following XQuery Full-Text
query, that ranks the acknowledgments elements (ack) that
thank John Doe in articles about XML, similar to the query
in Example 1 above:

for $d score $s in doc("test.xml")//ack

where ../article ftcontains "xml"

and . ftcontains ("John", "Doe")

order by $s desc

return $d

(4)

Here, score computation is needed for the article elements
(scored by the similarity to xml) and for the ack elements
(scored by the the similarity to John Doe). The query should
rank ack elements, so the scores of the article elements
needs to be propagated to their child ack elements. Finally,
the two scores for each ack element need to be combined in
a final score.

If the user wants to rank the acknowledgments from articles
about XML that thank John Doe, he/she might as well pose
the following query.

for $d score $s in

doc("test.xml")//article[. ftcontains "xml"]/ack

where . ftcontains ("John", "Doe")

order by $s desc

return $d

(5)

In fact, several queries are possible that are semantically
equal as meant by Condition 2 above. We define semantic
equality as follows: The XPath representation of a NEXI
query is defined as the query produced by replacing every
NEXI function about(n, s) with fn:contains(fn:string(n),

"s"). Two NEXI queries are semantically equal if and only if
their XPath representations are equivalent, i.e., return the
same result when evaluated. Similarly, the XQuery represen-
tation of an XQuery Full-Text query is defined as the query
produced by replacing every XQuery Full-Text function n

ftcontains "s" by fn:contains(fn:string(n), "s"), and two
Full-Text queries are semantically equal if and only if their
XQuery representations are equivalent. However, because
of the properties of score computation, propagation, and
combination, two semantically equal queries might produce
different rankings, and might therefore return different (top)
elements to the user, i.e., the ranking algorithm is not sound.

Case 1: The semantics of score computation
In our first case we look at the semantics of score compu-
tation. Score computation is the most important of Miha-
jlovic’s requirements. Here, we only consider simple scoring,
i.e., scoring of queries without using proximity or phrases (in
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NEXI, phrases can be marked as with double quotes), i.e.,
the following query.

//article[. ftcontains ("xml", "ir", "db")] (6)

In XQuery Full-text, this query retrieves articles that match
any of the terms, i.e., the standard behavior is that of a
Boolean OR query. Given these semantics, we expect scor-
ing to be compositional, that is, if we select article contain-
ing “xml” and union those with articles containing “ir”, “db”
as shown in the following query, then we expect the same
results as the query above.

//article[. ftcontains "xml"]|//article[.

ftcontains ("ir", "db")]
(7)

Several alternative formulations are possible in XQuery Full-
Text, for instance //article[. ftcontains "xml" ftor ("ir",

"db")] or //article[. ftcontains "xml" or . ftcontains("ir",

"db")]. The alternative formulations select the exact same
articles, and if simple scoring behaves as a Boolean OR
query, then we expect a sound ranking approach to produce
the same rankings for all these formulations.

However, from the user’s point of view, we might argue
that scoring should have the semantics of the Boolean AND:
the best documents are the ones containing all three query
terms, not just many occurrences of either query term. If
simple scoring behaves as a Boolean AND query, then we
expect a sound ranking of Query 6 approach to produce the
same rankings as the following query:

//article[. ftcontains "xml"][.

ftcontains("ir", "db")]
(8)

or alternative formulations: //article[. ftcontains "xml"

ftand ("ir", "db")], or //article[. ftcontains "xml" and .

ftcontains ("ir", "db")]. These queries (and similar NEXI
queries) correspond to different query plans in the PF/Tijah
XML search system [11]. These plans use so-called score re-
gion algebra to process these queries. Figure 1 contains the
query trees for the three plans. Instead of putting the region
algebra operators in the trees (the exact definition of alge-
braic operators in outside the scope of this paper), the figure
contains the partial queries that represent the intermediate
results at that stage of the query plan.

//article

//article[xml db ir] 

//article[xml db ir] 

//article[xml] 

//article

//article[ir db]

//article//article

//article[xml] 

//article[xml]|//article[db ir] 

Figure 1: Query plans 1a, 1b and 1c for Case 1

Following the line of reasoning of sound ranking algorithms
presented above, the simple scoring plan shown in Figure
1a should either produce the same ranking as the disjunc-
tive plan shown in Figure 1b, or it should produce the same
ranking as the conjunctive plan shown in Figure 1c. If Plan

1a produces a result different from both Plan 1b and 1c,
then the score computation is not sound: Users of retrieval
systems should be able to understand the difference between
OR-queries and AND-queries, however, it is hard to antici-
pate on semantics that is different from these two.

Case 2: Score propagation – downwards
In the second case we look at downwards score propagation:
Suppose the user is interested in sections about “databases”
from articles about “xml”. In this case, the scores of the
article elements have to be propagated to the section ele-
ments. Such a query can be processed in two ways. Either
first score all articles, propagate the scores to the contained
sections, and score those, as shown in the following query:

//article[. ftcontains "xml"]//section[.

ftcontains "db"]
(9)

... or, first score all sections, and then score the articles that
contain these sections, as follows:

//section[. ftcontains "db"][./ancestor::article

ftcontains "db"]
(10)

The query trees of the actual query plans are shown in Fig-
ure 2.

//article

//article[xml]//section[db]

//article[xml]//section

//article[xml]

//section

//section[db] 

//article[xml]//section[db]

//article

//article[xml]

Figure 2: Query plans for Case 2

Following the line of reasoning of sound ranking algorithms
presented above, there is no reason why both queries and
both query plans above should not produce the exact same
ranking of section elements.

Case 3: Score propagation – upwards
In the second case we look at upwards score propagation:
Suppose the user that was interested in articles about “xml”
with sections about “databases” now wants to retrieve the
articles. In this case, the scores of the section elements have
to be propagated upwards to the article elements. Again,
the query can be processed in two ways. Either first score
all articles, and then propagate the scores to the contained
sections upwards as shown in the following query:

//article[. ftcontains "xml"][.//section

ftcontains "db"]
(11)

... or, first score all sections and propagate the score to
articles that contain these sections, as follows:

//section[. ftcontains "db"]/ancestor::article[.

ftcontains "xml"]
(12)
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The query trees of the actual query plans are shown in Figure
3. Again, a sound ranking approach would produce the exact
same ranking for both queries.

//article

//article[xml]

//article[xml][.//section[db]]

//section[db]

//section

//article[.//section[db]][xml]

//article[.//section[db]]

//section[db]

//section

Figure 3: Query plans for Case 3

Case 4: Score Combination – union
Case 4 looks at score combination, more specifically at score
combination when the union of two node sets is taken. Sup-
pose the user wants articles that mention “xml” in a section,
or that mention “db” in the title:

//article[.//section ftcontains "xml" or .//title

ftcontains "db"]
(13)

As discussed above, both XQuery/XPath Full-Text and NE-
XI support a union operator “|” that might be used as well.
For instance, an alternative formulation of the query above
would union two sets of article nodes, one of which the sec-
tions contain “xml” and another set of article nodes which
titles contain “db”.

//article[.//section ftcontains "xml"]|//article[

.//title ftcontains "db"]
(14)

For article nodes that are in both sets, the union operator
should somehow combine the scores. The query trees of the
actual query plans are shown in Figure 4. A sound ranking
approach produces the exact same ranking for both queries.

//article[.//title[db]]

//title

//title[db]

//section

//section[xml]

//section[xml]|//title[db]

//section[xml]

//section

//article[.//section[xml]]|//article[.//title[db]]

//article[.//section[xml]]

//article[.//section[xml] or .//title[db]]

//title[db]

//title

Figure 4: Query plans for Case 4

Mihajlovic’ score region algebra [15] supports an intersection
operator similar to the union operator above. Such an oper-
ator is not supported by the XQuery/XPath Full-Text and
NEXI, since it is unnecessary in practice. Therefore, we will
not consider score combination in the case of intersecting
two node sets.

Case 5: XQuery Full-text scoring properties
The XQuery Full-text standard imposes very few restric-
tions on scoring: The numeric score computed by queries is
implementation-dependent, i.e, scoring may differ between
implementations; scoring is not specified by the W3C speci-
fication, and scoring is not required to be specified by the im-
plementor for any particular implementation. The standard
however imposes the following two restrictions on full-text
contains expressions [1]:

A full-text contains expression returns a Boolean value.

So, a full-text contains expression always distinguishes the
matching nodes from the non-matching nodes. In Miha-
jlovic’s score region algebra [15], operators compute scores
for all nodes, that is, all nodes always match the expression.
One might argue that this follows the XQuery Full-text stan-
dard (each full-text expression always returns true), but at
least it is not in the spirit of XQuery Full-text. We will call
the semantics of the score region algebra operators ranking
semantics and the semantics suggested by XQuery Full-text
matching semantics. In practice, matching semantics is of-
ten required in practical systems. The current PF/Tijah
implementation has default matching semantics. We inves-
tigate both matching semantics and ranking semantics to see
which of the two is more likely to produce sound ranking.

Score values are of type xs:double in the range [0, 1].

This restriction is not imposed by score region algebra [15].
In fact, many well-performing ranking functions – for in-
stance Okapi’s BM25 [17] – produce scores greater than 1
in some cases, and even if they do not, the approach might
produce scores greater than 1 after score propagation and
score combination.

Case 5 does not define an extra set of queries. The sound-
ness of rankings produced by the queries in Case 1 to 4 above
are checked when using matching semantics and ranking se-
mantics. Furthermore, we check if the scores of the results
of the queries in Case 1 to 4 are in the range [0, 1].

3. THE TEST DATA
We will evaluate the test cases on artificial data to en-
sure that we control the circumstances in which queries fail.
Some ranking algorithms might be sound in most cases, for
instance, they might be sound, unless the elements that are
ranked are nested. In the examples above, we would ex-
pect every article to have only one acknowledgments section;
which might actually be defined in a DTD or XML schema.
The schema might also contain elements that have a many-
to-one relation to article elements, such as paragraph ele-
ments, or elements that might be nested inside themselves,
such as section elements (i.e., sections, subsection, and sub-
subsections might all be ambiguously referred to as section.
When element scores are propagated through the document
structure, they might have to be aggregated in case of many-
to-one relations, or divided in case of one-to-many relations,
or both aggregated and divided in case of nested relations.
The following DTD contains several of such cases:
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<!ELEMENT root (article | report)* >

<!ELEMENT article (title, section+) >

<!ELEMENT report (title, section+) >

<!ELEMENT section (heading, (section+ | paragraph+)) >

<!ELEMENT title (#PCDATA) >

<!ELEMENT heading (#PCDATA) >

<!ELEMENT paragraph (#PCDATA | list)* >

<!ELEMENT list (item | list)* >

<!ELEMENT item (#PCDATA) >

We distinguish the following 5 cases in which elements from
two node sets can be nested: 1:1, 1:n, 1:n where the elements
of the second node set are nested, n:m where the elements
of first node set are nested, and n:m where the elements of
both sets are nested.

article vs. title 1 : 1
article vs. paragraph 1 : n

article vs. section 1 : n nested
section vs. paragraph n nested : m

section vs. list n nested : m nested

The queries presented in the cases above are all examples
of the “1:n nested” type, i.e., the queries refer to article

elements and section elements. Each query is run as in one
of the above five types; so, article and section are replaced
by: 1) article elements and title, 2) article elements and
paragraph, 3) article elements and section, 4) section ele-
ments and paragraph, 5) section elements and list.

4. THE RANKING APPROACHES
We test a total number of 200 ranking approaches for XML
search. These approaches are for an important part the
same as the approaches Mihajlovic [15] evaluated in oder
to find effective ranking approach for XML search. So, our
ranking approaches are motivated mostly by testing those
approaches for which we expect good recall and precision
values in standard information retrieval evaluations, such as
those provided by INEX. The number of ranking approaches
that can be defined for XML search is endless however, and
we do not attempt in anyway to test a complete (sub-)set of
all possible ranking functions.

The choices of our ranking approaches are restricted by
PF/Tijah’s algebraic approach to XML search. Each op-
erator in score region algebra follows the same pattern: It
operates on a context node set (context region set), and a
target node set (target region set). Both the context nodes
and the target nodes might have scores already from pre-
vious operations. Each operator has to combine the score
of target node with the scores of (possibly) multiple match-
ing context nodes. For each target node, we distinguish
three situations: 1) the target node does not match any
context node: In this case the target node is not returned
(matching semantics) or it is returned with a default score
(ranking semantics); 2) the target node matches one and
only one context node: In this case, the target node is re-
turned with the combined score of the target node and the
matching context node; 3) the target node matches more
than one context node: In this case, scores of the matching
context nodes are first aggregated, and then combined with
the score of the target node. Aggregation and combination
define two of the dimensions along which we define ranking

approaches, the other dimensions are the retrieval model,
and ranking/matching semantics:

Score combination
We test 5 different ways to combine the scores of the context
node and the target node: adding, multiplying, maximum,
minimum, and average.

Score aggregation
We test the same 5 different ways to aggregate the scores
of the matching context nodes: sum, product, maximum,
minimum, and average. This brings the total number of
approaches to 25.

The retrieval model
We test four different retrieval models, bringing the total
number of approaches to 100: LMS, a standard language
model using linear interpolation smoothing [10]; LM, a stan-
dard language model without smoothing; NLLR: normalized
log-likelihood ratio (a simple derivation of LMS that pro-
duces log-linear scores) [12]; BM25: Okapi’s BM25 ranking
formula [17].

Ranking semantics vs. matching semantics
We test each approach with ranking semantics (each opera-
tor returns all nodes with a score), and matching semantics
(each operator returns a selection of the nodes), so 200 ap-
proaches in total over all four dimensions.

5. INVESTIGATING THE SOUNDNESS IN
PRACTICE

Using the DTD described in Section 3, a 100kB artificial test
collection with articles and reports was generated. The text
nodes were generated from a simple language model of three
words (“ir”, “db”, and “xml”), where each word is generated
by some probability. This way, almost every element will
match a query to some extent, with scores similar to other
elements, possibly resulting in different rankings. Each of
the 200 ranking approaches from Section 4 was tested on
a pair of queries from one of the four cases from Section 2,
where each query followed one of the five ways in which data
can be nested described in Section 3, defining in total 5000
queries. We summarize the results by reporting the most
important lessons learned.

Lessons for Case 1: Score computation
In all cases that used the NLLR retrieval model, we detected
unsound ranking behavior on the test data. The NLLR re-
trieval model differs from the LMS retrieval model mainly
because it uses query length normalization. Apparently, re-
trieval models that use some form of query length normal-
ization are not sound. Other examples of retrieval models
that uses query length normalization are vector space mod-
els that use the cosine similarity.

For almost all ranking approaches that use matching seman-
tics, we detected unsound ranking behavior when comparing
Plan 1a to 1c. Apparently, matching semantics excludes the
possibility to follow the semantics of AND-queries, which
seems logical because most models retrieve elements even if
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they do not contain all query terms. An exception is the LM
retrieval model, i.e., the language model without smoothing:
this is the only model that does not produce unsound rank-
ings behavior when comparing Plan 1a to 1c.

Unsound ranking behavior was occassionally detected when
comparing Plan 1a to 1b. The ranking approaches tested
are more likely to follow the semantics of OR-queries.

Lessons for Case 2: Score propagation – down
In most cases that used the BM25 retrieval model, we de-
tected unsound ranking behavior, except when score combi-
nation uses the product or the maximum. We believe the un-
sound behavior can be explained by the fact that the BM25
retrieval model uses the number of documents as one of its
parameters. This was implemented in the system as the size
of the target node set (i.e., the size of the set that needs
to be ranked). We believe implementing BM25’s N (the
number of documents) by taking the size of the set to be
ranked is the only sensible thing to do. We cannot take a
predefined N , because the set might be the result of a com-
plex selection query, possible combining for instance article
elements and report elements and then restricting them on
some other criterion.

The size of the sets, however, differs depending on the query
plan used. This is even the case in more simple queries
such as //article//section[. ftcontains "xml"]: If the sys-
tem first selects the sections that are contained by articles
(excluding the sections contained by reports in our test data)
then the size of the set to be ranked is obviously smaller than
the size of the complete set of sections as represented by the
query //section[. ftcontains "xml"][./ancestor::article]

Interestingly, all tf.idf term weighting algorithms use the
number of documents to be ranked in their definition. The
results indicate that all such approaches would produce un-
sound rankings.

We did not detect unsound ranking for BM25 if score combi-
nation uses the product or the maximum. If the maximum
is used for score combination, then the approach would of-
ten ignore the BM25 score, so this approach is useless in
practice. We are unable to explain the behavior when score
combination uses the product: It might be an artefact of the
data. This needs to be analyzed in the future.

Lessons for Case 3: Score propagation – up
In almost all cases that used the BM25 retrieval model, we
detected unsound ranking behavior of the queries on the test
data, except when score combination uses the maximum. As
above, we have strong indication that this is due to the use of
the size of the set that needs to be ranked in the definition of
the model, which differs depending on the query plan used.

Lessons for Case 4: Score Combination – union
Unsound ranking was detected if score aggregation uses the
average score of all matching context nodes. This might
be due to the fact that taking the average function is not
associative, and produces different values depending on the
order in which it is evaluated.

Lessons for Case 5: XQuery FT properties
By design, the ranking approaches using ranking semantics
(half of the approaches) do not adhere to the XQuery Full-
text standard, or at least they are not in the spirit of the
standard. A bigger problem might be the restriction that
scores should be between 0 and 1. The retrieval models
NLLR and BM25 produced scores greater than 1 in all cases,
the score aggregation that uses the sum of scores also pro-
duced scores greater than 1 in most cases. The score combi-
nation that uses the sum of scores produced scores greater
than 1 in some cases.

Overall lessons learned
If we only consider ranking approaches that: 1) did not pro-
duce unsound rankings; 2) did never produce scores greater
than 1; and 3) use matching semantics, then only 3 ap-
proaches remain: These three approaches use the language
model without smoothing (LM), multiply for score combi-
nation and either product, minimum or maximum for score
aggregation. Whereas approaches based on language mod-
els without smoothing might be sound, it is likely that the
search quality of the systems is below average: It is well-
known, that smoothing is important for getting high quality
retrieval results.

If we drop the requirement that scores should never by grea-
ter than 1, then 4 ranking approaches remain. Again, all of
them use the LM retrieval model.

If we however drop the requirement that scoring should uses
matching semantics, then 13 ranking approaches remain,
among which several approaches use the language model
with smoothing (LMS).

6. CONCLUSIONS
We report the behavior of 200 ranking approaches to ranking
content-and-structure queries on pairs of queries for which
we expect equal ranking results from the query semantics.
We show that most of these approaches are not sound, i.e.,
they fail to produce equal rankings in the cases studied.
Of the remaining approaches, only 3 adhere to the W3C
XQuery Full-Text standard, which requires so-called match-
ing semantics, and which requires retrieval scores to be smal-
ler or equal than 1 at all times. The difficulties in implement-
ing effective and sound ranking for XQuery Full-Text might
affect its acceptance as a standard in the future.

Is ranking really necessary?
The XQuery Full-Text standard was largely motivated by
complex retrieval queries. The XQuery Full-Text Use Cases
[3] discuss for instance querying across element boundaries,
wild cards, stop words, stemming, sensitivity to diacritics,
cardinalities, existential quantification, proximity, implicit
sentences and paragraphs, the use of thesauri, etc. Only a
small part of the Use Cases consider scoring. So, maybe
scoring is not really necessary in XML search?

Table 1 presents the average precision at 10 elements re-
trieved over 114 NEXI queries provided by the INEX 2006
evaluation. If we treat each about()-clause in NEXI as a
Boolean OR (this is the default behavior of XQuery Full-
text), then 97 out of 114 queries do not find any relevant

20



Approach P@10 queries failed?
Boolean OR 0.053 97 (85%)
Boolean AND 0.200 59 (52%)
LMS/MULT/MAX/Matching 0.361 22 (19%)
BM25/ADD/MAX/Matching 0.379 18 (16%)
LMS/MULT/MAX/Matching/prior 0.439 15 (13%)

Table 1: Retrieval quality on 114 INEX 2006 content-and-

structure queries

element in their top 10, the average precision at 10 be-
ing 0.053. The best language model and BM25 approaches
tested in this paper reduce the number of failed queries to
respectively 22 and 18 (about five times less errors) and re-
spectively 0.361 and 0.379 average precision at 10 (about
500% performance increase). If we add an element length
prior to the language modeling approach (longer elements
are more likely to be relevant; this was not tested for sound-
ness in this paper), then the number of failed queries is down
to 15 and the average precision is up to 0.439 (more than
700% improvement in performance). Clearly, a system with-
out ranking is useless compared to the system that includes
high quality ranking algorithms.

Other effective ranking techniques
We ignored many effective ranking techniques in this pa-
per, for instance techniques using spans of words to handle
the proximity queries defined in the XQuery Full-Text stan-
dard, but also the element length priors mentioned in the
previous paragraph which are not covered by the standard.
Our current definition of soundness (two Full-Text queries
are semantically equal if and only if their XQuery represen-
tations produce the same results) does not directly provide
ways to reason about the soundness of ranking given these
techniques and/or options. For future research, we hope to
provide a definition of soundness that does not refer to a
non-Full-Text version of the query, but instead allows us to
reason about the soundness of ranking in XQuery Full-Text
directly.
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ABSTRACT 
Collaborative knowledge management systems such as the 
Wikipedia are becoming ever more popular – and these systems 
typically contain hypertext links between documents. The 
Wikipedia offers both manual and automated link creation. In fact 
several different systems providing links for Wikipedia 
documents now exit. Problematically the quality of automatically 
generated links has never been quantified. An evaluation method 
for Wikipedia link discovery approaches is essential. 

We introduce the Link-the-Wiki task launched at INEX in 2007. 
90 documents were orphaned from the collection and participants 
were required to build systems that identified the missing links. 
The different automated link discovery techniques used by 
participants are outlined. Details of two successful techniques are 
given, one using the titles of pre-existing documents to identify 
anchors and destinations, the other using pre-existing links 
between documents to identify possible links in new documents. 
In this paper, we mainly focus on the analysis and assessment of 
Wikipedia link discovery and discuss possible future evaluation 
techniques. 

We examine one system in further detail and conduct a scalability 
experiment in which 1% of all Wikipedia documents were used 
and the performance studied in detail – link discovery in this 
system is shown to be scalable.  

Finally, potential research directions for link discovery, 
assessment and evaluation are discussed. 

Categories and Subject Descriptors: H.3.3 [Information 
Storage and Retrieval]: Information Search and Retrieval 

General Terms: Measurement, Experimentation 

Keywords: Wikipedia, Link-the-Wiki, INEX, Assessment, 
Evaluation, Information Retrieval, XML IR 

1. INTRODUCTION 

1.1 Motivation 
The goal of collaborative hypertext knowledge management (as 
seen, for example, in the Wikipedia) is to interlink all related 
knowledge. This helps users realize their particular information 
need, regardless of their level of understanding, by allowing them 
to click between text of entries expressing different and related 
concepts at different and related depths of coverage. Without 

hypertext links a user must search and browse (or otherwise 
navigate) into requisite content in order to expand their 
understanding. It is utterly inconvenient for the user to repeatedly 
search the collection simply to find content related to their core 
need. Worse, sometimes the content is not easily reachable using 
navigational facilities provided by the knowledge management 
system. 

Links between pages are essential for navigation, but most 
systems require authors to manually identify each link. Authors 
must identify both the anchors and the target page in order to 
place a link. This creates a heavy and often unnecessary burden 
on content providers [1] who should focus on the content and not 
on the relationship between their content and content already in 
the collection. As the size of the collection increases the task of 
manually identifying links can become unmanageable. The 
maintenance cost of keeping all links up to date is huge – and the 
Wikipedia has seen faster than linear growth for many years. 
Authors are typically unaware of all pre-existing content to which 
they might links, and even if they are they are unlikely to be 
aware of content created concurrently with their page. Page 
maintenance, in particular, linking to content added after a page is 
created is a burden to content providers who often do not maintain 
their content (hence the collaborative nature of these information 
resources). Worse, Ellis et al. [2] have shown significant 
differences in the links assigned by different people. 

