
ADCS 2009
Proceedings of the Fourteenth

Australasian Document Computing Symposium

4 December 2009

Edited by
Judy Kay, Paul Thomas, and Andrew Trotman

Technical report TR 645
School of Information Technologies, University of Sydney





Proceedings of the Fourteenth Australasian Document Computing Symposium

University of New South Wales, Sydney, NSW
4 December 2009

Published by
School of Information Technologies, University of Sydney

Editors

Judy Kay
Paul Thomas

Andrew Trotman

ISBN: 978-1-74210-171-2
http://es.csiro.au/adcs2009





Proceedings of the Fourteenth Australasian Document Computing Symposium

University of New South Wales, Sydney, NSW
4 December 2009

Chairs' preface

These proceedings contain the papers of the Fourteenth Australasian Document 
Computing Symposium hosted by HCSNet at the University of New South Wales, 
Sydney.

The varied long and short papers, as well as David Traum's and Mark Sanderson's 
plenaries,  are  indicative  of  the  wide  breadth  of  research  in  the  Australasian 
document computing community and the wide scope for application.

The  quality  of  submissions  was  once  again  high  this  year.  Of  the  32  papers 
submitted (26 full and 6 short), 10 were accepted for presentation at the symposium 
(28%) and 11 were accepted as posters (31%). All submissions received at least 
two anonymous reviews by experts in the area, and several received three reviews. 
Dual submissions were explicitly prohibited.

The members of the program committee and the extra reviewers deserve special 
thanks for their  effort,  especially given the very tight turnaround needed for this 
year's symposium. We would also like to thank HCSNet for its support of ADCS, 
which freed us from worrying about most of the logisitics.

The ADCS community has contributed many good papers this year, but as before 
the symposium's greatest benefit may be the opportunity it provides for researchers 
and practitioners to meet and share ideas. We hope you enjoy it.





Symposium chair
Judy Kay University of Sydney Australia

Programme co-chairs
Andrew Trotman University of Otago New Zealand
Paul Thomas CSIRO Australia

Programme committee
Alexander Krumpholz CSIRO/ANU Australia
Alistair Moffat University of Melbourne Australia
Andrew Turpin RMIT University Australia
Christopher Lueg University of Tasmania Australia
David Hawking Funnelback Australia
Falk Scholer RMIT University Australia
Gitesh Raikundalia Victoria University Australia
James Thom RMIT University Australia
Judy Kay University of Sydney Australia
Nathan Rountree University of Otago New Zealand
Peter Bruza QUT Australia
Ross Wilkinson Australian National Data Service, Australia
Sally Jo Cunningham University of Waikato New Zealand
Shlomo Geva QUT Australia
Timothy Jones ANU Australia
Tom Rowlands CSIRO/ANU Australia
Vo Anh University of Melbourne Australia
William Webber University of Melbourne Australia
Yun Sing Koh AUT New Zealand

Additional reviewers
Cécile Paris CSIRO Australia
Richard O'Keefe University of Otago New Zealand
Stephen Wan CSIRO Australia

ADCS steering committee
Alistair Moffat University of Melbourne Australia
Andrew Trotman University of Otago New Zealand
Andrew Turpin RMIT University Australia
David Hawking Funnelback Australia
James Thom RMIT University Australia
Judy Kay University of Sydney Australia
Justin Zobel University of Melbourne Australia
Paul Thomas CSIRO Australia
Peter Bruza QUT Australia
Ross Wilkinson Australian National Data Service, Australia
Shlomo Geva QUT Australia





Contents

Chairs’ preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Plenary

Is this document relevant? Errr it’ll do . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Mark Sanderson

Session 1

Collaborative Filtering Recommender Systems based on Popular Tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Huizhi Liang, Yue Xu, Yuefeng Li and Richi Nayak

External Evaluation of Topic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
David Newman, Sarvnaz Karimi and Lawrence Cavedon

Id - Dynamic Views on Static and Dynamic Disassembly Listings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Nicholas Sherlock and Andrew Trotman

Interestingness Measures for Multi-Level Association Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Gavin Shaw, Yue Xu and Shlomo Geva

Do Users Find Looking at Text More Useful than Visual Representations? A Comparison of Three Search Result
Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Hilal Al Maqbali, Falk Scholer, James A. Thom and Mingfang Wu

Session 2

Random Indexing K-tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Chris De Vries, Lance De Vine and Shlomo Geva

Modelling Disagreement Between Judges for Information Retrieval System Evaluation . . . . . . . . . . . . . . . . . . .51
Andrew Turpin and Falk Scholer

University Student Use of the Wikipedia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Andrew Trotman and David Alexander

Feature Selection and Weighting in Sentiment Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Tim O’Keefe and Irena Koprinska

The Use of Topic Representative Words in Text Categorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Su Nam Kim, Timothy Baldwin and Min-Yen Kan

Poster presentations

N-Gram Word Segmentation for Chinese Wikipedia Using Phrase Mutual Information . . . . . . . . . . . . . . . . . . . 82
Ling-Xiang Tang, Shlomo Geva, Andrew Trotman and Yue Xu

An Automatic Question Generation Tool for support Sourcing and Integration in Students’ Essays . . . . . . . . 90
Ming Liu and Rafael A. Calvo

You Are What You Post: User-level Features in Threaded Discourse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Marco Lui and Timothy Baldwin



Investigating the use of Association Rules in Improving Recommender Systems . . . . . . . . . . . . . . . . . . . . . . . . 106
Gavin Shaw, Yue Xu and Shlomo Geva

The Methodology of Manual Assessment in the Evaluation of Link Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Wei Che (Darren) Huang, Andrew Trotman and Shlomo Geva

Web Indexing on a Diet: Template Removal with the Sandwich Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Tom Rowlands, Paul Thomas and Stephen Wan

Analyzing Web Multimedia Query Reformulation Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Liang-Chun Jack Tseng, Dian Tjondronegoro and Amanda Spink

Term Clustering based on Lengths and Co-occurrences of Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Michiko Yasukawa and Hidetoshi Yokoo

WriteProc: A Framework for Exploring Collaborative Writing Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Vilaythong Southavilay, Kalina Yacef and Rafael A. Calvo

An Analysis of Lyrics Questions on Yahoo! Answers: Implications for Lyric / Music Retrieval Systems . . . 137
Sally Jo Cunningham and Simon Laing

Positive, Negative, or Mixed? Mining Blogs for Opinions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Xiuzhen Zhang, Zhixin Zhou and Mingfang Wu



Is this document relevant? Errr it’ll do

Mark Sanderson
University of Sheffield

m.sanderson@shef.ac.uk

Abstract Evaluation of search engines is a critical
topic in the field of information retrieval. Doing
evaluation well allows researchers to quickly and
efficiently understand if their new algorithms are a
valuable contribution or if they need to go back to
the drawing board. The modern methods used for
evaluation developed by organizations such as TREC
in the US have their origins in research that started in
the early 1950s. Almost all of the core components of
modern testing environments, known as test collections,
were present in that early work. Potential problems
with the design of these collections were described in a
series of publications in the 1960s, but the criticisms
were largely ignored. However, in the past decade a
series of results were published showing potentially
catastrophic problems with a test collection’s ”ability”
to predict the way that users will work with searching
systems. A number of research teams showed that users
given a good system (as measured on a test collection)
searched no more effectively than users given one that
was bad.

In this talk, I will briefly outline the history of
search evaluation, before detailing the work finding
problems with test collections. I will then describe
some pioneering but relatively overlooked research
that pointed out that the key problem for researchers
isn’t the question of how to measure searching systems
accurately, the problem is how to accurately measure
people.

Proceedings of the 14th Australasian Document Comput-
ing Symposium, Sydney, Australia, 4 December 2009.
Copyright for this article remains with the authors.

1



2



 

 
 

Collaborative Filtering Recommender Systems based on Popular Tags 
 

Huizhi Liang Yue Xu Yuefeng Li Richi Nayak 
School of Information Technology 

Queensland University of Technology 
Queensland, QLD 4001, Australia 

 

oklianghuizi@gmail.com yue.xu@qut.edu.au y2.li@qut.edu.au r.nayak@qut.edu.au 
 
 

Abstract1 The social tags in web 2.0 are becoming 
another important information source to profile users' 
interests and preferences for making personalized 
recommendations. However, the uncontrolled 
vocabulary causes a lot of problems to profile users 
accurately, such as ambiguity, synonyms, misspelling, 
low information sharing etc.  To solve these problems, 
this paper proposes to use popular tags to represent 
the actual topics of tags, the content of items, and also 
the topic interests of users. A novel user profiling 
approach is proposed in this paper that first identifies 
popular tags, then represents users’ original tags 
using the popular tags, finally generates users’ topic 
interests based on the popular tags. A collaborative 
filtering based recommender system has been 
developed that builds the user profile using the 
proposed approach. The user profile generated using 
the proposed approach can represent user interests 
more accurately and the information sharing among 
users in the profile is also increased. Consequently the 
neighborhood of a user, which plays a crucial role in 
collaborative filtering based recommenders, can be 
much more accurately determined. The experimental 
results based on real world data obtained from 
Amazon.com show that the proposed approach 
outperforms other approaches.  
 
Keywords Information Retrieval, recommender 
systems, social tags, web 2.0 
 
1 Introduction 
 

Collaborative tagging is a new means to organize and 
share information resources or items on the web such 
as web pages, books, music tracks, people and 
academic papers etc. Due to the simplicity, 
effectiveness and being independent of the contents of 
items, social tags have been used in various web 
applications including social web page bookmarking 
site del.icio.us, academic paper sharing website 

                                                 
Proceedings of the 14th Australasian Document 
Computing 
Symposium, Sydney, Australia, 4 December 2009. 
Copyright for this article remains with the authors. 

CiteULike, and electronic commerce website 
Amazon.com.  

A social tag is a piece of brief textural information 
given by users explicitly and proactively to describe 
and group items, thus it implies user’s interests or 
preferences information. Therefore, the social tag 
information can be used to profile user’s interested 
and preferred topics to  improve personalized 
searching [1], generate user and item clusters [2], and 
make personalized recommendations [3] etc. 
However, as the tag terms are chosen by users freely 
(i.e., uncontrolled vocabularies), social tags suffer 
from many difficulties such as ambiguity in the 
meaning of and differences between terms, a 
proliferation of synonyms, varying levels of 
specificity, meaningless symbols, and lack of 
guidance on syntax and slight variations of spelling 
and phrasing [4]. These problems cause inaccurate 
user profiling and low information sharing among 
users, and also bring challenges to generate proper 
neighborhood for making item recommendations and 
consequently result in low recommendation 
performances. Therefore, a crucial problem in 
applying user tagging information to user profiling is 
to represent the semantic meanings of the tags.  

Popular tags refer to the tags that are used by many 
users to collect items. Those popular tags are factual 
tags [5] that often capture the tagged items’ content 
related information or topics while  those tags that 
have low popularity are often irrelevant to the content 
of the tagged items or meaningless to other users, or 
even misspelled [5]. For one item, the popularity of 
using a tag to classify the item reflects the degree of 
common understanding to the tag and the item. High 
popularity means that the majority of the users think 
this item can be described by the tag. Thus, the 
popular tags reflect the common viewpoint of users or 
the “wisdom of crowds” [6] in the classification or 
descriptions of this item. Therefore, we argue that the 
popular tags can be used to describe the topics of the 
tagged items. For each user, the original tags and the 
collected items represent the user's personal viewpoint 
of item classifications and collections. In a tag, a set of 
items are grouped together according to the user's 
viewpoint. The actual topics of the tag can be 
described by the frequent topics of the collected items. 

3



 

As we just mentioned above, the major topics of each 
item can be represented by its popular tags, thus the 
popular tags of the collected items in a tag can be used 
to represent that tag's actual topics. Since the user's 
personal viewpoint of the classifications of the 
collected items are still kept while the original tag 
terms are converted to popular tags that shared by 
many users, the user information sharing will be 
improved.   

In this paper, we propose to use popular tags to 
represent the topics of items, tags, and users’ interests 
to solve the problems of inaccurate user profiling and 
low information sharing caused by the free-style 
vocabularies of social tags. In Section 2, the related 
work will be briefly reviewed. Then, the proposed 
collaborative filtering recommendation approach 
based on popular social tags will be discussed in 
details in Section 3. In this section, the definitions and 
the selection of popular social tags will be discussed 
firstly. Then, the approaches of representing items and 
tags with popular social tags will be presented. 
Followed by the user profiling, neighborhood 
formation, and recommendation generation 
approaches, the experimental results and evaluations 
will be discussed in Section 4. Finally, the conclusions 
will be given in Section 5. 
 
2 Related Work 
 

Recommender systems have been an active research 
area for more than a decade, and many different 
techniques and systems with distinct strength have 
been developed. Recommender systems can be 
broadly classified into three categories: content-based 
recommender systems, collaborative filtering or social 
filtering based recommender systems and hybrid 
recommender systems [7]. Because of the advantages 
of using similar users’ recommendation and 
independent with the contents of items, the 
collaborative filtering based recommender systems 
have been widely used. Typically, users' explicit 
numeric ratings towards items are used to represent 
users' interests and preferences to find similar users or 
similar content items to make recommendations. 
However, because users' explicit rating information is 
not always available, the recommendation techniques 
based on user's implicit ratings have drawn more and 
more attention recently.  

Besides the web log analysis of users' usage 
information such as click stream, browse history and 
purchase record etc., users' textural information such 
as tags, blogs, reviews in web 2.0 becomes an 
important implicit rating information source to profile 
users' interests and preferences to make 
recommendations [10]. Currently, the researches about 
tags in recommender systems are mainly focused on 
how to recommend tags to users such as using the co-
occurrence of tags [2] and association rules [10] etc. 
Not so much work has been done on the item 
recommendation. Although there are some recent 

work which discusses about integrating tag 
information with content based recommender systems 
[11], extending the user-item matrix to user-item-tag 
matrix to make collaborative filtering item 
recommendation [12], combining uses’ explicit rating 
with the predicted users’ preferences for items based 
on their inferred preferences for tags [16] etc, more 
advanced approaches of how to exploit tags to 
improve the performances of item recommendations 
are still in demand. 

More recently, the semantic meaning of social tags 
has become one important research question. The 
research of Sen etc. [5] suggests that the factual tags 
are more likely to be reused by different users. The 
work of Suchanek etc. [15] shows that popular tags 
are more semantically meaningful than unpopular 
tags. And, the research of Bischoff etc. [4] shows that 
not all tags are useful for searching and those tags 
related to the content information of items are more 
useful. These findings support this research. To solve 
the difficulties caused by the uncontrolled 
vocabularies of social tags, some approaches have 
been discussed to get the actual semantics of tags such 
as combining the content keywords with tags [10], 
using dictionaries to annotate tags [6], and 
contextualizing tags [17] etc. Different from these 
approaches, this paper proposes to use popular tags 
generated from the collected items to represent the 
semantic meanings of tags. 

 
3 The Proposed Approach 
 

3.1 Definitions 
 

To describe the proposed approach, we define some 
key concepts and entities used in this paper as below. 
In this paper, tags and social tags are interchangeably 
used. 
� Users: � = {�1, �2, … , �� } contains all users in an 

online community who have used tags to organize 
items.    

� Items or (Products, Resources):  � =
{�1, �2, … , �� } contains all items tagged by users 
in U. Items could be any type of online 
information resources or products in an online 
community such as web pages, videos, music 
tracks, photos, academic papers, books etc. Each 
item p can be described by a set of tags contributed 
by different users. 

� Topics: contain items’ content related information 
such as content topics, genres, locations, attributes. 
For example, “globalization” is a topic that 
describes items’ content information, “comedy” is 
a topic that describes items’ genre information, and 
“Shakespeare” is a topic that describes the attribute 
of author information.      

� Social Tags: � = {	1, 	2, … , 	
}  contains all tags 
used by the users in U. 

� Popular social tags: � = �
1, 
2, … , 
� � contains a 
set of popular social tags. Popular social tags are 

4



 

tags that are used by at least � users, where � is a 
threshold. The selection of popular social tags is 
discussed in the followed Section. 

3.2 The Selection of Popular Social Tags 
 

Through tagging, the users, items and tags form a 
three dimensional relationship [12]. Based on tags, 
items are aggregated together if they are collected 
under the same tag by different users and also users 
are grouped together if they have used the same tag. 
Usually, the global popularity of a tag can be 
measured by the number of users that have used this 
tag. 

Let �(	�) be the set of users who have used the tag 
	���, ��	�, �� � be the set of users who  have used 	�  for 
the item �� �� ,  �(	�) = {�(	� , �� )|�� ��(	�)} , where 
�(	�) is the set of items collected under tag  	�  and 
�(	�) ⊆ � .  The global popularity of 	�  can be 
measured by |�(	�)| which is the number of users that 
have used tag 	� , and  the local popularity of 	�  for the 
item ��  can be measured by   |��	� , �� �|. If we choose 
popular tags only based on the global popularity, some 
important tags that have high local popularities but 
relatively low global popularities (i.e., the tags that 
only have one kind of meaning and are used by a 
small number of users for tagging some particular 
items) will be missed out. Moreover, because a tag 
can have multiple meanings and users may have 
different understandings to the tags, some tags will 
have high global popularities but low local 
popularities such as subjective tags (i.e., “funny”). But 
because of the high global popularity, those tags will 
be incorrectly selected.  
    To select those popular tags that can well represent 
the item topics, we define the global popularity of a 
tag based on its maximum local popularity. Let �(	�) 
be the global popularity of the tag 	� ,  �(	�) =
max�� ��(	�){ |��	� , �� �|} . Thus, let �  be a threshold, 
any tag 	�  with �(	�) > � will be selected as a popular 
social tag. 

Theoretically, the threshold � can be any positive 
numbers. However, since �(	�) is the maximum local 
popularity of 	�  for its collected items, if � is too large, 
the number of popular tags will be small, and there 
might be some items which are not tagged by any of 
those selected popular tags.   On the other hand, each 
item collects a set of tags that have been used by 
different users to tag this item. Let   �(�� )  be the 
collected tag set of �� , max

	���(�� )
{���	� , �� ��}  is the 

maximum local popularity of the tags in  �(�� ) for 
item �� . Apparently, if  � > max

	��� (�� )
{���	� , �� ��}, then 

all the tags of item ��  will be excluded which will 
result in no popular tags to describe the topics of  
�� .To avoid this situation, we define an upper 
boundary for the threshold �.  Let 
� = ������� { ���

	��� (�� )
{���	� , �� ��}}. If � ≤ �, then each 

item can be guaranteed to have at least one popular tag 

to  describe it. Therefore, the popular social tag set � 
also can be denoted as: 

� = {	�|�(	�) ≥ �, 	� ∈ �, � ≥ � > 0}, � ⊆ �. 
3.3 Item and Tag Representations 
 

The selected popular tags are used to represent items’ 
major topics and the actual topics of each user’s tags.  

Item Representation 
 

Traditionally, the item classifications or descriptions 
are given by experts using a set of standard and 
controlled vocabulary as well as a hierarchical 
structure representing the semantic relationships 
among the topics to describe the topics of the items 
such as item taxonomy and ontology. In web 2.0, 
harnessing the collaborative work of thousands or 
millions of web users, the aggregated tags contributed 
by different users form the item classifications or 
descriptions from the viewpoint of users or 
folksonomy [13]. For each item �� , the set of tags used 
by users to tag �� , denoted as �(�� ), and the number 
of users for each tag in �(�� )  form the item 
description of item �� , which is defined as below.    

Definition 1 (Item Description): Let  ��  be an 
item, the item description of  ��  is defined as the set of 
social tags for  ��  and their numbers of being used to 
tag the item  �� , which is denoted as �(�� ) =
!"	� , ��	� , �� �# |	� ∈ �(�� ), ��	�, �� � > 0$ , where 
��	�, �� � is the number of users that use the tag 	�  to 
tag the item ��  and  ��	�, �� � = |��	� , �� �|. 

An example of item description is shown in Figure 
1. The book “The World is Flat” is described by 10 
tags such as “globalization”, “economics”, “business” 
etc. and their user numbers.  

 
 
 

 
 
 
 
 

 
Different from the item descriptions or 

classifications provided by experts, the item 
descriptions formed by social tags contain a lot of 
noise, which brings challenges for the organizing, 
sharing and retrieval of items. However, an advantage 
provided by the item descriptions formed by social 
tags is that the item description �(�� ) records the user 
number of each tag for ��  or the local popularity of 
each tag for  �� . This feature can be used to find the 
major topics of items and filter out the noise. For 
example, in Figure 1, we can see that 57 users use the 
tag “globalization” to classify the book “The World is 
Flat”, which is the most frequently used tag to tag this 
book, and the term “globalization” is indeed the actual 

Figure 1: An example of item description formed by 
social tags. 

The World is Flat 
globalization (57) economics 
(34) business (22) technology 
(22) history (20) 0312 (1) 
naive analysis (1) ltp(1) 
statistics(1) trade(1)... 

5



 

major topic of this book. Moreover, the tag “0312” 
only has one user, and it doesn’t reveal any 
information in terms of the topics of the book. 
Removing the unpopular tags such as “0312” won’t 
reduce the coverage of the remaining tags to represent 
the topics of the book but the noise. Therefore, we 
propose to use the selected popular tags to represent 
the items.   
Definition 2 (Item Representation) Let ��  be an 
item, � = �
1, 
2, … , 
� � be the set of popular tags, the 
representation of  ��  is defined as a set of popular 
social tags along with their frequencies as described 
below: 
%&��� � = ��
� ,  '(�� , 
� �� 
� ∈ �,  '(�� , 
� � > 0�,  
'(�� , 
�  ) = �(
� , �� )/ ∑ ��
+ , �� � 
+ ∈� , where 
 '(�� , 
� ) is the frequency of 
�  for �� ,  '(�� , 
�  ) ∈
[0,1] and  ∑ '��� , 
� � 
� ∈� = 1. 

The frequency  '(�� , 
� )  represents the degree of 
item ��  belonging to  
� . For a given set of popular 
tags � with size q, i.e.,|�| = �,the topics of each item 
�� ∈ �  can be represented by a vector  -�333⃗ =
�-� ,1, -� ,2, … , -� ,� , . . . , -� ,|�|� , where -� ,�  =  '(�� , 
� ) . 
Thus, for each item �� , its topic representation 
becomes:   
-�333⃗ = �-� ,1, -� ,2, … , -� ,� , … , -� ,|�|� 

 
Tag Representation 
 

As mentioned in Introduction, since the unrestricted 
nature of tagging, social tags contain a lot of noise and 
suffer some problems such as semantic ambiguity and 
a lot of synonyms etc., which brings challenges to 
make use of social tags to profile users' interests 
accurately.  

Although not all tags are meaningful to other users 
or can be used to represent the topics, for each user, 
his/her own tags and items collected with those tags 
reflect that user's personal viewpoint of classification 
of the collected items. Thus, each tag used by a user is 
useful for profiling that user no matter how popular 
this tag is. In a tag, a set of items are grouped together 
according to a user's viewpoint, therefore, the frequent 
topics of these items can be used to represent the 
actual topics of the tag. Since the major topics of each 
item can be represented by its popular tags, the 
frequent popular tags of the collected items in a tag 
can be used to represent that tag's actual covered or 
related topics. 
Definition 3 (Tag Representation): Let 	  be a tag 
used by user � ,  � = �
1, 
2, … , 
� �  be the set of 
popular tags, the representation of  	 is defined as a set 
of weighted popular social tags as described below: 
�&(	, �) = {(
� ,  5(
� , 	, �))| 
� ∈ �,  5(
� , 	, �)) >
0}, where 5(
� , 	, �) is the weight of 
� ,  5(
� , 	, �) ∈
[0,1], ∑ 5(
� , 	, �)
� ∈� = 1. 