Several systems (such as the Wikipedia) support simple text-
search facilities to help content providers identify anchors and 
links. External search engines such as Google, Qwika, Lycos and 
Yahoo can also be used to search well established knowledge 
management sites [3]. 

There are further problems! Linking is still typically performed 
between documents even though some documents are long and a 
better destination might be an anchor within a document. Link 
discovery methods have not yet been integrated into even the 
most successful systems (such as the Wikipedia). Links outside 
the closed system (i.e. to the web) are also manually added. There 
are many inaccurate and unnecessary links added to documents. 
And link spam is beginning to surface. 

To eliminate the human effort required to build a highly accurate 
hyperlink-link network, to reduce the chance of erroneous links, 
and to keep links up-to-date, automatic link discovery 
mechanisms are needed. 

Herein we concentrate on the Wikipedia because of its success 
and because of the availability of the INEX Wikipedia document 
collection. In particular we discuss the Link-the-Wiki track held 
at INEX 2007 in which automated link discovery systems were 
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solicited from participants and judged against human created 
hypertext links for 90 documents. 

The techniques used by each participant are discussed and 
contrasted, and then the results of the top two performing groups 
are analyzed in detail. We find that document-to-document link 
discovery systems are very good at exhibiting high precision 
levels at most points of recall, systems are scalable and that 
several different techniques might be used. This result motivates 
us to examine (and outline future work in) anchor to Best-Entry-
Point (BEP) identification. We discuss assessment and evaluation 
of this new focused retrieval task is in detail. 

1.2 Related Work 
As suggested by Wilkinson & Smeaton [1], navigation between 
linked documents is a great deal more than simply navigating 
multiple results of a single search query, linking between digital 
resources is becoming an ever more important way to find 
information. Through hypertext navigation, users can easily 
understand context and realize the relationships of related 
information. However, since digital resources are distributed it 
has become difficult for users to maintain the quality and the 
consistency of links. Automatic techniques to detect the semantic 
structure (e.g. hierarchy) of the document collection and the 
relatedness and relationships of digital objects have been studied 
and developed [4]. Early works, in the 1990s, determined whether 
and when to insert links between documents by computing 
document similarity. Approaches such as term repetition, lexical 
chains, keyword weighting and so on were used to calculate the 
similarity between documents [5, 6, 7]. These approaches were 
based on a document-to-document linking scenario, rather than 
identifying which parts of which documents were interrelated. 

Several conferences and workshops (in particular at SIGIR and 
LinkKDD) focused on link analysis and discovery. Most recently 
the Link-the-Wiki track at INEX required participants to build 
systems that discover potential anchors (representing the content 
of topics) and relevant destinations (Best Entry Points within a 
document) for each anchor [8, 9]. The details of this track are 
briefly described in Section 2. 

The link-network within Wikipedia is only valuable if it is 
maintained and all links are up-to-date, this is especially a 
problem in the case of a newly created article that should be 
linked to by pre-existing pages. Links in each document can be 
within the Wikipedia or other web resources outside the 
Wikipedia [10] so the document collection can never be closed. 
Although there are many methods in modern IR that can be 
applied to facilitate search, few experiments have been done in 
collaborative semantic linking [11]. 

Adafre & de Rijke [12] identify most links in the Wikipedia as 
conceptual. The Wikipedia link-network offers hierarchical 
information and links aim to expand the concepts in their anchors. 
The anchors imply the concept while the links are complementary 
to the concept. Since there is no strict standard of editing there are 
problems with over linking and missing links. Adafre & de Rijke 
proposed a method of discovering missing links in Wikipedia 
pages by clustering topically related pages using LTRank and 
identified link candidates by matching anchor texts. Page ranks 
using the LTRank method are based on the co-citation and page 

title information. Experimental results showed a reasonable 
outcome. 

Jenkins (2007) developed a link suggestion tool, Can We Link It. 
This tool identifies anchors within a document that have not been 
linked and that might be linked to other pages [13]. Using this 
tool, the user can accept, reject, or “don’t know” to leave a link as 
undecided. This tool also lets the user add links back to Wikipedia 
document. 

A collaborative knowledge management system, called 
PlanetMath, based on the Noosphere system has been developed 
for mathematics [14]. It is encyclopedic, (like the Wikipedia), but 
mainly used for the sharing of mathematical knowledge. Since the 
content is considered to be a semantic network, entries should be 
cross-referenced (linked). An automatic linking system provided 
by Noosphere employs the concept of conceptual dependency to 
identify each entry for linking. A classification hierarchy used in 
online encyclopedias is used to improve the precision of 
automatic linking. In practice, the system looks for common 
anchors that are defined in multiple entries and creates links 
between them, once the page metadata is identified as related. 
Based on the Noosphere system, NNexus (Noosphere Networked 
Entry eXtension and Unification System) was developed to 
automate the process of the automatic linking [15]. This was the 
first automatic linking system to eliminate the linking efforts 
required by page authors. Declarative linking priorities and 
clauses are specified to enhance linking precision. An approach, 
called invalidation index, was developed to invalidate entries 
belonging to those concepts where there are new entries. 
Reputation based collaborative filtering techniques could be used 
to provide personalized links. 

Research on the Wikipedia has been undertaken in recent years. 
In order to find cultural biases, network analysis algorithms such 
as HITS and PageRank have been used [16]. Based on Markov 
Chains [17], a set of experiments for finding related pages within 
the Wikipedia collection was undertaken using two Green-based 
methods [18], Green and SymGreen, and three classical 
approaches, PageRankOfLinks, Cosine with tf-idf and Co-
citations. The results show the Green method has better 
performance at finding similar nodes than only relying on the 
graph structure. Although page titles and category structure can 
be used to classify documents, properties such as the internal text 
of the articles, the hierarchical category, and the linking structure 
should be used [19]. Wikirelate proposed by Strube & Ponzetto 
[20] uses Path, Information content and Text overlap measures to 
compute the semantic relatedness of words. These measures 
mainly rely on either the texts of the articles or the category 
hierarchy. Gabrilövich & Markövitch [21] introduce a new 
approach called Explicit Semantic Analysis (ESA), which 
computes relatedness by comparing two weighted vectors of 
Wikipedia concepts that represent words appearing within the 
content. Common to this research is the use of the existing linking 
structure and content (category, etc.); we are interested in 
developing approaches to generate new links. 

Various link-based techniques based on the correlation between 
the link density and content have been developed for a diverse set 
of research problems including link discovery and relevance 
ranking [12]. Moreover, communities can be identified by 
analyzing the link graph [22]. Beside co-citation used by Kumar 
et al. [23] to measure similarity, bibliographic coupling and 
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SimRank based on citation patterns, and the similarity of 
structural context (respectively), have also been used to identify 
the similarity of web objects [24]. The companion algorithm 
derived from HITS has also been proposed for finding related 
pages (by exploiting links and their order on a page) [25, 26]. 

The assessment of results has been a challenge in IR experiments 
for many years because there is no standard procedure, relevance 
is hard to define and cross-assessor agreement levels are often low 
(so individual judgments come under dispute). Worse, it is 
difficult to compare IR methods which are able to retrieve highly 
relevant documents with those that retrieve less relevant 
documents because assessments are usually binary. The use of 
Precision-Recall curves is typical in IR; however, Schamber [27] 
argues that traditional P-R based comparison using binary 
relevance cannot adequately capture the variability and 
complexity of relevance. Relevance is a multilevel circumstance 
where, for a user, the degree of relevance may vary from 
document to document. 

Several studies have examined components that influence 
judgments and the criteria of relevance (including graded 
relevance) in information seeking and retrieval [28]. Kekalainen 
and Jarvelin [29] argue that evaluation methods should be flexible 
enough to handle different degrees of judgment scales. They 
proposed generalized precision and recall that can incorporate a 
continuous relevance scale into the traditional precision and recall 
measures. Their experiments demonstrate that the evaluation 
approach can distinguish between retrieval methods fetching 
highly relevant documents from those retrieving partially relevant 
documents. 

2.  INEX LINK-THE-WIKI TRACK 
The Wikipedia is composed of millions of interlinked articles in 
numerous languages and offers many attractive features for 
retrieval tasks [30]. The current INEX Wikipedia collection 
contains a snapshot of the Wikipedia English collection from 
2006 and contains 660,000 documents and is about 4GB in size. 
In INEX 2007 the linking task used 90 documents (topics), 
nominated from the existing collection by participants [31]. Topic 
nomination was preferred over random selection because some 
documents contain very few links (because, for example, they are 
very short). The topic-documents were removed from the 
collection (as were links to and from the documents) and treated 
as if new. The task was to identify a set of incoming and outgoing 
links to and from these orphaned documents together with the 
corresponding anchor text within the orphaned documents. 

2.1 Assessment and Evaluation 
There are two challenges in the LTW track at INEX. The first is 
to identify a set of text anchors that may semantically be linked to 
other pre-existing documents – these are candidate outgoing links. 
The second is the identification of candidate incoming links from 
other Wikipedia pages into the new document. Several natural 
language use issues such as synonymy and multiple meanings 
may cause anchor text inaccuracies and deficiencies. For example, 
the term IR can mean Information Retrieval or Information 
Registry, depending on context. Should Modern Information 
Retrieval or just Information Retrieval be highlighted as a term 
when both articles exist in the collection? As an aside, of course 
both could be linked, but unfortunately the Wikipedia interface 

(the web) does not currently (easily) support multiple links per 
anchor. 

It is important to rank the discovered links for a user’s selection, 
but it is not immediately clear how this should be done. A typical 
scenario might involve a user who wishes to inspect and then 
accept or reject recommended links. The user is unlikely to go 
through hundreds of potential anchors. Therefore, the most likely 
anchors should be presented first. Furthermore, even with 
automated linking the system must balance extensive linking 
against link quality. Ranking is necessary in order to determine a 
cut off point in link recommendation. 

It is essential to define a standard methodology and procedures to 
assess link quality and to quantitatively evaluate and compare 
different approaches.  

INEX 2007 used a variation of the Cranfield methodology. We 
have already discussed topic selection. From the topics we 
automatically generated the assessments (the ground-truth). 
Because the topic-documents were extracted from the existing 
Wikipedia collection, links both into the collection and from the 
collection already exist. These were used as the ground-truth, and 
were then eradicated from both the topic and the collection before 
the topics were distributed. This ground truth was not ideal (as we 
shall discuss later) but nonetheless reasonable, as it was what that 
was in the Wikipedia at the time. 

Constructing the assessments in this way resulted in no manual 
assessment effort, and facilitated the evaluation of systems with a 
very large number of topics. Participating search engines were 
explicitly forbidden from using the existing links to and from the 
topics (the whole collection was used in the INEX ad hoc track 
complete with links) although links within the collection that were 
unrelated to the topics could be used. Participant’s search engines 
returned ranked lists of possible incoming and outgoing links for 
each topic. Evaluation was carried out using MAP, R-Prec and 
P@R. Incoming and outgoing links were evaluated separately. 

This kind of automatic generation of link-assessments is 
applicable only to document-to-document link discovery because 
these are the only kinds of links that exist within the collection. 
Because of this INEX 2007 limited link discovery to document-
to-document linking.  

The goal of the task is to perform focused retrieval. That is, to 
link anchors in one document to focused units (e.g. sections, 
images, elements, or passages) in another. An anchor link click 
should ideally lead a user not only to a relevant document, but 
also to the best entry point within that document with respect to 
the anchor context. This requires far more elaborate assessment 
and evaluation and is discussed later in this article. 

2.2 The Quality of Wikipedia Links 
Although we treat the Wikipedia links as the ground-truth, they 
are obviously not perfect. Some links in the Wikipedia are already 
automatically generated and the validity is questionable. Year 
links, for example, are very often unrelated to the content of the 
document, but are easy to discover. Problematically they may also 
lead to optimistic evaluation results when identified by link-
discovery systems using automatic assessment generation 
techniques such as we describe. Many potentially good links that 
have not been identified by Wikipedia users are amenable to 
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automatic discovery – but will not be scored using automatic 
assessment generation. Such useful returned links which are 
missing from the ground truth could result in poor evaluation 
scores for highly effective link discovery systems, leading to 
pessimistic evaluation results. So although it is not possible to 
quantify the absolute performance using automated assessment, 
the procedure we used provides a trade-off between assessment 
effort (essentially none) and absolute accuracy of measurement. 

It is a reasonable to conjecture that comparative evaluation of 
methods and systems is still informative. Through comparative 
analysis of automated linking systems, it should remain possible 
to improve link discovery methods.  

3. WIKIPEDIA LINKS 
Links in the Wikipedia can be classified into several types. 
Crudely, they can be divided into linking within Wikipedia and 
outside web links. Less crudely: 

• Linking to an article which has the exact same name as an 
anchor. 

• Linking to an article which has a different name from the 
anchor, we identify the following kinds: 

- Synonyms. Linking to a page whose name has the same 
meaning as the anchor but different spelling. For example, 
the word “gods” in the following sentence, The elves were 
originally imagined as a race of minor nature and fertility 
gods, is linked to the page named Deity. 

- Tense. The past tense of a word may be linked to a page 
name as its present tense or its noun form. For example, 
the “pluralized” in the sentence, Elf can be pluralised as 
both elves and elfs, is linked to the page name plural. 

- Presenter. A name of an entity may link to its related 
presenter such as the singer of a song or the director of a 
film. 

- Language. Some old language characters (e.g. Latin and 
Old Norse) may be linked to related English words. For 
example, the word “Ljósálfar” in the sentence, he also 
based them on the god-like and human-sized Ljósálfar of 
Norse mythology, is linked to the page Light elf which is in 
turn redirected by Wikipedia to a page titled Light elves. 

- Definition. Some anchors are linked to the related page 
names that may express the meaning of the anchor. For 
example, the word “good” in the following sentence, They 
are great smiths and fierce warriors on the side of good, is 
linked to the page “Goodness and value theory” with the 
title “value theory”. 

- Disambiguation. Some links are redirected to a page that 
lists possible linking candidates. For example, the anchor 
“Moving Pictures” is linked to the page Moving Pictures 
that lists a serious of related pages (e.g. Moving Pictures 
(album), Moving Pictures (novel), Moving Pictures (song) 
and Moving Pictures (band)). 

• An anchor may be linked to a page that integrates several 
similar pages. Anchors that link to these “similar” pages are 
later redirected to the new integrated page. 

• Anchors may be in the references section: these are anchors 
that link to destinations either inside or outside Wikipedia. 

• Anchors in the See Also section: this is a list of related topics 
that link to Wikipedia pages. 

• External Link Anchors: there is also a list of related topics that 
link to pages outside Wikipedia (that is, to the web). 

Problematically, if most page names exactly match an anchor text, 
we can produce a simple method that systematically matches 
potential anchor strings with page names to identify most links – 
and achieve a recall of near 1.  

We examined the 90 LTW topics from INEX 2007 and found that 
in 81 of the 90 topics at least 50% of the links match an existing 
page name (see Table 1). This could be because the links were 
generated through careful construction by a user, or automatically 
by matching page names, either way such links are relatively easy 
to find. Although this implies that we can expect high recall from 
simple page-name matching strategies, it does not necessarily 
mean that we can expect high precision – many matching links 
are not relevant (for example, polyvalent terms). As the 
Wikipedia is a huge repository of definitions it is relatively easy 
to find matching page names which are not relevant.  

Ratio of Match Number of Topics 

90% ~ 100% 1 
80% ~ 90% 8 
70% ~ 80% 26 
60% ~ 70% 35 
50% ~ 60% 16 
40% ~ 50% 2 
30% ~ 40% 2 

Table 1: Ratio of matching names between anchors and links 

4. APPROACHES TO LINK-THE-WIKI  
In this section we briefly describe the approaches that were taken 
by the Link-the-Wiki participants.  

The University of Amsterdam system assumed that Wikipedia 
pages link to each other when articles are similar or related in 
content. For each of the 90 topics, the system queried the index of 
the entire collection, (excluding the topics). This was done by 
using the full topic as the query, but excluding stop words, and 
with important terms derived from a language model. The top 100 
files (anchors) were selected for each topic. They experimented 
with line matching from the orphans to the anchor files. For the 
outgoing links, the system matched each line of a topic with the 
lines of the anchors until a matching line was found. For the 
incoming links, the system iterated over all lines of each anchor 
for each line of the topic. The generated runs were based on the 
names of the pages, exact lines, and longest common substrings 
(LCSS) expanded with WordNet synonyms. The results show that 
the run based on restricting the line matching to the names of 
pages performed best.  

The University of Otago system identified terms within the 
document that were over represented by comparing term 
frequency in the document with the expected term frequency 
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(computed as the collection frequency divided by document 
frequency). From the top few over-represented terms they 
generated queries of different lengths. A BM25 ranking search 
engine was used to identify potentially relevant documents. Links 
from the source document to the potentially relevant documents 
(and back) were constructed. They showed that using 4 terms per 
query was more effective than fewer or more. The Otago system 
was effective at early recall but not overall. 

The University of Waterloo system found the first 250 documents 
(in document collection order) that contain the topic titles and 
then generated article-to-article Incoming links. For outgoing 
links, they performed link analysis. The system computed the 
probabilities that each candidate anchor would be linked to a 
destination file. The probability that a candidate anchor would be 
linked was computed (essentially) as the ratio of the number of 
times that the anchor text was actually linked in the collection, to 
the number of times that the anchor text appeared in the 
collection.  

The Queensland University of Technology (QUT) system 
identified incoming links using a ranked search for documents 
that were about the new document title. Outgoing links were 
identified by running a window over the new document text and 
looking for matching document titles in the collection. The 
window size varied from 12 words down to 1 word, and included 
stop words. Longer page names were ranked higher than shorter 
page names, motivated by the observation that the system was 
less likely to hit on a longer page name by accident. 

The best performing approaches were those that used either 
existing anchors to predict suitable anchors (Waterloo), or 
matching document titles to predict suitable anchors. The 
performance of these 2 approaches1 is depicted in Figure 1. Both 
approaches produce a very good result with high precision over a 
wide range of recall levels. This is precisely the kind of 
performance needed to satisfy a user. 

5. EVALUATION RESULTS 
In this section we concentrate on the two most successful 
approaches at INEX 2007 [31, 32], those of Waterloo and QUT. 

5.1 Anchor vs. Page Title Link Discovery 
There are considerable differences between the two approaches. 
The Waterloo approach relies on the availability of an extensive 
pre-existing web of anchor to document links in the collection. 
This pre-requisite may not always be satisfied, particularly when 
a new cluster of documents in a new domain is added to the 
collection in bulk, or when a new Wikipedia-like resource is 
created. However, the approach can discover links that are not 
solely based on a match between anchor text and a document title. 
If an anchor is frequently linked to a document with a different 
title, it will become a highly probable link. For instance, the 
Waterloo system was able to link Educational Philosophy to a 
document titled The Philosophy of Education. By contrast, the 

                                                                 
1 The graphs shown in this paper for the participating systems 

were generated after INEX 2007 and after the participants had 
fixed bugs and implemented corrections. The results we present 
will, therefore, not match those reported at INEX. 

QUT approach only discovered matching document titles. 
Although the performance of QUT is somewhat lower, the 
approach is applicable to any collection, regardless of the pre-
existing link structure. It could immediately be applied to any 
document collection, new or pre-existing.  

Figure 1 presents the precision-recall curves for the two systems. 
“Anchors 90” is the Waterloo system and “Page Titles 90” is the 
QUT approach. Both are shown for the 90 INEX topics. The 
anchor-based approach is better at almost all recall points.  

5.2 Scalability of Link Discovery 
To test the scalability of automated link discovery we additionally 
ran an extensive experiment on the collection. We randomly 
extracted 1% of the 660,000 documents and re-ran the 
experiment. So-far only QUT have provided results.  
The QUT experiment was run on a PC with 2GB memory and 
1.6GHz clock speed. It took 6 minutes to complete the process, 
processing in excess of 1,100 documents per minute. Figure 1 also 
presents the recall-precision curve for that run. It can be seen that 
performance over a very large number of topics selected at 
random is similar to the performance achieved over the INEX set, 
suggesting that 90 topics is sufficient to measure the performance 
of such systems. This result suggests that the manual choice of 
topics for INEX 2007 was not biased – which further suggests 
that topics can be randomly chosen in future years (thus further 
reducing the cost of assessing such systems for a document-to-
document linking scenario). 
Importantly, it is feasible to manually assess 90 topics whereas it 
is not be feasible to assess 6,600 using the resources available to 
INEX. Manual assessment would allow us to study more deeply 
the nature of link discovery – to identify those links returned by 
automatic systems that have not been identified by Wikipedia 
authors. It would also allow us to identify links that are already in 
the Wikipedia but which are not useful (e.g. year links are 
common, yet often of little use).  
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Figure 1. Scalability test: Differences in performance topic 

sets is likely to be human bias in topic choice  

5.3 Page Name Based Link Discovery 
It is straightforward to obtain candidate anchors by systematic 
comparison of substrings (of various lengths) against exiting page 
titles in the collection. Numerous matches arise, not all useful, so 
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a pruning strategy is needed. QUT adopted the following 
(effective) strategy: 

• Identify all candidate phrase-anchors of length 12 words 
down to 2, in that order.  

• Append candidate year anchors  

• Append all single term anchors 
No ordering was performed other than the above. Phrases were 
ordered by length, followed by years, followed by single terms. 
Within these groups the ordering was in the sequence in which the 
anchors were encountered.  
QUT found that it is possible to improve their result by re-
ordering the combined single-term and year anchors by the 
probability of the word being an anchor. This probability is 
estimated as the ratio of the number of times that the named page 
had been linked to, to the number of times that the page name 
appears in the collection (the collection frequency). Alternatively 
they used the number of documents in which an anchor text 
appears (document frequency). The performance degraded when 
phrase anchors were used in re-ordering – it appears that the 
phrase match heuristic is more useful than the estimated phrase 
anchor probability. Only short single term candidate anchors were 
ordered by the probability of being linked. 
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Figure 2: Linking strategy comparison 

In order to assess the contribution of each component (phrase, 
year, and term), QUT created separate submissions for each 
component. Figure 2 presents the recall-precision curves. Most 
surprisingly the contribution of the year links is small; they are 
ubiquitous throughout Wikipedia and were expected to contribute 
considerably to performance. Single terms contribute more than 
years over all because there are many more terms that could be 
linked. However, it is difficult to avoid irrelevant links using only 
single terms. The phrase links achieve higher precision and recall 
than terms and years. This is because phrases (long phrases in 
particular) that match a page name are highly unlikely to occur in 
a document without also being related to the page of the same 
name. Both years and single terms frequently match a page name, 
but not in the correct context. The combination of phrases, years, 
and terms is very effective as can be seen from the combined 
curve. The ranking of single terms by probability of being an 
anchor provides further improvements. The top 2 curves in Figure 
2 correspond to these variations. The improvement is only 

marginally greater when using the document frequency in place of 
collection frequency.  

6. FOCUSED LINK DISCOVERY 
The INEX Link-the-Wiki track in 2007 called for document-to-
document linking. The goal of the task is to find links that point 
not only to a relevant document, but also to a location within that 
document from which a user should start reading in order to 
satisfy their information need. This location is called a Best Entry 
Point, or BEP [33]. 

Furthermore, it is reasonable to expect to see anchors that could 
point to multiple locations. For instance, there may be numerous 
pages about Education Theory, not just a single overview page by 
that name. It may be necessary to impose some limit on the 
number of links per document, (and the number of links per 
anchor) to avoid linking every word of every document to another 
document. Just because the Wikipedia (or rather, a standard web 
browser) currently does not support the presentation and handling 
of multiple links per anchor it does not mean that we cannot or 
should not explore this scenario. 

In future INEX evaluations the task will be defined as anchor to 
BEP link discovery, and allow multiple links per anchor (actually, 
the latter is essential for manual evaluation purposed where two 
systems might link the same anchor to different document, both of 
which are relevant). Traditional performance measures such as 
MAP (Mean Average Precision) will be adapted to address the 
performance differences of link-discovery methods in this new 
scenario. 