The weight of 
�  or 5(
� , 	, �)  can be measured 
through calculating the total frequency of 
�  for all the 

items collected in the tag t by the user u. Since the 
number of items in different tags may be different, we 
normalize 5(
� , 	, �) with the number of items in the 
tag t of u. Let �(	, �) denote the set of items that are 
collected or classified to the tag t by user u, then the 
weight of cx   can be calculated as below: 
5(
� , 	, �) = 1

|�(	,�)| ∑ '� �� , 
� ��� ∈�(	,�) , where 

'��� , 
� � is the frequency of 
�  for the item ��  in the 
tag t, as shown in Definition 2, '��� , 
� � =
�(
� , �� )/ ∑ ��
+ , �� � 
+ ∈� .  
Apparently, the tag representation �&(	, �) is 
generated based on the items collected in the tag t by 
the user u. That means, �&(	, �) still reflects the 
personal viewpoint of the user u about the item 
classifications or collections. Thus, each user’s 
viewpoint of classifying his/her items is still kept 
while a set of popular tags are obtained to represent 
each tag term’s semantic meaning. For different users, 
the representations for the same tag can be different. 
On the other hand, for different users, the 
representations for different tags can be the same or 
similar. Even though the tag terms are freely chosen 
by individual users, by representing each tag using a 
set of popular tags, all tags become comparable since 
all of them are represented using the same set of terms 
(i.e., popular tags). With the popular tag 
representation, those unpopular tags that often cause 
confusions and noises become understandable by 
other users according to the understanding to their 
corresponding popular tag representation. For those 
popular tags, their tag representations reveal other 
related popular tags, very often, these popular tags 
themselves have high weight in their tag 
representation. Since each tag is represented by a set 
of popular tags which provides the ground for 
comparison, this approach can help to solve the 
problems caused by the free style vocabulary of tags 
such as tag synonyms which means some different 
tags have the same meaning, semantic ambiguity of 
tags which means one tag has different meanings for 
different users, and spelling variations etc. 
  

3.3 User Profile Generation 
 

User profile is used to describe user's interests and 
preferences information. Usually, a user-item rating 
matrix is used in collaborative filtering based 
recommender systems to profile users’ interests, 
which are used to find similar users through 
calculating the similarity of item ratings or the 
overlaps of item sets [14]. With the tag information, 
users can be described with the matrix (user, (tag, 
item)), where (tag, item) is a sub matrix representing 
the relationship between the tag set and item set of 
each user. Binary values “1” and “0” are used to 
specify whether a tag or an item has been used or 
tagged by a user or not. Through calculating the 
overlaps of tags and items or each user's sub 
relationship of tags and items, neighborhood can be 

6



 

formed to do collaborative filtering to recommend 
items to a target user [12][3].   

As mentioned before, the free-style vocabulary of 
tags causes a lot of noise in tags which resulted in 
inaccurate user profiles and incorrect neighbors. 
Moreover, because of the long tails of items and tags, 
the size of the matrix is very big and the overlaps of 
commonly used tags and tagged items are very low, 
which makes it difficult to find similar users through 
calculating the overlaps of tags and items. To solve 
these problems, we propose to profile users' interests 
to topics by using a set of popular tags and convert the 
binary matrix (user, (tag, item)) into a much smaller 
sized user-topics matrix. The popular tags will be used 
to represent each user's interested topics and numeric 
scores will be used to represent how much the user are 
interested in these topics.  
Definition 4 (User Profile): Let ��  be a user,  � =
�
1, 
2, … , 
� �  be the set of popular tags, the user 
profile of ��  is defined as a |C|-sized vector with 
scores reflecting user’s interests to the popular tags, 
which is donated as 
6�333⃗ = �6�,1, 6�,2, … , 6�,� , . . . , 6�,|�|� =
"7
(�� , 
1), 7
(�� , 
2), … , 7
(�� , 
� ), … , 7
���, 
� �#.   
7
(�� , 
� )   is the score to 6�,�  that represents the 
degree of �� 's interests to the popular tag 
� .  

A matrix 6⃗  with size |�| × |�| , can be used to 
represent the user profiles for all users in �. Each row 
6�333⃗  in the matrix 6⃗ represents the user profile of user �� . 
In order to facilitate the similarity measure of any two 
users, user-wise normalization is applied. We suppose 
each ��� �  has the same total interest score N and 
∑ 7
(�� , 
� )
� ∈� = 8 , where N is the normalization 
factor, which can be any positive number. Thus, 
7
(�� , 
� ) ∈ [0, 8]. 

To calculate each user’s topic interest degree 
7
��� , 
� � , firstly, we calculate the user’s interest 
distribution for his/her own original tags. Let �� =
�	�,1, 	�,9 , . . . , 	�,� �  be the tag set of 
�� ,  	�,1, 	�,9 , … , 	�,� ��, 7(	�,9 ) be the score to measure 
how much ��  is interested in 	�,9 , then the score vector 
(7(	�,1), 7�	�,9 �, … , 7(	�,� )) will represent �� ’s interest 
distribution over his/her own tags, ∑ 7�	�,9 � �

9=1 = 8.  
A common sense is that, if a user is more interested 

in a tag or topic, usually the user may collect more 
items under that tag or about that topic. That means, 
the number of items in a tag is an important indicator 
about how much the user is interested in the tag. Let 
|�� 	�,9 , ���| denote the number of items in the tag 	�,9  
used by user  �� , we use the proportion of |�� 	�,9 , ���| 
to the total number of items in all tags of ��  to 
measure the user's interest degree to the tag  	�,9 . Thus, 
7
�	�,9 � can be calculated as shown as follows:  

                   7�	�,9 � = 8 ∙ |�� 	�,9 ,���|
∑ |�� 	�,9 ,���|�

9=1
        (1) 

By using Equation 1, we can obtain the user-tag 
matrix that describes tag interests of all the users. As 

discussed before, a tag can be represented with a set of 
popular social tags derived from the collected items 
with that tag. We can calculate the score of user  ��  to 
topic 
�  in each tag 	�,9   denoted as 
�,9  for the user 
 �� , shown as below:  
7
��� , 
�,9 � = 7�	�,9 � ∙ 5� 
�,9 , 	�,9 , ���, � = 1. . �, 9 =
1. . �                                                    (2)                         

The user’s interest score to the topic 
� , 7
′(�� , 
� ), 
is calculated by summing up the user’s interests to the 
topic in all his tags: 
                  7
(�� , 
� ) = ∑ 7
���, 
�,9 ��

9=1           (3) 
With Equation 3, users’ interest distributions over 

their own original tags are converted to users’ interest 
distributions over the topics of items that are 
represented by the popular tags. Using this user 
profiling approach, the noise of social tags can be 
greatly removed while each user’s personal viewpoint 
of classifications or collections will still remain. 
Moreover, since the size of the converted matrix is 
much smaller than the size of the matrix (user, (tag, 
item)), the information sharing among different users 
can be improved as well. 
 
3.4 Neighborhood Formation 

 

Neighborhood formation is to generate a set of like-
minded peers for a target user. Forming a 
neighborhood for a target user uiϵ U  with standard 
“best-K-neighbors” technique involves computing the 
distances between uiand all other users and selecting 
the top K neighbors with shortest distances to ui . 
Based on user profiles, the similarity of users can be 
calculated through various proximity measures. 
Pearson correlation and cosine similarity are widely 
used to calculate the similarity based on numeric 
values. 

Based on the user profiles discussed above, for any 
two users ��  and ��  with profile 6�  and 6� , the Pearson 
correlation is used to calculate the similarity, which is 
defined as below: 

7����� , �� �

=
∑ �vi,y − vi� ∙ � vj,y − vj�q

y=1
∑ (vi,y −  vi)2 ∙ ∑ (vj,y − vj)2q

y=1 )q
y=1

           (4)   

    Using the similarity measure approach, we can 
generate the neighborhood of the target user �� , which 
includes K nearest neighbour users who have similar 
topic interests with �� . The neighbourhood of �� , is 
denoted as: 

Ň(��) = {�� |�� � ���?�7����� , �� ��, �� ��  
where maxK {} is to get the top K values.   

 
3.5 Recommendation Generation 

 

For each target user �� , a set of candidate items will be 
generated from the items tagged by �� 's 
neighbourhood formed based on the similarity of 
users, which is denoted as Č(�� ) , Č(��) =
{�9 |�9 ����� �, �� � Ň(��), �9 ∉ �(��)} ,  where ���� � 

7



 

is the item set of user �� . With the typical 
collaborative filtering approach, those items that have 
been collected by the nearest neighbors will be 
recommended to the target user.  

As discussed in Section 3.2, the aggregated social 
tags describe the content information of items and the 
topics of each item can be represented by popular 
social tags. Thus, we propose to combine the content 
information of items formed by popular social tags 
with the typical collaborative filtering approach to 
generate recommendations. Those items that not only 
have been collected by the nearest neighbors but also 
have the most similar topics to the target user’s 
interests will be recommended to the target user, 
which makes the proposed recommendation 
generation approach actually get the benefits of the 
content based recommendation approaches [8]. 

For each candidate item  �9 �Č(��), let Ň(�� , �9 ) be 
the set of users in Ň(��) who have tagged the item �9 , 
the prediction score of how much ��  may be interested 
in �9  is calculated in terms of the aspects of how 
similar those users who have the item �9  and how 
similar the item's topics with �� 's topic interest.  

With Equation 4, the similarity of two users can be 
measured. Similarly, the Pearson correlation is used to 
calculate the similarity of the topic interests of user 
�� and the topics of the candidate item �9 , which is 
denoted as below: 

7��(�� , �9 ) = ∑ �6�,+ −6��∙( -9,+ −-9 ) �
+ =1

∑ (6�,+ − 6�)2∙∑ (-9,+ −-9 )2�
+ =1 )�

+ =1
    (5)               

Thus, the prediction score denoted as A(�� , �9 ) can 
be calculated with Equation 6. 

A(�� , �9 ) =
7�� (�� ,�9 )∙∑ 7�� ��� ,�� �� � �Ň(� � ,� 9 )

|Ň(�� ,�9 )|       (6)         

  The top N items with larger prediction scores will be 
recommended to the target user  �� .  
 
4 Experiments and Evaluations 
 

4.1 Experiment setup 
 

We conducted the experiments using the dataset 
obtained from Amazon.com. The dataset was crawled 
from amazon.com on April, 2008. The items of the 
dataset are books. To avoid too sparse, in pre-
processing, we removed the books that are only 
tagged by one user. The final dataset comprises 5177 
users, 37120 tags, 31724 books and 242496 records.  

The precision and recall are used to evaluate the 
recommendation performance. The whole dataset is 
split into a training dataset and a test dataset with 5-
folded and the split percentage is 80% for the training 
dataset and 20% for the test dataset, respectively. 
Because our purpose is to recommend books to users, 
the test dataset only contain users' books information. 
Each record in the test dataset consists of the books 
that are tagged by one user. The training dataset, 
which is used to build user profiles, contains users' 

books and corresponding tags information as well. For 
each user in the test dataset, the top N items will be 
recommended to the user. If any item in the 
recommendation list is in the target user's testing set, 
then the item is counted as a hit.  
 
4.2 Parameterization 
 

The global popularities of tags are shown in Figure 2. 
We can see that the user number of tags follows the 
power law distribution, which means that a small 
number of tags are used by a large number of users 
while a large number of tags are only used by a small 
number of users. Among 37120 tags, there are about 
67% tags (i.e., 25006 tags) which are only used by one 
user. 
 

 

       

 After calculating the local popularity of each tag 
for each item, we get λ =2. Thus, we set � =2. To 
evaluate the effectiveness of the selected popular tag 
set, we compared the top 5 precision and recall results 
of the threshold �=2 with the results of � =1, � =3, � 
=4, and �  =5. With threshold �  =1, 37120 tags are 
selected, which is the whole tag set. Thus, each item 
was represented with all the tags. Different from the 
Topic-Tag approach, each tag was represented with 
the selected tags. With threshold  � =2, 12214 tags are 
selected. When threshold �  =3, 7428 tags were 
selected and there were 1188 books that have no 
selected tags describes them. With threshold �  =4, 
5297 tags were selected and there were 1668 books 
that have no selected tags describes them. With 
threshold �  =5, 4104 tags were selected and there 
were 2452 books that have no selected tags describes 
them. The top 5 precision and recall results with 
different threshold are shown in Figure 3.   

  

 

 

Figure 2: The distribution of social tags. 

Figure 3. The top 5 precision and recall evaluation 
results with different threshold θ values. 

8



 

     From the results of Figure 3, we can see the results 
of � =2 was better than other values. Thus, the popular 
tags can be used to represent the topics of items and 
tags. And, since some books may don’t have any 
selected tags describing their topics when the 
threshold is too high, the results are worse. 

4.3 Comparison 
 

To evaluate the effectiveness of the proposed 
approach, we compared the precision and recall of the 
recommended top N items produced by the following 
approaches: 
� Topic-PopularTag approach. This is the proposed 

approach that uses the popular tag to represent 
items' topics, tags' actual topics and users' topic 
interests.  

� Topic-Tag approach. This approach uses users' 
interest distribution to their original tags to make 
recommendation. Different from Topic-
PopularTag approach, this approach only uses the 
users' original tags to profile users and doesn't 
include the tag representations.  

� Singular Value Decomposition (SVD). This is a 
wildly used approach to reduce the dimensions of 
a matrix and reduce noise. In this paper, the 
standard SVD based recommendation approach [8] 
was implemented based on the user-tag matrix.   

� Tso-Sutter’s approach. This approach is proposed 
by Tso-Sutter that uses two derived binary 
matrixes user-item, user-tag to make 
recommendation [9], which is an extended 
standard collaborative filtering approach. 

� Liang’s approach. This approach is proposed by 
Liang that uses three derived binary matrixes user-
item, user-tag to tag-item sub matrix to make 
recommendation [12], which is an extended 
standard collaborative filtering approach. 

� Standard CF approach. This is the standard 
collaborative filtering (CF) approach [14] that uses 
the implicit item ratings or the binary matrix user-
item only. This is the baseline approach. 

We compared the proposed approach that has the 
threshold � =2 with other state of art approaches, the 
precision and recall results are shown in Figure 4 and 
Figure 5. 

 

 

 

 

4.4 Discussions 
 

From the experimental results, we can see that the 
proposed approach outperformed the other 
approaches, which means the proposed collaborative 
filtering approach based on popular social tags is 
effective. Since the dataset is very sparse (i.e., the 
average number of items that each user has is about 
12.6), the overall precision and recall values are low. 
The approach Topic-Tag approach performed the 
worst, which means that although tags implies users’ 
interests and preferences information, since the social 
tags contains a lot of noise, it’s inaccurate to profile 
users with their original tags directly. The comparison 
between the approaches of Tso-Sutter and Liang and 
the Standard CF approach shows that social tags are 
helpful to improve the user profiling accuracy when 
the social tags are used together with the users’ 
collected items. Moreover, the comparison between 
the proposed Topic-PopularTag approach and the 
SVD approach suggests that the proposed approach 
performs better than the traditional dimension 
reduction approach. The proposed approach not only 
reduce the dimension through using a much smaller 
sized user-topic matrix to profile users but also 
significantly improves the accuracy of user profiling 
and information sharing through representing the 
personal or unpopular tags with a set of popular tags. 
 
5. Conclusions 
 

In this paper, we propose a collaborative filtering 
approach that combines each user's personal viewpoint 
of the classifications of items and the common 
viewpoint of many users about the classifications of 
items to make personalized item recommendation. The 
popular tags are used to represent items' major topics, 
tags' actual covered or related topics and users' topic 
interests. Moreover, a user profiling approach that 
converts users’ interest distribution for their own 
original tags to users’ interest distribution for topics 
that are represented with the popular tags are proposed 
to improve user profiling accuracy and information 
sharing. Also, we propose a recommendation 
generation approach that incorporates the item content 

Figure 4: Precision evaluation results.  

Figure 5: Recall evaluation results.  

9



 

information formed by the collaborative working of 
tagging to generate recommended items that are not 
only have been collected by most similar users but 
also have the most similar topics with the target user’s 
interests.  

The experiments show that the proposed approach 
outperforms other approaches. Since the social tags 
can be used to describe any types of items or 
resources, this research can be used to recommend 
various kinds of items to users, which provides 
possible solutions to the recommendation of those 
items that the traditional collaborative filtering 
approaches or content based approaches fail to work 
well such as people. Moreover, this research made a 
contribution to  the improvement of information 
sharing, organization and retrieval of online tagging 
systems as well as the improvement of the 
recommendation performances of traditional 
recommender systems (i.e., in e-commerce websites) 
through incorporating this new type of user 
information in web 2.0. 
 
References 
 

[1] Bao, S., Wu, X., Fei, B., Xue, G., Su, Z. and Yu, Y., 
“Optimizing Web Search Using Social Annotations”, In 
Proc. of WWW’07, 2007, pp. 501-510. 
[2] Li, X., Guo, L., and Zhao, Y. E., “Tag-based social 
interest discovery”, In Proc. of WWW’08, 2008, pp. 675-
684.  
[3] Tso-Sutter, K.H.L., Marinho, L.B. and Schmidt-
Thieme, L., “Tag-aware Recommender Systems by 
Fusion of Collaborative Filtering Algorithms”, In Proc. 
of Applied Computing, 2008, pp. 1995-1999. 
[4] Bischoff, K., Firan, C. S., Nejdl, W., Paiu, R., “Can 
All Tags be Used for Search?”, In Proc. of CIKM’08, 
2008, pp.  193-202. 
[5] Sen, S., S. Lam, A. Rashid, D. Cosley, D. 
Frankowski, J.Osterhouse, M. Harper, and J. Riedl., 
“Tagging, communities, vocabulary, evolution”, In Proc. 
of CSCW '06, 2006, pp. 181-190. 
[6] What Is Web 2.0. 
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/0
9/30/what-is-web-20.html 

[7] Burke, R., “Hybrid Recommender Systems: Survey 
and Experiments”, User Modeling and User-Adapted 
Interaction, 12(2002), pp. 331-370. 
[8] Sarwar, B. M., Karypis, G., Konstan, J. A., and Riedl, 
J. “Application of Dimensionality Reduction in 
Recommender System A Case Study.”  In Proc.of 
WebKDD’00, 2000.  
[9] K.H.L. Tso-Sutter, L.B. Marinho and L.Schmidt-
Thieme, “Tag-aware Recommender Systems by Fusion 
of Collaborative Filtering Algorithms”, In Proc. Applied 
Computing’08, 2008, pp.1995-1999. 
[10] Heymann, P., Ramage, D., and Garcia-Molina, H., 
“Social tag prediction”, In Proc. of SIGIR’08, 2008, pp. 
531–538. 
[11] Gemmis, M. de, Lops, P.,  Semeraro, G., and Basile, 
P.,  “Integrating tags in a semantic content-based 
recommender”, In Proc. of the 2008 ACM conference on 
Recommender systems, 2008, pp. 163-170.  
[12] Liang, H., Xu, Y.,  Li, Y., and Nayak, R.,  
“Collaborative Filtering Recommender Systems Using 
Tag Information”, In Proc. of The 2008 IEEE/WIC/ACM 
International Conference on Web Intelligence (WI-08) 
Workshops, 2008, pp. 59-62. 
[13] Al-Khalifa, H.S. and Davis,  H. C., “Exploring the 
Value of Folksonomies for Creating Semantic Metadata”, 
International Journal on Semantic Web and Information 
Systems, 3,1 (2007), pp. 13-39. 
[14] Shardanand, U. and Maes,P., “Social Information 
Filtering: Algorithms for Automating ‘Word of Mouth’”, 
In Proc. of SIGCHI, 1995, pp. 210 -217.   
[15] Suchanek, F. M., Vojnovi´c, M., Gunawardena D., 
“Social tags: Meaning and Suggestions”, In Proc.of 
CIKM’08, 2008, pp. 223-232 
[16] Sen, S., Vig, J., Riedl, J., “Tagommenders: 
Connecting Users to Items through Tags”, In Proc. of 
WWW’09, 2009, pp. 671-680 
[17] Au Yeung, C. M., Gibbins, N. and Shadbolt, N., 
“Contextualizing Tags in Collaborative Tagging 
Systems”, In Proc. of the 20th ACM Conference on 
Hypertext and Hypermedia, 2009. 

 

10



External Evaluation of Topic Models

David Newman Sarvnaz Karimi Lawrence Cavedon
NICTA and The University of Melbourne

Parkville, Victoria 3010, Australia
{david.newman, sarvnaz.karimi, lawrence.cavedon}@nicta.com.au

Abstract Topic models can learn topics that are
highly interpretable, semantically-coherent and can
be used similarly to subject headings. But sometimes
learned topics are lists of words that do not convey
much useful information. We propose models that
score the usefulness of topics, including a model
that computes a score based on pointwise mutual
information (PMI) of pairs of words in a topic. Our
PMI score, computed using word-pair co-occurrence
statistics from external data sources, has relatively
good agreement with human scoring. We also show
that the ability to identify less useful topics can improve
the results of a topic-based document similarity metric.

Keywords Topic Modeling, Evaluation, Document
Similarity, Natural Language Processing, Information
Retrieval

1 Introduction
Topic models are unsupervised probabilistic models for
document collections, and are generally regarded as the
state-of-the-art for extracting course-grained semantic
information from collections of text documents. The
extracted semantic content is useful for a variety of
applications including automatic categorization and
faceted browsing. The topic model technique learns a
set of thematic topics from words that tend to co-occur
in documents. The technique assigns a small number
of topics to each document, and those topics can then
be used to explain and retrieve documents. However
this explanation of a document is only useful if we can
understand what is meant by a given topic.

Since the introduction of the original topic model
approach [Blei et al., 2003, Griffiths and Steyvers,
2004], many researchers have modified and extended
topic modeling in a variety of ways. However, there
has been less effort on understanding the semantic
nature of topics learned by topic models. While the
list of the most likely (i.e. important) words in a topic
provides good transparency to defining a topic, how
can humans best interpret and understand the gist of
a topic? Some researchers have started to address this
problem, including Mei et al. [2007] who looked at the

Proceedings of the 14th Australasian Document Comput-
ing Symposium, Sydney, Australia, 4 December 2009.
Copyright for this article remains with the authors.

problem of automatic assignment of a short label for a
topic, and Griffiths and Steyvers [2006] who applied
topic models to word sense distinction tasks. Wallach
et al. [2009] proposed methods for evaluating topic
models, but they focused on the statistics of the model,
not the meaning of individual topics.

The challenge of helping a user understand a dis-
covered topic is exacerbated by the variable semantic
quality of topics produced by a topic model. Certain
types of document collections, for example collections
of abstracts of research papers, produce mostly high-
quality interpretable topics which have clear semantic
meaning. However, the broader class of document col-
lections — for example emails, blogs, news articles and
books — tend to produce a wider mix of topics. The
novelty of our work is targetting this challenge by fo-
cusing on evaluation of topics using their degree of use-
fulness to humans.