Automated generation of assessments (the INEX 2007 model) 
produced an incomplete and biased ground truth, biased on what 
users did, not what they might (or should) have done. This bias is 
not dissimilar from that seem with relevance feedback 
experiments in which a user can only improve on results they 
have seen, and is not able to identify better and more relevant 
documents they have not seen. This problem was already 
explored in Section 2.2. Furthermore, the Wikipedia links do not 
have anchor-to-BEP functionality, nor do they have multiple links 
per anchor. Therefore it will not be possible to automatically 
generate assessments for evaluating anchor-to-BEP runs. For this 
it is necessary to employ a manual assessment procedure as well 
as a revised evaluation strategy. We identify this as a necessary 
future direction for research, and currently study it. An 
assessment tool for facilitating effective inspection and binary 
relevance judgment of individual anchor-to-BEP links is outside 
the scope of this paper, however we also currently study this. In 
what follows we assume that such a tool exists and that such 
relevance judgments of links will be available. 

6.1 Proposed Evaluation Procedure 
In automated link discovery there are two simultaneous ranking 
requirements: first a candidate list of anchors, second a candidate 
list of target documents for those anchors. In order to derive a 
single performance score over all proposed anchors and targets, 
the performance of each must be combined.  

A suitable form for a document score may be: 

)(linksMAPA =     (1) 

27



Where A is the single anchor score, defined as the mean average 
precision. For evaluation purposes runs will be of finite length so 
MAP will be computed up to that point of recall.  

We must also allow for anchors to be matched with some 
flexibility. An anchor may be defined in several slightly different 
ways. For instance, The Theory of Relativity, Theory of Relativity, 
and Relativity may well be conceptually identical anchors. 
Furthermore, if the anchor text occurs several times in a document 
we would expect only one instance to be anchored (as, for 
example, is seen in the Wikipedia) and so the location of the 
anchor may vary without being logically incorrect (we leave for 
yet-further work the question of which occurrence of an anchor is 
best to choose). In deriving a relevance score for an anchor a 
match has to be defined as conceptual, requiring only some 
minimal term overlap with an anchor in the assessments. The 
same kind of problem is seen in Question Answering where 
templates have been used to match correct answers, rather than 
document locations.  

Similarly, a BEP cannot be defined with absolute accuracy. Some 
reasonable proximity to a designated BEP in the assessments 
should be allowed. So a BEP might be considered relevant if, 
when viewed on a screen, it is no more than some distance (N 
words) away from a point chosen by an assessor (INEX uses a 
similar scheme for scoring BEPs). 

So in summary, an anchor-to-BEP link can be assessed as relevant 
on the basis of approximately matching both the anchor and the 
BEP of a relevant link in the assessments. 

Having computed individual anchor-to-BEP link score the 
document score can be derived: 

 ∑=
anchors

ii APfD )(     (2) 

Where Ai is the score assigned to a particular anchor, and f(Pi) is a 
monotonically decreasing function of the position of the BEP in 
the target document. The score can then be averaged over all 
topics in a run to provide the final run score. 

7. CONCLUSIONS AND FUTURE WORK 
As far as we are aware, the Link-the-Wiki task at INEX is the first 
to offer extensive reusable independent evaluation resources for 
link discovery. We have described this new evaluation task and 
then compared and contrasted the two most successful approaches 
submitted to Link-the-Wiki at INEX 2007. We further provided 
results of extensive linking experimentation with a very large set 
of documents (1% of the collection) and found that linking is 
feasible, effective, and scalable. 

A fully automated procedure for document-to-document link 
analysis that costs virtually nothing to administer is described. 
The procedure was used at INEX 2007 and allowed us to create a 
fast evaluation procedure with a turnaround time of days and not 
months because no manual assessment was required. The 
procedure allows for a very large number of documents to be used 
in experiments, and we demonstrate this by using 6,600 
documents for assessment. For link-discovery we have overcome 
the assessment bottleneck which is encountered in most other 
tasks in collaborative evaluation forums such as INEX and TREC. 

We further proposed to extend the task to anchor-to-BEP link 
discovery, and to multiple links per anchor. We describe the 
requirements for evaluating such a task and propose an evaluation 
procedure that is derived from standard well established IR 
methodology of measuring MAP. 

There is still much to explore in link discovery in Wikipedia. For 
document-to-document link discovery there was no demonstrated 
successful use of document similarity metrics to determine the 
appropriateness of a link. Sub-document similarity measures (as 
seen in ad hoc focused-retrieval experiments) are expected to be 
successful for BEP identification. That is, the similarity between 
the immediate anchor’s context and the immediate BEP context. 
It is not necessary for whole documents to be highly related for 
valuable links to exist. For instance, a document on Information 
Retrieval which briefly refers to Latent Semantic Analysis may 
well link to a document which discusses Dimensionality 
Reduction. Although the two documents may not seem related, a 
section on latent semantic analysis in one document may link to a 
section on singular value decomposition in the other. There is 
ample scope for natural language processing technology to 
explore ways by which context similarity can be used to improve 
the accuracy of link analysis at a granularity well below whole 
document. 

We believe we have solved the evaluation problem for document-
to-document linking and currently explore the evaluation of 
anchor-to-BEP linking in the context of focused-retrieval. 
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ABSTRACT 
This paper proposes a new definition of question classification 
based on question focus.  Multi-focus questions are defined as 
questions containing multiple foci.  It would be better to present 
their answers in a table.  Besides defining the focus degree, 
relations between question foci are also discussed.  A multi-focus 
question can be decomposed into several subquestions.  The 
characteristics of the subquestions determine the representation of 
the final answers.  Several simulation experiments have been 
carried out to verify the importance of focus analysis for multi-
focus questions in a QA system. 

Categories and Subject Descriptors 
H.3.4 [Systems and Software]: Question-answering (fact 
retrieval) systems 

General Terms 
Theory, Design, Experimentation 

Keywords 
Multi-focus questions, focus degree, question analysis, question 
decomposition 

1. INTRODUCTION 
Question answering has been a hot research topic in recent years.  
Large scale QA evaluation projects such as TREC QA-Track [1], 
QA@CLEF [2], and NTCIR QAC and CLQA Tracks [3][4] 
greatly support the developments of QA techniques. 

In recent QA research, three classes of questions, factoid, list, and 
complex questions, are generally studied.  Factoid questions are 
commonly studied in famous QA evaluation tasks.  They are often 
“fact-based, short-answer” questions as described in the overview 
of TREC QA Tracks [5].  For a factoid question, the required 
answer is often a short string, i.e. a name of an entity, a temporal 
expression, or a noun phrase, etc.  For example, the answer to the 
factoid question “in what year did the Titanic sink” is a short 
temporal expression “1912”. 

List questions created in recent QA evaluation forums are also 
factoid questions.  The difference is that a list question often 
expresses the multiplicity of its answers explicitly (e.g. “what 
countries have been struck by Tsunamis”) or directly requests an 
amount of various answers (such as “name 20 countries that 
produce coffee”).  Answers to a list question are often presented 
in a list.  For example, the list “Papua New Guinea, Indonesia, 
New Guinea, Japan” is an answer to the list question “what 
countries have been struck by Tsunamis”. 

Complex questions, on the other hand, often refer to long-answer 
questions.  It means that an answer to a complex question is often 
a longer passage, say, a set of sentences, a paragraph, or even an 
article.  Questions asking about reason (“why does the moon turn 
orange”), definition (“what is an atom”), method (“how to sort 
data in Excel”), or biography (“who was Galileo”) are complex 
questions. 

But during our studying on question answering, we found that 
some questions seem not be able to be classified into the above 
three classes.  An example of such questions is: 

Q1: What are the populations of the countries in the 
world? 

Its answer is not simply a number (as an answer to the factoid 
question “what is the population of Japan”) nor a list of country 
names (as the answers to the list question “what are the countries 
in the world”), but rather a set of <country_name, population> 
tuples.  It is also suitable to present the answers by a table.  For 
question Q1, we can give answers in a two-column table like 
Table 1 whose columns represent “country name” and 
“population”, respectively. 

Table 1. The answers1 to Q1 
“What are the populations of the countries in the world?” 

Country Population 
Brazil 178,470 
Czech 10,236 
Egypt 71,931 
Iceland 290 
Malaysia 24,425 
Yemen 20,010 
... ... 

A main difference between the new question class and the known 
three question classes is that: a question of the new class has two 
or more question foci, while a question of the known classes often 
has only one question focus.  To our best knowledge, there is no 
research discussing on this topic. 

Question decomposition is important for a QA system to answer 
multi-focus questions.  However, the previous research on 
question decomposition rarely discussed the multiplicity of 
question foci.  Saquete et al. [6] aimed on complex temporal 
questions expecting only single answers (single-focus questions 

                                                                 
1 Data in Table 1 come from the following UN webpage: 

http://www.un.org/Pubs/CyberSchoolBus/infonation/e_infonati
on.htm. 
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as defined later in this paper).  The purpose of question 
decomposition in their work was to resolve temporal information 
carried in a question.  Harabagiu et al. [7] worked on complex 
questions in LREC which were all single-focus questions.  Their 
decomposition process was more likely a procedure to produce 
lots of queries which were semantically related to the original 
question in order to gather more information of answers.  Besides, 
the responses of their system were summaries from multiple 
documents, not a set of tuples.  Lin and Cho [8] proposed a 
method to do question segmentation, but the main purpose of their 
work was to identify different questions occurring in a post, not 
inside one question sentence. 

The question decomposition in the START system [9] is most 
relevant to this topic.  If START cannot find answers to a 
question, it will try to decompose the question and solve the 
subquestions one by one.  For an example selected from their 
paper, in order to answer the question “when was the 20th 
president of the U.S. born”, START first seeks the answer to the 
first subquestion “who was the 20th president of the U.S.”, whose 
answer is “James Abram Garfield”, and then finds the answer to 
the second subquestion “when was James Abram Garfield born”, 
which is also the final answer, “Nov. 19, 1831”.  We can see that 
the answer to the original question is still a single string.  START 
does not yet manage to answer in table fashion. 

Katz et al. [9] referred to a question needed to be decomposed as 
a “complex question”.  In our definition, such a question is 
classified as a multi-focus single-response question. 

This paper proposes a new principle to classify questions which 
have more than one question focus.  Section 2 introduces the idea 
of multi-focus questions by defining the focus degree and the 
relations among the foci.  Section 3 gives some simulation 
experiments to show the importance of handling multi-focus 
questions.  Section 4 concludes this paper. 

2. Definition of Multi-Focus Questions 
The definitions of question focus are not quite the same in many 
papers.  Lehnert [10] defined it as “the question concept that 
embodies the information expectations expressed by the question”, 
while recent QA research groups [11][12] often refer to it as “a 
word or sequence of words which indicate what information is 
being asked for in the question” which means a question focus is a 
substring of a question. 

To extend the definition to multi-focus questions, we first 
consider the necessity of question decomposition, and then define 
the question focus degree. 

2.1 Question Decomposition 
As we have seen in Section 1, some questions need to be 
decomposed before looking for answers.  The decomposition 
process divides a question into a set of subquestions. 

In our observation, a subquestion may depend on another question, 
i.e. a subquestion cannot be answered before another subquestion 
is answered.  The dependencies of the subquestions form a 
dependency chain.  Take Q1 as an example: 

Q1: What are the populations of the countries in the 
world? 

Q’1,1: What are the countries in the world? 

Q’1,2: What is the population of <ansQ’1,1>? 
Dependency chain: Q’1,1 → Q’1,2 

Question Q1 is decomposed into two subquestions and its second 
subquestion depends on its first subquestion, which means we 
have to find the names of all the countries in advance so that we 
can answer the population of each country. 

In the next sections of this paper, we call the rightmost 
subquestion in a dependency chain the final subquestion, while 
other subquestions are preceding subquestions.  Note that there 
can be more than one final subquestion in a question, as we will 
see later. 

2.2 Question Focus and Focus Degree 
Our definition of question focus of a subquestion follows the 
convention.  The question focus of a question can be re-defined 
as the set of the question foci of its subquestions. 

Now we define the focus degree (FD) as the cardinality of the 
question focus set.  For example: 

Q2: Give me the capitals, national flowers, and 
national trees of all the countries. 

The question foci of Q2 are “capital”, “national flower”, “national 
tree”, and “country”.  Therefore, the focus degree of question Q2 
is 4. 

A multi-focus question is a question whose focus degree is larger 
than 1.  On the other hand, a question with a focus degree as 1 is 
called a single-focus question. 

2.3 Relations between Question Foci 
In order to learn the characteristics of multi-focus questions, we 
visited three QA websites, PTT2, Yahoo Knowledge+3, and Baidu 
Zhidao4, to collect multi-focus questions.  Although the questions 
are written in Chinese, we believe that the nature of multi-focus 
questions should be language-independent, so the Chinese 
question set can reveal the characteristics as the questions written 
in other languages. 

Because the question collections in those QA websites are too 
large to browse, we submitted some particular queries which 
might often be realized by multi-focus questions.  Examples of 
the queries are “country + caption” and “city + population”. 

After browsing 2,650 questions, we collected a set of 222 multi-
focus questions.  The number does not reveal the true ratio of 
multi-focus questions in human languages.  A larger scale of 
investigation should be conducted in the future. 

In our investigation, we find that the relation between two 
question foci is helpful to define the format of required answers.  
Note that when discussing the relation between two question foci, 
only their head nouns or the main constituents are considered. 

The following four relations are explored from the collected 
multi-focus question set: 

 

                                                                 
2 http://www.ptt.cc/ 
3 http://tw.knowledge.yahoo.com/ 
4 http://zhidao.baidu.com/ 

31



(1) Coordinate Relation 

The original question is a combination (mostly coordinate 
conjunction) of its subquestions.  For example: 

Q3: I want to know the biggest city and the largest 
port in Japan. 

Q’3,1: What is the biggest city in Japan? 
QF1 

Q’3,2: What is the largest port in Japan? 
QF2 

Dependency chain: {Q’3,1, Q’3,2} 

Q3 is in fact a conjunction of its two subquestions, Q’3,1 and 
Q’3,2.  In this case, two subquestions can be answered 
independently. 

(2) Entity-Attribute Relation 

One question focus represents an entity type while the other 
focus represents an attribute of the entity type.  For example: 

Q4: What are the 5 largest cities and their 
populations? 

Q’4,1: What are the 5 largest cities? 
QF1 

Q’4,2: What is the population of <ansQ’4,1>? 
QF2 

Dependency chain: Q’4,1 → Q’4,2 

QF2 “population” in Q4 is an attribute of QF1 “city”.  To 
answer this question, we should know the 5 largest cities 
before we can find the population of each city. 

(3) Entity-Relationship Relation 

Both question foci are entity types.  One focus is explicitly 
expressed but the other focus is hidden.  Instead, the surface 
text of the other focus represents the relationship between the 
two entity types.  For example,  

Q5: Names of capitals of Spanish speaking 
countries? 

Q’5,1: What are Spanish speaking countries? 
QF1 

Q’5,2: Name of capital of <ansQ’5,1>? 
QF2 

Dependency chain: Q’5,1 → Q’5,2 

The two question foci in Q5 are actually “city” and “country”.  
The phrase QF2 is the relationship “capital-of” between the 
explicitly stated focus QF1 “country” and the hidden focus 
“city”. 

Someone may argue that a question like Q5 does not need a 
table to present its answers, because the question only 
requests a list of capital names.  But it seems to us that a list 
of <country, capital> tuples is more expressive and 
welcome. 

Because there are also relationships relating to three or more 
entities, naturally there will be questions asking all the 
entities involved in a specific relationship at the same time.  
This definition can be extended to a relation among three or 
more entities. 

 

(4) Thematic Relation 

A more complicated case is that the two question foci are 
involved in a predicate-argument structure.  “Argument” 
here refers to semantic argument.  The two foci are often two 
arguments related to a predicate.  For example: 

Q6: When are the proper times to take vitamins? 
Q’6,1: List all the vitamins. 

QF1 
Q’6,2: When is the proper time to take <ansQ’6,1>? 

QF2 
Dependency chain: Q’6,1 → Q’6,2 

This question asks for a list of vitamins and the best time to 
take each kind of vitamin.  Take the predicate “take” into 
account, QF1 “vitamin” is the patient of the predicate and 
QF2 “proper time” is the time of the predicate.  Both are the 
semantic arguments of the predicate “take”. 

Here is another example: 

Q7: How to take care of fruit trees? 
Q’7,1: List all the fruit trees. 

QF1 
Q’7,2: How to take care of <ansQ’7,1>? 

QF2: the procedure to take care 
Dependency chain: Q’7,1 → Q’7,2 

The surface text of QF2 is “how to take care” which asks for 
a procedure to take care of something.  Considering the 
action of “taking care”, QF2 corresponds to its method and 
QF1 “fruit trees” is the beneficiary.  Different fruit trees may 
need different care procedures, so the answers could be 
presented by multiple columns. 

This definition can also be extended to a relation among two 
or more entities, because there can be many arguments 
related to a predicate. 

It also seems possible to define a relation that one focus is a 
predicate and the other focus is one of its arguments, just like 
in the question “who has done what to whom”.  But we 
cannot find a good example to illustrate this case, or perhaps 
it is because people rarely ask questions without predicates. 

According to the definitions given above, relations of all pairs of 
question foci in a question can be determined.  Take Q2 as an 
example: 

Q2: Give me the capitals, national flowers, and 
national trees of all the countries. 

Q’2,1: List all the countries. 
QF1 

Q’2,2: What is the capital of <ansQ’2,1>? 
QF2 

Q’2,3: What is the national flower of <ansQ’2,1>? 
QF3 

Q’2,4: What is the national tree of <ansQ’2,1>? 
QF4 

Dependency chain: Q’2,1 → {Q’2,2, Q’2,3, Q’2,4} 

The relations between QF1/QF2, QF1/QF3, and QF1/QF4 are all 
entity-relationship relations (relationships between “country” and 
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“city”, “flower”, and “tree”, respectively).  The relations between 
QF2/QF3, QF2/QF4, and QF3/QF4 are coordinate relations. 

Note that not all pairs of foci in a question have relations defined 
above.  For example: 

Q8: List the capitals of the countries in the world and 
their populations. 

Q’8,1: List all the countries. 
QF1 

Q’8,2: What is the capital of <ansQ’8,1>? 
QF2 

Q’8,3: What is the population of <ansQ’8,2>? 
QF3 

Dependency chain: Q’8,1 → Q’8,2 → Q’8,3 

The foci QF1 “country” and QF2 “capital” have entity-
relationship relation.  QF2 “capital” and QF3 “population” have 
entity-attribute relation.  But QF1 and QF3 do not have any direct 
relation. 

2.4 Answer Format 
The new definition of question classes is neither incompatible nor 
exclusive to the conventional definition.  In fact, they define 
questions in different aspects. 

A multi-focus question is defined by the number of question foci.  
A factoid or complex question is defined by the complexity of its 
answer types.  A list question is defined by the multiplicity of its 
requested answers.  We call a question a single-response 
question if it does not request a list of answers. 

If a question can be decomposed into several subquestions, the 

complexity and multiplicity of each subquestion’s answer type 
determines the format of the answers. 

Considering a question Q which can be decomposed into 
subquestions Q1, Q2 ... Qn, and the dependency chain is Q1 → Q2 
→ ... → Qn.  The answers to the question Q can be presented in 
an n-column table where the ith column gives the answers to the 
subquestion Qi and the data in this column match the answer type 
of Qi. 

If Q1 is a list question, the number of possible answers shown in 
the first column will be larger than 1, so the table will contain 
multiple rows.  But if all the preceding subquestions Qi (where 1 
≤ i ≤ n-1) are single-response questions, there is only one possible 
combination of data in the first n-1 columns, so the original 
question Q becomes a conventional single-response question or a 
list question according to the type of the final subquestion Qn. 

3. Simulation Experiments 
In order to show the necessity of handling multi-focus questions, 
three simulation experiments have been carried out and the results 
confirm our assertion. 

Because the structures (in syntax level or semantic level) of multi-
focus questions have not been fully studied, we have no modules 
to decompose multi-focus questions yet.  In order to see the effect 
of multi-focus handling in a QA system, we manually performed 
the question decomposition and submitted the subquestions to an 
online QA system.  We chose the START system [9] to do the 
experiment. 

Because START is good at answering geographical questions, 
three multi-focus questions asking information of countries are 
selected as the testing questions.  They are: 

TQ1: What are the names of all the countries in Europe 
along with their capitals? 

TQ2: What are the climates of the countries in North 
America? 

TQ3: Can anyone give me a list of the largest 8 
countries in Asia with their flags? 

All their first subquestions are factoid list questions.  All of the 
final subquestions are single-response questions, but their answer 
types are different.  The final subquestion of TQ1 is a factoid 
question, while the one of TQ2 is more like a complex question.  
The final subquestion of TQ3 can be considered as a factoid 
question only that its answer is a picture.  The simulation 
experiments are described in the following subsections. 

3.1 Simulation Experiment 1 
Figure 1 illustrates the procedure of answering the multi-focus 
question TQ1 by using START.  Question TQ1 was manually 
decomposed as follows: 

TQ1: What are the names of all the countries in 
Europe along with their capitals? 

TQ’1,1: What are all the countries in Europe? 
TQ’1,2: What is the capital of <ansTQ’1,1>? 

Answers to the subquestion TQ’1,1 were successfully collected 
from START system.  Each answer was then used to replace 
<ansTQ’1,1> to create its corresponding subquestion TQ’1,2.  For 
example, “Albania” was one of the answers to the first 

Figure 1. Answer Responses to TQ1 “What are the names of all 
the countries in Europe along with their capitals?” 

Q: What are the names of all the countries in Europe 
along with their capitals? 

A: I don't know the answer. 
Q: What are all the countries in Europe? 
A: I have information about the following countries in 

Europe: 
 Albania, Andorra, Austria, Belarus, Belgium, 

Bosnia and Herzegovina, the UK, ..., Switzerland, 
and Ukraine 

Q: What is the capital of Albania? 
A: Tirane 
Q: What is the capital of Andorra? 
A: Andorra La Vella 
... 
Q: What is the capital of Ukraine? 
A: Kiev 
Final Answers: 

Country Capital 
Albania Tirane 
Andorra Andorra La Vella 
Austria Vienna 
Belarus Minsk 
Belgium Brussels 
... ... 
Switzerland Bern 
Ukraine Kiev 
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subquestion.  It created a second subquestion “what is the capital 
of Albania” and then submitted to START.  The answer to the 
second subquestion was paired with the answer to the first 
subquestion and formed a tuple in the table of final answers. 

As we can see, when the original question TQ1 is submitted to 
START without decomposition, the response of START is “I 
don't know the answer.”  By detecting question foci and 
decomposing the question properly, answers to TQ1 can be 
wonderfully created. 

3.2 Simulation Experiment 2 
Question TQ2 was manually decomposed as follows: 

TQ2: What are the climates of the countries in North 
America? 

TQ’2,1: What are the countries in North America? 
TQ’2,2: What is the climate of <ansTQ’2,1>? 

Figure 2 illustrates the procedure of answering the multi-focus 
question TQ2 by using START.  Again, START failed to answer 
the original multi-focus question, but then successfully provided 
the final answers following our answering procedure. 

3.3 Simulation Experiment 3 
TQ3 is a more demonstrative example, as its answers are pictures, 
not text.  It was manually decomposed as follows: 

TQ3: Can anyone give me a list of the largest 8 
countries in Asia with their flags? 

TQ’3,1: What are the largest 8 countries in Asia? 
TQ’3,2: What is the flag of <ansTQ’3,1>? 

Figure 3 illustrates the procedure of answering the multi-focus 
TQ3 by using START.  After submitting TQ3, START tried hard 
to find information to resolve the anaphora but failed in the end.  
Our proposed procedure successfully created the final answers 
once more. 

4. Conclusion and Future Works 
This paper proposes a new analyzing method to define multi-
focus questions.  The focus degree is used to describe the number 
of question foci of a question.  Four relations between question 
foci are defined and explained.  They can be used to analyze a 
multi-focus question. 

Three simulation experiments were conducted to verify the 
necessity of handling multi-focus questions.  Without multi-focus 
question processing, none of the testing questions could be 
answered by an online QA system.  But if the relations between 
the answers of the subquestions were correctly identified and the 
subquestions were correctly created, wonderful responses could 
be constructed. 

The most important skills to be developed in the future are 
relation identification and question decomposition for multi-focus 
questions.  A large set of multi-focus questions is needed to learn 
the structures or patterns in multi-focus questions.  A real QA 
system designed to answer multi-focus questions is needed to be 
developed to see the actual effect. 

Furthermore, whether a question contains multiple foci is also 
ambiguous.  Take question Q6 as an example.  It is possible that 
Q6 requests different answers for different vitamins, or simply 
asks for one proper time for all kinds of vitamins.  It remains a 
future work to find a method to solve the ambiguity. 
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Figure 2. Answer nses to TQ2 “What are the climates of 
the countries in North America?” 

Respo

Q: What are the climates of the countries in North 
America? 

A: Unfortunately, I don't know what the climates of 
countries are in North America. 

Q: What are the countries in North America? 
A: I have information about the following countries in 

North America: 
 the Bahamas, Barbados, Bermuda, Canada, 

Clipperton Island, Cuba, the Dominican Republic, 
Greenland, Grenada, Haiti, Jamaica, Mexico, 
Puerto Rico, Saint Pierre and Miquelon, and the 
USA 

Q: What is the climate of the Bahamas? 
A: tropical marine; moderated by warm waters of 

Gulf Stream 
Q: What is the climate of Barbados? 
A: tropical; rainy season (June to October) 
... 
Q: What is the climate of the USA? 
A: mostly temperate, but tropical in Hawaii and 

Florida, arctic in Alaska, semiarid in the great 
plains west of the Mississippi River, ... 

Final Answers: 
Country Climate 
the Bahamas tropical marine; moderated by warm waters 

of Gulf Stream 
Barbados tropical; rainy season (June to October) 
Bermuda subtropical; mild, humid; gales, strong 

winds common in winter 
Canada varies from temperate in south to subarctic 

and arctic in north 
Clipperton 
Island 

tropical; humid, average temperature 20-32 
degrees C, wet season (May to October) 

... ... 
Saint Pierre 
and Miquelon 

cold and wet, with much mist and fog; 
spring and autumn are windy 

the USA mostly temperate, but tropical in Hawaii 
and Florida, arctic in Alaska, semiarid in 
the great plains west of the Mississippi 
River
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Q: Can anyone give me a list of the largest 8 
countries in Asia with their flags? 

A: I was unable to find the referent for the pronoun 
THEIR. Sorry. 

Q: What are the largest 8 countries in Asia? 
A: The following are the countries ranked in the top 

eight places for area among countries in Asia. 
 China  
 India  
 Kazakhstan  
 Saudi Arabia  
 Indonesia  
 Iran  
 Mongolia  
 Pakistan  

Q: What is the flag of China? 

A:  

Q: What is the flag of India? 

A:  

... 
Q: What is the flag of Pakistan? 

A:  

Final Answers: 
Country Flag 

China 

India 

Kazakhstan 

Saudi Arabia

Indonesia 

Iran 

Mongolia 

Pakistan 

Figure 3. Answer Responses to TQ3 “Can anyone give me a list of the largest 8 countries in Asia with their flags?” 
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ABSTRACT
The retrieval of sentences that are relevant to a given in-
formation need is a challenging passage retrieval task. In
this context, the well-known vocabulary mismatch prob-
lem, present in most Information Retrieval processes, arises
severely because of the fine granularity of the task. Short
queries, which are usually the rule rather than the excep-
tion, come to aggravate the problem. Consequently, effec-
tive sentence retrieval methods tend to apply some form of
query expansion, usually based on pseudo-relevance feed-
back. Nevertheless, there are no extensive studies compar-
ing different expansion strategies for sentence retrieval prob-
lems. In this work we aim to fill this gap. We start from a
set of retrieved documents in which relevant sentences have
to be found. In our experiments we test different term selec-
tion strategies and we also check whether expansion before
sentence retrieval can yield reasonable performance. This is
particularly novel because expansion techniques for sentence
retrieval are often applied after a first retrieval of sentences
and there are no comparative results available between ex-
pansion before and after sentence retrieval. This compari-
son is valuable not only for testing distinct expansion-based
methods but also because there are important implications
in time efficiency.

Keywords
Sentence retrieval, Query expansion, Information Retrieval

1. INTRODUCTION
The availability of effective sentence retrieval methods is po-
tentially beneficial to many IR systems. There are many
tasks whose performance is affected by the effectiveness of
a sentence retrieval module. In web IR, information access
can be facilitated provided that a good ranking of sentences,
ordered by estimated relevance to the user, is supplied [18].
Question answering systems usually require some form of
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passage retrieval to isolate the document pieces in which
the answer is likely to be found. This step is often done
at the sentence level [11]. One of the main areas in text
summarization is centered on building summaries by ex-
tracting important sentences from the target document(s).
If the summaries are query-biased then effective techniques
to measure query-sentence similarities are needed [16]. In-
formation Extraction methods involve often some sentence
retrieval algorithm to support their processes [12]. Sentence
retrieval mechanisms have also been found important in Ma-
chine Translation [6].

Given a set of documents, our work focuses on a retrieval
task based on selecting sentences relevant to a given infor-
mation need, which is expressed as a textual query. This
sentence retrieval problem is delimited to work with docu-
ments highly related to the query. This simulates a working
environment in which an initial document retrieval is run
and, next, the top ranked documents are input to a sentence
retrieval module that filters out the irrelevant sentences and
supplies the user with a rank of sentences. As argued in
[18], a sentence retrieval interface of this kind would be very
valuable, especially for searches in which the user does not
have a clear idea about the topics involved and the sen-
tences supplied can help her/him to clarify the purpose of
the search.

Query expansion strategies, which have played a major role
in document retrieval, are not sufficiently tested for sen-
tence retrieval problems. Although some works have re-
ported improvements using classical expansion techniques
via pseudo-relevance feedback [8], there are no comparisons
available testing extensively different term selection methods
and studying the effect of the number of sentences and terms
used for expansion. Expansion strategies developed for doc-
ument retrieval might be ineffective for sentence retrieval
because the number of matching terms is much smaller and,
thus, performance might be harmed. Due to the importance
of query expansion in sentence retrieval, we feel strongly that
a complete study on this subject is required. The vocabulary
mismatch problem is a severe obstacle to yield effective re-
trieval at the sentence level and the role of query expansion
as an alleviation tool needs to be carefully analyzed. Fur-
thermore, there are no comparative results between expan-
sion before sentence retrieval and expansion after sentence
retrieval. Expansion before sentence retrieval has been par-
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ticularly neglected. Since we start from a set of top ranked
documents, it makes sense to study blind feedback methods
working directly with the initial ranking of documents and
compare them with regular pseudo-relevance feedback ap-
plied after running a first sentence retrieval process. Note
also that this has important implications for efficiency that
should not be disregarded.

Our study will be primarily focused on two standard auto-
matic expansion methods that have worked well in document
retrieval problems: pseudo-relevance feedback (PRF) [4] and
Local Context Analysis (LCA) [19]. These techniques are
general enough to be applied across different domains and
collections. Although some works have managed to get ef-
fective expansion with linguistic resources, we are concerned
here only with purely statistical methods, which are simpler
and applicable under very distinct scenarios.

The rest of the paper is organized as follows. Section 2 re-
views some papers related to our research. Section 3 presents
the sentence retrieval method and the expansion techniques
tested. The experiments are reported and analyzed in sec-
tion 4. The paper ends with some conclusions.

2. RELATED WORK
Sentence retrieval is a challenging area. Many researchers
have proposed different solutions based on a wide range
of models and techniques such as query expansion (either
via pseudo-relevance feedback or with the aid of a lexical
resource), part-of-speech tagging, clustering of sentences,
named entities, supervised learning, and language model-
ing. Despite the variety of the approaches investigated, sim-
ple adaptations of regular tf/idf measures (sometimes aided
with some form of pseudo-relevance feedback) can be labeled
as state of the art sentence retrieval methods [2, 9].

Many studies have examined the use of expanded queries ei-
ther via pseudo-relevance feedback [5] or with the assistance
of a terminological resource, such as Wordnet [20]. The ef-
fect of pseudo-relevance feedback is known to be very sen-
sitive to the quality of the initial ranks. Motivated by this,
some researchers have applied selective feedback [1], which
is more stable but requires training data. In [11] some ex-
periments investigating the effects of pseudo-relevance feed-
back on sentence retrieval were reported. Query expansion
produced negative results but a single expansion technique,
based on Relevance Models, was tested. On the other hand,
expansion with synonyms or related terms from a lexical
resource is problematic because noisy terms can be easily
introduced into the new query. Moreover, a large termino-
logical resource, with good coverage, is not always available.
As a matter of fact, lexical expansion is usually equal or
inferior to purely statistical expansion methods in sentence
retrieval [7, 15, 14].

Expansion approaches based on co-occurrence data have been
also proposed [20] but there is not much evidence that these
approaches can outperform the standard pseudo-feedback
methods.

Rather than expanding queries with new terms, other stud-
ies have focused on improving the matching process by ana-
lyzing carefully the nature of the sentence components. For

example, in [9], patterns such as phrases, combinations of
query terms and named entities were identified into sen-
tences and the sentence retrieval process was driven by such
artifacts. Although this technique was very effective for de-
tecting redundant sentences, it was not significantly better
than a regular tf/idf baseline for finding relevant sentences.

In [10], an effective sentence retrieval method, based on ex-
tracting highly frequent terms from top ranked documents,
was designed. This method actually represents a form to
exploit the information from top retrieved documents be-
fore sentence retrieval. It was successfully compared against
query expansion using pseudo-relevance feedback from top
retrieved sentences (i.e. expansion after sentence retrieval).
Nevertheless, expansion before sentence retrieval (i.e. ex-
panding directly from the top retrieved documents) was not
properly tested. For instance, sophisticated expansion tech-
niques, such as LCA, were not considered in the experimen-
tal design.

There is therefore the general feeling in the sentence retrieval
community that some form of expansion is needed to achieve
reasonably good performance. However, expansion methods
have not been adequately compared and, actually, we can
find in the literature conflicting outcomes depending on the
collection, baseline method tested, etc. In the present work
we aim to clarify the role of expansion strategies in sentence
retrieval by testing some standard methods against three
different datasets and applying a very competitive baseline.

In the literature of sentence retrieval, the peculiarities of the
sentence retrieval task are often ignored. Most expansion
studies do not make full use of the information available but
simply apply expansion methods that worked well in docu-
ment retrieval. We argue that the ranked set of documents
contains valuable information on the importance of terms
that should not be disregarded. In this respect, we believe
that it is important to check the effectiveness of query ex-
pansion methods when applied before sentence retrieval (i.e.
working directly on the top retrieved documents available).
There are at least two reasons that support this claim. First,
sentence retrieval is very sensitive to the quality of the query
and, hence, we might be safer working on the initial set of
documents rather than on a subsequent ranking of sentences.
Second, it would avoid retrieving an initial ranking of sen-
tences and therefore would bring about a benefit in terms of
efficiency.

3. SENTENCE RETRIEVAL METHOD
To study properly different query expansion strategies we
need first to decide which sentence retrieval method is ap-
propriate for our purposes. Since we want to evaluate the
ability of expansion techniques to improve the state-of-the-
art in sentence retrieval, we have to set a competitive sen-
tence retrieval technique. In [2], the results of some sentence
retrieval experiments are discussed. A simple vector space
retrieval technique is shown to perform at least as well as
any other method and, actually, its performance is the most
robust. This method, which we will refer to as tf/isf1, ap-
plies a weighting scheme that is a variant of tf/idf applied at
the sentence level. Although other effective methods, such

1isf stands for inverse sentence frequency
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as those based on clusters of sentences, can be found in the
literature [7, 15, 14], we skip them deliberately because the
tf/isf method is simpler and we therefore avoid possible bi-
ases and complications coming from evolved approaches (e.g.
the effect of the quality of the clusters). We believe strongly
that the simplicity of this method is a good feature, making
the results presented here potentially applicable in very dif-
ferent scenarios. The relevance of a sentence s given a query
q is estimated in [2] as:

tf isf(s, q) =
X

t∈q

log(tft,q + 1)log(tft,s + 1)log(
n + 1

0.5 + sft

) (1)

where sft is the number of sentences in which t appears, n

is the number of sentences in the collection and tft,q (tft,s)
is the number of occurrences of t in q (s).

To further check that tf/isf was competitive we designed
some preliminary experiments whose results are reported
in section 4.1. This included experiments using alterna-
tive sentence retrieval methods (OKAPI BM25 and Lan-
guage Modeling with KLD), different combinations of the
pre-processing strategies and even additional tests using idf
statistics (instead of isf). This evaluation demonstrated
clearly that tf/isf is a consistent sentence retrieval method
whose performance is comparable or superior to the best
performance attainable by other effective methods.

3.1 Expansion after sentence retrieval
By query expansion after sentence retrieval (ASR) we refer
to the regular pseudo-relevance feedback process adapted to
the sentence retrieval case. First, the query is run against
the sentences in the top retrieved documents and, next, the
top retrieved sentences are used to mine expansion terms.
Two main strategies are considered to select new terms:
PRF and LCA.

Pseudo-relevance feedback (also called local or blind feed-
back) is a traditional concept in IR [3], which basically con-
sists of selecting the terms with more counts in the top
retrieved sentences. Although it did not work well with
small (pre-TREC) collections, its merits for large-scale doc-
ument retrieval have been apparent in many TREC exper-
iments [17]. Nevertheless, the effects this method has on
sentence retrieval have not been studied in detail. Actually,
some papers have reported improvements after expansion
via pseudo-relevance feedback but other studies are scep-
tical about local feedback improving sentence retrieval [11].
We therefore expect that the experiments reported here help
to shed light on this issue. Note also that there are some
parameters needed for success, such as the number of top
sentences and the number of expansion terms. Sentences
are very small pieces of text and retrieval performance may
be very sensitive to the parameter configuration here.

LCA is a successful expansion method proposed by Xu and
Croft [19]. It has been adopted by other research groups in
several large-scale experiments in document retrieval [17].
Nevertheless, the effects of LCA in sentence retrieval are
barely discussed in the literature and there are no experi-
mental results available comparing LCA and local feedback.

The main motivation to propose LCA was that local feed-
back fails if there is a large number of non-relevant items in
the top ranked set. The LCA method tries to be less erratic
and is designed to work on document passages. We take here
an instance of the LCA proposal where passages are simply
document sentences. The main hypothesis behind LCA is
that common terms from relevant documents (sentences, in
our case) will tend to co-occur with query terms within the
top-ranked documents (sentences). In this way, a term se-
lection metric is defined, yielding an expansion method that
is more robust than local feedback. Although LCA works
for concept selection, where concepts can be single terms or
phrases, we are only concerned here with selecting single
terms for expansion. Let us consider a query q, whose query
terms are qt1, · · · , qtm, and a set of top ranked sentences
S = {s1, s2, · · · , sn}. The terms appearing in S are ranked
according to the formula:

f(t, q) =
Y

qti∈q

(δ + co degree(t, qti))
idf(qti)

co degree(t, qti) = log10(1 + co(t, qti)) · idf(qti)/log10(n)

co(t, qti) =
X

sj∈S

tf(t, sj) · tf(qti, sj)

idf(t) = min(1.0, log10(N/Nt)/5.0)

where N is number of sentences in the collection, Nt is num-
ber of sentences in the collection containing t, tf(w, sj) is
the number of occurrences of w in sentence sj and δ is a
constant set to 0.1 to avoid zero value. This term ranking
function is a variant of the regular tf/idf measure utilized
popularly in IR. Most often preferred terms will be those
rare terms (idf effect) that co-occur frequently with many
query terms.

Given this measure, the terms in the retrieved sentences can
be ordered in decreasing order of f(t, q) and the top ranked
terms are selected to expand the query.

For simplicity, we do not consider here any parameterized
re-weighting strategy (e.g. based on Rocchio’s formula). In
both methods (pseudo-relevance feedback and LCA), the se-
lected terms are simply incorporated as new terms in the
query. Note that this involves expansion (new terms that
were not present in the original query) but also basic re-
weighting (the query term frequency is increased for terms
belonging to the old query that are also selected in the ex-
pansion phase).

3.2 Expansion before sentence retrieval
One strategy that has not received much attention is to run
query expansion before retrieving any sentence (BSR). This
alternative was not explored in the past but it could become
very valuable. First, for efficiency reasons: we can skip the
initial sentence retrieval process (no sentence retrieval is re-
quired for doing expansion). Second, query expansion may
be more robust if we work directly from the top ranked doc-
uments. Observe that poor queries will likely introduce a
great deal of noise if we use them again to retrieve some
sentences to feed the term selection module. The initial
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ranking of documents is arguably weak for such queries but,
still, a second usage of the original topic for query expansion
purposes might be not advisable. It is therefore interesting
to evaluate empirically these issues and compare expansion
BSR and expansion ASR.

Some experiments were designed to evaluate expansion BSR.
The term selection methods were the same as those ex-
plained in the previous section but the sentences used to
mine the expansion terms are taken directly from the initial
ranking of documents available for the task. More specif-
ically, the top X documents (X is a parameter) are used
for term mining. To maintain consistency with the ASR ex-
periments, term selection works also at the sentence level.
The BSR-version of LCA extracts new terms analyzing the
co-occurrences in the sentences of the top X documents.
Similarly, expansion BSR with pseudo-relevance feedback
incorporates into the query the terms with more counts in
the sentences of the top X documents. However, note that
there is no sentence retrieval here (e.g. if X = 1 then all
sentences from the top document are considered in the term
selection process).

3.3 Complexity issues
Expansion ASR introduces an important time penalty be-
cause it requires a sentence retrieval process for term selec-
tion. In contrast, expansion BSR works directly from the
sentences in the top retrieved documents. This is a consid-
erable saving.

Given a set of sentences (either a set of sentences ranked in
decreasing order of similarity to a given query -expansion
ASR- or a set of sentences appearing in top ranked docu-
ments -expansion BSR- ), it is interesting to compare the
steps needed to compute the ranks of terms with pseudo-
relevance feedback or LCA. Pseudo-relevance feedback sim-
ply requires to traverse the sentences and accumulate the
term counts in a proper data structure (e.g. a term-count
structure ordered by count). LCA requires also to go on
every sentence and accumulate the co(t, qi) counts (for each
qi). The time complexity of this process across retrieved
sentences is equivalent to the time complexity needed by
pseudo-relevance feedback (although the space complexity
is higher with LCA because we need to store independent
statistics for each query term). Anyway, LCA incorporates
an additional time penalty to compute the final f(t, q) values
(product across query terms). This cost, which is linear with
respect to the number of query terms, could be assumed to
be negligible, especially if queries are short.

4. EXPERIMENTS
We designed a complete pool of experiments to test the ex-
pansion configurations. The experiments were run against
three different collections of data (the ones supplied in the
context of the TREC-2002, TREC-2003 and TREC-2004
novelty tracks [7, 15, 14]). There are no newer TREC collec-
tions suitable for our experiments because we need relevance
judgments at the sentence level. This sort of judgments is
only available in the novelty track, whose last edition took
place in 2004. The novelty track data was constructed as fol-
lows. Every year there were 50 topics available. In TREC-

2002, the topics were taken from TRECs 6, 7 and 82. In
2003 and 2004, the topics were created by assessors desig-
nated specifically for the task [15, 14] (topics N1-N100). For
each topic, a rank of documents was obtained by NIST us-
ing an effective retrieval engine. In 2002 and 2003 the task
aimed at finding relevant sentences in relevant documents
and, therefore, the ranks included only relevant documents
(i.e. given a topic the set of relevant documents to the topic
were collected and ranked using a document retrieval en-
gine). On the contrary, the TREC-2004 ranks contained
also non-relevant documents (i.e. the initial search for doc-
uments was done against a regular document base, with rel-
evant and non-relevant documents). Note that this means
that the non-relevant documents are close matches to the rel-
evant documents, and not random non-relevant documents
[14]. In any case, the ranks of documents contained at most
25 relevant documents for each query. The documents were
segmented into sentences, the participants were given these
ranks of sentence-tagged documents and they were asked to
locate the relevant sentences. The relevance judgments in
this task are complete because the assessors reviewed care-
fully the ranked documents and marked every sentence as
relevant or non-relevant to the topic. In TREC-2002, very
few sentences were judged as relevant (approximately 2% of
the sentences in the documents). In TREC-2003 and TREC-
2004 the average percentage of relevant sentences was much
higher than in 2002 (approximately 40% in 2003 and 20% in
2004).

We consider here two different evaluation measures: the
F measure, which was the official measure utilized in the
TREC novelty tracks, and precision at ten sentences re-
trieved (P@10). The F measure is meaningful even when
the number of relevant sentences varies widely across topics
[7]. The F values reported here are obtained by retrieving
5% of the sentences in TREC 2002, and 50% of the sen-
tences in TREC 2003 and TREC 2004. These thresholds,
which have been applied in the past, are reasonable given
the amount of relevant sentences in every collection. Addi-
tionally, P@10 ratios are included in our reports. P@10 is
important in many applications, such as web sentence re-
trieval [18], which require a good distribution of relevant
material in the top rank positions.

We focus our interest on short queries (constructed from
the title tags of the TREC topics) because handling prop-
erly this type of queries is challenging in sentence retrieval.
These queries are good candidates for expansion because
they are often ambiguous.

4.1 Evaluating the baseline
To ensure that the baseline (tf/isf, eq. 1) is capable of yield-
ing state of the art performance, we ran some preliminary
experiments comparing it against Okapi BM25 [13] and a
Language Modeling approach based on Kullback-Leibler Di-
vergence (KLD) as described in [8] (with Dirichlet smooth-
ing). The performance of BM25 is influenced by some pa-
rameters: k1 controls the term frequency effect, b controls
a length-based correction and k3 is related to query term
frequency. We tested exhaustively different parameter con-

2The complete list of topics chosen for the novelty track can
be found in [7]
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TREC-2002

tf/isf BM25 (best run) KLD (best run)
k1 = .4, b = 0, k3 = 1 µ = 3000

P@10 .19 .19 .16
F .19 .19 .17*

TREC-2003

tf/isf BM25 (best run) KLD (best run)
k1 = .6, b = 0, k3 = 1 µ = 1000

P@10 .74 .76 .73
F .51 .51 .50*

TREC-2004

tf/isf BM25 (best run) KLD (best run)
k1 = .2, b = 0, k3 = 1 µ = 500

P@10 .43 .44 .41
F .37 .37 .37

Table 1: Comparing different sentence retrieval
baselines: tf/isf, BM25 and KLD (with Dirichlet
Smoothing).

figurations (k1 between 0 and 2 in steps of 0.2, b between
0 and 1 in steps of 0.1 and different values of k3 between 1
and 1000). Similarly, we experimented with the KLD model
for different values of the µ constant, which determines the
amount of smoothing applied (µ = 10, 100, 500, 1k, 3k, 5k).
Results are reported in Table 1. A run marked with an as-
terisk means that the difference in performance between the
run and tf/isf is statistically significant3. In all collections,
there was no statistically significant difference between the
tf/isf run and the best BM25 run. We also observed that
BM25 was very sensitive to the parameter setting (many
BM25 runs performed significantly worse than tf/isf). On
the other hand, KLD was inferior to both tf/isf and BM25.
These results reinforced previous findings about the robust-
ness of the tf/isf method [2, 9] and demonstrated that this
method is a very solid baseline. Note also that tf/isf does
not have any free parameter whereas the results reported
for BM25 and KLD are the best ones obtained across the
configurations tested.

We also experimented with different combinations of the
standard preprocessing strategies (stopwords vs no stop-
words, stemming vs no stemming). Although there was not
much overall difference, the runs with stopword processing
and no stemming were slightly more consistent.