In this work we first ask humans to decide whether
individual learned topics are useful or not (we define
what is meant by useful). We then propose models
that use external text data sources, such as Wikipedia
or Google hits, to predict human judgements. Finally,
we show how an assessment of useful and useless topics
can improve the outcome of a document similarity task.

2 Topic Modeling
The topic model — also known as latent Dirichlet
allocation or discrete principal component analysis
(PCA) — is a Bayesian graphical model for text
document collections represented by bags-of-words
(see Blei et al. [2003], Griffiths and Steyvers [2004],
Buntine and Jakulin [2004]). In a topic model, each
document in the collection of D documents is modeled
as a multinomial distribution over T topics, where
each topic is a multinomial distribution over W words.
Typically, only a small number of words are important
(have high likelihood) in each topic, and only a small
number of topics are present in each document.

The collapsed Gibbs [Geman and Geman, 1984]
sampled topic model simultaneously learns the topics
and the mixture of topics in documents by iteratively
sampling the topic assignment z to every word in every
document, using the Gibbs sampling update

11



p(zid = t|xid = w, z¬id) ∝

N¬id
wt + β∑

w N¬id
wt + Wβ

N¬id
td + α∑

t N¬id
td + Tα

,

where zid = t is the assignment of the ith word in doc-
ument d to topic t, xid = w indicates that the current
observed word is w, and z

¬id is the vector of all topic
assignments not including the current word. Nwt repre-
sents integer count arrays (with the subscripts denoting
what is counted), and α and β are Dirichlet priors.

The maximum a posterior (MAP) estimates of the
topics p(w|t), t = 1 . . . T and the mixture of topics in
documents p(t|d), d = 1 . . .D are given by

p(w|t) =
Nwt + β∑

w Nwt + Wβ
,

p(t|d) =
Ntd + α∑
t Ntd + Tα

.

Pathology of Learned Topics
Despite referring to the distributions p(w|t) as topics,
suggesting that they have sensible semantic meaning,
they are in fact just statistics that explain count data ac-
cording to the underlying generative model. To be more
explicit, while many learned topics convey information
similar to what is conveyed by a subject heading, topics
themselves are not subject headings, and they some-
times are not at all related to a subject heading.

Since our focus in this paper is studying and evaluat-
ing the wide range of topics learned by topic models, we
present examples of less useful topics learned by topic
models. Note that these topics are not simply artifacts
from one particular model started from some particular
random initialization – they are stable features present
in the data that can be repeatedly learned from different
models, hyperparameter settings and random initializa-
tions. The following list shows an illustrative selection
of less useful topics:

• north south carolina korea korean southern kim daewoo
government country million flag thoreau economic war
... This topic has associated Carolina with Korea via the
words north and south.

• friend thought wanted went knew wasn’t love asked guy
took remember kid doing couldn’t kind ... This is a typi-
cal “prose” style topic often learned from collections of
emails, stories or news articles.

• google domain search public copyright helping query-
ing user automated file accessible publisher commercial
legal ... This is a topic of boilerplate copyright text that
occurred in a large subset of a corpus.

• effect significant increase decrease significantly change
resulted measured changes caused ... This is a topic of
comparisons that was learned from a large collection of
MEDLINE abstracts.

• weekend december monday scott wood going camp
richard bring miles think tent bike dec pretty ... This
topic includes a combination of several commonly
occurring pathologies including lists of names, days of
week, and months of year.

Collections Modeled
We used two document collections: a collection of news
articles, and a collection of books. These collections
were chosen to produce sets of topics that have more
variable quality than one typically observes when topic
modeling collections of scientific literature. A collec-
tion of D = 55, 000 news articles was selected from
Linguistic Data Corporation’s gigaword corpus, and a
collection of D = 12, 000 books was downloaded from
the Internet Archive. We refer to these collections as
“News Articles” and “Books” throughout the remainder
of this paper.

Standard procedures were used to create the bags-
of-words for the two collections. After tokenization,
and removing stopwords and words that occurred fewer
than ten times, we learned topic models of News Arti-
cles using T = 50 (T 50) and T = 200 (T 200) topics,
and a topic model of Books using T = 400 (T 400)
topics. For each topic model, we printed the set of
T topics. We define a topic as the list of ten most
probable words in the topic. This cutoff at ten words is
arbitrary, but it balances between having enough words
to convey the meaning of a topic, but not too many
words to complicate human judgements or our scoring
models.

3 Human Scoring of Topics
We selected 117 topics from News Articles, including
all 50 topics from the T 50 topic model, and 67 selected
topics from the T 200 topic model. We selected 120
topics from the T 400 topic model of Books. To increase
the expected number of useful and useless topics, we
pre-scored topics using our scoring models (described
later) to select a mix of useful, useless, and in-between
topics to make up the sample. We asked nine human
subjects to score each of the 237 topics on a 3-point
scale where 3=“useful” and 1=“useless”.

We provided a rubric and some guidelines on how
to judge whether a topic was useful or useless. In addi-
tion to showing several examples of useful and useless
topics, we gave the following instructions to people per-
forming the evaluation:

The topics learned by a topic model are usually
sensible, meaningful, interpretable and coherent. But
some topics learned (while statistically reasonable) are
not particularly useful for human use. To evaluate our
methods, we would like your judgment on how “useful”
some learned topics are. Here, we are purposefully
vague about what is “useful” ... it is some combination
of coherent, meaningful, interpretable, words are
related, subject-heading like, something you could
easily label, etc.

Figure 1 shows selected useful and useless topics
from News Articles, as scored by nine people. For
our purposes, the usefulness of a topic can be thought
of as whether one could imagine using the topic in a
search interface to retrieve documents about a particular

12



Selected useful topics (unanimous score=3):
space earth moon science scientist light nasa mission planet mars ...
health disease aids virus vaccine infection hiv cases infected asthma ...
bush campaign party candidate republican mccain political presidential ...
stock market investor fund trading investment firm exchange companies ...
health care insurance patient hospital medical cost medicare coverage ...
car ford vehicle model auto truck engine sport wheel motor ...
cell human animal scientist research gene researcher brain university ...
health drug patient medical doctor hospital care cancer treatment disease ...

Selected useless topics (unanimous score=1):
king bond berry bill ray rate james treas byrd key ...
dog moment hand face love self eye turn young character ...
art budget bos code exp attn review add client sent ...
max crowd hand flag sam white young looked black stood ...
constitution color review coxnet page art photos available budget book ...
category houston filed thompson hearst following bonfire mean tag appear ...
johnson jones miller scott robinson george lawrence murphy mason ...
brook stone steven hewlett packard edge borge nov buck given ...

Figure 1: Selected useful and useless topics from
collection of News Articles. Each line represents one
topic.

Selected useful topics (unanimous score=3):
steam engine valve cylinder pressure piston boiler air pump pipe ...
furniture chair table cabinet wood leg mahogany piece oak louis ...
building architecture plan churches design architect century erected ...
cathedral church tower choir chapel window built gothic nave transept ...
god worship religion sacred ancient image temple sun earth symbol ...
loom cloth thread warp weaving machine wool cotton yarn mill ...
window nave aisle transept chapel tower arch pointed arches roof ...
cases bladder disease aneurism tumour sac hernia artery ligature pain ...

Selected useless topics (unanimous score=1):
entire finally condition position considered result follow highest greatest ...
aud lie bad pro hut pre able nature led want ...
soon short longer carried rest turned raised filled turn allowed ...
act sense adv person ppr plant sax genus applied dis ...
httle hke hfe hght able turn power lost bring eye ...
soon gave returned replied told appeared arrived received return saw ...
person occasion purpose respect answer short act sort receive rest ...
want look going deal try bad tell sure feel remember ...

Figure 2: Selected useful and useless topics from
collection of Books.

subject. An indicator of usefulness is the ease by which
one could think of a short label to describe a topic (for
example “space exploration” could be a label for the
first topic). The useless News Articles topics display
little coherence and relatedness, and one would not ex-
pect them to be useful as categories or facets in a search
interface.

We see similar results in Figure 2, which shows se-
lected useful and useless topics from the Books collec-
tion. Again, the useful topics could directly relate to
subject headings, and be used in a user interface for
browse-by-subject. Note that the useless topics from
both collections are not chance artifacts produced by
the models, but are in fact stable and robust statistical
features in the data sets.

Our human scoring of the 237 topics has high
inter-rater reliability, as shown in Figure 3. Each
human score has high agreement with the mean of
the remaining scores (Pearson correlation coefficient
ρ = 0.78 . . .0.81). In the following sections we
present models to predict these human judgements.

1 1.5 2 2.5 3

1

1.5

2

2.5

3

News Articles (corrcoef=0.78)

Score left out

M
ea

n 
of

 o
th

er
 s

co
re

s

1 1.5 2 2.5 3

1

1.5

2

2.5

3

Books (corrcoef=0.81)

Score left out

M
ea

n 
of

 o
th

er
 s

co
re

s
Figure 3: Inter-rater reliability, computed by leave-one-
out, showing high agreement between the nine humans.

This inter-rater correlation is an upper bound on how
well we can expect our scoring models to perform.

4 Scoring Model I: Pointwise Mutual In-
formation

The intuition behind our first scoring model, pointwise
mutual information (PMI) using external data, comes
from the observation that occasionally a topic has some
odd-words-out in the list of ten words. This leads to
the idea of a scoring model based on word association
between pairs of words, for all word pairs in a topic.
But instead of using the collection itself to measure
word association (which could reinforce noise or un-
usual word statistics), we use a large external text data
source to provide regularization.

Specifically, we measured co-occurrence of word
pairs from two huge external text datasets: all articles
from English Wikipedia, and the Google n-grams data
set. For Wikipedia we counted a co-occurrence as
words wi and wj co-occurring in a 10-word window
in any article, and for Google n-grams, we counted
a co-occurrence as wi and wj co-occurring in any of
the 5-grams. These co-occurrences are counted over
corpora of 1B and 1T words respectively, so they
produce reasonably reliable statistics.

We choose pointwise mutual information as the
measure of word association, and define the following
scoring formula for a topic w:

PMI-Score(w) = median{PMI(wi, wj), ij ∈ 1 . . . 10},

13



BandMusic

Dance Opera

Rock

3.2

3.5

2.9

3.0

4.2

4.54.1

1.4

2.72.9

Figure 4: Illustration of pointwise mutual information
between word pairs.

PMI(wi, wj) = log
p(wi, wj)

p(wi)p(wj)
,

where the top-ten list of words in a topic is denoted
by w = (w1, . . . , w10), and we exclude the self PMI
case of i = j. The PMI-Score for each topic is the
median PMI for all pairs of words in a topic (so for
a topic defined by the top-10 words, the PMI-Score is
the median of 55 PMIs). Note that if two words are
statistically independent, then their PMI is zero.

Our PMI-Score is illustrated in Figure 4 for a
topic of five words: “music band rock dance opera”.1
Using co-occurrence frequencies from Wikipedia,
we see unsurprising high-scoring word pairs, such
as PMI(rock,band)=4.5, and PMI(dance,music)=4.2.
Some pairs exhibit greater independence, such as
PMI(opera,band)=1.4. The PMI-Wiki-Score2 for this
topic is the median of all the PMIs, or PMI-Wiki-
Score=3.1.

We see broad agreement between the PMI-Wiki-
Score and the human scoring in Figure 5, which shows
a scatterplot for all 237 topics. The correlation between
the PMI-Wiki-Score and the mean human score is
ρ = 0.72 for News Articles and ρ = 0.73 for Books
(we define correlation ρ as the Pearson correlation
coefficient). This correlation is relatively high given
that the inter-rater-correlation is only slightly higher at
ρ = 0.78 . . .0.81.

Using the Google 5-grams data instead of English
Wikipedia for the external data source produces similar
results, shown in Figure 6. In this case, the pointwise
mutual information values are computed using word
statistics from the 1 billion Google 5-grams instead of
2 million Wikipedia articles. The correlations are in a
similar range (ρ = 0.70 . . .0.78) with a slightly higher
correlation of ρ = 0.78 for News Articles.

Why does our PMI-Score model agree so well with
human scoring of topics? Our intuition is that humans
consider associations of pairs of words (or the associa-
tion between one word and all the other words) to de-
termine the relatedness and usefulness of a topic. This

1We illustrate using 5 words instead of 10 for simplicity.
2This is the PMI-Score computed using frequency counts from

Wikipedia.

1 1.5 2 2.5 3
0

2

4

6

8
News Articles (corrcoef=0.72)

Mean human score

P
M

I−
W

ik
i s

co
re

1 1.5 2 2.5 3
0

2

4

6

8
Books (corrcoef=0.73)

Mean human score

P
M

I−
W

ik
i s

co
re

Figure 5: Scatterplot of PMI-Wiki-Score vs. mean
human score.

1 1.5 2 2.5 3
0

2

4

6

8
News Articles (corrcoef=0.78)

Mean human score

P
M

I−
G

oo
gl

e 
sc

or
e

1 1.5 2 2.5 3
0

2

4

6

8
Books (corrcoef=0.70)

Mean human score

P
M

I−
G

oo
gl

e 
sc

or
e

Figure 6: Scatterplot of PMI-Google-Score vs. mean
human score.

human process is somewhat approximated by the cal-
culation of the PMI-Score.

5 Scoring Model II: Google
In this section we present a second scoring scheme,
again based on a large external data source: this time

14



the entire World Wide Web crawled by Google. We
present two scoring formulas that use the Google search
engine:

Google-titles-match(w) = 1 [wi = vj ] ,

where i = 1, . . . , 10 and j = 1, . . . , |V |, and vj are
all the unique terms mentioned in the titles from the
top-100 search results, and 1 is the indicator function to
count matches; and

Google-log-hits(w) = log(# results from search for w),

where w is the search string “+w1 +w2 +w3 . . . +w10”.
We use the Google advanced search option ‘+’ to search
exactly as is and prevent Google from using synonyms.
Our intuition is that the mention of topic words in URL
titles — or the prevalence of documents that mention
all ten words in the topic — may better correlate with a
human notion of the usefulness of a topic.

For example, issuing the query to Google: “+space
+earth +moon +science +scientist +light +nasa
+mission +planet +mars” returns 171,000 results (so
Google-log-hits(w)=5.2), and the following list shows
the titles and URLs of the first 6 results:

1. NASA - STEREO Hunts for Remains of an Ancient
Planet near Earth (science.nasa.gov/headlines/y2009/...)

2. NASA - Like Mars, Like Earth (www.nasa.gov/audience/
foreducators/k-4/features/...)

3. NASA - Like Mars, Like Earth (www.nasa.gov/audience/
forstudents/5-8/features/...)

4. ASP: The Silicon Valley Astronomy Lectures Podcasts
(www.astrosociety.org/education/podcast/index.html)

5. NASA calls for ambitious outer solar system mission -
space ... (www.newscientist.com/article/...)

6. NASA International Space Station Mission Shuttle
Earth Science ... (spacestation-shuttle.blogspot.com/2009/08/...)

The underlined words show mentions of topic words
in the URL titles, with the first six titles giving a to-
tal of 17 mentions. The top-100 URL titles include a
total of 194 matches, so for this topic Google-titles-
match(w)=194.

We see surprisingly good agreement between the
Google-titles-match score and the human scoring in
Figure 7 for the News Articles (ρ = 0.78), and a
lower level of agreement for Books (ρ = 0.52). In the
PMI-Scores there was no clear pattern of outliers in the
scatterplots against the mean human score. However,
we see a definite constraint of the Google-titles-match
score, where there are many topics that received a high
human score, but a low Google-titles-match score.
Table 1 shows selected topics having a high human
score (useful), but a low Google-titles-match score.
The first three topics listed (from News Articles) show
different types of problems. The first topic is clearly
about cooking, but does not mention the word cooking.
Furthermore, it is unlikely that URL titles would
include words such as “teaspoon” or “pepper”, so we

1 1.5 2 2.5 3
0

50

100

150

200

250

300
Books (corrcoef=0.52)

Mean human score

G
oo

gl
e−

tit
le

s−
m

at
ch

1 1.5 2 2.5 3
0

50

100

150

200

250

300
News Articles (corrcoef=0.78)

Mean human score

G
oo

gl
e−

tit
le

s−
m

at
ch

Figure 7: Scatterplot of Google-titles-match score vs.
mean human score.

are not surprised that Google-titles-match fails to give
this topic a high score. The second topic is mostly
about NASA and space exploration, but is polluted
by the words “firefighter” and “worcester”, which
will severely limit the number of results returned. By
using the median, the PMI-Score of this topic is less
sensitive to these words that don’t fit the topic, but the
Google-titles-match has less hope of producing a useful
list of search results when all ten words are included in
the search query. Topics from Books follow, and we
see a similar problem to the cooking topic from News
Articles, where the words in the topic clearly convey
something semantically coherent, but fail to evoke
URL titles that mention those general terms.

We see less promising results from our Google-log-
hits score, which has relatively low correlation with the
mean human scoring (ρ = −0.09 . . .0.49), as shown
in the scatterplots in Figure 8. For this scoring for-
mula we observed the reverse of the problem of Google-
titles-match, namely we saw overly favorable scoring of
many topics that received a low human score. Table 2
shows selected topics having a low human score (not
useful), but a high Google-log-hits score. The topics in
this table all exhibit the similar characteristic of all ten
words being relatively common words. Consequently
there exist many web pages that contain these words (is-
suing these topics as queries returned between 250,000
and 10,000,000 results). This behavior of Google-log-
hits and failure to agree with human scoring (in this
case) is relatively easy to understand.

15



Human Titles-match Topic
2.6 8 cup add tablespoon salt pepper teaspoon oil heat sugar pan ...
2.4 4 space nasa moon mission shuttle firefighter astronaut launch worcester rocket ...
2.3 0 oct series braves game yankees league bba met championship red ...

2.9 25 church altar churches stone chapel cathedral vestment service pulpit chancel ...
3.0 6 cases bladder disease aneurism tumour sac hernia artery ligature pain ...
2.8 23 art ancient statues statue marble phidias artist winckelmann pliny image ...
3.0 3 window nave aisle transept chapel tower arch pointed arches roof ...
2.9 18 crop land wheat corn cattle acre grain farmer manure plough ...
2.8 32 account cost item profit balance statement sale credit shown loss ...
2.9 20 pompeii herculaneum room naples painting inscription excavation marble bronze bath ...
3.0 21 window nave choir arch tower churches aisle chapel transept capital ...
3.0 31 drawing draw pencil pen drawn model cast sketches ink outline ...

Table 1: Disagreement between high human scores and low Google-titles-match scores.

Human log hits Topic
1.0 5.4 dog moment hand face love self eye turn young character ...
1.2 7.0 change mean different better result number example likely problem possible ...
1.2 6.4 fact change important different example sense mean matter reason women ...
1.1 5.9 friend thought wanted went knew wasn’t love asked guy took ...
1.1 5.6 thought feel doesn’t guy asked wanted tell friend doing went ...
1.1 6.1 bad doesn’t maybe tell let guy mean isn’t better ask ...

1.0 6.7 entire finally condition position considered result follow highest greatest fact ...
1.0 6.3 soon short longer carried rest turned raised filled turn allowed ...
1.1 6.1 modern view study turned face detail standing born return spring ...
1.2 6.3 sort deal simple fashion easy exactly call reason shape simply ...
1.1 6.4 proper require care properly required prevent laid making taking allowed ...
1.0 6.7 person occasion purpose respect answer short act sort receive rest ...
1.0 6.1 want look going deal try bad tell sure feel remember ...
1.2 6.3 saw cried looked heard stood asked sat answered began knew ...

Table 2: Disagreement between low human scores and high Google-log-hits scores.

6 Document Similarity
Discovering semantically similar documents in
a collection of unstructured text has practical
applications, such as search by example. Many
studies have been proposed to calculate inter-document
similarity since 1950s. For example, Grangier
and Bengio [2005] use hyperlinks to score linked
documents on the Web higher than unlinked for
information retrieval tasks. Kaiser et al. [2009] use
Wikipedia to find similar documents for a focused
crawler (they also provide a good literature review on
recent approaches that use support vector machines,
latent semantic analysis (LSA), or explicit semantic
analysis). Lee et al. [2005] empirically compare
between three categories of binary, count, and LSA
similarity models over a small corpus of human judged
texts and concluded that evaluation of such models
should occur in the context of their applications.

Humans judge two texts to be similar if they share
the same concepts or topics [Kaiser et al., 2009]. We
use our learned topics from News Articles to find sim-
ilar documents and compare them against count-based
models implemented in a search engine. Our prelim-
inary findings show that if documents contain useless
text — words that are not related to the main topic of
the text or bear no content, such as advertisements —

then they are likely to be mistakenly considered simi-
lar using document similarity metrics that rely on term
frequencies. Below, we explain our experimental setup
and results.

Count-Based Similarity

We used the Okapi BM25 [Walker et al., 1997] rank-
ing function implemented in the Zettair3 search engine.
Similarity scores are based on term frequency and in-
verse document frequencies in a document collection.

Topic-Based Similarity

A document similarity measure using topics was com-
puted using Hellinger distance. For every pair of docu-
ments di and dj in a collection, and a set T of learned
topics, Hellinger distance is computed as below:

dist(di, dj) =
1

2

T∑
t=1

(√
p(t|di)−

√
p(t|dj)

)2

,

dist∗(di, dj) =
1

2

∑
t∈useful

(√
p(t|di)−

√
p(t|dj)

)2

,

3http://www.seg.rmit.edu.au/zettair/

16



1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

Books (corrcoef=−0.09)

Mean human score

G
oo

gl
e−

lo
g1

0−
hi

ts

1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

News Articles (corrcoef=0.49)

Mean human score

G
oo

gl
e−

lo
g1

0−
hi

ts

Figure 8: Scatterplot of Google-log-hits score vs. mean
human score.

where p(t|di) and p(t|dj) are probabilities of topics
in documents i and j. We provide two formulas for
Hellinger distance, one based on all topics, and dist∗
that uses just the “useful” topics.

Experimental Setup

Fifty documents were randomly selected from News
Articles based on their proportion of useful and useless
topics. An overview of the documents in the collection
based on their percentages of useless text is shown in
Figure 9. Our aim is to improve document similar-
ity calculations on the right tail of this graph where
the documents contain a larger proportion of useless
text which could mislead document similarity methods
that rely on the frequency of terms. We therefore first
extracted those documents that contained at least 30%
useful content (based on PMI-Wiki-Score) and at least
40% non-content text. We then calculated the simi-
larity scores of 50 randomly selected documents from
this subset with other documents in the collection. For
count-based methods, we used each of these 50 full
documents as queries to retrieve a ranked list of simi-
lar documents using the Zettair search engine. For the
topic-based method, two approaches were used: using
all the topics generated for the collection (T 200), and
using useful topics as based on the topics’ PMI-Wiki-
Score.