The tf/isf method takes the isf statistics from the sentences
in the documents available for the task (which is a small set
of sentences). A term that is very common within the re-
trieved documents would therefore receive a low isf weight.
This might be problematic because content-bearing terms
that are frequent in a given set of documents are assigned
small weights. We were therefore wondering whether bet-
ter performance might be obtained using data from a larger
collection. To check this, we indexed a large collection of
documents (the collection used in the TREC-8 adhoc exper-
iments) and ran some experiments with regular idf statistics
obtained from this index (i.e. in eq. 1 sft was replaced by
nt, which is the document frequency of t in TREC-8). The
original tf/isf method computed at the sentence level over

3Along this work, we applied two different significance tests,
the t-test and the Wilcoxon test, and we show only an aster-
isk when both tests agree on the significance of the difference
(95% confidence level).

the small document base was slightly superior. It appears
that the small index of sentences is good enough for sentence
retrieval (at least for these short queries). We therefore set
the basic sentence retrieval method to be the original tf/isf
approach with stopword and no stemming.

Note that we use short queries, while the groups partici-
pating in the TREC novelty tracks were allowed to use the
whole topic. This means that the results presented here are
not comparable to any of the results reported in the novelty
tracks. Actually, we expect that the results obtained here
are worse than the ones achieved in TREC because of our
experimental conditions. Nevertheless, short queries are the
rule rather than the exception in many applications and it is
therefore important to study in depth the sentence retrieval
performance with such queries. Moreover, query expansion
methods are especially important when the user supplies few
search terms.

4.2 Evaluating query expansion strategies
Let us now pay attention to the effects of query expansion
on sentence retrieval performance. With expansion ASR, we
first ran the tf/isf sentence retrieval method on the ranked
set of documents associated to each query. This produced
a ranked set of sentences from which some expansion terms
were selected using PRF or LCA. These new terms were in-
cluded into the query and the tf/isf sentence retrieval model
was run again with the expanded query. We tested different
configurations of the number of expansion terms (5, 10, 20
and 50) and the number of top retrieved sentences in which
terms are selected (5, 10, 25, 50 and 100). On the other
hand, expansion BSR selects terms directly from the ranked
set of documents. We planned experiments using the top 1,
5, 10, 15 or 25 documents with varying number of expansion
terms.

The experimental results are reported in Tables 2 (expansion
ASR - P@10), 3 (expansion BSR - P@10), 4 (expansion ASR
- F measure) and 5 (expansion BSR - F measure). The
tables include also the performance of the baseline tf/isf with
no expansion (underlined after the collection’s name). For
each collection and type of expansion the best parameter
configurations are marked in bold. Expansion runs whose
improvement over the baseline is statistically significant are
marked with an asterisk.

First of all, it is interesting to observe the effect of expan-
sion on the TREC-2002 collection. There are some expan-
sion configurations that show P@10 and F ratios that are
higher than the baseline’s ratios. Anyway, nearly all im-
provements are not statistically significant. Observe that
this collection contains very few relevant sentences (≈ 2%)
and, therefore, any expansion strategy is likely incorporating
unrelated terms into the new queries. PRF is particularly
problematic here because it often performs worse than the
baseline (32 out of the 80 TREC-2002 PRF expansion runs
perform worse than the baseline). In contrast, LCA does not
improve significantly over the baseline but, at least, there are
fewer LCA runs yielding performance that is poorer than the
baseline’s performance (14 runs out of 80).

On the other hand, most expansion methods produce sta-
tistical significant improvements in TREC-2003 and TREC-
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TREC-2002 (basel: .19)
PRF LCA

# exp # top sentences # top sentences
terms 5 10 25 50 100 5 10 25 50 100

5 .19 .19 .22 .24* .23 .20 .19 .19 .21 .21
10 .21 .20 .21 .24 .24* .19 .18 .19 .21 .23

20 .19 .17 .20 .21 .23 .18 .16 .19 .22 .22
50 .19 .20 .20 .20 .22 .18 .18 .19 .21 .22

TREC-2003 (basel: .74)
5 .78* .78* .81* .79 .79* .75 .75 .75 .75 .75
10 .78* .79* .80* .81* .80* .79* .78* .80* .81* .80
20 .80* .78 .80* .80 .79 .80* .78* .80* .82* .79
50 .78* .77 .79 .75 .76 .79* .77 .79* .79 .81*

TREC-2004 (basel: .43)
5 .46 .48* .49* .50* .48* .45 .47 .51* .51* .47
10 .47 .48* .51* .54* .54* .47 .50* .49* .49* .50*
20 .47 .49* .50* .55* .55* .46 .47 .48 .49* .49*
50 .44 .46 .50* .52* .54* .45 .46 .49* .50* .53*

Table 2: Expansion ASR - Precision at 10 sentences

TREC-2002 (basel: .19)
PRF LCA

# exp # docs # docs
terms 1 5 10 15 25 1 5 10 15 25

5 .19 .20 .22 .19 .19 .20 .22 .21 .21 .21
10 .16 .19 .21 .21 .17 .20 .22 .23 .23 .23
20 .16 .22 .19 .19 .17 .18 .22 .22 .21 .23
50 .17 .22 .20 .18 .17 .17 .24 .23 .22 .22

TREC-2003 (basel: .74)
5 .75 .77 .76 .75 .77 .74 .77 .78 .77 .74
10 .74 .78 .76 .77 .79 .72 .79 .78 .76 .79
20 .75 .79 .77 .77 .76 .71 .77 .79 .81* .80
50 .71 .75 .79 .78 .76 .71 .78 .79 .81* .77

TREC-2004 (basel: .43)
5 .42 .49 .47 .50* .48* .42 .46 .46 .47 .49
10 .39 .50* .50* .49* .51* .43 .47 .48 .50* .48
20 .38 .49 .50* .50* .54* .43 .48 .49 .49 .50*
50 .37 .46 .51* .54* .55* .40 .43 .49 .49 .52*

Table 3: Expansion BSR - Precision at 10 sentences

2004 (for both P@10 and F). These results show that statis-
tical query expansion is beneficial in sentence retrieval pro-
vided that the amount of relevance sentences in the ranked
set of documents is not extremely low.

Next, we analyze the trends with respect to the number of
expansion terms and the number of top sentences/documents.

Expansion ASR, P@10 (Table 2). The standard PRF expan-
sion tends to achieve the highest P@10 performance when
a few expansion terms are selected from many sentences. A
safe configuration would be 10 expansion terms selected from
50 or 100 sentences. With LCA-based expansion, the ideal
number of sentences is also high but this expansion method
tolerates slightly better expansions with more terms.

Expansion BSR, P@10 (Table 3). When expanding queries
before sentence retrieval, PRF looks much more sensitive to
the parameter setting. It is quite difficult to identify a good
configuration because the optimal performance is found at
very different places depending on the collection. Only in
TREC-2004 the improvements over the baseline are statis-
tical significant. On the other hand, LCA looks less erratic.
A high number of terms (50) extracted from a large number
of documents (15-25) seems to be a good configuration.

TREC-2002 (5% sens ret.) (basel: .19)
PRF LCA

# exp # top sentences # top sentences
terms 5 10 25 50 100 5 10 25 50 100

5 .19 .19 .19 .19 .19 .20 .19 .19 .19 .19
10 .19 .18 .19 .20 .20 .19 .18 .18 .19 .20

20 .18 .18 .19 .20 .21 .18 .18 .18 .20 .20

50 .18 .18 .19 .20 .21 .18 .18 .19 .20 .20

TREC-2003 (50% sens ret.) (basel: .51)
5 .53 .54* .54* .55* .55* .52 .52* .53* .53* .53*
10 .55* .55* .55* .57* .56* .53* .53* .55* .55* .55*
20 .55* .56* .56* .56* .57* .55* .55* .56* .56* .56*
50 .56* .56* .57* .57* .57* .56* .56* .56* .57* .57*

TREC-2004 (50% sens ret.) (basel: .37)
5 .38 .38 .38 .38 .39* .37 .37 .37 .38 .38
10 .38 .38 .39* .39* .39* .38 .38* .38* .39* .39*
20 .39* .39* .39* .40* .40* .38* .39* .39* .39* .39*
50 .39* .39* .40* .41* .40* .39* .39* .40* .40* .40*

Table 4: Expansion ASR - F measure

TREC-2002 (5% sens ret.) (basel: .19)
PRF LCA

# exp # docs # docs
terms 1 5 10 15 25 1 5 10 15 25

5 .17 .18 .18 .16 .17 .19 .19 .20 .20 .19
10 .17 .19 .18 .17 .16 .18 .20 .20 .20 .20
20 .17 .18 .18 .17 .16 .18 .19 .21 .20 .20
50 .16 .18 .18 .17 .15 .19 .20 .21 .21 .21

TREC-2003 (50% sens ret.) (basel: .51)
5 .55* .55* .55 .55* .55* .52* .53* .53* .53* .54*
10 .55* .56* .55 .56 .56* .52* .55* .54* .54* .56*
20 .56* .55* .55 .56 .56* .55* .55* .56* .56* .57*

50 .55 .56* .56* .56* .56* .56* .56* .57* .57* .57*

TREC-2004 (50% sens ret.) (basel: .37)
5 .37 .38 .38 .38 .38 .37 .38 .38 .38 .38
10 .38 .38 .38 .38 .38 .37 .38 .39* .39* .39*
20 .38 .38 .39 .39 .39* .38 .39* .39* .39* .39*
50 .38 .39 .39* .40* .40* .38 .39* .40* .40* .41*

Table 5: Expansion BSR - F measure

Expansion ASR, F-measure (Table 4). With both expansion
methods, PRF and LCA, the highest performance tends to
be found when a large number of expansion terms are se-
lected from a large number of top sentences. P@10 is a high
precision measure but the F measure is influenced by both
precision and recall. This explains why the optimal F perfor-
mance is found with expansions involving many new terms,
whilst the optimal P@10 performance is achieved usually
with fewer expansion terms.

Expansion BSR, F-measure (Table 5). With LCA, there is
also a clear tendency to prefer many expansion terms ex-
tracted from many documents. However, with PRF, the
optimal configuration varies significantly depending on the
collection. These results agree with those found for P@10
with BSR.

Given this report, it is clear that LCA performs the best with
many expansion terms extracted either from many sentences
(ASR) or from many documents (BSR). PRF is much more
erratic and its optimal expansion configuration is much more
difficult to assess.

Let us now analyze the best and average performance at-
tainable by each expansion method. For a clearer picture
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of the experimental outcome, these results are summarized
in Table 6. The difference between the best ASR and BSR
runs has been tested for statistical significance and the BSR
run is marked with the symbol † when the difference be-
tween the run and the respective ASR run is significant. In
terms of P@10, there is no significant difference between the
best runs. This means that any configuration (ASR/BSR +
PRF/LCA) can lead to optimal performance provided that
the parameters (number of expansion terms and number of
top sentences/documents) are set adequately. Looking at
the average P@10 values, we found some interesting trends.
With expansion ASR, PRF is more solid than LCA. On
the contrary, with expansion BSR, LCA tends to be more
reliable (especially when the conditions are difficult -few rel-
evant sentences-). This makes sense because the sentences
feeding the ASR term selection module are potentially closer
to the query than the sentences feeding the BSR term se-
lection module. Recall that expansion ASR runs an initial
sentence retrieval from the query and the retrieved sentences
are used for term selection purposes. In contrast, expansion
BSR works directly with the initial ranked set of documents,
where the on-topic sentences might be scattered across the
documents. This means that a rough term selection metric
(such as local feedback) is good enough with expansion ASR
but it is less consistent when there is not an initial sentence
retrieval process.

In terms of the F measure, the results are basically the same
as the ones found with P@10. PRF tends to work better with
expansion ASR while LCA tends to be more solid with ex-
pansion BSR. In two collections the best run of PRF with ex-
pansion ASR performs statistically significantly better than
the best run of PRF with expansion BSR. It is interesting
to note that the single collection where the difference is not
significant is TREC-2002, where there are few relevant sen-
tences. This makes sense because expansion ASR is very
sensitive to the quality of the initial sentence retrieval pro-
cess. If these ranked sentences contain many non-relevant
items then expansion ASR will hardly improve on expansion
BSR.

In terms of effectiveness, expansion ASR with PRF and ex-
pansion BSR with LCA are the most robust expansion meth-
ods for sentence retrieval. Both approaches lead to good
P@10 and F performance ratios. Since expansion BSR is
less expensive than expansion ASR (because we do not need
an initial sentence retrieval process), expansion BSR with
LCA looks the most suitable choice. One can rightly argue
that LCA is more costly than PRF but, as argued in section
3.3, the additional complexity requirements are acceptable.
This means that we can achieve state-of-the-art sentence
retrieval performance with significant savings in terms of ef-
ficiency. This is a novel result because the studies conducted
in the literature have been mostly focused on the standard
expansion methods (ASR). Furthermore, if the aim of the
retrieval application is to retrieve ten good sentences (i.e. re-
call is not a major issue) then expansion BSR with PRF is a
good choice. As shown in Table 6, this retrieval technique,
which is the most efficient method, does not perform signifi-
cantly worse than the other expansion methods (in terms of
P@10).

TREC-2002
ASR BSR ASR BSR

best avg
P@10 PRF .24 .22 .21 .18

(basel: .19 ) LCA .23 .24 .20 .22
F PRF .21 .19 .19 .17

(basel: .19 ) LCA .20 .21 .19 .20
TREC-2003

P@10 PRF .81 .79 .79 .76
(basel: .74 ) LCA .82 .81 .78 .77

F PRF .57 .56† .56 .55
(basel: .51 ) LCA .57 .57 .55 .55

TREC-2004
P@10 PRF .55 .55 .50 .48

(basel: .43 ) LCA .53 .52 .48 .47

F PRF .41 .40† .39 .38
(basel: .37 ) LCA .40 .41 .39 .39

Table 6: Comparing the best and average perfor-
mance of expansion ASR and expansion BSR with
PRF and LCA

5. CONCLUSIONS
In this paper we have presented a thorough study on the
effects of query expansion strategies for sentence retrieval.
We have worked with an standard sentence retrieval method,
proved that it is competitive against other robust techniques
and supplied a complete study of query expansion under this
framework.

The results of our study can be summarized as follows. In
terms of effectiveness, expansion ASR with PRF and expan-
sion BSR with LCA are the most robust expansion methods
for sentence retrieval. Both approaches lead to good P@10
and F performance ratios. Since expansion BSR is less ex-
pensive than expansion ASR (because we do not need an
initial sentence retrieval process), expansion BSR with LCA
looks to be the most suitable choice. This means that we can
achieve state-of-the-art sentence retrieval performance with
significant savings in terms of efficiency. This is a novel re-
sult because the studies conducted in the literature have
been mostly focused on the standard expansion methods
(ASR).

Regarding the number of expansion terms and the number
of top documents/sentences from which terms are mined,
we found that the more documents/sentences fed into the
expansion modules the better performance. This is not very
surprising. On the other hand, LCA shows a slight tendency
to achieve its highest performance with expansions involving
many terms while PRF is more erratic with respect to the
ideal number of expansion terms. In general, PRF is very
sensitive to the parameter setting. Although the top perfor-
mance attainable by PRF tends to be similar to LCA’s top
performance, the parameter settings are more problematic
with PRF.

Summing up, although some past studies have been skep-
tical on the role of query expansion for sentence retrieval,
our report shows that it is a consistent technique to im-
prove sentence retrieval performance provided that the re-
trieved documents contain a reasonable amount of relevant
sentences. The two methods tested, PRF and LCA, can
produce significant benefits when parameters are set appro-
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priately. Even with an extremely low population of relevant
sentences (TREC-2002), a proper query expansion config-
uration (e.g. BSR+LCA for high precision purposes and
ASR+PRF otherwise) hardly damages performance.
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ABSTRACT
We explore the idea that the Document-Object Model tree
of an HTML page — absent any semantic or heuristic inter-
pretations of the tags and their positions — provides cues
about the importance of the information it contains. This
hypothesis is evaluated by constructing a DomGraph, i.e.,
a network of the DOM trees of pages connected by their
hyperlinks, and using it in a snippet-extraction technique.
In this process, we also address technical issues related to
the processing of the resultant very large graph. Snippets
produced by this technique are compared in a user study to
those extracted by a reasonable and simple baseline method,
and found to be clearly preferred by users.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval; H.3.4 [Information Storage and
Retrieval]: Systems and Software—Information networks,
Performance evaluation (effectiveness), Question-answering
(fact retrieval) systems; H.3.7 [Information Storage and
Retrieval]: Digital Libraries—User issues; H.5.4 [Infor-
mation Interfaces and Presentation]: Hypertext/Hy-
permedia—User issues

General Terms
Algorithms, Design, Experimentation, Human Factors

Keywords
Document object model, graph topology, DomGraph, snip-
pet extraction.

1. INTRODUCTION
Ranking a chunk of information by its usefulness in answer-
ing a query is a critical component of an information re-
trieval system. Various definitions of what a “chunk” is, and
methods for ranking these chunks, have been proposed for
use on the Web. The most widely-used concept of a unit of
information on the Web is that of a single Web page, and

SIGIR 2008 Workshop on Focused Retrieval July 24, 2008, Singapore
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the leading ranking algorithm for determining the prestige
of these pages is PageRank [3], usually augmented by com-
mercial search engines with proprietary improvements.

Users often interact with the results of a text information
retrieval system by viewing a list of “snippets” of text from
each retrieved document, in order to judge each document’s
usefulness in answering their query without actually visiting
it. These snippets are classically derived from the text of the
document, ignoring HTML markup if it is present. Snippet
extraction algorithms use natural-language processing cues
in an attempt to find coherent bits of text that contain the
query terms and give the user some contextual information
about the page when seen in isolation.

This paper attempts to unify the above two approaches.
Rather than using PageRank at the page level to rank en-
tire pages, we explore its use at the level of each page’s
Document-Object Model (DOM) tree, driving the ranking
of relevant snippets of text from the page. In doing so,
we explore the hypothesis that the structure of a page’s
DOM tree might lend cues about the relative importance
of the different bits of information it contains — even ab-
sent any heuristic or semantic information about the HTML
tags composing the tree.

The main contributions of this paper are as follows:

• We describe the construction of the DomGraph, a hy-
brid graph comprised of the page link graph in con-
junction with the DOM trees of individual pages.

• We discuss the technical difficulties in processing the
large graph that results, in the process creating Web-
graph++, a more scalable translation of the Webgraph
library [2] to C++.

• We evaluate by a user study the use of this graph for
selecting query-biased snippets from pages.

2. RELATED WORK
Many current algorithms for computing the prestige of nodes
in a Web graph are based on PageRank [3], which assigns
prestige in a manner proportional to indegree to a first ap-
proximation [7]. Ranking of Web objects at a level higher
than that of pages has also been explored, such as in Host-
Graph [1] or SiteRank [11, 12]. One of this paper’s contri-
butions is the novel idea of ranking Web objects at a gran-
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Figure 1: A sample page from the .GOV dataset, along with its DOM representation. Page elements such as
tables and navigation bars can greatly increase the complexity of a page’s DOM without affecting its apparent
length. Corresponding areas of the page and the DOM representation are highlighted.

ularity lower than that of a page, namely individual DOM
elements.

The Document-Object Model view of HTML was codified
by a W3C standard,1 and is widely used. Use of the DOM
for data extraction has been discussed by several previous
works. One of the contexts in which it has been explored is
that of accessibility issues. Gupta et al. [9] outline a method
for condensing a page to its most essential elements to facili-
tate viewing of the page on mobile devices, or interpretation
of the page by accessibility software such as screen readers.
Their method is based on the DOM and involves a num-
ber of heuristic rules for selecting the important parts of the
page, based on its genre. Buyukkokten et al. [4] describe“ac-
cordion summarization,” a similar technique which uses the
DOM in an attempt to identify standalone “semantic tex-
tual units” of the page which can be viewed as summaries of
parts of the page. The user can then drill down to the part
of the page which most interests her. The use of the DOM to
guide computerized data mining efforts is explored by Can

1http://www.w3.org/DOM/

et al. [5], who use DOM cues and heuristics to identify and
extract postal addresses from HTML pages. The use of the
DOM for topical crawlers has been proposed by Pant and
Menczer [13] to examine the textual context of a link and
evaluate whether to follow it.

In the domain of segmenting unstructured text using only
endogenous cues, relevant works include LexRank [6] and
TextTiling [10]. In the former, the authors propose a method
for determining the prestige (or salience) of sentences in a
document by a method which involves computing similari-
ties between pairs of sentences, building a network of these
pairs in which two sentences are connected if their similarity
is greater than a given threshold, and then running a modi-
fied PageRank on this network. This method is proposed to
drive an extractive summarization algorithm. TextTiling is
a technique for breaking a long stream of text (a discourse)
into a series of smaller topics. The method works by com-
puting similarities between adjacent “blocks” (3-5 sentence
chunks) of text, and setting topic boundaries in places where
the similarity value is relatively low.
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Figure 2: A subset of the DomGraph containing nodes belonging to two neighboring pages, one of them the
page in Figure 1. For ease of visual identification, the root (<html> tag) of each DOM is displayed as a larger
circle. In the Page graph (inset), the nodes representing each of these pages link to each other; however, in
the DomGraph, distinct anchor tags each contribute their inlink to the target page’s <html> tag.

Turpin et al. [14] outline a method for fast snippet gen-
eration in the search engine context, but focus more on the
speed of the production than the quality of what is produced.
A recent patent by Google, Inc. [8] describes a method for
producing snippets, but no claim is made that this method
is actually what is used by Google, and their true method is
likely more complex.

3. THE DOM GRAPH
The DOM is in essence a way of viewing an HTML page as
a tree — a fully-connected, directed acyclic graph with the
node representing the <html> tag at the root. This simplifies
access to the contents of the page by programming languages
such as JavaScript, which can modify the DOM on the client
side in order to implement interactive Web pages. Figure 1
illustrates a sample page and its DOM representation.

We wish to use this graph representation of each page as
a stand-in for that page in the “standard” link graph of all
pages. That is, we build a graph in which the nodes are el-
ements of each page’s DOM tree, and the links are induced
both by parent-child connections in the DOM, and by hy-
perlinks between pages. Hyperlinks are treated as edges

between the tag defining the hyperlink and the root of the
target page’s DOM tree. In the case of anchored hyperlinks
(i.e. links of the form <a href="a.com#anchor">...), we
connect the tag defining the hyperlink and the parent tag of
the anchor in the target document. This expansion of a page
into its DOM nodes typically increases the size of the graph
by two orders of magnitude. Figure 2 illustrates a subset of
the DomGraph. The two larger nodes in this graph are the
<html> tags of the pages represented; the smaller nodes are
nodes representing DOM elements created by the expansion.

Data is drawn from the .gov corpus.2 This corpus con-
tains about a million documents comprising approximately
20 GB of text. Not all of the documents are HTML; plain
text documents and documents in other formats are also in-
cluded. From this collection we extracted two graphs. The
first is a “standard” graph, which we call S, in which the
nodes are pages and the links between nodes are induced by
page hyperlinks. The second is the DomGraph, D, which is
described above. This latter graph is comprised of around
220 million nodes connected by around 230 million edges.

2http://es.csiro.au/TRECWeb/govinfo.html
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Figure 3: A screenshot of the user study experiment in action, with the query “health care.” The candidate
snippets are shown on the left and right, with the original page beneath. The position of the DOM snippet
and baseline snippet was randomized at each instance. If at any time the user wished to enter a new query
he or she could do so with the form at the top of the screen.

A graph of such size was a challenge to analyze with the
computing hardware we had available. The library, Web-
graph [2], that we chose to perform the initial analysis was
written in Java. This language limits the sizes of certain
data structures in a way which made our analysis impossi-
ble. To surmount this difficulty we undertook to translate
this library into C++, and the resulting Webgraph++ li-
brary is available online.3

In order to leverage the S and D graphs for information
retrieval, we compute the PageRank of the nodes in each.
To distinguish the PageRank computed on the page graph
from the results of that algorithm run on the DomGraph, we
refer to the latter as DomRank. Further, we built two text
indices using the Lucene4 index and search platform. The
first, for the standard graph, indexed the raw text of each
page (i.e. with HTML markup stripped out). The second
indexed the text of all textual DOM nodes. We refer to the

3http://homer.informatics.indiana.edu/~nan/
webgraph/
4http://lucene.apache.org/

first of these indices as the “page index,” and the second as
the “DOM index.”

4. EXTRACTING TEXT SNIPPETS
The goal of our experiment was to measure the effectiveness
of DOM cues for segmenting text in a meaningful way. To
this end, we evaluated snippets extracted from the DOM
against snippets extracted by a baseline method. We de-
scribe each of these methods in turn. Each method begins
with a ‘bag’ of query terms, with stopwords removed, and
an integer n which signifies which page in the result list
should be considered for snippet extraction. It then per-
forms a query against the page index to arrive at a list of
page identifiers. The methods differ in what they do with
these identifiers, as follows.

Baseline method. As a baseline method, we attempted
to mimic the behavior of commercial search engines. This
method takes the n-th page identifier from the list derived
as above, and retrieves the plain text of the associated page
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Figure 4: The DOM-based method for snippet ex-
traction. Given a fixed page, the method extracts
all text nodes and computes two rankings — one
based on each node’s similarity to the query as de-
termined by Lucene, called Rs, and another by its
DomRank, Rd. The method then returns the node
that has the highest aggregate score, determined by
αRs + (1−α)Rd for a constant α. This illustration as-
sumes an incoming DomRank flow of 1.0 to the html

node, and neglects the effect of the damping fac-
tor. Query similarity values are hypothetical. The
winning node in this case would be Text B — it is
ranked 4 (highest) in Rs, and 3 in Rd; thus in its
case, αRs + (1− α)Rd = 0.7 · 4 + 0.3 · 3 = 3.7.

(with HTML markup removed). It segments the text into
sentences using the OpenNLP software package, trained on
a corpus of text from the Wall Street Journal.5 The method
then attempts to return one of the following, in decreasing
order of preference:

1. A single sentence containing all of the query terms.

2. A pair of sentences which together contain all the query
terms

3. A “window” of text, possibly containing several sen-
tences, which contains as many query terms as possi-
ble.

The size of the“window”in (3) is fixed at 30 words; further, if
a snippet picked by (1) or (2) above is longer than 30 words,
it is trimmed around the query terms with preference given
to removing words at the end of the sentence. In our best
assessment, this method seems to produce snippets similar
to those returned by commercial search engines.

5Software package and trained model: http://opennlp.
sourceforge.net/
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Figure 5: Results of the user study. The error bars
are for a 95% confidence interval. The difference
is statistically significant with p < 0.01 from a two-
tailed t-test.

DOM method. The DOM method takes the n-th page iden-
tifier from the list just as the baseline method does; however,
it derives its snippet in a different way. It performs a second
query against the index of DOM nodes, limiting its search
to the nodes which comprise the page used by the baseline
method. This yields a list of text nodes ranked by their sim-
ilarity to the query. It then creates a new list in which the
rank of each item is determined by a linear combination of
the each item’s rank in the text similarity list and its rank
in a list ordered by DomRank. Thus, if Rs is the node’s
rank when ordered by similarity and Rd is its rank by Dom-
Rank, its rank in the result list is determined by a sort on
the quantity

αRs + (1− α)Rd.

The value α = 0.7 was chosen empirically. The DOM text at
the head of the resulting list is what is returned as a snippet.
If it is longer than 30 words, the 30-word-long window which
contains as many query terms as possible is what is returned.
Figure 4 illustrates this process.

5. EVALUATION
To evaluate the use of the DomGraph and DomRank for
extracting important page cues, we performed a Web-based
user study6 comparing the two snippet-extraction algorithms.
Users were asked to enter a query of their choice. They were
then shown a pair of snippets, derived as above with n = 1
initially, and asked to click the one they thought was more
helpful, or skip the result if neither was the clear winner.
When the user rated either of the two snippets or clicked
“skip,” he or she was shown a new pair of snippets with
n← n+ 1 (i.e. from the next page in the result set). Pages
for which both methods produced the same snippet were
skipped. At any point the user wished, he or she could en-
ter a new query or end the experiment. A screenshot of
the experiment in action is shown in Figure 3. The aver-
age length of a snippet returned from the baseline method
was 27 ± 3 words, or 149 ± 10 characters; the DOM-based

6Indiana University IRB #07-11684
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method’s snippets were significantly shorter, at 12±2 words
or 63± 9 characters.

The experiment was active for approximately 1 week, and
garnered around 40 participants who rated 528 snippets all
together. The number of times a snippet created by each
method was chosen over the other is shown in Figure 5.

Thus, the snippets extracted from the DOM were preferred
approximately 50% more than those extracted by the base-
line method. We are encouraged by these results, pointing
to the DomGraph as a useful tool in Web applications.

6. DISCUSSION AND FUTURE WORK
The method presented here for extracting snippets directly
from the DOM tree of Web documents does not rely on any
heuristics or semantic information about the text, but solely
on graph topological information. Our experimental evalua-
tion shows it to outperform a simple and reasonable method
that relies on textual cues alone. We do not present this
as an argument that DOM-based snippet extraction would
clearly outperform a state-of-the-art method, but rather to
support the conclusion that the topology of the DOM con-
tains semantic information that should be exploited for in-
formation retrieval.

Future work should deal with optimizing the computation of
DomRank for the large graph which results from expansion
of each page’s DOM, as well as the size of the index involved.
Among the techniques that might be explored are trimming
each page’s DOM to remove irrelevant nodes (i.e. nodes
that do not affect the DomRank of any text nodes), and
the possibility that the DomRank may be computed in some
optimized way from the PageRank of the corresponding page
graph.

An obvious candidate for application of techniques of this
type is Web page summarization. This has been previously
explored [4], but our method is unique in that it does not
rely on page- or page-genre specific heuristics. Question an-
swering applications could also benefit from this method’s
ability to select important bits of text from a list of candi-
dates, based on the structure of the Web page from which
the snippets are derived. More in general, applications such
as clustering and classification could be improved by this
technique’s ability to select important items (and thus re-
move noise) from Web page data. DomRank even applies to
non-textual data appearing in HTML pages, such as images
and other media.
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[7] Fortunato, S., Boguñá, M., Flammini, A., and
Menczer, F. On local estimations of PageRank: A
mean field approach. Internet Mathematics. (to
appear).

[8] Google Inc. Detecting query-specific duplicate
documents. US Patent no. 6615209, 2003.

[9] Gupta, S., Kaiser, G., Neistadt, D., and Grimm,
P. DOM-based content extraction of HTML
documents. In WWW ’03: Proceedings of the 12th
international conference on World Wide Web (New
York, NY, USA, 2003), ACM, pp. 207–214.

[10] Hearst, M. A. TextTiling: segmenting text into
multi-paragraph subtopic passages. Comput. Linguist.
23, 1 (1997), 33–64.

[11] Kleinberg, J. M. Authoritative sources in a
hyperlinked environment. Journal of the ACM 46, 5
(1999), 604–632.

[12] Meiss, M. R., Menczer, F., Fortunato, S.,
Flammini, A., and Vespignani, A. Ranking web
sites with real user traffic. In WSDM ’08: Proceedings
of the international conference on Web search and
Web data mining (New York, NY, USA, 2008), ACM,
pp. 65–76.

[13] Pant, G., and Menczer, F. Topical crawling for
business intelligence. In ECDL ’03: Proc. 7th
European Conference on Research and Advanced
Technology for Digital Libraries (Trondheim, Norway,
2003).

[14] Turpin, A., Tsegay, Y., Hawking, D., and
Williams, H. E. Fast generation of result snippets in
web search. In SIGIR ’07: Proceedings of the 30th
annual international ACM SIGIR conference on
research and development in information retrieval
(New York, NY, USA, 2007), ACM, pp. 127–134.

50



Modelling Anchor Text Retrieval in Book Search based on
Back-of-Book Index

Hengzhi Wu
Queen Mary, University of

London, UK
hzwoo@dcs.qmul.ac.uk

Gabriella Kazai
Microsoft Research

Cambridge, UK
gabkaz@microsoft.com

Thomas Roelleke
Queen Mary, University of

London, UK
thor@dcs.qmul.ac.uk

ABSTRACT
This paper proposes a probabilistic logic abstraction for modelling
tf -boosting approaches to anchor text retrieval, adapted for the task
of page-search in books. The underlying idea is to view the back-
of-book index (BoBI) as a list of anchors pointing to pages in the
book. First, we model the direct application of hypertext-based tf -
boosting to books and show that this naive method of propagating
anchor-text from the BoBI does not deliver the desired tf -boosting
effect. To address this, we then propose a revised anchor-text re-
trieval model based on a novel voter approach. In this approach,
each page of the book, where a given term occurs, acts as a virtual
voter to the pages referenced by the BoBI for that term. The tf -
boosting effect is achieved by propagating term weights from the
voter pages to the pages in the BoBI. We use probabilistic Datalog
for the high-level abstract modelling of retrieval strategies, which
allows for the evolution and transfer of successful techniques from
one domain, such as anchor-text retrieval in Web IR, to a similar
domain, such as book search.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval Models

General Terms
Algorithms

1. INTRODUCTION
As a result of ongoing digitization and mass-digitization projects
around the world, searching over a large collection of digitized
books has become a new area of interest in the field of IR. Re-
flecting this, the INitiative for the Evaluation of XML IR (INEX)
has launched a Book Search track1 in 2007. The track runs two
core tasks: 1.) The Book Retrieval task, where the units of retrieval
are whole books; and 2.) The Page in Context task, which stud-
ies the application of passage and XML element retrieval methods
to books. Both tasks have been shown to benefit from the use of
structural information extracted from digitized books [11, 15, 14,

1http://www.inex.otago.ac.nz/tracks/books/books.asp

SIGIR 2008 Workshop on Focus Retrieval
July 24, 2008, Singapore
The copyright of this article remains with the authors.

20]. In this paper, we focus on the Page in Context task, and view
the challenge of locating relevant pages inside books as a task of
finding the best entry points into the book content.

We build on the observation that books are typically highly struc-
tured and, in particular, we leverage the potential presented by a
book’s back-of-book index (BoBI) as a searching and browsing
tool. Unlike the table of contents, a BoBI provides specific in-
formation on relevant sections of text by pointing to key concepts
discussed in the book [1, 8]. Its significance is that it distinguishes
important topics and concepts, as identified by the author, from
other keywords that may appear in the book.

In contrast to the traditional full-text index used in IR, which re-
flects the global distribution of terms (among pages), but provides
limited evidence for selecting best entry points (e.g., best pages),
an author generated BoBI may hold the key for identifying the best
entry points. Although some term statistics may also be derived
from a BoBI (e.g., number of linked pages), the full-text index is
still likely to provide a good source of information for estimating
relevance. Thus, in this paper, we propose a strategy for combining
the traditional full-text index with the BoBI by integrating anchor
text retrieval in the context of the page finding task.

The underlying idea is to view the BoBI as a set of anchors pointing
to respective parts of the text in the book. Given this view, the
question of how to best utilise this source of information for the
identification and retrieval of relevant pages inside a book arises.

Term propagation mechanisms in the form of anchor text or hy-
pertext retrieval have been successfully applied in Web IR [2], and
have also been found to be beneficial for enterprise [9], and XML
retrieval [19]. The underlying principle of term propagation (also
referred to as context augmentation) is the use of terms from linked
source documents in the representation of a destination document.
A link may be a structural link between components in a document
hierarchy, or a hyperlink connecting two web pages, for example.
A consequence of term propagation is that the destination docu-
ment receives a term frequency boost, which can then lead to a
higher retrieval score being assigned to the document by a search
system.

In this paper, we investigate the modelling of term propagation
strategies adapted to the task of book search, exploiting the BoBI
as a list of anchor texts linking to pages in the book. We employ
probabilistic Datalog (PD) [4], an expressive high level language,
for modelling information retrieval taking into account the specifics
of book search.
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Figure 1: Structured documents with hyperlink
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Figure 2: Augmentation through hierarchy and hyper-link

The two main contributions of this paper are: 1.) The modelling
of tf -boosting strategies in PD, and 2.) The proposal of the voter
model for tf -boosting.

The paper is structured as follows. Section 2 introduces anchor text
retrieval and modelling in PD. Section 3 discusses why the classic
anchor text retrieval strategy fails in book search, and introduces
a voter model for the task. Section 4 formally defines anchor text
retrieval in book search, modelling the strategies in PD. Finally,
section 5 summarises the paper and outlines future work.

2. BACKGROUND
In this section, we present two examples of anchor text retrieval
applied to structured and hyperlinked documents, and review the
basic principles of probabilistic modelling in PD.

2.1 Context Augmentation
Term propagation in anchor text retrieval is an application of con-
text augmentation [13, 16], where the occurrence of a term in the
anchor text (of the source document) is propagated to the destina-
tion document via a structural or hyperlink that connects the two
documents. As a result, the content of the destination document is
augmented and the term frequencies (tf ) of terms in the destination
document are increased.

We present two context augmentation mechanisms, depending on
the type of linkage between documents. We illustrate these using
the small sample collection of two documents, d1 and d77, shown
in Figure 1. Each document in the collection is a tree with nodes
and edges. The nodes of a tree may be composite elements, which
contain other nested nodes, and leaf nodes, which contain the text
of the document. Nodes are labelled based on the following con-
vention: “d” represent the root node of a document, “b” is short
for body, and “a” indicates an anchor. A solid line between nodes
represents a structural link and a dash-dot arrow from an anchor
element implies a hyperlink.

2.1.1 Hierarchical augmentation
Hierarchical augmentation is typically applied to structured docu-
ments (e.g., in XML IR), where the occurrence of a term in a child-
node is propagated to the representation of its parent node. In this
case, the term frequency is propagated upwards along the structure
of the document tree. One reason to do this is to support the re-
trieval of composite nodes, which may provide a better match than

their child nodes alone (e.g., when one query term is contained in
one child node and another query term in another child node) [5].

For example, in Figure 1, we obtain the augmented representation
of d1 by propagating the tf ’s of the terms that occur in the child
nodes: b1 and a1. We use the notation nL(t, c) to denote the tf of a
term t in a context c, where nL stands for number of locations. The
term frequencies in the child nodes are thus nL(sailing, b1) = 1
and nL(sailing, a1) = 1, and nL(weather, a1) = 1. After aug-
mentation, we obtain the following tf ’s in d1: nL(sailing, d1) = 2
and nL(weather, d1) = 1. Augmentation, thus, allows for d1 to
act as a combined representation of its child nodes. This is illus-
trated in the left side of Figure 2.

One typical question in hierarchical augmentation concerns
whether to propagate raw term frequencies or apply some kind of
normalization or weighting [17]. In this paper, we model both raw
and weighted term frequency propagations.

2.1.2 Anchor-text-based augmentation
Applying augmentation in a hyperlinked environment allows to
combine evidence from external documents for the representation
and retrieval of a hyperlinked document.

Tf -boosting is one such strategy, which directly propagates and
combines term frequencies into the representation of the destina-
tion document. Anchor text retrieval using tf -boosting have in fact
been shown to improve retrieval performance in Web IR [2]. Fur-
thermore, tf -boosting was found to be more effective than other
link-based strategies in Web IR [10].

We illustrate tf -boosting using the sample collection of Figure 1.
Here, the anchor element a1 has a hyperlink pointing to docu-
ment d77. Assuming that the representation of d77 already con-
tains the terms “weather” and “forecast” as a result of hierarchi-
cal augmentation from b88, we start with the following tf ’s in
d77: nL(weather, d77) = 1 and nL(forecast, d77) = 1. The
terms “sailing” and “weather” in a1 are terms of the anchor text,
which is often interpreted as a description of the destination doc-
ument. By propagating the terms of the anchor text to the des-
tination document, we can obtain a tf -boosted representation of
d77, where the tf of “weather” is boosted from 1 to 2. In ad-
dition, the term “sailing” which did not occur in d77 originally,
is now also represented. After propagation, the term frequencies
for d77 are: nL(sailing, d77) = 1, nL(weather, d77) = 2, and
nL(forecast, d77) = 1. This is illustrated in the right hand side
of Figure 2.

2.2 Modelling in Probabilistic Datalog
We model retrieval strategies in probabilistic Datalog (PD) [4]. PD
is a combination of deterministic Datalog (a query language used in
deductive databases) and probability theory. It is a highly expres-
sive and flexible platform for modelling and prototyping different
retrieval strategies.

To introduce PD, we implement the example term propagation
strategies discussed in Section 2.1. First, we create the follow-
ing relational structures to store the necessary information about
the collection (see Figure 4): The term(Term,Context) re-
lation is used for storing term occurrences along with their cor-
responding location information, e.g., the term “sailing” occurs
in the anchor element a1. The location information is stored as
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pdRule := {assumption} goal ’:-’ body
assumption :=

’DISJOINT’ | ’INDEPENDENT’ | ’SUBSUMED’ |
’SUM’ | ’MAX’

goal ::= NAME {assumption} ’(’ varList ’)’
body ::= subgoalList
varList := var {’,’ varList}
var := VARIABLE
subgoalList := subgoal {’&’ subgoalList}
subgoal := NAME ’(’ argList ’)’ {’|’ evidenceKey}
argList := arg {’,’ argList}
arg := VARIABLE | constant
evidenceKey := ’(’ varList ’)’

Figure 3: Extract of PD Syntax

term
Term Context
sailing d1/b1
sailing d1/a1
weather d1/a1
weather d77/b88
forecast d77/b88

part_of
Child Parent
d1/a1 d1
d1/b1 d1
d77/b88 d77

link
Context URL
d1/a1 www.bbc.co.uk

site
Context URL
d77 www.bbc.co.uk

Figure 4: Relations of link-based retrieval

a path, expressed in XPath 2, however, for readability we use a
simplified syntax throughout this paper, e.g., “d1/a1”. The hi-
erarchical structure of documents in the collection is represented
in the part_of(Child,Parent) relation, e.g., “d1/a1” is a
part of “d1”. The hyperlink structure is modelled through two
relations: link(Context,URL) and site(Context,URL).
The link relation associates the XPath of an anchor node with the
URL of the destination, while the site relation maps the URL to
the destination document.

The syntax of our PD is given in Figure 3. In this syntax, everything
between a pair of curly brackets, i.e. ’{’ and ’}’, is optional; the
assumption ’SUM’ is an alias of ’DISJOINT’ hence the two are
interchangeable.

A PD rule consists of a goal, a body and arguments. A rule is eval-
uated such that the goal is true if and only if the body is true. For
example, the following rule demonstrates a common term matching
strategy in IR, stating that if T occurs in a query and T is a term in
a document D, then D is retrieved.

retrieve(D) :- query(T) & term(T, D).

The weights (probabilities) associated with the results of a rule are
obtained through probability computations, which involve proba-
bility estimation and probability aggregation. Probability estima-
tion assigns initial probabilities to the rows of a relation; the proba-
bilities may be term-based, i.e. tf, or document-based (or element-
based in XML), i.e. df. Probability aggregation, on the other hand,
combines probabilities of one or multiple relations, e.g., by sum-
mation or multiplication.
2http://www.w3.org/TR/xpath

term(T,S) & part_of(S,D)
Term Context Child Parent
sailing d1/b1 d1/b1 d1
sailing d1/a1 d1/a1 d1
weather d1/a1 d1/a1 d1
weather d77/b88 d77/b88 d77
forecast d77/b88 d77/b88 d77

(a) intermediate result of rule body

augTerm
Term Parent
sailing d1
sailing d1
weather d1
weather d77
forecast d77

(b) hierarchical aug-
mentation

augTerm_d
1/NL(d) Term Parent

1/3 sailing d1
1/3 sailing d1
1/3 weather d1
1/2 weather d77
1/2 forecast d77

(c) probability estimation

w_augTerm
P (t|d) Term Parent

2/3 sailing d1
1/3 weather d1
1/2 weather d77
1/2 forecast d77

(d) probability aggregation

Figure 5: Intermediate results of hierarchical augmentation

For instance, to estimate the within-document tf ’s of a term T given
that it occurs in document D, we have the following rule:

w_term(T, D) :- term(T, D) | (D).

The rule contains a special form of our probabilistic Datalog vari-
ant: The “| (D)” is the so-called evidence key, so that the tuples
in the goal “w_term” (stands for weighted term) have the proba-
bilistic semantics P (T |D). We will return to this in more detail in
sections 4.2 and 4.3. Further information about PD can be found
in [4, 7, 18].

2.2.1 Hierarchical augmentation in PD
Let us now present a model of augmentation in PD. First, we give
the PD rules for the hierarchical augmentation described in Sec-
tion 2.1.1:

augTerm(T, D) :- term(T, S) & part_of(S, D).
augTerm_d(T, D) :- augTerm(T, D) | (D).
w_augTerm SUM(T, D) :- augTerm_d(T, D).

The first rule yields the augmented term frequency for the term T in
document D by evaluating the predicates that T occurs in a context
S, and that the context S is part of a document D. The second rule
estimates the tf for augTerm. Finally, the third rule aggregates the
probabilities and yields the final results.

Figure 5 illustrates the steps for processing this hierarchical aug-
mentation rule. Figures 5(a) and 5(b) show the intermediate and
final results of the first rule; Figure 5(c) shows the result of the
probability estimation, i.e. the second rule; and Figure 5(d) shows
the results of the probability aggregation, i.e. the third rule.

2.2.2 Anchor-text-based augmentation in PD
The PD rules for anchor text retrieval with tf -boosting presented in
section 2.1.2 are given as follows:

augTerm(T, D) :- term(T, S) & part_of(S, D).
augTerm(T, D) :- term(T, A) & link(A, U) & site(D, U).
augTerm_d(T, D) :- augTerm(T, D) | (D).
w_augTerm SUM(T, D) :- augTerm_d(T, D).
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term(T,A) & link(A,U) & site(D,U)
Term Context Context URL Context URL
sailing d1/a1 d1/a1 www.bbc.co.uk d77 www.bbc.co.uk
weather d1/a1 d1/a1 www.bbc.co.uk d77 www.bbc.co.uk

(a) intermediate result of rule body

augTerm
Term Parent
sailing d77
weather d77

(b) anchor-text-based
augmentation

augTerm
Term Parent
sailing d1
sailing d1
weather d1
weather d77
forecast d77
sailing d77
weather d77

(c) Union of hier-
archical and anchor-
text-based augmenta-
tion

augTerm_d
1/NL(d) Term Parent

1/3 sailing d1
1/3 sailing d1
1/3 weather d1
1/4 weather d77
1/4 forecast d77
1/4 sailing d77
1/4 weather d77

(d) probability estimation

w_augTerm
P (t|d) Parent Term

2/3 sailing d1
1/3 weather d1
1/2 weather d77
1/4 forecast d77
1/4 sailing d77

(e) probability aggregation

Figure 6: Intermediate results of tf-boosting

The first rule performs hierarchical augmentation to obtain the
original within-document tf of terms. The anchor text based tf -
boosting is performed by the second rule in two steps: 1.) The
propagated term frequency for the term T in document D is ob-
tained by evaluating the predicates that the term T appears in a
context A, where A has a hyperlink to a URL U , which is associ-
ated to a document D; and 2.) The propagated tf is combined with
the original tf of term T in document D. The third and fourth rules
estimate and aggregate probabilities, respectively, to yield the final
probability scores.

The procedures for processing the tf -boosting rules (rules 2-4) are
illustrated in Figure 6. Figures 6(a) and 6(b) show the intermedi-
ate results for obtaining the propagated term frequencies, i.e. the
first step of tf -boosting; Figure 6(c) shows the combination of the
boosted and the original tf ’s, i.e. the second step of tf -boosting.
Figures 6(d) and 6(e) show the results of the probability estimation
and aggregation processes.

3. BACK-OF-BOOK INDEX (BOBI)
As mentioned earlier, the rich structure of books is viewed as po-
tentially useful for improving the retrieval effectiveness of book
search approaches. Generally, the table of contents (TOC) and the
BoBI are regarded as the two main sources of information to aid
readers in locating relevant content in books [12]. While the ben-
efits of a hyperlinked TOC’s seem obvious, the use of the BoBI in
book search tasks is less trivial. In this section, we investigate and
discuss the applicability of BoBI for page-level search in books.