In a preliminary experiment, a human judge was
presented with original documents and the top most
similar document (Top-1) extracted by each method.
The human judge was not aware of the order of methods
which the documents were retrieved. A simple binary

0 4 8 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97
Useless Text (%)

N
um

be
r o

f D
oc

um
en

ts
0

50
0

10
00

15
00

20
00

Figure 9: Number of documents versus proportion
of usefuless content. 4.3% of documents have more
than 50% useless text and 16.4% have more than 30%
useless text.

scoring of similar or not-similar was used. The criteria
for similarity was the overall subject of the documents,
for example, both being about a specific sport. For 32
of 50 cases (64%), all methods successfully resulted in
documents judged to be similar by the human judge. In
only one case did Okapi outperform both topic-based
methods. Using the useful-topics metric (dist∗) led to
94% accuracy against similarity judgements; all topics
(dist) was 88% accurate; Okapi was 70% accurate.
Also, the overlap between the ranked outputs of the
two systems, Okapi and useful topics, was very low:
30% in Top-1 overlapped (the documents were the
same for the both systems).

Figure 10 shows an illustrative example where us-
ing topic modeling, in particular using good topics (i.e.
dist∗), outperforms Okapi when the original document
contains a large proportion of non-content text.

While he experiments described in this section are
limited in scope, they constitute an initial investigation
into the task-level effectiveness of topic-based metrics
that ignore “useless” topics. We believe that the results
indicate that, for texts that contain “noise”, identifying
the “useful” topics in a topic model has promising ap-
plications.

7 Conclusion
Evaluation of topic modeling — the analysis of large
sets of unstructured documents and assignment of series
of representative words as topics to clusters of docu-
ments — has hardly been investigated. In particular,
meaning of the topics and human perception of their
usefulness had not been studied before. Here, we inves-
tigated topic modeling evaluation using external data
(Wikipedia documents, Google n-grams, and Google
hits), and compared our proposed methods with human
judgments on usefulness of the topics. According to our
experiments on collections of news articles and books,
a scoring method using pointwise mutual information

17



Original Document
At last! A biography that skips the
saint-or-sinner debate. As Dusko
Doder and Louise Branson abundantly
document, Slobodan Milosevic,
almost from the start, epitomized the
Balkan-variety bad seed. The child of
parents who both committed suicide,
Milosevic aligned himself with a
woman who hungered for power to
avenge the ignominious death of her
mother. Milosevic betrayed a college
classmate, a mentor of two decades,
and his next-door neighbor in lunging
to the top of Yugoslavia’s diseased
post-Tito political leadership. And
“Milosevic: Portrait of a Tyrant”...
...
(gm)
FOR WEDNESDAY AMs
Here are today’s top news stories
from The New York Times News
Service for ally at LaSalle University
for of Wednesday, Dec. 22:
INTERNATIONAL (“i” code)
CHINA-INTERNET (Beijing) -
With the ambivalent blessing of the
Chinese government, locally produced
web sites and chat rooms have spread
rapidly here in the last two years,...
RUSSIA-U.S.-AID (Washington) -
The State Department, invoking a
seldom-used law, may block a $500
million loan package for Russia’s oil
sector. By David E. Sanger...

Okapi BM25 (Zettair)
More New Yorkers would vote against
Hillary Rodham Clinton as a U.S.
Senate candidate than vote for her,
a new poll indicates. The survey
by the Zogby International polling
organization shows the probable
Democratic nominee carrying an
“unfavorable rating” of 48.4 percent
among likely voters, as opposed to
her “favorable rating” of 46.3 percent.
It marks the first time the potential
candidate’s statistical negatives have
eclipsed her positives in her still-
undeclared campaign, pollster John
eet, a city councilman in a tight race.
“But I hope you of Utica said Tuesday.
...
(gm)
FOR WEDNESDAY AMs
Here are today’s top news stories from
The New York Times News Service
for AMs of Wednesday, Dec. 22:
INTERNATIONAL (“i” code)
CHINA-INTERNET (Beijing) -
With the ambivalent blessing of the
Chinese government, locally produced
web sites and chat rooms have spread
rapidly here in the last two years,...
RUSSIA-U.S.-AID (Washington) -
The State Department, invoking a
seldom-used law, may block a $500
million loan package for Russia’s oil
sector. By David E. Sanger.
...

All Topics
We may be living in a high-tech era
but it still takes a low-tech truck to
deliver something you’ve ordered over
the Internet, which is why Forbes
magazine picked Atlanta-based United
Parcel Service as its “company of the
year.” “With 157,000 ground vehicles,
610 aircraft and $11 billion invested
in technology, UPS moves both atoms
and bits,” says Forbes in announcing
its “platinum list” of “America’s best
big companies.” According to Forbes,
UPS’s role as a shipper of 6 percent
of the nation’s gross domestic product
makes it “the missing link in the
burgeoning world of E-commerce.”
...
Story Filed By Cox Newspapers (gm)
Here are the stories New York Times
editors are planning for Tuesday,
Dec. 28 Page 1. The NYT frontpage
advisory, with layout description, will
move by 7:30 p.m. ET. The NYT
News Service Night
Supervisor is Pat Ryan (888-
346-9867). ISRAEL-POLITICS
(Jerusalem) - The Shas political party,
which represents Sephardic Jews of
Middle Eastern and North African
descent, announced Monday that
it had decided to quit the coalition
government of Israeli Prime Minister
Ehud Barak.
...

Useful Topics
The Clinton administration, in a move
intended to bolster opponents of Pres-
ident Slobodan Milosevic, has agreed
to lift economic sanctions on Serbia as
soon as there is a free election there,
senior administration officials said on
Tuesday. The administration had pre-
viously vowed that it would not lift
the sanctions until Milosevic had been
removed from power. But officials
calculate that the new strategy should
allow the Serbian opposition to in-
crease popular pressure on Milosevic,
to call early elections, since holding
a free election would mean an end to
an oil embargo, an air-travel ban and
other sanctions that have weakened an
already devastated Serbian economy.
Secretary of State Madeleine Albright
is expected to make the announcement
Wednesday, but it carries a risk: that
bickering opposition parties would so
fragment the election results that Milo-
sevic might be able to cling to power
or, far less likely, that he would win
outright in the balloting.
...
Although the constitution of the Yu-
goslav federation of Serbia and neigh-
boring Montenegro does not grant
Milosevic direct power to call new
elections, the reality is that his powers
are dictatorial
...

Figure 10: An example of top ranked similar documents returned by three methods: Okapi scores generated by
Zettair, topic-based similarity using all topics (dist), and topic-based similarity only using useful topics. Using
only useful topics (dist∗) produces the best result.

on Wikipedia documents and Google n-grams has great
potential to distinguish useful (or meaningful) topics
from useless ones. This finding is supported by high
correlation between our scoring approaches and human
judgements on the same topics. We also showed a pos-
sible application for distinguished useful topics in ex-
traction of similar documents in a collection.

Acknowledgements NICTA is funded by the
Australian government as represented by Department
of Broadband, Communication and Digital Economy,
and the Australian Research Council through the ICT
centre of Excellence programme. DN has also been
supported by a grant from the Institute of Museum and
Library Services, and a Google Research Award.
Authors are thankful to Timothy Baldwin for valuable
discussions.

References
D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet

allocation. Journal of Machine Learning Research, 3:993–
1022, 2003.

W. L. Buntine and A. Jakulin. Applying discrete PCA in
data analysis. In Proceedings of the 20th Uncertainty
in Artificial Intelligence Conference, pages 59–66, Banff,
Canada, 2004.

S. Geman and D. Geman. Stochastic relaxation, Gibbs distri-
butions, and the bayesian restoration of images. volume 6,
pages 721–741, November 1984.

D. Grangier and S. Bengio. Inferring document similar-
ity from hyperlinks. In Proceedings of the 14th ACM
international conference on Information and knowledge
management, pages 359–360, Bremen, Germany, 2005.

T. Griffiths and M. Steyvers. Finding scientific topics. In
Proceedings of the National Academy of Sciences, volume
101, pages 5228–5235, 2004.

T. Griffiths and M. Steyvers. Probabilistic topic models. In
Latent Semantic Analysis: A Road to Meaning, 2006.

F. Kaiser, H. Schwarz, and M. Jakob. Using Wikipedia-based
conceptual contexts to calculate document similarity. In
Proceedings of the 2009 Third International Conference on
Digital Society, pages 322–327, Cancun, Mexico, 2009.

M. D. Lee, B. Pincombe, and M. Welsh. An empirical evalua-
tion of models of text document similarity. In Proceedings
of the 27th Annual Conference of the Cognitive Science
Society, pages 1254–1259, Mahwah, NJ, 2005.

Q. Mei, X. Shen, and C. Zhai. Automatic labeling of
multinomial topic models. In Proceedings of The 30th
International Conference on Knowledge Discovery and
Data Mining, pages 490–499, 2007.

S. Walker, S. Robertson, M. Boughanem, G. Jones, and
K. Sparck Jones. Okapi at TREC-6 automatic ad hoc, VLC,
routing, filtering and QSDR. In Proceedings of the 6th Text
REtrieval Conference, pages 125–136, 1997.

H. M. Wallach, I. Murray, R. Salakhutdinov, and D. M.
Mimno. Evaluation methods for topic models. In Proceed-
ings of The 26th International Conference On Machine
Learning, pages 1105–1112, Quebec, Canada, 2009.

18



Id - Dynamic Views on Static and Dynamic Disassembly Listings

Nicholas Sherlock
Computer Science

University of Otago
Otago 9010 New Zealand

n.sherlock@gmail.com

Andrew Trotman
Computer Science

University of Otago
Otago 9010 New Zealand

andrew@cs.otago.ac.nz

Abstract Disassemblers are tools which allow
software developers and researchers to analyse
the machine code of computer programs. Typical
disassemblers convert a compiled program into a
static disassembly document which lists the machine
instructions of the program. Information which would
indicate the purpose of routines, such as comments and
symbol names, are not present in the compiled program.
Researchers must hand-annotate the disassembly in a
text editor to record their findings about the purpose of
the code.

Although running programs can change their layout
dynamically, the disassembly can only show a snapshot
of a program’s layout. If a different view of a program is
required, the document must be recreated from scratch,
making it difficult to preserve user annotations.

In this paper we demonstrate a system which al-
lows a disassembly listing to be refined by user input
while retaining user annotations. Users are able to
dynamically change the interpretation of the layout of
the program in order to effectively analyse programs
which can alter their own memory layout. We allow
users to combine the independent analysis of several
program modules in order to examine the interaction
between modules.

By exploring the obsolete “Poly” computer system,
we demonstrate that our disassembler can be used to
reconstruct and document entire software distributions.

Keywords Digital Libraries, Cognitive Aspects of

Documents, Document Workflow

1 Introduction
The rate of computer hardware and software

development is increasing exponentially. Five

years ago, our desktop computers were all powered by

single-core CPUs. Two years ago, they had dual-core

CPUs. And today, they are likely to have four or eight

cores. The Macintosh series of computers have seen

large architectural changes, switching from Motorola

CPUs to PowerPCs and finally to Intel x86 CPUs.

In successive steps, we have changed our removable

Proceedings of the 14th Australasian Document Comput-
ing Symposium, Sydney, Australia, 4 December 2009.
Copyright for this article remains with the authors.

storage media from tapes, to 8, 51/4 and 31/2 inch floppy

disks, to CD-ROMs, DVDs, Blu-ray, and increasingly,

removable flash-memory based storage. With each

new hardware generation, our old software becomes

obsolete and is either rebuilt or abandoned.

This creates a problem for researchers and

historians. While design manuals can be scanned

and stored accessibly in a digital library, and data

can be retrieved from old media with somewhat

more effort and expense, storing the software from

these old machines in a useful format is an entirely

different problem. Performing analysis on software

which is stored in the library becomes increasingly

difficult with time. This is because a piece of software

cannot be used, examined, or understood in isolation.

Its behaviour is defined by its interaction with the

hardware it was built for. Obsolete hardware becomes

progressively more scarce with time. Preserving old

hardware by building modern replicas requires an

increasingly infeasible amount of effort and resources

as microelectronics become more complex.

If an accurate description of the hardware is pro-

vided or can be discovered, it can be replaced by a

software-based “emulator”. An emulator in this context

is a program which simulates the action of an old hard-

ware platform on (typically many) modern platforms.

In this way, researchers can examine the runtime be-

haviour of old software without having to perform a

costly hardware reconstruction of an old platform.

A second problem is the difficulty of examining the

algorithms and implementation details of obsolete soft-

ware when human-readable source code has been lost

or was never provided. It is also a problem for mod-

ern software. For example, in order to build a new

program which interoperates with an existing program,

some knowledge of the original program’s internal op-

eration is required. Even if the source code for a pro-

gram is available, you may still want to examine the

machine instructions that the compiler generates to en-

sure that the generated instruction sequences are correct

or efficient. Machine code is a more primitive level

of abstraction which can reveal surprising negative per-

formance implications of innocuous-looking high-level

code.

If only the machine code that makes up the com-

piled program is available, it must first be translated

19



into a more abstract form that humans can understand

so that it can be analysed. A program which performs

this translation is called a “disassembler”. Much of the

information found in the high-level source code of a

program, including comments and the names of vari-

ables and routines, is lost in the compilation process.

To understand a compiled program, a researcher must

recover this lost information. They can achieve this by

inspecting the disassembly listing with reference to the

behaviour of the running program. They can then share

their findings with other researchers by annotating the

disassembly.

Several factors make this process difficult. The

disassembler’s interpretation of the program must be

dynamically altered to analyse programs which can

change their layout at runtime. In order to change

the interpretation of the program, the disassembler

must be re-run. This creates a new, independent

disassembly document, which makes it difficult to

preserve annotations that the researcher has already

made.

Even if a program does not change its layout dy-

namically, the researcher must still frequently change

the disassembler’s interpretation of the program. This is

because the disassembler cannot distinguish code from

data in the compiled program with perfect accuracy.

Human judgements are required to correct the disas-

sembler’s mistakes.

In order to allow researchers to effectively

document entire programs, software support is required

to assist the user in navigating and imposing structure

on large disassembly documents, but this is not

provided with a traditional disassembler. Although

programs being analysed are often composed of several

related modules which can be examined independently,

disassemblers typically do not provide any way

of linking disassemblies together in order to share

information about interacting modules.

In this paper, we will present our disassembly, de-

bugging and emulation system which we used to re-

construct and document the software and hardware of

the “Poly” computer system. We will show that our

disassembler can solve the problems inherent in docu-

menting the software of the Poly by using it to create a

digital Poly software library which researchers will be

able to examine long into the future.

2 The Poly computer system
The Poly was a computer system developed in New

Zealand in the early 1980s. It was comprised of a server

computer called the “Proteus” with a series of fat-client

“Poly” machines attached by a token ring network. It

was designed to be used in a classroom setting where

a teacher would set work on the server computer to

be distributed to each student’s computer. When the

students finished their work, their results would be sent

back to the server computer to be saved to disk. The

server and the client machines had similar architectures.

In one prototype, a client could be turned into a Proteus

server with the addition of a disk drive. The computers

can be seen in Figure 1.

The Poly never gained much ground in the computer

market and few machines were produced. Although the

Poly demonstrated innovative technologies and ideas,

and is an important part of New Zealand’s computing

history, little is now known about it. In particular, the

Poly’s networking capabilities were far ahead of con-

temporary computers, and it was provided with inno-

vative classroom software to take advantage of those

features. But with only a couple of working Polys in

existence and little surviving documentation, the exact

functionality of the software is largely a mystery.

In order to make the Poly’s software available to re-

searchers, we would have to document it in a form that

would be useful long after the last Poly stops operating.

3 Disassembly
48A6 34 14 PSHS X,B ;Ref from $CD39
48A8 8E 5B 19 LDX #$5B19
48AB C6 05 LDB #$5
48AD E7 80 STB ,X+
48AF 35 04 PULS B
48B1 E7 80 STB ,X+
48B3 35 20 PULS Y
48B5 EC A4 LDD ,Y
48B7 ED 84 STD ,X
48B9 8E 5B 19 LDX #$5B19
48BC 10 8E 00 04 LDY #$04

Figure 2: A fragment of a disassembly listing

A tool called a “disassembler” examines a program

binary (that is, the machine code that the computer will

execute, not the source code which is used to generate

it) and creates a text file called a disassembly listing.

A disassembly listing shows the machine code instruc-

tion that appears at each memory address within the

program as a human-readable mnemonic code. It also

shows the data stored inside the program, such as the

text of string literals or numeric literals from the source

code.

Figure 2 shows a fragment of a program disassem-

bly for the Poly’s Motorola 6809 CPU[8]. The left-

most element is the memory address of the disassem-

bled instruction. Next is a hexadecimal representation

of the machine code that the CPU will execute. Fi-

nally, a human-readable interpretation of the machine

code is displayed. The first part of the instruction is a

mnemonic which represents the instruction being per-

formed (for example, PSHS is an instruction to push a

value onto the stack). Any arguments to the instruc-

tion follow the mnemonic. X, B and other symbols

refer to registers on the CPU and values starting with

a hash symbol are numeric literals. There is effectively

a one-to-one mapping between the machine code and

the mnemonic representation shown to the researcher.

20



(a) Two Poly client machines sit side-by-side (b) A Proteus server and its CPU and memory board (inset)

Figure 1: The key components of the Poly system

There are two major difficulties in building a useful

disassembler program. The primary difficulty is that it

is impossible in general to automatically decide which

parts of the program binary are data and which parts are

code which will be executed. This problem is equiva-

lent to the halting problem[5]. Because of this, disas-

semblers must sometimes guess where a machine in-

struction begins in memory and so will make some in-

correct guesses. Wrong guesses might identify the be-

ginning of a sequence of instructions at the wrong off-

set (so that the interpretation of the sequence begins

halfway through a machine instruction, generating in-

correct output,) or incorrectly identify data as code or

vice versa, which hampers correct interpretation of the

program. Some code locations can not be identified

because their addresses are computed at runtime by the

program in a way that the disassembler cannot predict.

For example, a program may read the address of the

routine to execute from an external file.

The second difficulty is encountered when

analysing software that was built for small systems

like the Poly. Like many computers of its time, the

Poly had more physical memory available than it could

simultaneously address. Its CPU’s memory address bus

is 16-bits wide, allowing it to address 64kB of virtual

memory at any one time. The Poly has 128kB of

physical RAM plus 8kB of BIOS and memory-mapped

peripherals. Software on the Poly dynamically changes

the mapping of the 8kB virtual memory pages to the

128 + 8kB physical address space by changing the

entries in a memory map.

In Figure 3, a 16-bit virtual memory address is

translated into a 17-bit address in physical memory in a

series of steps. In “protected” mode (operating system

mode), some addresses are directed to hardware and

the BIOS. Otherwise, the three most-significant bits of

the virtual address are combined with a bank-select bit

and used as an index into the programmable memory

map. The memory map replaces the three higher bits

of the virtual address with four bits of its own, creating

a 17-bit address in physical memory.

Figure 3: A virtual memory address is translated using

the memory map into a physical address

With a traditional disassembler, the researcher

would have to disassemble the program once for

every memory mapping they wanted to examine,

and maintain the different disassembly listings

independently, even when information should be

shared between them. The same physical memory page

can even appear in virtual memory in more than one

place simultaneously, making it difficult to manually

keep annotations consistent and up to date.

Many small-CPU based systems, including systems

of about the Poly’s age, use dynamic memory maps to

overcome the limitations of restrictively small address

spaces. For example, the Apple //e[9], ZX Spectrum

128[1] and Commodore 128[6], which, like the Poly,

have 16-bit address busses and can support 128kB or

more of memory. Software written for 16-bit operating

systems such as MS-DOS on more modern PCs or soft-

ware for embedded systems also use this technique. To

effectively analyse these systems, a new kind of disas-

sembler is required.

4 Background
Disassemblers are available for nearly every platform.

Disassembly tools are available in two main contexts:

As a static disassembler tool to examine stored pro-

grams on disk, or dynamic disassemblers which exam-

ine snapshots of running programs.

21



4.1 Static analysis
The tool “objdump”[2] typifies static disassembly

tools. A binary program on disk is provided as input

to objdump, and the output is a disassembly listing

document.

The generated listing may be explored and anno-

tated with a simple text editor, but this approach has

two serious disadvantages. Firstly, a text editor treats

the disassembly as unstructured text and so can offer

very little software support for common annotation op-

erations. It will not offer cross-referencing support, so

any references that the code makes to other parts of

the program must be followed manually. If the analyst

gives a descriptive label to a block of code, that label

will not be propagated to the places where the code is

called. The analyst cannot effectively experiment with

different interpretations for data stored in the program.

For example, to reinterpret a number as signed or un-

signed will require the researcher to manually convert

the number using some other tool, or re-run the disas-

sembler to create an entirely new disassembly. These

problems dramatically slow down analysis and make

understanding the program much more difficult.

Secondly, a static disassembler cannot always cor-

rectly distinguish code from data in the analysed pro-

gram. For example, the code may include a jump whose

target is an address which is computed at runtime. This

is common in object-oriented code, where the address

of a virtual method must be looked up in an object’s

virtual address table. In procedural code, this technique

is more likely to be used with a jump table—a table of

routine addresses that selected from at runtime, often by

an equivalent of the “switch” statement in C. Data-flow

analysis techniques could be used to discover the targets

for some of these computed jumps[4]. For instance, the

instruction sequence LDX #0x5B19 / JMP X (storing

the value 0x5B19 into the register X, followed by a jump

to the value stored in X) is clearly a jump to the location

0x5B19. Even so, some jumps are computed in a way

that no disassembler could possibly understand (e.g. by

using data available at runtime which is not present in

the image being disassembled, such as data contained

in a message received on the network.)

The disassembler might identify a jump with a

known target which in fact points to data, not code. If

the Poly jumped to that location, it would likely have

unexpected results, perhaps crashing. If we assume

that the the Poly code does not crash, it is reasonable

to assume that it does not take bad jumps. There are at

least two possible causes of this situation.

It may be impossible for the flow of execution

to ever reach the jump, so the bad jump is never

executed in practice. For instance, a program might

check the state of a “debugging mode flag”, and, based

on the value it finds, jump to some logging routine

which ended up being cut from the final binary. The

debugging mode flag is never set in delivered software

so the bad jump is never taken.

The jump may have a definite target, and be taken

at runtime, but the target of the jump which is stored in

the instruction is overwritten at runtime before the jump

is ever called. This is seen on modern architectures.

A module of code (such as a Windows dynamic-link

library or a Unix shared object) which a program uses

may be dynamically loaded at an unpredictable position

in its address space. To be able to call routines from the

module, the program needs to know their addresses. To

achieve this, an “import table” is generated in the ap-

plication. The import table consists of a series of stubs.

The stubs are small routines which contain a jump to

an address which is initially some default value (NULL).

When the library is loaded, the memory locations of

its routines are discovered and used to rewrite the code

in the import table. To call an imported routine from

within the program, a call to the stub is made some time

after the library is loaded. Calling the routine before the

library is loaded results in undefined behaviour.

In order to correct code which has been misidenti-

fied as data, or vice-versa, the user must run the disas-

sembler again with that new information. This produces

an entirely independent disassembly listing which must

then be manually merged with the listing the user has

annotated. This is an error-prone and tedious process.

The user is unlikely to want to experiment with differ-

ent interpretations of a memory address, because each

experiment is so costly to run in terms of user effort.

4.2 Dynamic analysis
A debugger like the free tool “gdb”[7] is designed to

allow the user to inspect and interact with running pro-

grams. If no debugging information or source code is

provided which would allow it to show the high-level

code that corresponds to the running machine code, it

uses an embedded disassembler to show the disassem-

bly of the code that is currently executing.