3.1 TF-Boosting and the BoBI: Discussion
A BoBI is, in essence, a cross-reference lockup mechanism aimed
to support readers of printed books to locate information quickly
using keywords as their entry into the content of the book. A BoBI
is usually created by the author (or editor)3 of the book, and as
such, it reflects a somewhat personalised view on what the impor-
tant terms/concepts of a book are. On the other hand, it represents a
relevance association in the form of 〈term, page〉 pairs, similar to
an inverted index used in IR. Furthermore, it can also be likened to

3Although automatic index generation tools may also be used.

sailing
boats

weather
forecast

<a href=http://
www.D.com>

sailing boats</a>

Site A

Site C

Site B

Site D
<a href=http://
www.D.com>

sailing venue</a> <a href=http://
www.D.com>

sailing weather</a>

Figure 7: Anchor text topology in Web IR

hyperlink structures of the Web, whereby the anchor text of a BoBI
term points to a content page.

Inspired by the successful application of anchor text retrieval in
Web IR, one may attempt to incorporate the same mechanisms into
book search by applying them to the BoBI of books. However, as
we demonstrate next, such a direct application of the technology is
not suitable for books.

Let us illustrate this with an example, contrasting the link structure
of the Web and that of a book. Figure 7 shows three web pages
A, B and C, each of which links to a fourth D page. Anchor
text retrieval here is based on the principle of exploiting the in-link
structure of page D’s Web graph and propagating terms from the
source pages to D. The more in-links to a page, the more terms are
propagated and the stronger the effect of tf -boosting.

In a book, the BoBI contains out-links to pages of the book, where
index terms occur (see Figure 8). In contrast to the Web scenario,
however, the referred pages are likely to receive only a small num-
ber of in-links from the BoBI (one in-link per referred page is the
most likely case). This means that the boost on referred pages is
likely to have little effect. To address this, we propose in the next
section a modification to the classic anchor text retrieval strategy
and adopt this new voter model approach for the task of page re-
trieval in books.
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12

45

23

... sailing
venue ...

... sailing
boats ...

... sailing
weather ...

sailing - 12,
23, 45

boats - 23
weather - 45

Figure 8: Anchor text topology in book search

3.2 TF-Boosting and the BoBI: A Voter
Model

The occurrence of a term in the BoBI of a book implies that it is
considered (by the author) of more importance than the rest of the
terms on the referenced page that do not appear in the BoBI. Intu-
itively, the pages ’cited’ in the BoBI could be considered as “best
entry points” for looking up information in the book. This is further
supported by the observation that topics (and alas associated key-
words) spanning a number of pages are often only listed in the BoBI
once, directing the reader to the first page in a sequence of pages on
the topic. To incorporate this characteristic of the BoBI within a re-
trieval strategy, we employ tf -boosting as a method for combining
traditional retrieval strategies based on term weights with adapted
anchor text retrieval based on the BoBI.

Assuming that the BoBI terms are exact copies of the terms that
occur in the referenced pages 4, the BoBI can be considered a subset
of a full-text index (FTI) generated at the page-level (i.e., using
pages as the document units). Given the intersection of FTI and
BoBI, the terms common to both sets could be viewed as providing
an association between the pages in the FTI and the pages in the
BoBI, each shared term acting as a kind of anchor text link. Based
on this view, we can consider each page associated with a given
term in the FTI as a virtual voter to the pages referenced by the
BoBI: by propagating term weights to the pages in the BoBI, each
voter thereby votes for the “best entry points” in the book.

A range of possible options exist for deriving a suitable voting
weight, i.e. the propagated term weight. One option is to redis-
tribute the terms in the FTI over the page frequency of terms in the
BoBI, i.e. nP,bobi(t) (see section 4.3 for formal definition).

Based on this idea of a voter model, we propose the following tf -
boosting approach:

Distribute the page frequency of a term t in the FTI across the oc-
currences of the term in the BoBI. With regards to voting this means
that each entry of the BoBI receives votes from entries of the FTI.

We detail our model based around the above voting-based tf -
boosting idea in the next section.

4. MODELLING TF-BOOSTING FOR
PAGE SEARCH IN BOOKS

4In history books, for example, expanded phrases, such as those
of historical events, may be used in the BoBI instead of the actual
terms appearing in the text.

This section defines anchor-text-like retrieval strategies that lead to
tf -boosting for pages of a book. First, we detail the schema of our
book collection. We then present a naive anchor-text propagation
approach, and a refined approach expressed as a voter model.

4.1 Schema
A PD engine uses database-like tables for indexing, where a
schema is a list of tables and corresponding attributes in the header
of tables. We designed our schema based on a collection of books
provided by the INEX 2007 Book Search track 5. A book in this
corpus is stored in DjVu XML 6, where the basic structure can be
summarised as follows:

<DjVuXML>
<BODY>
<OBJECT data="file.." ...>
<PARAM name="PAGE" value=".."/>
[...]
<REGION>
<PARAGRAPH>
<LINE>
<WORD coords="..."/>
<WORD coords="..."/>
[...]

</LINE>
<LINE> [...] </LINE>
[...]

</PARAGRAPH>
</REGION>
[...]

</OBJECT>
[...]

</BODY>
</DjVuXML>

The original source was subsequently converted to an XML syntax,
referred to as OCRML, which also contains additional structure
mark-ups. Example snippets from the converted XML structure
are given below:

<page id="54" pageNumber="23">
<section id="123" label="SEC_BODY">
hundreds of sailing boats are beached [...]

</section>
</page>

<page id="224" pageNumber="123">
<section id="54321" label="SEC_INDEX">
sailing 12, 23, 45

</section>
</page>

The first segment shows terms in the body of the book’s content.
This is identified by the label SEC_BODY. The second segment
shows terms in the BoBI, which is labelled by SEC_INDEX. Each
element has an unique identifier, reflecting its location in the doc-
ument tree. The actual page numbers (as printed inside the book)
are given by the “pageNumber” attribute.

Based on the OCRML structure and following the conventions
introduced in section 3, we define the following schema for our
indexes. The fti_raw table stores our (non-aggregated) full-
text index, which is populated with terms from the body of the
book (i.e., content labelled with SEC_BODY), while the table
5http://inex.is.informatik.uni-duisburg.de/2007/bookSearch.html
6http://djvu.sourceforge.net/doc/man/djvuxml.html
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fti_raw
Term PageID
sailing /book1/page23
sailing /book1/page23
sailing /book1/page29
· · · · · ·
weather /book1/page19
weather /book1/page20
· · · · · ·
(a) terms in book pages

bobi
Term PN
sailing 13
sailing 20
weather 3
weather 6
weather 100
boats 66

(b) terms in a
BoBI

page_map
PageID PN
/book1/page23 7
/book1/page29 13
/book1/page31 15
· · · · · ·

(c) mapping from page
IDs to page numbers

bobiPageFreq
Probability Term t PN p

P (t|p)

1/2 sailing 13
1/2 sailing 20
1/3 weather 3
1/3 weather 6
1/3 weather 100

1 boats 66
(d) estimate the page frequencies
of terms in the BoBI

fti_all
tffti(t) Term t

8 sailing
15 weather
6 boats

(e) aggregate the to-
tal terms weights in
the FTI

fti (full-text index)
Tuple weight Term PageID

tffti(t, p) t p

2 sailing /book1/page23 (7)
1 sailing /book1/page29 (13)
2 sailing /book1/page31 (15)
3 sailing /book1/page36 (20)
1 weather /book1/page19 (3)
5 weather /book1/page20 (4)
1 weather /book1/page22 (6)
3 weather /book1/page24 (8)
2 weather /book1/page26 (10)
3 weather /book1/page116 (100)
1 boats /book1/page82 (66)
5 boats /book1/page83 (67)

(f) tuples with original term weights

nbfti (naive boosted fti)
Tuple weight Term PageID

tfnbfti(t, p) t p

2 + 0 = 2 sailing · · · (7)
1 + 1 = 2 sailing · · · (13)
2 + 0 = 2 sailing · · · (15)
3 + 1 = 4 sailing · · · (20)
1 + 1 = 2 weather · · · (3)
5 + 0 = 5 weather · · · (4)
1 + 1 = 2 weather · · · (6)
3 + 0 = 3 weather · · · (8)
2 + 0 = 2 weather · · · (10)
3 + 1 = 4 weather · · · (100)
1 + 1 = 2 boats · · · (66)
5 + 0 = 5 boats · · · (67)

(g) propagates term weights to the pages
in the BoBI with naive model

vbfti (voter boosted fti)
Tuple weight Term PageID

tfvbfti(t, p) t p

2 + 0 = 2 sailing · · · (7)
1 + 8/2 = 5 sailing · · · (13)

2 + 0 = 2 sailing · · · (15)
3 + 8/2 = 7 sailing · · · (20)

1 + 15/3 = 6 weather · · · (3)
5 + 0 = 5 weather · · · (4)

1 + 15/3 = 6 weather · · · (6)
3 + 0 = 3 weather · · · (8)
2 + 0 = 2 weather · · · (10)

3 + 15/3 = 8 weather · · · (100)
1 + 6/1 = 7 boats · · · (66)

5 + 0 = 5 boats · · · (67)
(h) propagates term weights to the pages
in the BoBI with voter model

Figure 9: Tf -boosting for book search with a naive model and a voter model

called bobi is our back-of-book index, built from content labelled
with SEC_INDEX. A page_map table is used for mapping the
’printed’ page numbers of a book to the page IDs.

Page mapping is a practical requirement of processing books in
their digitized form, while applications that need to handle such
complexity will benefit from the expressiveness and flexibility pro-
vided by PD.

The three tables for indexing books are shown in Figures 9(a), 9(b),
and 9(c).

With respect to the notation used in Figure 9 in general: The tu-
ple weight corresponds to the number of tuples in which a term-
page pair occurs. For example, tffti(t, p) := nL,fti_raw(t, p), where
(t, p) is a tuple, and nL,fti_raw(t, p) is the number of tuples in ta-
ble fti_raw (Figures 9(a)) in which (t, p) occurs.

In the next sections, we discuss the modelling of anchor-text tf -
boosting. First, a naive model using the classic Web IR strategy is
defined; and then a tailored voter model for book search is intro-
duced.

4.2 Naive Model
A naive model performs direct term augmentation thus achieving
tf -boosting to the pages in the BoBI. The idea comes from the Web
IR anchor text tf -boosting, where terms in anchor texts contribute
term frequencies to destinations. In a naive model, the terms in
the BoBI are viewed as anchor texts, while their associating pages
are viewed as destinations. For instance, in the example OCRML
segment labelled by SEC_INDEX in section 4.1, the term “sailing”

has three referenced pages “12”, “23”, and “45”. Thereby, there are
three virtual anchors, and “sailing” is an anchor-text being boosted
in the destination pages.

A mathematical definition of the naive model is given by the fol-
lowing formula:

DEFINITION 1. Boosted tf: naive model:

Let tffti(t, p) := nL(t, p) be the bare within-page term frequency
of term t in page p, i.e. the number of locations in page p at which
term t occurs.

Let bobi be the set of anchors, and let tfbobi(t, ap) := nL(t, ap)
be the within-anchor term frequency, where anchor ap points to
page p. Then, the naive boosted within-page term frequency is the
sum of the bare within-page term frequency and the term frequen-
cies of the anchors pointing to the page.

tfnbfti(t, p) := tffti(t, p) +
X
ap

tfbobi(t, ap) (1)

In probabilistic Datalog, the following rules model the naive boost-
ing strategy 7:

%1. term frequency in fti
fti SUM(T, X) :- fti_raw(T, X).

%2-3. maps page numbers and page IDs

7Lines start with ’%’ are for comment purpose.
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fti_dist DISTINCT(T, X) :- fti_raw(T, X).
fti_map(T, X, P) :- fti_dist(T, X) & page_map(X, P).

%4-5. augmentation / tf-boosting
nbfti(T, X) :- fti(T, X).
nbfti(T, X) :- bobi(T, P) & fti_map(T, X, P).

%6. estimates probability scores
w_augTerm SUM(T, X) :- nbfti(T, X) | (X).

The arguments T , X and P correspond to “Term”, “PageID” and
“Page Number” (PN) in the schema, respectively. The first rule
adds up the term frequencies to obtain the book-wide term fre-
quency. Strictly speaking, this is not a probabilistic operation,
since the tuple weights in fti (see Figure 9(f)) are total counts
rather than probabilities 8. The fti has two columns, i.e. “Term”
and “PageID”, while for better readability, we also show the corre-
sponding “PN” values (between parentheses) after the page ID, and
we will refer to “PN” in our latter discussions. The second and third
rules map the page numbers to corresponding page IDs. The fourth
and fifth rules perform naive tf -boosting. The augmented result is
shown in the Figure 9(g). The last rule estimates the probability
scores.

The issue here is that the naive modelling of tf -boosting does not
deliver a reasonable boosting effect; this is because there is at most
ONE anchor per term. Therefore, the next section describes the
idea to relate the indexed (in the BoBI) and non-indexed occur-
rences of a term, and to propagate the non-indexed occurrences to
the indexed occurrences, thus, leading to a boost of the term fre-
quencies in the indexed pages.

4.3 Voter Model
Based on the discussion in section 3.2, a voter is a page occur-
ring in the FTI. Voters vote for the destination pages that occur in
the BoBI, and that share the same keywords. In other words, each
voter holds anchors to destination pages (there could be more than
one destinations, depending on the number of pages in BoBI). The
local term frequency of a voter corresponds to the votes it can po-
tentially assign to destinations (candidates). Each destination ob-
tains a portion of the total amount of votes. There are various ways
to allocate votes to destinations, and we illustrate here the unbiased
voting where the votes are evenly distributed over destinations. Re-
fined methods for vote allocation are to be studied in future work.
For example, the vote distribution could consider page properties
such as length, location in book, exhaustiveness and/or specificity
of the page.

The mathematical definition of the unbiased voter model is given
as:

DEFINITION 2. Boosted tf: voter model:

Let tffti(t) := nL,fti_raw(t) be the book-wide term (location) fre-
quency. This frequency is equal to the sum over the within-page
term frequencies: nL,fti_raw(t) =

P
p nL,fti_raw(t, p). In a less for-

mal way, the total (book-wide) term frequency is

tffti(t) =
X

p

tffti(t, p)

8The description of a full probabilistic model is part of future re-
search. For the time being, we propose the frequency-based model,
since the probabilistic model implies an early aggregation of fre-
quency counts, and this does not deliver the tf -boosting effect as
applied in hypertext retrieval.

where tffti(t, p) := nL,fti_raw(t, p) is the within-page term fre-
quency.

The book-wide term frequency of a term t is distributed over the
BoBI entries. Let nP,bobi(t) denote the number of pages the re-
spective term entry points to in the BoBI. Note that nP,bobi(t) =
nL,bobi(t), i.e. the number of pages is equal to the number of loca-
tions/tuples, if the BoBI is distinct, i.e. there are no multiple term-
page entries of the same term to the same page.

Then, the boosted term frequency is defined as follows:

tfvbfti(t, p) := tffti(t, p) +
tffti(t)

tfbobi(t)
(2)

The respective term frequencies (tf) correspond to total counts of
term occurrences in the raw FTI, as the next equation illustrates.

tffti(t, p) = nL,fti_raw(t, p) +
nL,fti_raw(t)

nL,bobi(t)
(3)

The probabilistic Datalog rules for modelling the voter model are
as follows:

%1. term’s page frequency in bobi
bobiPageFreq(T, P) :- bobi(T, P) | (T).

%2. term frequency in fti
fti SUM(T, X) :- fti_raw(T, X).

%3-4. maps page numbers and page IDs
fti_dist DISTINCT(T, X) :- fti_raw(T, X).
fti_map(T, X, P) :- fti_dist(T, X) & page_map(X, P).

%5-6. obtains statistics for augmentation
bobiIDFreq(T, X) :-

bobiPageFreq(T, P) & fti_map(T, X, P).
fti_all SUM(T) :- fti(T, X).

%7-8. augmentation / tf-boosting
vbfti(T, X) :- fti(T, X).
vbfti(T, X) :- bobiIDFreq(T, X) & fti_all(T).

%9. estimates probability scores
w_augTerm(T, X) :- vbfti(T, X) | (X).

The first rule yields the term’s page frequency in the bobi (see
Figure 9(d)). The tuples in the goal “bobiPageFreq” are conditional
probabilities of the form P (T, P |T ), i.e. the tuple probabilities are
conditioned by the term. The “| (T)” attached to the sub-goal is the
evidence key, and this describes the conditional probability. The
second, third and fourth rules are similar to the naive model. The
fifth rule transfers the page frequency to page IDs, and the sixth rule
aggregates the total book-wide tf (see Figure 9(e)); these two rules
prepare the statistics for the latter tf -boosting. The seventh and
eighth rules conducts the proposed boosting, the result of vbfti is
shown in Figure 9(h). Finally, the last rule estimates the probability
scores.

Considering the boosting effect of the voter model, we take a closer
look at the boosted FTI, the vbfti in Figure 9(h). For example,
the two occurrences of the term “sailing” which appear in the BoBI
(i.e., on page 13 and page 20) receive an equal share of the total
tf of “sailing” in the FTI, boosting the tf by 8/2 to a total score of
5 in the case of page 13, and 7 for page 20.
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A beneficial effect of the voting-based tf -boosting strategy is that
since it promotes the pages referenced in the BoBI, it correctly
leads to a more user-oriented retrieval paradigm. For example, as-
suming that the BoBI lists only the first occurrence of a term (at
the start of a topic), the system will rank the page referenced in the
BoBI ahead of other pages containing the term, and alas directing
the user to the page where they should start reading. For instance,
page 3 is the first page about “weather”, while the adjacent page 4
continues the discussion. Without the voter model or with the naive
model, page 4 gets ranked higher, but with the voter model score
of page 3 is boosted above page 4’s score. Based on this assump-
tion, a best entry point strategy which aims to direct user to those
points in the text where they should start reading [3] can be feasibly
implemented. In effect, using the voter model, the best entry point
selection method of the author, as implemented within the index
term selection strategy they applied can be directly reflected in the
retrieval and its benefits passed directly onto the user.

5. SUMMARY
This paper proposes a tf -boosting model for book/page search. The
initial starting point was to apply anchor-text retrieval to the back-
of-book index, this idea being based on the fact that a BoBI is a list
of anchors pointing to pages. However, the starting point turned
out to be “naive” in the sense that the propagation of anchor-text
from the BoBI does not deliver the desired tf -boosting effect, and,
in turn, this observation motivated this paper.

For achieving a tf -boosting effect from the BoBI, we needed to
revise the hypertext-based modelling. This revision leads to a voter
model proposed for tf -boosting in book search: the overall idea is
to distribute the book-wide term frequency of a term to the pages
that are indexed in the BoBI; this corresponds to a voting model in
the sense that a term votes for the pages to which its term frequency
shall be added.

One of the main contributions of this paper is that the modelling
of the voter model demonstrates the benefit of high-level abstract
modelling of retrieval strategies. Traditional anchor-text retrieval is
modelled in probabilistic Datalog rules; these rules are not directly
applicable for book search, and need to be evolved. This evolu-
tion demonstrates that through the high-level abstraction of search
strategies, successful techniques of one domain (here, anchor-text
retrieval in hypertext) can be transferred to another domain (tf-
boosting for book/page search).

Future work will include the investigation of different voter mod-
els. For example, deciding how many votes an entry page should
receive based on proximity (term to page, or page to page). In addi-
tion, the evaluation of retrieval effectiveness will be examined with
real and large scale collections.
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ABSTRACT
Link detection is a special case of focused retrieval where
potential links between documents have to be detected au-
tomatically. The use case, as studied at INEX’s Link the
Wiki track, is that of a new, orphaned page (here, a struc-
tured XML document) for which we need to detect relevant
incoming and outgoing links to other pages (here, the INEX
Wikipedia collection). We focus on outgoing links and in-
vestigate link density, and especially repeated occurrences
of links with the same anchor text and destination.

We provide an extensive analysis of link density and rep-
etition, and look at parameters like the document’s length,
the distance between anchor text occurrences, and the fre-
quency of the anchor text within an article. We also conduct
experiments trying to determine what should be done with
links that are repeated. We describe alternative approaches
and compare them against two baselines: the first baseline
is to link only once, and the second is to link all candidates.
The performance is measured with precision and recall in
terms of the total set of discovered links. Our main find-
ing is that, although the overall impact of link repetition
is modest, performance can increase by taking a informed
approach to link repetition.
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H.3 [Information Storage and Retrieval]: H.3.1 Con-
tent Analysis and Indexing; H.3.3 Information Search and
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1. INTRODUCTION
Information Retrieval methods have been employed to au-

tomatically construct hypertext on the Web [1, 2, 6], as well
for specifically discovering missing links in Wikipedia [4, 3].
These missing links are added manually by users, as well
as automatically with scripts. We focus on automatic link-
detection. The purpose of detecting missing links is to make
navigation within and between pages easier.

To automatically detect whether two nodes, such as two
XML files, are implicitly connected, it is necessary to search
for some text segments that both nodes share, either explic-
itly or semantically. Often it is only one specific and extract
string [1]. With whole documents, hyperlinks can be gen-
erated on the file level. With semi-structured documents,
such as HTML or more structured documents in XML, one
can deeplink by generating hyperlinks on the element level
using the structure of the document.

In Wikipedia [14], excessive links make a Wikipedia arti-
cle difficult to read. Good links in Wikipedia are relevant to
the context. A whole document gets more context by adding
more links, as extra information is added. However, there is
the problem of link density in structured XML documents,
such as the INEX Wikipedia collection consisting of 660,000
English Wikipedia articles in XML. On the one hand, we
may decide to link only once per article to a given destina-
tion page. On the other hand, we may decide to link every
time that the opportunity presents itself. The issue of link
repetition is directly related to link density.

A rule of thumb used at Wikipedia is to “aim for a consis-
tent link density”and“not to link eight words in one sentence
and then none in the rest of the article.”1 To further quote
the style guideline of Wikipedia:

For general interest articles, where the links are
of the “see also” or “for more information” type,
it may be better to not link in the summary, de-
ferring the link until the term is defined later
in the article. Numerous links in the summary
of an article may cause users to jump elsewhere
rather than read the whole summary. For tech-
nical articles, where terms in the summary may
be uncommon or unusual, and linking is neces-
sary to facilitate understanding, it is permissible
and may even be necessary to have a high link
density in the introduction.

1Wikipedia:Only make links that are relevant to the
context, http://en.wikipedia.org/wiki/Wikipedia:
Only_make_links_that_are_relevant_to_the_context
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Specifically, Wikipedia’s manual style of links offers hints
about repeated links.2 The issue of overlinking is addressed
in this quote:

A link for any single term is excessively repeated
in the same article, as in the example of overlink-
ing that follows: ”Excessive” is more than once
for the same term, in a line or a paragraph, be-
cause in this case one or more duplicate links
will almost certainly appear needlessly on the
viewer’s screen.

However, the inverse could also be true when one anchor
term is not linked enough. Anchor terms that are more
important should be linked more often. The same Wikipedia
manual reads:

Good places for link duplication are often the
first time the term occurs in each article subsec-
tion. Thus, if an important technical term ap-
pears many times in a long article, but is only
linked once at the very beginning of the article,
it may actually be underlinked. Indeed, read-
ers who jump directly to a subsection of interest
must still be able to find a link.

It has already been pointed out in [7] that the amount
of hypertext matters: if you give someone ‘too much’ hy-
pertext, they will become lost; if you give them ‘too little’,
they will not even be able to get started. The former is
also called overlinking, while the latter is called underlink-
ing. Both cases are seen as poor link structure. Further-
more, automatic or semi-automatic constructed hypertexts
with information retrieval techniques can be difficult to use,
causing user disorientation and cognitive overload [1].

These guidelines and manual are used for adding manual
links in Wikipedia. This leads to our research questions:

• Does link repetition occur, and how often?

• How can we predict when to link in a XML document?

• Will link detection in XML documents improve by tak-
ing into account repetitions of links?

The issue link repetition and link density in automatic
link detection, especially in XML documents like the INEX
Wikipedia collection, is still a conundrum, which we try to
address in this paper. The remainder of this paper is struc-
tured as follow: we start by embedding our work with related
literature in Section 2, then we discuss our experimental
setup in Section 3, the results are evaluated and presented
in Section 4, and finally we conclude with our conclusion of
our research question in Section 5.

2. RELATED WORK

2.1 World Wide Web
On the World Wide Web, automatic hyperlink tools are

already available. In [1] an overview of different approaches
is given of information retrieval techniques for the automatic
construction of hypertext. The idea of global and local sim-
ilarity is outlined, where the former is related to the whole

2Wikipedia:Manual of Style (links), http://en.wikipedia.
org/wiki/Wikipedia:Manual_of_Style_(links)

document, and the latter to text segments in a document.
There is a strict correlation between both, and the local sim-
ilarity is more orientated towards precision to refine results
later. Another distinction that was made was between first-
order hypertexts which are added by the document author,
and second-order hypertexts which are automatically added.

Entirely automatic methods for building second-order hy-
pertext using Information Retrieval (IR) and inspired by re-
lationship visualization techniques and graph simplification
is presented in [2]. It is pointed out that document linking
is based upon information retrieval similarity measures with
adjustable levels of strictness. Using no significant natural
language processing, and standard IR indexing techniques,
inter-document links can be located and described. The idea
of linking using structure is also addressed, like creating a
link between parts of a document that are most similar.

A survey of the actual use of hyperlink analysis in web
search engine ranking like Google’s PageRank and other ap-
plications is given in [6]. Such other applications are crawl-
ing for high quality pages, search-by-example, computing
the reputation of websites, finding “web communities”, web-
sites related to same or related topics, and web page cate-
gorization. The importance of link evidence for improving
the ranking in ad-hoc retrieval using the INEX Wikipedia
collection is shown in [11]. These research directions are
related to the research in this paper, although our desired
result is to improve the quality of automatic link detection
for user navigation and serendipitous information seeking in
the Wikipedia.

2.2 Link-detection in Wikipedia
For Wikipedia, automatic link construction tools are also

available such as the link suggesting tool developed by [9]. In
[4] a 2-step approach is presented to automatically discover
missing hyperlinks in Wikipedia using the link structure.
They compute a cluster a highly similar articles around a
given article, and then they identify candidate links from
those similar articles that might be missing on that given
article. The clusters are computed by using co-citation, i.e.
two articles are similar if they are co-cited by a third one.

Since 2007 is there a specific link-detection task at INEX
called Link-the-Wiki (LTW). This task basically consists of
two sub-tasks: detecting incoming links (from destination to
source) and outgoing links (from source to destination).

An approach based on the content of an article is pre-
sented in [3], where the whole article is used as a query
against the index using the Vector Space Model (VSM). The
influence of setting different thresholds for the pool of re-
lated articles, and the effect of title matching was checked
by measuring the performance using standard IR measures
as Mean Average Precision (MAP).

In [5] the incoming links were detected by running a NEXI
query [13] with the name nodes (titles) of the topics, or
//article[about(.,name)]. For detecting outgoing links, all
the titles in the collection were stored in an in-memory hash-
table and looked up, where the window size varied from 8
words down to 1 word, and included stop words.

A different LTW approach is presented in [8], where the
authors detect links by storing an anchor text a if it has a
certain ratio and looking it up again during the link detec-
tion process. That ratio γ is the ratio between the number
of articles that has a link from anchor a to a file d, and the
number of files in which the anchor text a occurs only once.
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Using this ratio, highly relevant anchor texts can simply be
looked up.

The approach adopted in [10] identified terms within the
document that were over represented and from the top few
generated queries of different lengths. Potentially relevant
documents were identified by retrieving and ranking them
in BM25/Okapi, where these terms were used as query.

Since the LTW track in 2007 only evaluated unique article-
to-article links, the repetitions of links has not been taken
into account by this previous and related research. So there
was only focus on what to link, but not when and how often.
We investigate mainly the latter two directions in this paper.
The main challenge of automatic link detection is the actual
detection of anchor terms, i.e. substrings that should be
made clickable. Once these anchors have been found, IR
technologies take over with finding and ranking the most
plausible destinations.

3. EXPERIMENTAL SETUP
We start by analyzing the 90 existing topics (qrels) that

were used at the INEX LTW track by looking at the types of
links, repetition of links, and the article length. We continue
by defining parameters that could possibly have impact on
the detection of repeated links. Finally, we present our link
detection approach, and the baselines that we used for our
experiments.

3.1 Topics Analysis

3.1.1 Types of links
There are several types of links in the topics. These links

have been implemented in the Wikipedia collection using
XLink. An overview of the occurrence of these types of links
in the un-orphaned (original) topics is presented in Table 1.
The top 8 most frequent anchor terms on both the collection
and file level are presented in Table 2 and 3.

All topics Link in article
Type Uniq Total 1× Max
<collectionlink> 5,786 8,868 5,781 15
<unknownlink> 1,308 1,458 1,271 7
<outsidelink> 807 851 778 5
<imagelink> 197 212 197 15
<languagelink> 79 1,147 1,147 1
<wikipedialink> 59 60 58 1
<weblink> 27 28 26 2
Total 8,263 12,624 9,232 -

Table 1: Statistics of the types of Links in the 90
un-orphaned LTW articles on the file level

For example, if we regard all the links as one distribution,
then the <languagelink> has 79 different types (appearing
once), but the same types are used 1,147 times, of which the
single link <languagelink lang="de"> is used as often as
66 times, which means the same language links are reused
in the articles. When we look at each file separately, then a
language link appears only once in a file.

In the INEX Wikipedia collection, there three type of links
which are used for link detection at the LTW task: <col-

lectionlink>, <wikipedialink>, and <unknownlink>. The
<collectionlink> comprises of the bulk of the links in the
orphaned articles (70.0%). When looking on a global level

Freq. Anchor term Target file
51 “2004” 35524.xml
48 “United States” 31882.xml
40 “2005” 35984.xml
21 “France” 10581.xml
21 “United Kingdom” 31717.xml
18 “2003” 36163.xml
17 “2001” 34551.xml
16 “Japan” 15573.xml

Table 2: Frequency of top 8 anchor terms on collec-
tion level.

Freq. Anchor term In topic Target file
15 “Florida” 150340.xml 10829.xml
12 “Miami Beach” 150340.xml 109449.xml
12 “2004” 1092923.xml 35524.xml
10 “California” 150340.xml 5407.xml
9 “2005” 1092923.xml 35984.xml
9 “USA” 150340.xml 31882.xml
9 “2004” 2542756.xml 35524.xml
8 “Long Beach” 150340.xml 94240.xml

Table 3: Frequency of top 8 anchor terms on file
level.

at all orphaned articles, then there are 5,786 unique types
of collection links, out of the total of 8,868. The number
of collection links that only occurs once is 4,275, which is
73.9% of the different types of collection links, and 48.2%
out of all collection links.

3.1.2 Link repetition
However, not every type of collection link appears once.

The collection link to article 35524.xml is occurring most
often on the collection level: 51 times, but it surprisingly
does not to exist in the 2007 INEX collection that we used.
We observe that many links that re-occur are named entities
of years and geographical names like that of countries. Table
3 shows that over 3,000 of in total 8,868 links are links that
are repeated. This is a substantial amount. On average,
there are 98.5 outgoing collection links per topic, of which
64.3 per topic are unique, thus occurring once.

Many of the same types of links on a global level are reused
in the files, such as links referring to years and dates which
are almost always linked. Supporting evidence is given in
Table 2. Moreover, 5,781 of the 8,868 collection links appear
only once (65.2%) when looking on the file level, see Table 1,
an outlier is the collection link 10829.xml (“Florida”), which
is occurring 15 times in the topic 150340.xml (“Miss Uni-
verse”). The reason is that the topic “Miss Universe” has
a very high link density, and the anchor term “Florida” oc-
curs in total 15 times in the file, and thus is linked in all
instances. A distribution plot is depicted for all link (re-
)occurences in Figure 1. Most of the links occur only once,
however, a substantial subset re-occurs.

3.1.3 Links in relation to article length
We observed that the link density in Wikipedia articles is

mostly consistent and dependent on the length of an article.
The length of an article is calculated by discarding all the
XML structure, so we only obtain the cumulative length of
all the text nodes in a file.

We found that there is a significant strong positive rela-
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Figure 1: Distribution of all link frequencies

tionship between the length of a Wikipedia article (excluding
structure) and the number of links appearing in that arti-
cle (Pearson correlation coefficient r = 0.78 at p < 0.01, or
Spearman’s rho = 0.85 at p < 0.01), i.e. longer articles have
more links than shorter articles, see Figure 2. Moreover, the
average length of an anchor text is 12.3 characters, only 62
(0.7%) collection links are 3 characters or shorter.
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Figure 2: Strong positive correlation between article
length and number of links.

The link density can be measured simply using a ratio,

Link density ratio =
total links

article length
(1)

A distribution of the occurrences of the different types of
links is presented in Figure 1 and an overview of the length
distribution of the articles is given in Figure 3. We see in
Figure 4 that the majority of the topics have a similar link
density.
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Figure 3: Distribution of article length of 90 topics
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Figure 4: Distribution of link density ratios of 90
topics

3.1.4 Variables
In our experiments we check what the effect is of using

2 dependent variables, namely (1) “anchor distance” and (2)
the number of “repeated candidate links”, on the link detec-
tion performance. This performance is measured by com-
paring them against the ground truth of real links, which
makes the number of real links our independent variable.
Our definitions of the 2 dependent variables:

Anchor distance (AD) The distance between two anchor
texts that refer to the same destination node, or A
and A′, can be calculated. We define it as the func-
tion, which we call the “Anchor Distance” AD , which
is calculated as

AD(A,A′) = rindex (A′)− rindex (A), (2)

where rindex is a function that determines the index
of the last occurrence of a letter or the substring in
the whole file. A substring of a string T = t1 . . . tn is
a string T̂ that is a subset of T , or T̂ = ti+1 . . . tm+i

where 0 ≤ i and m+ i ≤ n.

Repeated candidate links (RCL) A link that has been
detected with our method is a link candidate, which
does not necessarily have to be a real link. A repeated
link candidate is a candidate link that occurs more
than once in a topic.

The AD is directly related to the concept of link density,
e.g. a greater AD means that the link density is less, while
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a smaller AD show that the link density is greater. If a link
occurs only once in an article, then it means that the dis-
tance is 0. Table 1 shows that the majority of a collection
link occurs only once in an article, and that in one article the
same collection link appears up to 15 times. Table 4 gives
descriptive statistics over the 2 dependent variables over all
detected candidate links that are repeated in the orphaned
topics, and additional information about the article length is
given. We did not choose to make the article length a third
dependent variable, because it does not relate to individual
candidate links, but only topics as a whole. Moreover, arti-
cle length is implicitly connected with anchor distance and
repeated candidate links. One candidate link is linked in
the beginning and end of a file and has an extreme anchor
distance.

Distribution of anchor distances
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Figure 5: Distribution of anchor distances for an
anchor a

Anchor distance Article length Link candidates
Mean 9,382.97 13,454.58 10.76
Std. 11,418.94 12,191.25 29.71
Min 59 951 2
Med. 5,195 8,634 3
Max. 58,241 58,984 544

Table 4: Statistics of anchor distances (char), article
lengths (char) and detected link candidates over the
90 orphaned topics.

3.2 Link Detection Method

3.2.1 Identification of related documents
We use the same method as outlined in [3], where we

used the Vector Space Model (VSM) to retrieve related doc-
uments (articles) by using the whole article as a query to
the index, where the index terms were stemmed using the
Porter Stemmer, but no stopwords were removed. Our vec-
tor space model is the default similarity measure in Apache
Lucene [12], i.e., for a collection D, document d, query q and
query term t:

sim(q, d) =P
t∈q

tf t,q ·idf t

normq
· tf t,d ·idf t

normd
· coordq,d · weight t , (3)

where

tf t,X =
p

freq(t,X)

idf t = 1 + log |D|
freq(t,D)

normq =
pP

t∈q tf t,q · idf t
2

normd =
p
|d|

coordq,d = |q∩d|
|q| .

We also assume that articles that link to each other are
somehow related textually. In [2] it is stated that the stronger
the similarity, the better the quality of the relation is be-
tween two nodes. We adopt a breadth m–depth n technique
for automatic text structuring for identifying candidate an-
chors and text node, i.e. a fixed n number of documents
accepted in response to a query and a fixed m number of
iterative searches. So the similarity on the document level
and text segment level is used as evidence.

It is reported in [3] that when using the Vector Space
Model, the best performance is achieved by retrieving the
top 300 results. We use the same threshold in these experi-
ments. This link detection experiment focuses only on out-
going links of the type collection <collectionlink>, which
consists of the bulk of the links in the INEX Wikipedia col-
lection. We do not allow a Wikipedia article to link to itself.

3.2.2 Identification of anchor texts
For our experiment, we only detect outgoing links by using

the structure of the documents. An outgoing link is a link
from an anchor text in the topic file to the Best Entry Point
of existing related articles, which in our case was always the
text-node of the /article[1]/name[1] element. There is an
outgoing link for topic t, when S1 ···n = T q···r , where S is
the title of a foster article, and T is a line in a orphan article.
We assume that the first occurence of an anchor text is also
a link. When there are multiple candidate anchors in a file,
we learn and apply our link density parameters.

We extract for each topic the title enclosed with the <name>
tag with a regular expression and store that in a hash-table
for substring matching. We apply case-folding, and remove
any existing disambiguation information put between brack-
ets behind the title, e.g. “What’s Love Got to Do with It
(film)” becomes the substring “What’s Love Got to Do with
It.” We only do exact string matching, and do no take into
account linguistic features such as morphological variations
between anchor terms or an other kind of normalization.

3.2.3 Priors
We compute and generate 2 prior plots, which are the

anchor distance prior in Figure 6(a) and the repeated link
candidates in Figure 6(b).3 Each of these plots has 10 bins,
where bin 1 consists of the bottom 10% of the anchor dis-
tances, bin 2 consists of the bottom 10-20 percent of the
anchor distances, etc. The same is true for repeated link
candidates, e.g. bin 10 in Figure 6(b) contains the top 10%
of most frequent repeated link candidates.

We see that the probability that a link is repeated is higher
when either the anchor distance is shorter, or the number of
repeated candidate links is smaller. This is remarkable, and
it may be due to an artifact of the topics, as we imagined
that when the anchor distance becomes bigger, then it would
become more probable that a link is repeated. We assumed

3We use here “prior probability” loosely. Since we are only
interested in the shape of the distribution, we do not trans-
form it into a probability distribution (which is in itself a
simple mathematical exercise).
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Figure 6: Priors partitioned in 10 bins.

the same for repeated candidate links. This requires more
thorough analysis.

We improve our link detection approach as described in
[3] by using the priors to make a Boolean choice: we ei-
ther link a repeated candidate link, or not. We apply them
on ‘orphaned’ topics, where all XML structure is removed,
including any markup of the wikilinks. We do substring
matching with the titles of the destination (target) articles
to identify the anchor texts. We store these titles in an
in-memory hash-table.

During the link detection procedure, we use the priors to
make boolean choices on whether to link an anchor term
that re-occurs in a topic given one of the 2 dependent vari-
ables as previously discussed, or P(repeated link | dependent
variable).

3.3 Baselines and runs
We outlined in the introduction that there are 2 opposite

approaches for dealing with link density: we can only link
each anchor once, or we can always link a detected anchor.
As we have pointed out before; both are not optimal. To
compare our runs we use 2 baselines that are based on both
polarities.

Baseline 1: “Link once” This baseline simulates the min-
imal link density. Each detected anchor is only made

once a link.

Baseline 2: “Always linking” This baseline simulates the
maximal link density. Each detected anchor is made a
link.

Moreover, we have the following 4 runs which are in-
between both baselines. These runs are based on the prior
plots. Since we have 2 dependent variables, we have 2 vari-
ants for each run.

Run 1 We match the 2 bins with the highest priors.

Run 2 We match the 6 bins with the highest priors.

4. EVALUATION AND RESULTS

4.1 Evaluation
Our method is evaluated on ‘cleaned’ topics, where the

collection link <collectionlink> markup has prior been re-
moved. The original topics with markup are used as qrels.
The official INEX Link-the-Wiki metrics only measure unique
links between Wikipedia articles and do not take into ac-
count link density and the detection of repeated links. Us-
ing these official metrics, we reported at INEX in [3] a Mean
Average Precision (MAP) value of 0.1825 and R-Prec value
of 0.2233. It means that when the LTW task would also take
into account link repetition and the issue of link density, we
would have achieved higher scores.

Our evaluation is restricted to the number of links that
are actually present in the un-orphaned pages, or A. Fur-
thermore, our research is focused on investigating the link
density in XML files, and not the accuracy of the actual
detected links. Therefore to check this effect, we also only
evaluate when we detected a link. Table 1 makes clear that
most of the links in the topics appear once, so a minority of
the links in the articles are actual repeated links.

We use the standard IR metrics for evaluating our meth-
ods. We use Precision P and Recall R. Precision is the
number of detected true positive links tp divided by the sum
of true positives and false positives fp, or all detected links
D.

P =
tp

tp+ fp
(4)

where

fp(D,A) =

(
D −A if D > A

0 otherwise
(5)

Recall is the number of true positive links divided by the
sum of true positives and false negatives fn.

R =
tp

tp+ fn
(6)

where

fn(D,A) =

(
A−D if D < A

0 otherwise
(7)

This evaluation means that when we underlink candidate
anchor terms, we hurt the recall, but when we overlink a
candidate term, then the precision drops. Finally, we use
the weighted harmonic mean of precision and recall, the bal-
anced F-score F

F =
2 · (P ·R)

P +R
(8)
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4.2 Results
The results are shown in Table 5. When we focus on the

performance of the baseline runs, we see that the baseline
runs perform relatively well. The main reason is that most of
the links in the topics occur once, but obviously this goes at
the expensive of the recall. Baseline 2 outperforms baseline
1 because a very high recall is achieved. This causes a slight
drop in the precision as compared with the 1st baseline.

When we look at our runs, we see that some of them
achieve higher precisions. A higher precision is more valued
in our evaluation, because it means that the links are prop-
erly placed in terms of frequency and density. Run 1 (RCL)
performs best overall, which indicates that the actual num-
ber of repeated candidate links is related to detect whether
a link should re-occur. We also improve the link detection
performance by taking into account the anchor distance in
Run 2 (AD).

Run Precision Recall F-Score
Baseline 1 0.8459 0.8043 0.8206
Baseline 2 0.7526 0.9967 0.8053
Run 1 (AD) 0.7635 0.8750 0.7790
Run 2 (AD) 0.8517 0.8126 0.8279
Run 1 (RCL) 0.8445 0.8286 0.8295
Run 2 (RCL) 0.8517 0.8126 0.8279

Table 5: Overal results for link detection.

In Table 6 we only present the top 8 detected links sorted
by anchor distance with the 2nd baseline run. This table
illustrates an interesting finding, which is the clear relation
between link detection and the topicality of documents. All
the detected candidate links are related to the topic “com-
munism”. We also see that we obviously overlink overwhelm-
ingly. Two out of the 8 detected link candidates are actually
false links when using the un-orphaned topics as ‘ground
truth’. However, when looking at the anchor terms, both
of them seem very plausible links. It makes clear that to
really determine whether a link is needed, user assessments
are required.

AD #Real RCL Topic Anchor
58,241 2 15 15641.xml russia
58,057 0 5 15641.xml communist party
57,912 3 6 15641.xml joseph stalin
57,143 2 3 15641.xml leon trotsky
56,862 2 3 15641.xml stalinism
56,212 2 9 15641.xml moscow
55,840 0 5 15641.xml cult of personality
51,018 2 34 15641.xml soviet union

Table 6: Zooming on 8 results with longest anchor
distance (AD) from baseline 2, where article length
is 58,984.

4.3 Discussion
A limitation of our experimental setup is that we do not

take into account the variable of “Intuitiveness.” According
to Wikipedia’s guidelines, piped links should be kept as in-
tuitive as possible. Piped links should not made “easter egg”
links, which require the reader to follow them before under-
standing what’s going on.

Our link detection method does not deal with violations
of these guidelines as we do exact substring matching, and
such violations are count as true positives in the automatic
evaluation, and subsequently these hurt the performance of
our method. Example 1 is used by Wikipedia as an instance
of such a link.

(1) ... and by mid-century the puns and sexual humor
were (with only a few [[Thomas Bowdler | ex-
ceptions]]) back in to stay.

The reference to “Thomas Bowdler” is not seen, unless
the reader clicks on it or hovers over the link. If there are
cases of such references, then the article should be explicitly
linked by using a “see also” as in Example 2, or rephrased as
in Example 3. In any case, the exact anchor terms should be
made clear explicitly. Using Wikipedia’s guidelines, noise in
the data, such as variants of the same terms should not occur
often, but dealing with such noise will certainly improve the
accuracy of link detection.

(2) ... and by mid-century the puns and sexual humor
were (with only a few exceptions; see [[Thomas
Bowdler]]) back in to stay.

(3) ... and by mid-century the puns and sexual humor
were back in to stay, [[Thomas Bowdler]] being
an exception.

Another limitation of our study is that we did not prop-
erly deal with overlapping anchors, which should be avoided
or parsed correctly. In the topic “Educational progressivism”
(10005.xml) we identify 2 links in the same substring “ed-
ucation reform”, namely (1) “education” and (2) “education
reform”. Example 4 shows these link candidate instances in
simplified XML form. A solution may be to always select
the longest substring.

(4) <link> <link> education </link> reform </link>

Finally, related to Example 4 is the issue of proper seg-
mentation of the anchor terms. If we only match substrings
that are separated with non-word boundaries, then we will
not find anchor terms like “Yahoo!”. That is why we do
plain substring matching, where the trade-off is generating
too many candidate anchor terms (and thus links).

5. CONCLUSIONS AND FUTURE WORK
In this paper we described our work on predicting link

density in XML documents for automatic link-detection. We
raised 3 questions, and we address them here.

• Does link repetition occur, and how often?

In our analysis we showed that the same links do re-occur
in the same documents. A substantial subset of the number
of links are actual repeated links.

• How can we predict when to link in a XML document?

The main challenge in link detection is the detection of
anchor terms. To find relevant anchor terms, we first clus-
ter related documents using the Vector Space Model. Us-
ing the structure of XML documents, we extracted relevant
substrings in the <name> nodes of Wikipedia articles. We
assumed that a link should be created at the first instance.
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To predict when a repeated link candidate should be actu-
ally made a link, we conducted a study with 2 variables.
There variables are the distance between 2 of the same an-
chor terms, and the total number of possible link candidates
in a file. We showed that both variables matter in dealing
with repeated links.

• Will link detection in XML documents improve by tak-
ing into account repetitions of links?

We gave an outline of our approaches for automatic link-
detection by taking into account some structure in the XML
documents and context with link density analysis. We com-
pared our runs with 2 baselines. The results are evaluated
with precision, recall and their weighted harmonic means.
Links are repeated in XML documents like Wikipedia arti-
cles, and there is also a user need for repeated links. Our
preliminary experiments showed that when we take into ac-
count repeated links in the ‘ground truth’, we can achieve
better link detection performance compared to the baselines
of ‘linking once’ and ‘link always’.

We presented our preliminary work on this subject. For
future work, we would like to conduct more studies with dif-
ferent samples of documents, and test it more thoroughly.
We also would like to apply and test our approaches with
users on real-world problems with other XML datasets, such
as linking archival finding aids, where we presented our con-
ceptual framework in [15]. Moreover, we will further im-
prove our method by making more use of the context of the
anchors of the hyperlinks. Detecting variants of the same
candidate anchor terms will also be investigated.
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