This approach has several advantages. Code can be

distinguished from data with certainty, since the debug-

ger only needs to show the disassembly for instructions

which are currently executing or have previously exe-

cuted. The user can have the debugger interpret any

memory location in multiple ways. For example, they

could view one location as both an array of integers and

an array of characters, and discover that the data only

makes sense when interpreted as an array of integers.

The analyst can interact with the running program

to see what inputs a piece of code receives, or precisely

what action it takes as a result. The running program

may be modified by the analyst to explore areas of code

that would not normally execute. For example, they

can force the code to follow an error-handling branch

in order to examine that mechanism, even if they do not

know what inputs to the program are needed to cause

the error to be triggered in normal execution.

The main disadvantage of this approach is that the

user is typically unable to add any annotations to the

disassembly. If they discover the purpose of a routine,

22



they cannot give it a human-readable label which would

allow it to be understood the next time it is encountered.

Even if annotations are supported, the debugger will not

provide any way to save them and load them again later,

since it has no expectation that the memory layout of the

program will be similar the second time the program is

run. Analysis with a debugger is ephemeral, it cannot

be effectively used to produce a document which could

record the user’s findings to be shared with other re-

searchers.

4.3 Interactive disassembly
Traditional disassemblers are frequently used in situa-

tions where the disassembly is only useful for a short

amount of time, like a single session, and saving an-

notations is less important. For example, a common

task for a traditional disassembler is examining the ma-

chine code generated by a procedure in a high-level

language to diagnose performance or code generation

issues. Since they are typically used to examine a pro-

gram which is currently in development (and therefore

changing dramatically from a machine code perspec-

tive), the ability to save annotations is not valuable.

If a disassembly listing is to be modified and ex-

amined over an extended period of time (i.e. several

analysis sessions), or shared with other people, it must

be able to change dynamically as more information is

discovered by a human researcher. The researcher will

work with the disassembler to analyse a program. This

is the approach that we decided to take with our own

disassembler.

The only interactive disassembler that we are aware

of in common usage is IDA[3]. But IDA does not sup-

port the dynamic memory model of the Poly. While it

supports debugging live code for some targets, it does

not integrate with our Poly emulator.

5 Id, the interactive disassembler
To assist our reconstruction of the Poly platform, we

developed “Id”, an interactive disassembler which sup-

ports the Poly’s CPU and binary layouts. Id is an ap-

plication for Windows with a Graphical User Interface.

The main pane of Id is the disassembly listing. Sur-

rounding the listing are panels that give extra informa-

tion about the binary being disassembled. For instance,

one panel is a list of all of the symbol names created so

far in the image. Id can be seen in Figure 4.

To support the changing layout of programs on the

Poly, all of the items that Id identifies in its disassem-

bly are tagged with the physical address that they are

stored at, not the virtual memory addresses that they

appear at with one possible memory mapping. This

allows the user to change the virtual memory map while

they are examining the disassembly, and have the dis-

assembly listing change dynamically to reflect the new

interpretation of the program’s layout. This approach

works well with the Poly because code and resources on

this platform typically have a fixed location in physical

memory. On systems with address spaces larger than

the amount of physical memory available, like modern

32- and 64-bit computers, the reverse tends to be true.

Programs move around in physical memory but stay in

a fixed position in virtual memory.

Initially, no code has been identified in the image

(it is all considered to be data). To begin the disassem-

bly process, you must identify the start of a machine

instruction in the image. The CPU has to perform the

exact same task when the Poly boots. The CPU begins

by reading an address from an interrupt table at a fixed

location in memory, which is called the “reset vector”.

This is the location where execution begins after boot.

Id begins disassembly at this point. If the instruction at

the reset vector is a jump to a different location, Id can

follow the jump and recursively identify code there. If

the instruction is not a jump, execution will continue

to the next location in memory, so Id identifies an in-

struction there. Following jumps from the entry points

defined in the interrupt table identifies much of the code

in the image—around 60% for the Poly’s BIOS. The

remainder of the code is often interrupt handlers whose

address is determined at runtime in a fashion that is

currently too difficult for Id to discover.

To assist Id, the user can create new entry points

(the beginnings of instruction sequences) at any time.

Id automatically adds disassembly for those previously-

unidentified locations to the disassembly listing. If the

disassembler has wrongly identified data as code, the

user can convert it back to data.

While the physical representation of the data in the

program is known from the disassembly, the informa-

tion that the data encodes cannot always be inferred au-

tomatically. For example, Id knows that the operands of

instructions which specify the targets of read or writes

to memory locations are memory addresses. It can use

syntax colouring to distinguish these addresses from

other numeric literals found in the program. When pos-

sible, the symbolic name that the user has given to the

target address is shown in place of the raw address.

However, operands to instructions which are merely

stored into registers or into memory locations have no

special meaning defined by the instruction set. Id al-

lows the user to experiment with different interpreta-

tions of the data in order to discover what information

the data is encoding. For example, Id can interpret data

as strings, arrays, addresses, or numeric types of vari-

ous sizes and formats. As even simple operations such

as adding a constant to a number stored in a register can

have multiple reasonable meanings, this user-directed

assistance is crucial to documenting the purpose of the

program. For example, the machine code and effect

of subtracting 16 from a number stored in a register is

identical to that of adding 65520 (0xFFF0 in hexadec-

imal notation). But these two operations suggest very

different purposes for the code being disassembled. In

the first case, the program may be accessing data that

appears immediately before a previously-computed ad-

23



Figure 4: Id’s main GUI with the Proteus operating system loaded for disassembly. Andrew Trotman’s comments

appear after semicolons. All names in the disassembly are user-entered.

dress. This is the pattern expected if the program is

iterating over an array of elements whose size is 16-

bytes in reverse order. In the second case, the code may

be calculating the location of a dynamically-determined

field of a structure which is located at the fixed address

0xFFF0. This is the pattern expected if the program is

looking up the current location of one of the installed

interrupt routines (as the interrupt-vector table is lo-

cated at 0xFFF0). By specifying the signedness of the

operand, the user can disambiguate these two cases.

5.1 Annotation
Id is a hypertext document system. The start of each

routine or piece of data can be given a title by the user.

Id then provides a “names” pane, which lists every ti-

tle in the program, sorted by module. This structured

outline allows the document to be navigated rapidly.

References to memory locations found in the code,

such as the targets of jumps or the targets of memory

reading instructions, are shown as hyperlinks. The user

can double click on the hyperlink to jump directly to

its target. If there is a user-supplied title at the target

location, it is shown as the anchor text in the disas-

sembly in preference to the target’s raw memory ad-

dress. The user can further describe the purpose of a

location by adding an extended comment to the title.

This extended comment becomes the default comment

which appears automatically at all referral sites. The

user can edit the comment at a referral site in order to

record the exact way that the target is being used. For

example, the researcher might label a memory location

as “num clients”, and provide the extended comment

“number of Poly clients currently connected” to clar-

ify the meaning of the location. A comment at a re-

ferring site which increments this value might then be

customised: “record newly-attached client”.

As the user adds labels to locations in the mem-

ory map, the propogation of these labels to referring

sites makes the meaning of previously unexplored code

clearer. The analysis process shows a “jigsaw-like” ef-

fect. As with a jigsaw, a series of interlinked pieces

meet at common interfaces. As the jigsaw is completed,

the possible shape and location of the unplaced pieces

is futher and further constrained. This implies that the

initial analysis—discovering the large-scale structure of

the program—is the most difficult phase, with analysis

becoming more rapid as the final “pieces” are placed.

Id’s hyperlinks are bidirectional. The user can select

a title and discover all of the links which point to it

by using Id’s “cross-references” window. Id helps the

user choose interesting referrers for further analysis by

showing some context from each incoming link (the

closest few instructions and comments). By examining

a routine’s referrers, the researcher can determine (by

trial and error) what kind of inputs will be provided to

the routine and what sort of return value is expected in

response. Examining referrers is critical to discovering

the purpose of a target routine or memory address.

If the memory map changes, the names of the

targets of links in the code are updated accordingly.

In protected mode, a call to a routine at the address

0xF030 might send instructions to hardware to print

24



text to the display. But in unprotected mode, a different

routine will reside at that address. It could also be a

line-printing routine, but it might first copy the user’s

text to a buffer area before switching to protected mode

to call the BIOS’s line-printing routine. Id allows calls

to these two routines to be distinguished by allowing

them to have different names.

Broken hyperlinks, which are links that point to lo-

cations which do not currently exist in the disassem-

bly, are highlighted for the user. The presence of a

broken link could indicate that the target has not yet

been loaded from disk, or that the memory map is ex-

pected to change before the link will be accessed by the

program. This highlighting is particularly valuable for

discovering the connections between loadable modules

of code.

While the user can instruct Id to reinterpret a lo-

cation of the disassembly, the text of the disassembly

listing itself cannot be directly edited by the user. This

allows Id to ensure that the disassembly listing always

corresponds precisely to the machine code. In fact, the

listing could be used to reconstruct the original binary

program. Id does allow comments to be added to any

line of the disassembly as the purpose of routines are

discovered. Once a piece of code has been understood,

adding a comment allows the purpose of the sometimes

confusing assembly to be shared with other researchers.

5.2 Modules
Disassembly will typically be performed on a “mod-

ule”. A module is a set of code and data which is

tightly bound together. For instance, one module might

be the Poly’s BIOS, which is the code that controls

the interaction between the hardware and the software.

This code is stored in permanent memory chips on the

motherboard and appears in the Poly’s virtual address

space when it enters “protected mode”. Another mod-

ule might be a boot sector read from a floppy disk. Id

understands the format of the Poly’s file system and

programs, so it can simulate the action of the Poly’s pro-

gram loader and load a program from disk as a module

into the correct physical memory locations for analysis.

There are substantial cross-references between

modules, so the analysis of one module can be used

to understand a different module. For example, the

BIOS is responsible for loading the boot sector from a

floppy disk, then it transfers control to the boot sector

program. By disassembling the BIOS, the entry-point

of the boot sector’s code can be discovered. In a

traditional system, the disassembly document of each

module is independent so there is no inter-module

linking.

To support the analysis of large systems, Id’s

module system allows multiple disassemblies which

were created independently to be composed to

appear as one coherent document. For instance,

one disassembly might be the Proteus’s operating

system and BIOS. Another disassembly might be the

Poly’s operating system and BIOS. If you created a

disassembly of a text editor program, you could choose

to either link to the disassembly of the Poly’s operating

system (to examine the program’s effect on the Poly),

or link with the Proteus’s operating system (to examine

the program’s effect on the Proteus.) This linking

can be easily changed while you are disassembling.

The gutter of the disassembly pane is colour-coded to

show the module that a line of code belongs to. Cross-

module references are dynamically resolved based on

the current selection of modules. New information

identified about linked modules is automatically used

to update those documents when the parent document

is saved. This system allows reuse of disassembly

information—the information you discover about the

operating system while analysing a text editor program

is made available when examining the interaction

between a database program and the operating system.

The module system allows the user to document an

entire operating system and its attendant application

suite as a set of linked disassemblies.

5.3 Debugging
A goal of Id was to unify the capabilities of static and

dynamic disassemblers. Id includes a debugger which

can attach to a running instance of our Poly emulator.

This allows the runtime behaviour of a disassembled

program to be examined. It also allows the creation

of new disassemblies based on code which is loaded

in memory at runtime from unknown sources. For ex-

ample, the applications on the client Poly machine are

loaded from the server across the network. Using the

debugger, a copy of a network-loaded application can

be dumped from the client for later analysis.

The debugger integrates with the disassembler

tightly. For example, the debugger observes the

instructions which are executed at runtime in order to

discover the location of code in the image which it

could not have discovered with a static analysis of the

program on disk. The identified code is automatically

merged into the document that the user has already

created. The user is notified if the newly-identified

code is inconsistent with previous disassembly. For

example, if a newly-identified instruction lies within

a previously-defined instruction (which is vanishingly

rare in valid code), the user is asked to decide which

interpretation to accept.

By using the debugger, the user can discover cross-

references at runtime which cannot be discovered with

static analysis. For example, the user can set break-

points which pause execution when a certain memory

location is read to or written from. When the break-

point is triggered, the user has identified a link which

references their memory address. This is particularly

useful in debugging the behaviour of hardware devices

(which appear at virtual memory addresses in the Poly’s

memory map).

25



(a) Emulated text-mode battleships game on the Poly client (b) Emulated graphics-mode on the Poly client

Figure 5: Emulated Poly machines

In Figure 4, the debugger has been attached to an

emulator which is simulating the Proteus server. A

breakpoint has been placed in part of a network routine.

Execution will automatically pause at that point if the

Proteus executes that instruction, allowing the user to

inspect the contents of memory and the CPU registers.

In Figure 5, two Poly clients with attached debuggers

are executing programs delivered by the Proteus server.

6 Conclusions
We used the dynamic document features of our interac-

tive disassembler system, Id, in our analysis and reverse

engineering of the Poly. By using it, we were able

to investigate the Poly’s networking code in order to

to solve timing and hardware issues in our emulator.

Our Poly emulator is now able to successfully emulate

a Poly client attached to an emulated Proteus server.

The disassemblies that we created with Id will form

the basis of a online library of information about the

Poly’s software and hardware. Because Id allows re-

searchers to link and share information between their

new disassemblies and our existing disassemblies of the

operating system, BIOS, and other system utilities in

our library, analysis of the Poly system can be achieved

more rapidly and easily than with any other competing

disassembly system.

The documents produced all contribute to a

long-lasting store of knowledge about the Poly.

The disassemblies are in a format that is readable

even without using Id. They consist of plain-text,

human-readable disassembly listings similar to what

Id displays in its main pane, stored inside “zip”

compressed archives. This ensures that the information

discovered with Id will be accessible long into the

future.

Our disassembler’s Poly-specific knowledge is seg-

mented from its dynamic document engine, so it is rel-

atively easy to add support for more processors and

architectures. This makes Id a very flexible tool for the

disassembly and documentation of small systems.

References
[1] Various authors. 128K ZX Spectrum Technical

Information. World Of Spectrum, http:

//www.worldofspectrum.org/faq/reference/

128kreference.htm, 2009. Accessed 17th September,

2009.

[2] Inc. Free Software Foundation. GNU Binutils. http://

www.gnu.org/software/binutils/, 2008. Accessed

9 October, 2008.

[3] Ilfak Guilfanov. IDA Pro Disassembler—multi-processor,
windows hosted disassembler and debugger. Hex-Rays,

http://www.hex-rays.com/idapro/, 2009. Ac-

cessed 17th September, 2009.

[4] Matthew S. Hecht. Flow Analysis of Computer Programs.

Elsevier Science Inc., New York, NY, USA, 1977.

[5] R. N. Horspool and N. Marovac. An approach to the

problem of detranslation of computer programs. The
Computer Journal, Volume 23, Number 3, pages 223–

229, 1980.

[6] Lance Lyon. Commodore 128 Alive! Commodore

128, http://www.commodore128.org, 2009. Ac-

cessed 17th September, 2009.

[7] The GNU Project. GDB: The GNU project debugger.

http://www.gnu.org/software/gdb/, 2009. Ac-

cessed 15 September, 2009.

[8] T. Ritter and Boney J. The 6809. Byte Magazine, 1979.

[9] Steven Weyhrich. Apple ][ History Chap 7. Apple

2 History, http://apple2history.org/history/

ah07.html, 2009. Accessed 17th September, 2009.

26



Interestingness Measures for Multi-Level Association Rules

Gavin Shaw
School of Information Technology

Queensland University of Technology
Brisbane QLD Australia

g4.shaw@student.qut.edu.au

Yue Xu
School of Information Technology

Queensland University of Technology
Brisbane QLD Australia

yue.xu@qut.edu.au

Shlomo Geva
School of Information Technology

Queensland University of Technology
Brisbane QLD Australia

s.geva@qut.edu.au

Abstract Association rule mining is one technique
that is widely used when querying databases, especially
those that are transactional, in order to obtain useful
associations or correlations among sets of items. Much
work has been done focusing on efficiency, effectiveness
and redundancy. There has also been a focusing on the
quality of rules from single level datasets with many
interestingness measures proposed. However, with
multi-level datasets now being common there is a lack
of interestingness measures developed for multi-level
and cross-level rules. Single level measures do not
take into account the hierarchy found in a multi-level
dataset. This leaves the Support-Confidence approach,
which does not consider the hierarchy anyway and has
other drawbacks, as one of the few measures available.

In this paper we propose two approaches which
measure multi-level association rules to help evaluate
their interestingness. These measures of diversity and
peculiarity can be used to help identify those rules from
multi-level datasets that are potentially useful.

Keywords Information Retrieval, Interestingness

Measures, Association Rules, Multi-Level Datasets

1 Introduction
Association rule mining was first introduced in [1]

and since then has become both an important and

widespread tool in use. It allows associations between

a set of items in large datasets to be discovered and

often a huge amount of associations are found. Thus in

order for a user to be able to handle the discovered rules

it is necessary to be able to screen / measure the rules

so that only those that are interesting are presented to

the user. This is the role interestingness measures play.

In an effort to help discover the interesting rules, work

has focused on measuring rules in various ways from

Proceedings of the 14th Australasian Document Comput-
ing Symposium, Sydney, Australia, 4 December 2009.
Copyright for this article remains with the authors.

both objective and subjective points of view [3] [8].

The most common measure is the support-confidence

approach [1] [2] [6], but there are numerous other

measures [2] [3] [6] to name a few. All of these

measures were proposed for association rules derived

from single level or flat datasets, which were most

commonly transactional datasets. Today multi-level

datasets are more common in many domains. With this

increase in usage there is a big demand for techniques

to discover multi-level and cross-level association

rules and also techniques to measure interestingness

of rules derived from multi-level datasets. Some

approaches for multi-level and cross-level frequent

itemset discovery (the first step in rule mining) have

been proposed [4] [5] [10]. However, multi-level

datasets are often a source of numerous rules and in

fact the rules can be so numerous it can be much more

difficult to determine which ones are interesting [1]

[2]. Moreover, the existing interestingness measures

for single level association rules can not accurately

measure the interestingness of multi-level rules since

they do not take into consideration the concept of the

hierarchical structure that exists in multi-level datasets.

In this paper as our contribution we propose measures

particularly for asessing the interestingness of multi-

level association rules by examining the diversity

and distance among rules. These measures can be

determined during rule discovery phase for use during

post-processing to help users determine the interesting

rules. To the authors’ best knowledge, this paper is the

first attempt to investigate the interestingness measures

focused on multi-level datasets.

The paper is organised as follows. Section 2

discusses related work. The theory, background and

assumptions behind our proposed interestingness

measures are presented in Section 3. Experiments and

results are presented in Section 4. Lastly, Section 5

concludes the paper.

27



2 Related Work
For as long as association rule mining has been around,

there has been a need to determine which rules are in-

teresting. Originally this started with using the concepts

of support and confidence [1]. Since then, many more

measures have been proposed [2] [3] [6]. The Support-

Confidence approach is appealing due to the antimono-

tonicity property of the support. However, the support

component will ignore itemsets with a low support even

though these itemsets may generate rules with a high

confidence (which is used to indicate the level of inter-

estingness) [6]. Also, the Support-Confidence approach

does not necessarily ensure that the rules are truly in-

teresting, especially when the confidence is equal to the

marginal frequency of the consequent [6]. Based on this

argument, other measures for determing the interesting-

ness of a rule is needed.

Broadly speaking, all of these existing measures fall

into three categories; objective based measures (based

on the raw data), subjective based (based on the raw

data and the user) and semantic based measures (based

on the semantic and explanations of the patterns) [3].

In the survey presented in [3] there are nine criteria

listed that can be used to determine if a pattern or rule

is interesting. These nine criteria are; conciseness, cov-

erage, reliability, peculiarity, diversity, novelty, surpris-

ingness, utility and actionability or applicability. The

first five criteria are considered to be objective, with the

next two, novelty and surprisingness being considered

to be subjective. The final two criteria are considered to

be semantic.

Despite all the different measures, studies and

works undertaken, there is no widely agreed upon

formal definition of what interestingness is in the

context of patterns and association rules [3]. More

recently several surveys of interestingness measures

have been presented [3] [6] [7] [8]. One survey [8]

evaluated the strengths and weaknesses of various

measures from the point of view of the level or extent

of user interaction. Another survey [7] looked at

classifying various interestingness measures into five

formal and five experimental classes, along with eight

evaluation properties. However, all of these surveys

result in different outcomes over how useful, suitable

etc., an interestingness measure is. Therefore the

usefulness of a measure can be considered to be

subjective.

All of these measures mentioned above are for rules

derived from single level datasets. They work on items

on a single level but do not have the capacity for com-

paring different levels or rules containing items from

multiple levels simultaneously. Our research has found

that up to now, little work has been done when it comes

to interestingness measures for multi-level datasets that

can handle items from muliple levels within one rule or

rule set.

Here in our work we propose to measure the inter-

estingness of multi-level rules in terms of diversity and

peculiarity (also known as distance). These measures

were chosen as they are considered to be objective (rely

on just the data).

3 Concepts and Calculations of The Pro-
posed Interestingness Measures

In this section we present the key parts of the theory

and background and formula behind our proposed mea-

sures. We also present the assumptions we have made

for our measures.

3.1 Assumptions and Definitions
Here we outline the assumptions we have made. Figure

1 depicts an example of the general structure of a multi-

level dataset. As shown, there is a tree-like hierarchi-

cal structure to the concepts or items involved in the

dataset. Thus items at the bottom are descendant from

higher level items. An item at a higher level can contain

multiple lower level items.

Figure 1: Example of a multi-level dataset.

With this hierarchy we have made the two following

assumptions.

1. That each step in the hierarchy tree is of equal

length / weight. Thus the step from 1-*-* to 1-

1-* is of equal distance to the step from 2-*-* to

2-1-* or 1-1-* to 1-1-1.

2. That the order of sibling items is not important

and the order could be changed (along with any

descendants) without any effect.

3. That each concept/item has an ancestor

concept/item (except for the root) so that no

concepts/items or group(s) of concepts/items are

isolated from the rest of the hierarchy.

Before presenting our proposed measures we firstly

define several terms and formula used.

• n1 and n2: represent two items / concepts in the

multi-level dataset.

• ca: (common ancestor) is the closest item that is

an ancestor to both n1 and n2.

• TreeHeight: is the maximum number of items on a

path in the multi-level dataset (not counting root)

from the root to a item located at the lowest con-

cept level.

• h: represents the entire multi-level dataset hierar-

chy.

28



• Hierarchy level of an item: the hierarchy level of

the root is 1. The hierarchy level of an item in the

dataset is larger than the level of its direct parent

by 1.

• Number of Levels Difference:

NLD(x, y) = | hierarchy level of x −
hierarchy level of y | (1)

is the number of hierarchy levels difference be-

tween items x and y.

3.2 Diversity
Here we define a diversity measure for multi-level as-

sociation rules which takes items’ structural informa-

tion into consideration. The diversity defined here is a

measure of the difference or distance between the items

within a rule, based on their positions in the hierarchy.

Two different aspects of the items in a rule are consid-

ered to measure the diversity of the rule.

1. Hierarchical relationship distance (HRD) between

items.

2. Concept level distance (LD) between items.

We propose that the diversity of a rule can be mea-

sured using two different approaches. The first, mea-

sures the overall diversity of a rule by combining the

items in the antecedent with the items in the consequent

into a single set. If the items within this combined

itemset are very different, then the rule will have a high

overall diversity, regardless of whether the items were

from the antecedent or consequent.

Let R be a rule with n items and DOR denotes the

overall diversity of R, the diversity of R can be deter-

mined as follows:

DOR =
α1

∑n−1

i=1

∑n
j=i+1

HRD(i, j)

n(n− 1)
+

β1

∑n−1

i=1

∑n
j=i+1

LD(i, j)

n(n− 1)
(2)

The second, measures the diversity between the

items in the antecedent and those in the consequent.

Those rules which have a high difference between their

antecedent itemsets and consequent itemsets will have

a high antecedent-consequent diversity. However, this

approach does not consider the difference between

items within the antecedent and/or consequent like the

overall diversity approach.

Let R be a rule R : A → C, with n items in A
and m items in C and DACR denotes the antecedent

to consequent diversity of R, the diversity of R can be

determined as follows:

DACR =
α2

∑n−1

i=1

∑m
j=1

HRD(i, j)

n(n− 1)
+

β2

∑n−1

i=1

∑m
j=1

LD(i, j)

n(n− 1)
(3)

Where α and β are weighting factors such that α +
β = 1. The values of α and β need to be determined

experimentally and for our experiments are both set at

0.5. Equation 2 & 3 consists of two parts, the average

hierarchical relationship distance and the concept dis-

tance among the items in the rule, respectively. In the

following subsections we will define the two aspects in

detail.

3.2.1 Hierarchical Relationship Distance

The HRD of two items measures how close two items

are in terms of a hierarchical relationship from a com-

mon ancestor item (or root). The further apart they are

in a hierarchical relation; that is the greater the number

of concept levels difference between two items and their

common ancestor, the more diverse the two items are

and the more diverse the rule will be.

Here for the HRD component, diversity is inversely

related to the closeness of items in terms of a hierar-

chical relationship. The closer the two items are, the

less diverse they are. The further / more distant the

relationship, the more diverse. For maximum HRD di-

versity the two items need to have no common ancestor

and both be located at the lowest concept level in the

dataset.

HRD focuses on measuring the horizontal (or

width) distance between two items. Usually the greater

the horizontal distance, the greater the distance to a

common ancestor and therefore the more diverse the

two items are. Due to the second assumption, we

can not measure the horizontal distance without also

utilising the vertical (height) distance.

Thus to determine the Hierarchical Relationship

Distance (HRD) component of the diversity the

following is proposed:

HRD(n1, n2) =
(NLD(n1, ca) + NLD(n2, ca))

2× TreeHeight
(4)

The Hierarchical Relationship Distance between

two items is defined as the ratio between the average

number of levels between the two items and their

common ancestor and the height of the tree. Thus

if two items share a direct parent, the HRD value

of the two items becomes the lowest value which

is 1/TreeHeight, while if the two items have no

common ancestor or their common ancestor is the

root, the HRD values of the two items can score high.

Maximum HRD value, which is 1, is achieved when the

two items have no common ancestor (or the common

ancestor is the root) and both items are at the lowest

concept level possible in the hierarchy. If n1 and n2

are the same item, then HRD becomes 1/TreeHeight.

3.2.2 Concept Level Distance

This aspect is based on the hierarchical levels of the two

items. The idea is that the more levels between the two

items, the more diverse they will be. Thus two items on

29



the same hierarchy level are not very diverse, but two

items on different levels are more diverse as they have

different degrees of specificity or abstractness.

LD differs from HRD in that HRD measures the dis-

tance from a common ancestor item (or root), whereas

LD measures the distance between the two items them-

selves. LD focuses on measuring the distance between

two items in terms of their height (vertical) difference

(HRD considers the width (horizontal) distance).

Thus, we propose to use the ratio between the level

difference (NLD) of two items and the height of the

tree (eg. the maximum level difference) to measure the

Level Distance of the two items as defined as follows:

LD(n1, n2) =
NLD(n1, n2)

(TreeHeight− 1)
(5)

This means that two items on the same concept level

will have a LD of 0, while an item at the highest concept

level and another at the lowest concept lvel will have an

LD of 1, as they are as far apart as possible in the given

hierarchy.

3.3 Peculiarity
Peculiarity is an objective measure that determines how

far away one association rule is from others. The fur-

ther away the rule is, the more peculiar. It is usually

done through the use of a distance measure to determine

how far apart rules are from each other. Peculiar rules

are usually few in number (often generated from outly-

ing data) and significantly different from the rest of the

rule set. It is also possible that these peculiar rules can

be interesting as they may be unknown. One proposal

for measuring peculiarity is the neighbourhood-based

unexpectednedd measure first proposed in [2]. In this

proposal it is argued that a rule’s interestingness is influ-

enced by the rules that surround it in its neighbourhood.

The measure is based on the idea of determining

and mesuring the symmetric difference between two

rules, which forms the basis of the distance between

them. From this it was proposed [2] that unexpected

confidence (where the confidence of a rule R is far from

the average confidence of the rules in R’s neighbour-

hood) and sparsity (where the number of mined rules in

a neighbourhood is far less than that of all the poten-

tial rules for that neighbourhood) could be determined,

measured and used as interestingness measures [2] [3].

This measure [2] for determing the symmetric dif-

ference was developed for single level datasets where

each item was equally weighted. Thus the mesure is

actually a count of the number of items that are not

common between the two rules. In a multi-level dataset,

each item cannot be regarded as being equal due to the

hierarchy. Thus the measure proposed in [2] needs to be

enhanced to be useful with these datasets. Here we will

present an enhancement as part of our proposed work.

We believe it is possible to take the distance

measure presented in [2] and enhance it for multi-level

datasets. The original measure is a syntax-based

distance metric in the following form:

P (R1, R2) = δ1 × |(X1 ∪ Y1)Θ(X2 ∪ Y2)|+
δ2 × |X1ΘX2|+ δ3 × |Y1ΘY2| (6)

The Θ operator denotes the symmetric difference

between two item sets, thus XΘY is equivalent to X −
Y ∪ Y − X . δ1, δ2 and δ3 are the weighting factors

to be applied to different parts of the rule. Equation 6

measures the peculiarity of two rules by a weighted sum

of the cardinalities of the symmetric difference between

the two rule’s antecedents, consequents and the rules

themselves.

We propose an enhancement to this measure to al-

low it to handle a hierarchy. Under the existing mea-

sure, every item is unique and therefore none share any

kind of ’syntax’ similarity. However, we argue that

the items 1-*-*-*, 1-1-*-*, 1-1-1-* and 1-1-1-1 (based

on Figure 1) all have a relationship with each other.

Thus they are not completely different and should have

a ’syntax’ similarity due to their relation through the

dataset’s hierarchy.

The greater the P (R1, R2) value is, the greater the

difference (thus lower similarity) and so the greater

the distance between those two rules. Therefore, the

further apart the relation is between two items, the

greater the difference and distance. Thus if we have,

R1 : 1− 1− 1− ∗ ⇒ 1− ∗ − ∗ − ∗
R2 : 1− 1− ∗ − ∗ ⇒ 1− ∗ − ∗ − ∗
R3 : 1− 1− 1− 1 ⇒ 1− ∗ − ∗ − ∗
We believe that the following should hold; P (R1, R3) <

P (R2, R3) as 1-1-*-* and 1-1-1-1 are further removed

from each other than 1-1-1-* and 1-1-1-1.

The difference between any two hierarchically re-

lated items / nodes must be less than 1. Thus (for the

above rules) 1 > P (R2, R3) > P (R1, R2) > 0. In

order to achieve this we modify Equation 6 by calculat-

ing the diversity of the symmetric difference between

two rules instead of the cardinality of the symmetric

difference. The cardinality of the symmetric difference

measures the difference between two rules in terms of

the number of different items in the rules. The diversity

of the symmetric difference takes into consideration the

hierarchical difference of the items in the symmetric

difference to measure the difference of the two rules.

We recite Equation 2 in terms of a set of items below,

where S is a set containing n items:

PD(S) =
α

∑n−1

i=1

∑n
j=i+1

HRD(i, j)

n(n− 1)
+

β
∑n−1

i=1

∑n
j=i+1

LD(i, j)

n(n− 1)
(7)

Thus the neighbourhood-based distance measure

between two rules shown in Equation 6 now becomes;

PM(R1, R2) = δ1 × PD((X1 ∪ Y1)Θ(X2 ∪ Y2))+

δ2 × PD(X1ΘX2) + δ3 × PD(Y1ΘY2)

(8)

30



Let RS be the ruleset of {R1, R2, ..., Rn} then the

average distance of a rule Ri to the ruleset RS can be

determined by:

PMave =

∑n
∀Rj∈RS and j �=i PM(Ri, Rj)

|RS| − 1
(9)

4 Experimental Results
In this section we present experimental results of our

proposed interestingness measures being used for asso-

ciation rule discovery from a multi-level dataset.

4.1 Dataset and Setup
The dataset used for our experiments is a real world

dataset, the BookCrossing dataset (obtained from

http://www.informatik.uni-freiburg.de/ cziegler/BX/)

[10]. From this dataset we built a multi-level

transactional dataset that contains 92,005 user records

and 960 leaf items, with 3 concept / hierarchy levels.

To discover the frequent itemsets we use the

MLT2 L1 algorithm proposed in [4] [5] with each

concept level having its own minimum support.

From these frequent itemsets we then derive the

frequent closed itemsets and generators using the

CLOSE+ algorithm proposed in [9]. From this we then

derive the non-redundant association rules using the

MinMaxApprox (MMA) rule mining algorithm [9].

4.2 Results
For the experiment we simply use the previously men-

tioned rule mining algorithm to extract the rules from

the multi-level dataset. For this experiment we assign

a reducing minimum support threshold to each level.

The minimum supports are set to 10% for the first hi-

erarchy level, 7.5% for the second and 5% for the thrid

level (the lowest). During the rule extraction process

we determine the diversity and peculiarity distance of

the rules that meet the confidence threshold. With two

measures known for each rule, we are also able to de-

termine the minimum, maximum and average diversity

and peculiarity distance for the rule set.

4.2.1 Statistical Analysis

Firstly, we compare the distribution curves of the pro-

posed measures (diversity and distance) against the dis-

tribution curves of support and confidence for the rule

set. The distribution curves are shown in Figure 2. The

value of each measure ranges from 0 to 1. The values

of the distance measure are based on the minimum dis-

tance (in this case 33,903.7) being equal to 0 and the

maximum distance (in this case being 53,862.5) being

equal to 1. The range between these two has been uni-

formly divided into 20 bins.

As Figure 2 shows, the support curve shows that

the majority of association rules only have a support

of between 0.05 and 0.1. Thus for this dataset distin-

guishing interesting rules based on their support would

be difficult as the vast majority have very similar sup-

port values. This would mean the more interesting or

important rules would be lost.

The confidence curve shows that the rules are spread

out from 0.5 (which is the minimum confidence thresh-

old) up to close to 1. The distribution of rules in this

area is fairly consistant and even, ranging from as low

as 2,181 rules for 0.95 to 1, to as high as 4,430 rules for

0.85 to 0.9. Using confidence to determine the interest-

ing rules is more practical than support, but still leaves

over 2,000 rules in the top bin.

The overall diversity curve shows that the majority

of rules (23,665) here have an average overall diversity

value of between 0.3 to 0.4. The curve however, also

shows that there are some rules which have an over-

all diveristy value below the majority, in the range of

0.15 to 0.25 and some that are above the majority, in

the range of 0.45 up to 0.7. The rules located above

the majority are different to the rules that make up the

majority and could be of interest as these rules have a

high overall diversity.

The antecedent-consequent diversity curve is simi-

lar to that of the overall diversity. It has a similar spread

of rules, but the antecedent-consequent diversity curve

peaks earlier at 0.3 to 0.35 (where as the overall diver-

sity curve peaks at 0.35 to 0.4), with 12,408 rules. The

curve then drops down to a low number of rules at 0.45

to 0.5, before peaking again at 0.5 to 0.55, wih 2,564

rules. The shape of this curve with that of the overall di-

versity seems to show that the two diversity approaches

are related. Using the antecedent-consequent diversity

allows rules with differing antecedents and consequents

to be discovered when support and confidence will not

identify them.

Lastly, the distance curve shows the largest spread

of rules across a curve. There are rules which have a

low distance from the rule set (0 to 0.1 which corre-

sponds to a distance of 33,903.7 to 35,899.56) up to

higher distances (such as 0.7 and above which corre-

sponds to a distance of 47,874.88 to 53,862.52). The

distance curve peaks at 0.3 to 0.35 (which is a distance

of between 39,891.35 and 40,889.29). Using the dis-

tance curve to find interesting rules allows those that

are close to the ruleset (small distance away) or those

that are much further away (greater distance) to be dis-

covered.

Next, we look at the trends of the various measures

when compared against the proposed diversity and dis-

tance measures.

Figure 3 shows the trend of the average support, av-

erage confidence, average antecedent-consequent diver-

sity and average distance values against that of overall

diversity. As can be seen the average support remains

fairly constant. There is tendancy for the support to

increase for those rules with a high overall diversity.

Even so, this shows that support does not always agree

with overall diversity, so an overall diversity measure

can be useful to find a different set of interesting rules.

31



Figure 2: Distribution curves for the proposed interestingness measures, support and confidence.

Figure 3: Trends of measures against the proposed overall diversity measure.

The confidence in Figure 3 is also fairly constant

(usually varying by less than 0.1) until the end. Again

this shows that the confidence will not always discover

those rules that are more diverse overall.

The average antecedent-consequent diversity tends

to have a consistant upward trend as the overall diver-

sity increases. This shows that both the overall diversity

and antecedent-consequent diversity are related/linked

(which is not unexpected). It is quite possible that the

greatest degree of diversity for a rule comes from com-

paring the items in the antecedent against those in the

consequent and not from comparing the items within

just the antecedent and/or consequent.

The distance has an overall upwards trend, although

it is not a constant rate nor consistant (as there is a small

decrease from 0.2 to 0.3). This, along with the trend of

the average overall diversity (which shows a consistant

upwards trend as the distance increases) in Figure 5

would indicate that potentially the more overall diverse

rules have a higher distance from the rest of the rule set

and therefore are further away. This would also imply

that those rules with a higher distance are usually more

diverse overall as well.

Figure 4 shows the trends of average support, aver-

age confidence, average overall diversity and average

distance against that of antecedent-consequent diver-

sity. Like in Figure 3, the support remains fairly con-

stant regardless of the antecedent-consequent diversity

value.

The confidence tends to decrease as the antecedent-

consequent diversity increases, so the more diverse

rules will not always be picked up by confidence.

The overall diversity tends to increase as

antecedent-consequent diversity increases (similar

32



Figure 4: Trends of measures against the proposed antecedent-consequent diversity measure.

Figure 5: Trends of measures against the proposed distance measure.

to Figure 3). So again the biggest diversity in a rule

is often in the difference between the antecedent and

consequent.

The distance also tends to increase (gradually at

first for lower antecedent-consequent diversity values).

There is a big jump in the distance trend when the

antecedent-consequent diversity increases from 0.65 to

0.75. The highest distance values are achieved when

the antecedent-consequent diversity reaches its highest

values (this is also shown in Figure 5).

Figure 5 shows the trend of the average support, av-

erage confidence, average overall diversity and average

antecedent-consequent diversity values against that of

distance. As shown, the support remains very constant

regardless of the distance. This shows that support can

not be used to discover rules that have a low or high

peculiarity distance.

Like the average overall diversity, the average

antecedent-consequent diversity also trends upwards

as the distance increases. The rate of rise is similar to

that of the overall diversity initially at lower distance

values, but becomes much steeper at high distance

values. This shows that it seems the most distant

rules also have the highest diversity between their

antecedent and consequent as Figure 5 shows the

average antecedent-consequent diversity to be over 0.8

for the rules with the highest distance from the rest of

the rule set.

The confidence trend in Figure 5 also shows that

confidence will not always discover those rules far away

from the rule set (0.8 / 49,870.76 and above), as at

these distances the confidence values are at their lowest

points. For rules with a low distance value, confidence

may also not be the best measure as at these values

33



(0 / 33,903.7 to 0.1 / 35,899.58) confidence values are

not at their highest. The highest confidence value(s)

occur when the distance is 47,874.86 to 48,872.82 (0.7

to 0.75).

4.2.2 Examples of Proposed Measures

If we look closer at the discovered rules we find the

following examples that show how diversity and pecu-

liarity distance can be useful in identifying potentially

interesting rules that would not normally be identified

as such. (Note that the hypen breaks the concept levels,

while a comma indicates a new item).

Example 1:
R1=BookClubs-Lit.&Fiction-Pop.Fiction →

Subjects-Lit.&Fiction-General

Supp 12.228% Conf 81.5% OverallDiv 0.5

R2=BookClubs-Lit.&Fiction-Pop.Fiction →
Subjects-Mystery&Thrillers

Supp 7.9% Conf 52.67% OverallDiv 0.67

R1 has a higher support and confidence than R2, but

R2 has a higher overall diversity. If we used either the

support or confidence measure then R1 would always

be chosen as the more interesting rule. However, our

proposed overall diversity measure indicates that R2 is

more interesting due to its diversity score, which can be

attributed to its more general consequent.

Example 2:
R3=Subjects-Biographies&Memoirs-General,

Subjects-Lit.&Fiction-Authors(A..Z) → BookClubs-

Lit.&Fiction

Supp 5.59% Conf 60.9% Ant-ConDiv 0.67

R3 has low support and reasonbly low confidence, but

it has high antecedent-consequent diversity (the aver-

age is 0.35). If we use support or confidence this rule

will probably not be chosen as interesting as its support

value is lower than the average support value for this

rule set (5.8%) and its confidence is relatively low and

is also lower than the average confidence of the rule

set (74.4%). However, if we use antecedent-consequent

diversity, then it will be selected as it has a high value.

Hence this rule may be of interest because of the di-

versity between its antecedent and consequent itemsets,

which come from different branches of the hierarchy.

Example 3:
R4=BookClubs, Subjects-Lit.&Fiction-WorldLit.

→ Subjects-Lit.&Fiction-GenreFiction, Subjects-

Mystery&Thrillers

Supp 6.7% Conf 57.7% Dist 50,311.4

R4 has a noticably higher than average distance and is

much further away from the rule set. This may be of

interest to a user. But if support and confidence are

used, this rule is considered to not be of interest due

to their low values.

5 Conclusion
In this paper we have proposed two interestingness

measures for association rules derived from multi-level

datasets. These proposed interestingness measures are

diversity and peculiarity (distance) respectively.

Diversity is a measure that compares items within a

rule and peculiarity compares items in two rules to see

how different they are.

In our experiments we have shown how diversity

and peculiarity distance can be used to identify poten-

tially interesting rules that normally would not be con-

sidered as interesting using the traditional support and

confidence approach.

Acknowledgements Computational resources and
services used in this work were provided by the HPC
and Research Support Unit, Queensland University of
Technology, Brisbane, Australia.

References
[1] R. Agrawal, T. Imielinski and A. Swami. Mining

Association Rules between Sets of Items in Large

Databases. In ACM SIGMOD International Conference
on Management of Data (SIGMOD’93), pages 207–216,

Washington D.C., USA, May 1993.

[2] G. Dong and J. Li. Interestingness of Discovered

Association Rules in terms of Neighbourhood-Based

Unexpectedness. In Second Pacific-Asia Conference on
Knowledge Discovery and Data Mining (PAKDD’98),
pages 72–86, Melbourne, Australia, April 1998.

[3] L. Geng and H. J. Hamilton. Interestingness Measures

for Data Mining: A Survey. ACM Computing Surveys
(CSUR), Volume 38, pages 9, 2006.

[4] J. Han and Y. Fu. Discovery of Multiple-Level Associa-

tion Rules from Large Databases. In 21st International
Conference on Very Large Databases (VLDB’95), pages

420–431, Zurich, Switzerland, September 1995.

[5] J. Han and Y. Fu. Mining Multiple-Level Association

Rules in Large Databases. IEEE Transactions on
Knowledge and Data Engineering, Volume 11, pages

798–805, 1999.

[6] S. Lallich, O. Teytaud and E. Prudhomme. Association

rule interestingness: measure and statistical validation.

Quality Measures in Data Mining, Volume 43, pages

251–276, 2006.

[7] P. Lenca, B. Vaillant, B. Meyer and S. Lallich. As-

sociation rule interestingness: experimental and theo-

retical studies. Studies in Computational Intelligence,

Volume 43, pages 51–76, 2007.

[8] K. McGarry. A Survey of Interestingness Measures

for Knowledge Discovery. The Knowledge Engineering
Review, Volume 20, pages 39–61, 2005.

[9] N. Pasquier, R. Taouil, Y. Bastide and G. Stumme.

Generating a Condensed Representation for Association

Rules. Journal of Intelligent Information Systems,

Volume 24, pages 29–60, 2005.

[10] C.-N. Ziegler, S. M. McNee, J. A. Konstan and

G. Lausen. Improving Recommendation Lists Through

Topic Diversification. In 14th International Conference
on World Wide Web (WWW’05), pages 22–32, Chiba,

Japan, May 2005.

34



Do Users Find Looking at Text More Useful than Visual Representations?
A Comparison of Three Search Result Interfaces

Hilal Al Maqbali Falk Scholer James A. Thom Mingfang Wu
School of Computer Science and Information Technology

RMIT University
GPO Box 2476, Melbourne 3001

Victoria, Australia

h.almaqbali@student.rmit.edu.au,{falk.scholer,james.thom,mingfang.wu}@rmit.edu.au

Abstract
The organisation, content and presentation of doc-

ument surrogates has a substantial impact on the effec-
tiveness of web search result interfaces. Most interfaces
include textual information, including for example the
document title, URL, and a short query-biased sum-
mary of the content. Other interfaces include additional
browsing features, such as topic clustering, or thumb-
nails of the web pages. In this study we analyse three
search interfaces, and compare the effectiveness of tex-
tual information and additional browsing features. Our
analysis indicates that most users spend a substantially
larger proportion of time looking at text information,
and that those interfaces that focus on text-based rep-
resentations of document content tend to lead to quicker
task completion times for named-page finding search
tasks.

Keywords Information Retrieval, User Studies

Involving Documents, Web Documents, Eye Tracking

1 Introduction
Search engines are a key tool for supporting users in

finding information on the world wide web. These in-

formation retrieval systems aim to find relevant docu-

ments in response to a user query. While the perfor-

mance of the underlying ranking function – responsi-

ble for identifying good answer resources – is clearly

of great importance, the organisation, content and pre-

sentation of document surrogates in the search results

interface can also have a substantial impact on overall

search effectiveness.

One recent study [9] found that only 21% of users

found relevant results when querying a search engine,

and that 75% were disappointed with the results re-

turned. The way users interact with the search result

interface may be one factor in the poor user experience.

This paper analyses three search interfaces

that make use of different features including

Proceedings of the 14th Australasian Document Comput-
ing Symposium, Sydney, Australia, 4 December 2009.
Copyright for this article remains with the authors.

text summaries, clustering information, and visual

thumbnail images:

C Carrot2 (http://www.carrot2.org),

M Middlespot (http://www.middlespot.com), and

N Nexplore (http://www.nexplore.com)

A preliminary analysis of overall task completion

time with the different interfaces was presented in a

previous paper [1]. In this paper, we investigate how

much time users spent looking at different regions of

the screen, in particular comparing the time spent look-

ing at text surrogates of the result pages with time spent

looking at more visual representations. Our analysis

indicates that most users find text surrogates to be more

useful.

The remainder of this paper is organised as follows.

Some related work is presented in Section 2; our exper-

iment design, including the different search interfaces,

users, and topics used, is described in Section 3; the

results of the experiment are analysed in Section 4; and

discussion and conclusions are given in Section 5.

2 Related Work
The presentation of search results influences users’ as-

similation and guides users to look for the information

that is relevant to them. In the past, quite a few studies

explored visual presentation of search results [3, 10,

11]. A proper visual representation can communicate

some kinds of information much more rapidly and ef-

fectively than textual representation. However, visual-

isation of textually represented information is difficult

and challenging [6].

The effectiveness of visual representations largely

depends on whether the representation is highly cou-

pled with a search task and on the inherent structure

of documents to be presented. Joho and Jose [8] in-

vestigated how textual and visual forms of information

enabled users to more effectively interact with search

answer interfaces in undertaking relevance assessments

and reformulating queries.

35



Cutrell and Guan [4] found that adding extra con-

textual information to the document surrogates can im-

prove the effectiveness on search answer interfaces for

informational tasks. Hearst and Pedersen [7] is one of

many studies that has investigated the effectiveness of

clustering search results. Compared with the results of

the study described in this paper, where we find the Car-

rot2 interface that supported clustering to be ineffective

when undertaking a navigational task searching for a

single correct answer, they found clustering of answers

was effective in supporting a user’s task that involved

finding a set of relevant answer documents.

A previous study by Dziadosz and Chandrasekar [5]

had found that the combination of thumbnails and text

summary to be more effective for users than either

thumbnails or text summaries alone. However, our

study suggests that the combination of thumbnails and

text is only effective when they are not large, since

users mostly look at the text summaries and it is not

effective to use too much of the screen real estate on

the images of answer pages.

3 Experimental methodology
To investigate the relative attention that users pay to

different interface components, we conducted a user

study that involved carrying out a series of named-page

finding search tasks using a variety of search interfaces.

3.1 User study
Our study was carried out at RMIT University Open

Day in August 2009. Subjects participated in the exper-

iment were mostly high school students with an interest

in computer science who were visitors to our laboratory.

Participants were given a plain language statement out-

lining the goals of the experiment, the types of tasks

to be undertaken, and the data that would be collected.

Based on this information, 35 volunteers chose to par-

ticipate in the experiments. No training was given with

the different search interfaces.

Each participant undertook three navigational

search tasks (described below), using different search

interfaces. Information about visual attention given to

the different screen components was collected using

a Tobii T60 eye tracker. This non-intrusive device

records the gaze position, providing information on

fixations and saccades (brief rapid eye movements).

3.2 Search interface features
Our experiment involved users using three different

search result interfaces that contained different

amounts of surrogate text and visual browse features

about answer documents on the result pages.

The three interfaces were selected because they

provide a variety of additional novel features, not just

a ranked list of text extracts. Carrot2 does not present

visual features, however it clusters its search results. In

Middlespot, screenshots are presented for the retrieved

Interface Features C M N

Text features 66% 17% 56%

Browse features 19% 75% 7%

Other regions 16% 8% 37%

Table 1: The distribution of interface features.

documents. Nexplore has more visual features such as

highlighting of query terms, thumbnails, background

colour and highlighting the abstract of the retrieved

document when the mouse is moved over it.

In this paper, we consider the following areas within

each interface page displaying the ranked list of an-

swers:

Surrogate text: Search engines provide surrogates for

answer page in the ranked list of answers. This

surrogate text may include the URL of the answer,

as well as text from the answer web page title,

and a synopsis of the answer web page. The sur-

rogate text for the answer documents is in each

of the regions marked (1) on the respective an-

swer interfaces: Figure 1 for Carrot2 (accounting

for approximately 66% of the screen), Figure 2

for Middlespot (17%), and Figure 3 for Nexplore

(56%).

Browse features: The visual browse features for the

answer documents are in each of the regions

marked (2) on respective answer interfaces.

Figure 1 shows the clustering area in Carrot2

which occupies approximately 19% of the screen.

Figure 2 shows large images of the answer pages

that are displayed in Middlespot and occupying

approximately 75% of the screen. Figure 3 shows

a much smaller region, approximately 7% of the

screen, containing the thumbnails displayed by

Nexplore.

Other regions: Each interface also had some other

regions, such as banners and the surrounding

screen, including a region at the bottom of the

screen (not shown in the figures) that contained

the topic and some instructions, This accounted

for approximately 16% of the screen with the

Carrot2 interface, 8% with Middlespot interface,

and 37% with Nexplore (since this last interface

included a separate area for Wiki Search).

As summarised in Table 1, significant portions of

the Carrot2 and Nexplore interfaces are given to surro-

gate text. The great majority of the Middlespot inter-

face, on the other hand, is occupied by visual browse

features.

3.3 Topics
One taxonomic study [2] shows that web search tasks

can be classified as informational, transactional or nav-

igational. Navigational tasks are used in our study be-

cause we assume that users become more interested in

36



Figure 1: Carrot2 interface (www.carrot2.org). Areas marked 1 and 2 indicate Text and Browse features,

respectively. Descriptions of the features are provided in the main text.

Figure 2: Middlespot interface (www.middlespot.com). Descriptions of features are provided in the main text.

Figure 3: Nexplore interface (www.nexplore.com). Descriptions of features are provided in the main text.

37



Trial 1st task 2nd task 3rd task

1 M- H (4) C- G (4) N- A (3)

2 M- G (4) C- A (4) N- H (4)

3 M- A (4) C- H (4) N- G (3)

4 C- G (3) N- A (3) M- H (3)

5 C- A (5) N- H (5) M- G (5)

6 C- H (4) N- G (4) M- A (3)

7 N- A (3) M- H (3) C- G (3)

8 N- H (3) M- G (3) C- A (3)

9 N- G (3) M- A (3) C- H (3)

Table 2: Experimental design.

using additional web search interface features to get

their desired information.

For each interface, users were given a navigational

search task, for which they were asked to find a specific

single correct answer page for the given topic. The top-

ics were chosen to cover areas that were likely to be of

interest to young searchers, and where searchers were

unlikely to be hindered due to lack of general knowl-

edge about the domain. The three topics were:

A: Find the ARIA chart of the top 50 music singles in

Australia (query terms: top australia aria)

G: Find the MSN games website (query term: msn)

H: Find the official homepage of the 2009 movie Harry

Potter (query terms: magical potter)

These topics, and their corresponding answer

documents, represent different aspects of navigational

searches: the answer for the first topic is a single web

page presenting the required (named) information; the

second is the hub page for a prime sub-part of the

overall MSN website; and, the third is the home page

(or index) of an overall website.

After reading a topic, the user would click a “start”

button to load the results of issuing the predefined query

terms (as indicated above) into one of the three search

interfaces. The user could then interact with the search

result screen however they wanted to.

We used a latin square experiment design with a

block of nine trials varying the order in which topics

and interfaces were presented to users, each user was

presented with one topic for each interface. Due to

some interruptions and other problems, not all com-

binations were completed exactly the same number of

times. Table 2 shows the number of times (in parenthe-

ses) each of the different combinations of interface (C,

M, N) and topic (A, G, H) were completed as the first,

second or third task undertaken by one of the users.

4 Results
We analyse user behaviour when carrying out the three

search tasks using the Carrot2, Middlespot and Nex-

plore interfaces based on the relative attention paid to

different interface features, and task completion time.

4.1 Interface features
Different search interface features attract highly vari-

able amounts of user attention. Figure 4 shows the pro-

portions of total viewing time that users spent looking

at text, browse and other features for each trial (that

is, over all search interfaces and all users). The solid

line shows the median time, while the boxes show the

25th to 75th percentiles. Whiskers show the range of

the data, with outliers (observations more extreme than

1.5 times the interquartile range). Since the time data is

not normally distributed (Shapiro-Wilk, p < 0.0001),

we analyse multi-level factors using the Kruskal-Wallis

test, a non-parametric alternative to ANOVA. Pairswise

comparisons are made using the Wilcoxon signed-rank

test. The relative times for the different features vary

significantly (Kruskal-Wallis, p < 0.0001). In partic-

ular, users spend significantly more time viewing text

features compared to browse features (Wilcoxon, p <

0.0001) and other (p < 0.0001). The difference in

viewing patterns between browse and other is not sig-

nificant (p = 0.6504).

Figure 5 shows the median time (over all search

answer interfaces) users spent looking at different re-

gions of the screen, broken down by cases where users

identified the correct or incorrect answer document for

each search trial. The text region was the area of the

screen that users spent most of their time looking at,

users found slightly more correct answers if they spent a

bit more time in this area; while when users spent more

time looking at the visual browse regions these were not

effective and could often lead users to the incorrect an-

swers rather than correct answers. Time spent looking

at both text and browse regions is significantly differ-

ent between correct and incorrect answers (Wilcoxon,

p = 0.0060 for text regions and p = 0.0303 for browse

regions) while the difference is not significant for other

areas of the screen (p = 0.7669).

Figure 6 shows the distribution of the proportion of

time that users spent viewing different features, split by

the three interfaces. For the Carrot2 and Nexplore inter-

faces, users spent substantially more time viewing the

text features. However, for the Middlespot interface,

the browse features (in this case, the screenshots of web

pages) attracted the greatest proportion of viewing time.

4.2 Task completion time
User task completion performance is evaluated by mea-

suring the time taken to carry out a search task to the

user’s satisfaction. That is, we measure the time from

when the search results screen is displayed to the user,

until the time that they indicate that they have found a

desired answer (generally, by clicking on the hyperlink

in the search results list that they chose as their final

answer). This is in contrast to our previous analysis [1],

where task completion time was measured by taking the

time that the user chose to exit the task (by explicitly

pressing F10) as the endpoint. This adds additional

variation to the results, since some users spend addi-

38



●●●●

●●

●
●

●

Text Browse Other

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

%
 T

im
e

Figure 4: Relative time spent viewing different interface regions.

Text Browse Other

Correct
Incorrect

%
 T

im
e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 5: Median proportion of time spent viewing different regions when users found a correct or incorrect answer.

39



●

●
●

●

Text Browse Other Text Browse Other Text Browse Other

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

%
 T

im
e

Carrot2 Middlespot Nexplore

Figure 6: Proportion of time spent viewing different components, by interface.

tional time viewing their chosen answer page, before

indicating task completion.

Figure 7 shows the time taken to find an answer,

in seconds, for each of the three interfaces. The

differences are weakly significant (Kruskal-Wallis,

p = 0.0604). In particular, the Middlespot and

Nexplore differ significantly (Wilcoxon, p = 0.0129),

while the other pairs do not (Middlespot and Carrot 2,

p = 0.2474; Nexplore and Carrot2, p = 0.3225).

Variation can also be introduced by other sources.

The effect of using different search topics was signifi-

cant (Kruskal-Wallis, p = 0.0330). Moreover, because

we used real search interfaces and live search results,

the rank of the correct answer items in the search re-

sults lists of the different interfaces varied somewhat.

Although the ranks were similar on average (rank 7.6

for Carrot2, 6.3 for Middlespot, and 6.0 for Nexplore)

this did have a significant effect on task completion

time (Kruskal-Wallis, p = 0.0048). The different users

participating in the experiment were not a significant

source of variation (Kruskal-Wallis, p = 0.1227).

However, this analysis includes all user responses,

irrespective of whether the user actually found the cor-

rect answer required for the query. We investigate this

next.

Answer Carrot2 Middlespot Nexplore

Correct 24 18 24

Incorrect 9 14 7

Table 3: Distribution of correct answers by interface.

4.3 Search success
Users were asked to indicate when they felt that they

had found the correct answer to the query. However,

in many cases users did not in fact identify the correct

resource. Table 3 shows the number of incorrect and

correct answers found, split by the interface used. The

results are strongly indicative of higher success rates

with both the Carrot2 and Nexplore interfaces (72.7%

and 77.4% of answers are correct, compared to 56.2%

for Middlespot). However, the differences are not sta-

tistically significant (Fisher, p = 0.1746).

We re-analyse the time taken for task completion,

using only those trials for which users identified the

correct resource in response to the information need.

For these responses, the difference between interfaces

is greater, and statistically significant (Kruskal-Wallis,

p = 0.0077). Differences between the interfaces on a

pairwise basis are also more pronounced: the median

task completion time with Middlespot at 23.71 seconds

is significantly longer than that for Carrot2 at 12.81

40



●

●

●●

Carrot2 Middlespot Nexplore

0
20

40
60

80
10

0

S
ec

on
ds

Figure 7: Task completion times by interface.

seconds (Wilcoxon, p = 0.0112) and for Nexplore at

12.21 seconds (Wilcoxon, p = 0.0027). The differ-

ence between Carrot2 and Nexplore is not significant

(Wilcoxon, p = 0.7360).

Moreover, when considering only those results

where users successfully identified correct answers,

the effects from topic and user variation are not

significant (Kruskal-Wallis, p = 0.3445 and 0.2743,

respectively). The rank of the answer item only has a

weakly significant effect (Kruskal-Wallis, p = 0.0619).

5 Discussion and Conclusions
Search result interfaces are an important component of

information retrieval systems, and can have substantial

impact on overall search task performance. In this pa-

per, we have analysed three publicly available search

interfaces, and examined how user attention is split be-

tween various features that the search providers make

available.

Our analysis has shown that users spend

significantly different proportions of time interacting

with text, browse and other components of the

interfaces. Not surprisingly, these proportions differ

between the three interfaces; for Nexplore and Carrot2,

text is preferred, while for Middlespot (which presents

much less text to the user) browsing features are viewed

more.

We have also analysed how task completion time

differs between the interfacts, and success rates in iden-

tifying correct answers for given informatinon needs.

The results show that users spent significantly longer

time to interact with the Middlespot interface but found

the fewest correct answers. We conclude that, for the

navigational search tasks, text features are important in

guiding users to finding correct answers quickly.

For the small sample of named-resource finding

search tasks, it appears that text information can be

vital in supporting users to find the answers that they

need. Whether this would also apply to other search

tasks, such as informational tasks, will be the subject

of future research.

In future work we plan to conduct further user stud-

ies over a wider range of tasks. We also plan to investi-

gate the effect of the proportion of screen space that is

given over to browsing features as a controlled variable

(that is, systematically controlling the proportion).

References
[1] H. Ali [Al Maqbali], F. Scholer, J. A. Thom and M. Wu.

User interaction with novel web search interfaces. In

21st Annual Conference of the Australian Computer-
Human Interaction Special Interest Group (CHISIG) of
the Human Factors and Ergonomics Society of Australia
(HFESA), 2009.

[2] A. Border. A taxonomy of web search. ACM SIGIR
Forum, Volume 36, Number 2, pages 3–10, 2002.

[3] S. K. Card, J. D. Mackinlay and B. Shneideman. Mor-

gan Kaufmann Publishers, 1999.

[4] E. Cutrell and Z. Guan. What are you looking for?: an

eye-tracking study of information usage in web search.

In CHI ’07: Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 407–416,

San Jose, California, USA, April–May 2007.

[5] S. Dziadosz and R. Chandrasekar. Do thumbnail pre-

views help users make better relevance decisions about

web search results? In SIGIR ’02: Proceedings of
the 25th annual international ACM SIGIR conference

41



on Research and development in information retrieval,
pages 365–366, Tampere, Finland, August 2002.

[6] M. Hearst. User Interfaces and Visualisation. Addison-

Wesley, 1999.

[7] M. A. Hearst and J. O. Pedersen. Reexamining the

cluster hypothesis: scatter/gather on retrieval results. In

SIGIR ’96: Proceedings of the 19th annual interna-
tional ACM SIGIR conference on Research and devel-
opment in information retrieval, pages 76–84, Zurich,

Switzerland, August 1996.

[8] H. Joho and J. M. Jose. A comparative study of the

effectiveness of search result presentation on the web. In

Advances in Information Retrieval, Proceedings of 28th
European Conference on IR Research, pages 302–313,

April 2006.

[9] R. S. Rele and A. T. Duchowski. Using eye tracking

to evaluate alternative search results interfaces. In

Proceedings of Human Factors and Ergonomics Society
Annual Meeting, pages 1459–1463, 2005.

[10] B. Shneiderman. The eyes have it: A task by data type

taxonomy for information visualizations. In Proceed-
ings of IEEE Symposium on Visual Languages, 1996.

[11] B. Shneiderman. Extreme visualization: squeezing a

billion records into a million pixels. In Proceedings
of 2008 ACM SIGMOD International Conference on
Management of Data, pages 3–12, Vancouver, Canada,

2008.

42



Random Indexing K-tree

Christopher M. De Vries Lance De Vine Shlomo Geva
Faculty of Science and Technology

Queensland University of Technology
Brisbane, Australia

chris@de-vries.id.au l.devine@qut.edu.au s.geva@qut.edu.au

Abstract Random Indexing (RI) K-tree is the combi-
nation of two algorithms for clustering. Many large
scale problems exist in document clustering. RI K-tree
scales well with large inputs due to its low complexity.
It also exhibits features that are useful for managing
a changing collection. Furthermore, it solves previ-
ous issues with sparse document vectors when using K-
tree. The algorithms and data structures are defined,
explained and motivated. Specific modifications to K-
tree are made for use with RI. Experiments have been
executed to measure quality. The results indicate that
RI K-tree improves document cluster quality over the
original K-tree algorithm.

Keywords Random Indexing, K-tree, Dimensionality
Reduction, B-tree, Search Tree, Clustering, Document
Clustering, Vector Quantization, k-means

1 Introduction
The purpose of this paper is to present and analyse
the combination of Random Indexing (RI) with
the K-tree algorithm. Both RI and K-tree adapt to
changing data and decrease the cost of computationally
intensive vector based applications. This combination
is particularly suitable to the representation and
clustering of very large document collections.
Documents are typically represented in vector
space as very sparse high dimensional vectors. RI
can reduce the dimensionality and sparsity of this
representation. In turn, the condensed representation is
highly effective when working with K-tree. The paper
is focused on determining the effectiveness of using
RI with K-tree through experiments and comparative
analysis of results.

Sections 2 to 6 discuss K-tree, Random Indexing,
Document Representation, Experimental Setup and Ex-
perimental results respectively. The paper ends with a
conclusion in Section 7.

2 K-tree
K-tree [6, 1] is a height balanced cluster tree. It was first
introduced in the context of signal processing by Geva

Proceedings of the 14th Australasian Document Comput-
ing Symposium, Sydney, Australia, 4 December 2009.
Copyright for this article remains with the authors.

[10]. The algorithm is particularly suitable to clustering
of large collections due to its low complexity. It is
a hybrid of the B+-tree and k-means algorithm. The
B+-tree algorithm is modified to work with multi di-
mensional vectors and k-means is used to perform node
splits in the tree. K-tree is also related to Tree Struc-
tured Vector Quantization (TSVQ) [9]. TSVQ recur-
sively splits the data set, in a top-down fashion, using
k-means. TSVQ does not generally produce balanced
trees.

K-tree achieves its efficiency through execution of
the high cost k-means step over very small subsets of
the data. The number of vectors clustered during any
step in the K-tree algorithm is determined by the tree
order (usually� 1000) and it is independent of collec-
tion size. It is efficient in updating the collection while
maintaining clustering properties through the use of a
nearest neighbour search tree that directs new vectors
to the appropriate leaf node.

The K-tree forms a hierarchy of clusters. This hi-
erarchy supports multi-granular clustering where gen-
eralisation or specialisation is observed as the tree is
traversed from a leaf towards the root or vice versa.
The granularity of clusters can be decided at run-time
by selecting clusters that meet criteria such as distortion
or cluster size.

2.1 K-tree and Document Clustering
The K-tree algorithm is well suited to clustering large
document collections due to its low time complexity.
The time complexity of building K-tree is O(n log n)
where n is the number of bytes of data to cluster. This
is due to the divide and conquer properties inherent to
the search tree. De Vries and Geva [5, 6] investigate the
run-time performance and quality of K-tree by compar-
ing results with other INEX submissions and CLUTO
[13]. CLUTO is a popular clustering tool kit used in the
information retrieval community. K-tree has been com-
pared to k-means, including the CLUTO implementa-
tion, and provides comparable quality and a marked in-
crease in run-time performance. However, K-tree forms
a hierarchy of clusters and k-means does not. Com-
parison of the quality of the tree structure will be un-
dertaken in further research. The run-time performance
increase of K-tree is most noted when a large number
of clusters are required. This is useful in terms of doc-

43



ument clustering because there are a huge number of
topics in a typical collection. The on-line and incre-
mental nature of the algorithm is useful for managing
changing document collections. Most clustering algo-
rithms are one shot and must be re-run when new data
arrives. K-tree adapts as new data arrives and has the
low time complexity of O(log n) for insertion of a single
document. Additionally, the tree structure also allows
for efficient disk based implementations when the size
of data sets exceeds that of main memory.

2.2 K-tree Definition
K-tree builds a nearest neighbour search tree over a set
of real valued vectors V in d dimensional space.

∀v ∈ V : v ∈ R
d (1)

It is inspired by the B+-tree where all data records are
stored in leaf nodes. Tree nodes, N , consist of a se-
quence of (vector, child node) pairs of length l. The
tree order, m, restricts the number of vectors stored in
any node to between one and m.

1 ≤ l ≤ m (2)

N = 〈(v1, c1), ..., (vl, cl)〉 (3)

The tree consists of two types of nodes. Leaf nodes
contain the data vectors that were inserted into the tree.
Internal nodes contain clusters. A cluster vector is
the mean of all data vectors contained in the leaves of
all descendant nodes (i.e. the entire cluster sub-tree).
This follows the same recursive definition of a B+-tree
where each tree is made up of a set of smaller sub-trees.
Upon construction of the tree, a nearest neighbour
search tree is built in a bottom-up manner by splitting
full nodes using k-means [14] where k = 2. As the
tree depth increases it forms a hierarchy of “clusters
of clusters” from the root to the above-leaf level.
The above-leaf level contains the finest granularity
cluster vectors. Each leaf node stores the data vectors
pointed to by the above-leaf level. The efficiency of
K-tree stems from the low complexity of the B+-tree
algorithm, combined with only ever executing k-means
on a relatively small number of vectors, defined by the
tree order, and by using a small value of k.

2.3 Modifications to K-tree
The K-tree algorithm was modified for use with RI.
This modified version will be referred to as “Modified
K-tree” and the original K-tree will be referred to as
“Unmodified K-tree”.

All the document vectors created by RI are of unit
length in the modified K-tree. Therefore, all centroids
are normalised to unit length at all times. The k-means
used for node splits in K-tree was changed to use ran-
domised seeding and restart if it did not converge within
six iterations. The process always converged quickly in
our experiments; although it is possible to constrain the
number of restarts we did not find this to be necessary.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Figure 1: Level 1

The original K-tree algorithm does not modify any
of the centroids. They are simply the means of the
vectors they represent. The k-means implementation
runs to complete convergence and seeds centroids via
perturbation of the global mean. To create two seeds
the global mean is calculated and then the two seeds
are created by moving away from the mean in opposite
directions.

2.4 K-tree Example
Figures 1 to 3 are K-tree clusters in two dimensions.
1000 points were drawn from a random normal distri-
bution with a mean of 1.0 and standard deviation of 0.3.
The order of the K-tree, m, was 11. The grey dots repre-
sent the data set, the black dots represent the centroids
and the lines represent the Voronoi tessellation of the
centroids. Each of the data points contained within each
tile of the tessellation are the nearest neighbours of the
centroid and belong to the same cluster. It can be seen
that the probability distribution is modelled at different
granularities. The top level of the tree is level 1. It is
the coarsest grained clustering. In this example it splits
the distribution in three. Level 2 is more granular and
splits the collection into 19 sub-clusters. The individual
clusters in level 2 can only be arrived at through a near-
est neighbour association with a parent cluster in level
1 of the tree. Level 3 is the deepest level in the tree
consisting of cluster centroids. The 4th level is the data
set of vectors that were inserted into the tree.

2.5 Building K-tree
The K-tree is constructed dynamically as data vectors
arrive. Initially the tree contains a single empty root
node at the leaf level. Vectors are inserted via a nearest
neighbour search, terminating at the leaf level. The root
of an empty tree is a leaf, so the first m data vectors are
stored in the root, at which point the node becomes full.
When the m + 1 vector arrives the root is split using
k-means where k = 2, clustering all m + 1 vectors
into two clusters. The two centroids that result from
k-means are then promoted to become the centroids in
a new root. The vectors associated with each centroid

44



0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Figure 2: Level 2

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Figure 3: Level 3

are placed into a child node. This promotion process
has created a new root and two leaf nodes in the tree.
The tree is now two levels deep. Insertion of a new
data vector follows a nearest neighbour search to find
the closest centroid in the root. The vector is inserted
into the associated child. When a new vector is in-
serted the centroids are updated recursively along the
nearest neighbour search path, all the way back to the
root node. The propagated means are weighted by the
number of data vectors contained beneath them. This
ensures that any centroid in K-tree is the mean vector of
all the data vectors contained in the associated sub tree.
This insertion process continues, splitting leaves when
they become full, until the root node itself becomes
full. K-means is then run on the root node containing
centroids. The vectors in the new root node become
centroids of centroids. As the tree grows, internal and
leaf nodes are split in the same manner. The process of
promotion can potentially propagate to cause a full root
node at which point the construction of a new root fol-
lows and the tree depth is increased by one. At all times
the tree is guaranteed to be height balanced. Although
the tree is always height balanced nodes can contain as
little as one vector. In this case the tree will contain
many more levels than a tree where each node is half

full. Figure 4 shows this construction process for a K-
tree of order three (m = 3).

2.6 Sparsity and K-tree
K-tree was originally designed to operate with dense
vectors. When a sparse representation is used perfor-
mance degrades even though there is significantly less
data to process. The clusters in the top levels of the tree
are means of most of the terms in the collection and are
not sparse at all. The algorithm updates cluster centres
along the insertion path in the tree. Since document
vectors have very high dimensionality this becomes a
very expensive process.

The medoid K-tree [6] extended the algorithm to
use a sparse representation and replace centroids with
document examples. This improved run-time perfor-
mance and decreased memory usage. Unfortunately it
decreased quality when using sparse document vectors.
The document examples in the root of the tree were al-
most orthogonal to new documents being inserted. The
documents were unlikely to have meaningful overlap in
vocabulary.

The approach taken by De Vries and Geva at INEX
2008 [5] is a simple approach to dimensionality reduc-
tion or feature selection. It is called TF-IDF culling
and it is performed by ranking terms. A rank is cal-
culated by summing all weights for each term. The
weights are the BM25 weight for each term in each
document. This can also be explained as the sum of the
column vector in the document by term matrix. The top
n terms with the highest rank are selected, where n is
the desired dimensionality. This works particularly well
with term occurrences due to the Zipf law distribution
of terms [19]. The collection frequency of a term is
inversely proportional to its rank according to collection
frequency. Most of the term weights are contained in
the most frequent terms.

3 Random Indexing
Random Indexing (RI) [18] is an efficient, scalable and
incremental approach to the word space model. Word
space models use the distribution of terms to create high
dimensional document vectors. The directions of these
document vectors represent various semantic meanings
and contexts.

Latent Semantic Analysis (LSA) [7] is a popular
word space model. LSA creates context vectors from
a document term occurrence matrix by performing Sin-
gular Value Decomposition (SVD). Dimensionality re-
duction is achieved through projection of the document
term occurrence vectors onto the subspace spanned by
the vectors with the largest Eigen values in the decom-
position. This projection is optimal in the sense that it
minimises the variance between the original matrix and
the projected matrix. In contrast, Random Indexing first
creates random context vectors of lower dimensionality,
and then combines them to create a term occurrence
matrix in the dimensionally reduced space. Each term

45



node vector child l ink k-means performed on enclosed vectors

the dashed parts represent the nearest neighbour search

level 1

level 2

level 3

root node

nodes above the leaves contain codebook vectors

leaf nodes contain the data vectors

nodes above the codebook level are clusters of clusters

Figure 4: K-tree Construction

in the collection is assigned a random vector, and the
document term occurrence vector is then a superposi-
tion of all the term random vectors. There is no matrix
decomposition and hence the process is efficient.

The RI process is conceptually very different from
LSA and does not have the same optimality properties.
The context vectors used by RI should optimally be
orthogonal. Nearly orthogonal vectors can be used and
have been found to perform similarly [4]. These vec-
tors can be drawn from a random Gaussian distribution.
The Johnson and Linden-Strauss lemma [11] states that
if points are projected into a randomly selected sub-
space of sufficiently high dimensionality, then the dis-
tances between the points are approximately preserved.
The same topology that exists in the higher dimensional
space is reflected in the lower dimensional randomly se-
lected subspace. Consequently, RI offers low complex-
ity dimensionality reduction while still preserving the
topological relationships amongst document vectors.

3.1 Random Indexing Definition
In RI, each dimension in the original space is given a
randomly generated index vector. The index vectors
are high dimensional, sparse and ternary. Sparsity is
controlled via a seed length that specifies the number of
randomly selected non-zero dimensions. Ternary vec-
tors consist of randomly distributed +1 and -1 values in
the non-zero dimensions.

In the context of document clustering, RI can be
viewed as a matrix multiplication of a document by

term matrix D and a term by index-vector matrix I . Al-
ternatively, I can be referred to as a random projection
matrix. Each row vector in D represents a document,
each row vector in I is an index vector, n is the number
of documents, t is the number of terms and r is the
dimensionality of the reduced spaced. R is the reduced
matrix where each row vector represents a document.

Dn×tIt×r = Rn×r (4)

RI has several advantages. It can be performed in-
crementally and on-line as data arrives. Any document
can be indexed (i.e. encoded as an RI vector) inde-
pendently from all other documents in the collection.
This eliminates the need to build and store the entire
document by term matrix. Additionally, newly encoun-
tered dimensions (terms) in the document collection are
easily accommodated without having to recalculate the
projection of previously encoded documents. In con-
trast, SVD requires global analysis where the number
of documents and terms are fixed. The time complexity
of RI is also very attractive. It is linear in the number of
terms in a document and independent of collection size.

3.2 Choice of Index Vectors
The index vectors used in RI were chosen to be
sparse and ternary. Ternary index vectors for RI were
introduced by Achlioptas [2] as being well suited for
database environments. The primary concern of sparse
index vectors is reducing time and space complexity.
Bingham and Mannila [4] run experiments indicating

46



Figure 5: Random Indexing Example

that sparse index vectors do not affect the quality of
results. This is not the only choice when creating
index vectors. Kanerva [12] introduces binary spatter
codes. Plate [15] explores Holographic Reduced
Representations that consist of dense vectors with
floating point values.

3.3 Random Indexing Example
In practice, to construct a document vector, the docu-
ment vector is initially set to zero, and then the sparse
index vector for each term in the document is added
to the document vector. The weight of the added term
index vector may be determined by TF-IDF or another
weighting scheme. When all terms have been added,
the document vector is normalised to unit length. There
is no need to explicitly form the random projection ma-
trix in Equation (4) up-front. The random index vectors
for each term can be generated and stored as they are
first encountered. The fact that each index vector is
sparse means that the vectors use less memory to store
and are faster to add.

The effect of this approach is that each document
will have a particular signature that can be compared
with other documents via cosine similarity. The docu-
ment signature is thus a vector on the unit hyper-sphere.

In the simple scenario in Figure 5 the index vectors
for the four words travel, mars, space and telescope, are
added to the document vector as they are encountered
in the text of the document. Afterwards, the document
should be normalised.

The sparse index vectors can be efficiently stored by
simply storing the position of the non-zero entries with
the sign of the position indicating whether it is one or
negative one.

3.4 Random Indexing K-tree
The time complexity of K-tree depends on the length
of the document vectors. K-tree insertion incurs two
costs, finding the appropriate leaf node for insertion and
k-means invocation during node splits. It is therefore
desirable to operate with lower dimensional vector rep-
resentation.

The combination of RI with K-tree is a good fit.
Both algorithms operate in an on-line and incremental
mode. This allows it to track the distribution of data
as it arrives and changes over time. K-tree insertions
and deletions allow flexibility when tracking data in
volatile and changing collections. Furthermore, K-tree

performs best with dense vectors, such as those pro-
duced by RI.

4 Document Representation
The INEX 2008 XML Mining collection was used to
complete the experiments. It contains 114,366 docu-
ments that are a subset of the XML Wikipedia corpus
[8]. 15 different categories were provided for the docu-
ments.

Document content was represented with BM25
[17]. Stop words were removed and the remaining
terms were stemmed using the Porter algorithm [16].
BM25 is determined by term distributions within each
document and the entire collection. BM25 works
with similar concepts as TF-IDF except that is has
two tuning parameters. The BM25 tuning parameters
were set to the same values as used for TREC [17],
K1 = 2 and b = 0.75. K1 influences the effect of term
frequency and b influences document length.

Links were represented using LF-IDF [5]. This re-
sulted in a document-to-document link matrix. If there
is a link between documents i and j then a value of
one is added to position i, j and j, i in the matrix. If
two documents both link to each other a value of two
is recorded in their respective vectors. Each row vector
of the matrix represents a document as a vector of link
frequencies to and from other documents.

The motivation behind this representation is that
documents with similar content will link to similar
documents. For example, in the current Wikipedia
both car manufacturers BMW and Jaguar link to the
Automotive Industry document. Link frequencies were
weighted with the same Inverse Document Frequency
heuristic from TF-IDF. The idea is to decrease the
weight of highly frequent links and increase the
weight of less frequent links. Links to year documents
in the Wikipedia are examples of “stop links” that
are weighted down by this heuristic. Unlike term
frequencies in TF-IDF the link frequencies in LF-IDF
are not normalised. De Vries and Geva [5] found that
normalising link frequencies decreased classification
performance.

When document and link representations are com-
bined they are both converted to unit vectors and con-
catenated. Converting each representation to unit vec-
tors ensures that the weights of one representation do
not dominate the other. De Vries and Geva [5] found
this to be effective for classification.

5 Experimental Setup
Experiments have been run to measure the quality dif-
ference between various configurations of K-tree. Sec-
tion 2.3 describes the modifications made to K-tree. Ta-
ble 1 lists all the configurations tested.

The following conditions were used when running
the experiments.

47



1. Each K-tree configuration was run a total of 20
times.

2. The documents were inserted in a different random
order each time K-tree is built.

3. If RI was used, the index vectors were generated
statistically independently each time K-tree was
built.

4. For each K-tree built, k-means++ [3] was run 20
times on the codebook vectors to create 15 clus-
ters.

5. All document vectors were unitised after perform-
ing dimensionality reduction.

The conditions listed above resulted in 400 mea-
surements for each K-tree configuration. For each of
the 20 K-trees built, k-means++ was run 20 times. The
repetition of the experiments is to measure the variance
caused by the random insertion order into K-tree, the
randomised seeding process in k-means in the modi-
fied K-tree and the randomised seeding process of k-
means++.

Assessment of clustering quality is based on
the INEX XML Mining track. The set of 114,366
documents, belonging to 15 classes were used to
evaluate clustering quality of INEX submissions. The
cluster labels are taken from the Wikipedia itself.
K-tree generates clusters in an unsupervised manner,
and it is not necessarily going to produce 15 clusters
at a particular level in the tree. In order to re-use
the INEX test collection, it was necessary to post
process the K-tree and to reduce a cluster level in the
tree to 15 clusters by using k-means++. Note that
this is a low cost operation involving only a small
number of vectors, which is not required in an ordinary
application. It is done for the sole purpose of producing
comparable results with the INEX benchmark data.
The same approach was taken at INEX 2008 by De
Vries and Geva [5]. For a comparison of entropy and
purity to be meaningful they have to be measured on
the same number of clusters.

Micro averaged purity and entropy are compared.
Micro averaging weights the score of a cluster by its
size. Purity and entropy are calculated by comparing
the clustering solution to the labels provided. A higher
purity score indicates a higher quality solution because
the clusters are more pure with respect to the ground
truth. A lower entropy score indicates a higher quality
solution because there is more order with respect to the
ground truth.

6 Experimental Results
Tables 3 to 7 contain results for the K-tree configura-
tions tested listed in Table 1. Table 2 lists the meaning
of the symbols used. Figures 6 and 7 are graphical
representations of the average micro purity and entropy.

The unmodified K-tree using TF-IDF culling and
BM25 had unexpected results as seen in Table 3. The
average micro purity and entropy peaked at 400 dimen-
sions. Performing this dimensionality reduction at these
lower dimensions had not been performed before. This
is an interesting and unexpected result and future exper-
iments will need to determine if the phenomenon occurs
in different corpora.

Improvements in micro purity have been tested for
significance via t-tests. The null hypothesis is that both
results come from the same distribution with the same
mean. In this case they are not significantly different.
If the null hypothesis is rejected then the difference is
statistically significant.

The modifications made to K-tree for use with RI
had a significant impact. The unmodified K-tree and
modified K-tree were compared. Specifically, config-
urations B and D, and configurations C and E were
tested against each other. All dimensions were com-
pared against each other. The improved performance of
the modified K-tree was statistically significant for all
dimensions (100 vs 100, 200 vs 200 and so on) with a
p-value of 0 or extremely close to 0 (p < 1× 10−100).

The modified K-tree using RI was tested with two
representations. Configurations D and E were tested
at all dimensions. The null hypothesis was rejected
at all dimensions except 10000. This means that
BM25 performed significantly better than the BM25
+ LF-IDF representation at all dimensions except
10000. At 10000 dimensions the difference was not
considered statistically significant with a p-value of
0.3. The increased performance of this representation
in classification did not apply to clustering when using
RI. The LF-IDF representation may be interfering
with the BM25 representation and approaches such as
reducing the weight of LF-IDF in the RI process or
performing RI separately on each representation and
then concatenating the reduced vectors may improve
performance. Running k-means on the full sparse
vectors will also indicate if RI is responsible for this.
Further experimentation is required to provide more
evidence for this result.

The unexpected results in configuration A were
tested against the best RI configuration, E. The highest
average at 400 dimensions in configuration A was
tested against all dimensions in configuration E (400 vs
100, 400 vs 200, 400 vs 400, 400 vs 1000 and so on).
The RI K-tree, configuration E, became statistically
more significant at 2000 dimensions with a p-value
of 1.48 × 10−6 and thus rejected the null hypothesis.
For dimensions 4000 through 10000, the performance
difference was statistically significant, with a p-value
of 0 in all cases. Thus, RI K-tree improves results, even
over the unexpected high results of configuration A,
by embedding the original 200,000 dimensional term
space into at least a 2000 dimension reduced space.

48



ID K-tree Representation

A Unmodified TF-IDF Culling, BM25
B Unmodified RI, BM25 + LF-IDF
C Unmodified RI, BM25
D Modified RI, BM25 + LF-IDF
E Modified RI, BM25

Table 1: K-tree Test Configurations

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

dimensions

av
er

ag
e 

m
ic

ro
 p

ur
ity

A
B
C
D
E

Figure 6: Purity Versus Dimensions

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
2

2.2

2.4

2.6

2.8

3

3.2

3.4

dimensions

av
er

ag
e 

m
ic

ro
 e

nt
ro

py

A
B
C
D
E

Figure 7: Entropy Versus Dimensions

6.1 INEX Results
The INEX XML Mining track is a collaborative evalu-
ation forum where research teams improve approaches
in supervised and unsupervised machine learning with
XML documents. Participants make submissions and
the evaluation results are later released.

The RI K-tree in configuration E performs on aver-
age at a comparable level to the best results submitted
to the INEX 2008 XML Mining track. The top two
results from the track had a micro purity of 0.49 and
0.50. These are not average scores for the approaches
but the best results participants found. The RI K-tree in
configuration E had a maximum micro entropy of 0.55.
This is 10% greater than the INEX submissions.

Symbol Meaning

α Average Micro Entropy
β Standard Deviation of α

γ Average Micro Purity
δ Standard Deviation of γ

Table 2: Symbols for Results

Dimensions α β γ δ

100 2.6299 0.0194 0.3981 0.0067
200 2.4018 0.0207 0.4590 0.0085
400 2.2762 0.0263 0.4814 0.0093
800 2.2680 0.0481 0.4768 0.0155

1000 2.2911 0.0600 0.4703 0.0192
2000 2.3302 0.0821 0.4569 0.0254
4000 2.3751 0.1103 0.4401 0.0331
8000 2.3868 0.1068 0.4402 0.0300
10000 2.3735 0.1062 0.4431 0.0306

Table 3: A: Unmodified K-tree, TF-IDF Culling, BM25

Dimensions α β γ δ

100 3.0307 0.0149 0.3093 0.0045
200 2.9295 0.0206 0.3300 0.0079
400 2.7962 0.0379 0.3648 0.0143
800 2.6781 0.0718 0.3921 0.0236

1000 2.6509 0.0842 0.3959 0.0260
2000 2.6315 0.1262 0.3908 0.0345
4000 2.6380 0.1451 0.3860 0.0356
8000 2.6371 0.1571 0.3844 0.0382
10000 2.6302 0.1540 0.3876 0.0385

Table 4: B: Unmodified K-tree, Random Indexing,
BM25 + LF-IDF

Dimensions α β γ δ

100 2.9308 0.0213 0.3337 0.0089
200 2.7902 0.0335 0.3724 0.0126
400 2.6151 0.0417 0.4089 0.0116
800 2.5170 0.0703 0.4238 0.0197

1000 2.5066 0.0858 0.4234 0.0240
2000 2.4701 0.0938 0.4275 0.0258
4000 2.4581 0.0979 0.4261 0.0271
8000 2.4530 0.1139 0.4260 0.0318
10000 2.4417 0.1019 0.4283 0.0283

Table 5: C: Unmodified K-tree, Random Indexing,
BM25

49



Dimensions α β γ δ

100 3.1527 0.0227 0.3105 0.0047
200 3.0589 0.0266 0.3312 0.0065
400 2.9014 0.0259 0.3726 0.0065
800 2.6690 0.0336 0.4204 0.0085

1000 2.5890 0.0319 0.4349 0.0090
2000 2.3882 0.0428 0.4700 0.0129
4000 2.2558 0.0443 0.4879 0.0144
8000 2.1933 0.0473 0.4935 0.0162
10000 2.1735 0.0496 0.4969 0.0171

Table 6: D: Modified K-tree, Random Indexing, BM25
+ LF-IDF

Dimensions α β γ δ

100 3.0717 0.0263 0.3269 0.0074
200 2.9078 0.0291 0.3706 0.0087
400 2.6832 0.0293 0.4191 0.0077
800 2.4696 0.0350 0.4555 0.0106

1000 2.4093 0.0399 0.4673 0.0115
2000 2.2826 0.0422 0.4853 0.0137
4000 2.2094 0.0416 0.4937 0.0141
8000 2.1764 0.0429 0.4975 0.0149
10000 2.1686 0.0440 0.4981 0.0161

Table 7: E: Modified K-tree, Random Indexing, BM25

7 Conclusion
RI K-tree was introduced as an attractive approach for
large scale document clustering. This is the first time
RI and K-tree have been combined. The results show
that RI K-tree improves quality of clustering results,
even over the unexpected results found when using TF-
IDF culling. Further experiments are required to deter-
mine if the unexpected effect of TF-IDF culling at low
dimensions is an anomaly or actually exists in many
collections. Additionally, RI K-tree is an efficient and
high quality approach to overcome previous problems
with sparse representations when using K-tree. Unfor-
tunately the combination of BM25 and LF-IDF repre-
sentations did not improve results in clustering as they
did in earlier classification results.

References
[1] K-tree project page, http://ktree.sourceforge.net. 2009.

[2] D. Achlioptas. Database-friendly random projections:
Johnson-Lindenstrauss with binary coins. Journal of
Computer and System Sciences, Volume 66, Number 4,
pages 671–687, 2003.

[3] D. Arthur and S. Vassilvitskii. k-means++: the advan-
tages of careful seeding. In SODA ’07: Proceedings
of the Eighteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 1027–1035, Philadelphia,
PA, USA, 2007. Society for Industrial and Applied
Mathematics.

[4] E. Bingham and H. Mannila. Random projection in
dimensionality reduction: applications to image and
text data. In KDD ’01: Proceedings of the seventh
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 245–250, New York,
NY, USA, 2001. ACM.

[5] C.M. De Vries and S. Geva. Document clustering with
k-tree. Advances in Focused Retrieval: 7th Interna-
tional Workshop of the Initiative for the Evaluation of
XML Retrieval, INEX 2008, Dagstuhl Castle, Germany,
December 15-18, 2008. Revised and Selected Papers,
pages 420–431, 2009.

[6] C.M. De Vries and S. Geva. K-tree: large scale
document clustering. In SIGIR ’09: Proceedings of the
32nd international ACM SIGIR conference on Research
and development in information retrieval, pages 718–
719, New York, NY, USA, 2009. ACM.

[7] S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Lan-
dauer and R. Harshman. Indexing by latent semantic
analysis. Journal of the American Society for Infor-
mation Science, Volume 41, Number 6, pages 391–407,
1990.

[8] L. Denoyer and P. Gallinari. The Wikipedia XML
Corpus. SIGIR Forum, 2006.

[9] A. Gersho and R.M. Gray. Vector quantization and sig-
nal compression. Kluwer Academic Publishers, 1993.

[10] S. Geva. K-tree: a height balanced tree structured vector
quantizer. Proceedings of the 2000 IEEE Signal Pro-
cessing Society Workshop Neural Networks for Signal
Processing X, 2000., Volume 1, pages 271–280 vol.1,
2000.

[11] W.B. Johnson and J. Lindenstrauss. Extensions of
Lipschitz mappings into a Hilbert space. Contemporary
mathematics, Volume 26, Number 189-206, pages 1–1,
1984.

[12] P. Kanerva. The spatter code for encoding concepts
at many levels. In ICANN94, Proceedings of the
International Conference on Artificial Neural Networks,
1994.

[13] G. Karypis. CLUTO-A Clustering Toolkit. 2002.

[14] S. Lloyd. Least squares quantization in pcm. In-
formation Theory, IEEE Transactions on, Volume 28,
Number 2, pages 129–137, March 1982.

[15] T.A. Plate. Distributed representations and nested
compositional structure. Ph.D. thesis, 1994.

[16] M.F. Porter. An algorithm for suffix stripping. Pro-
gram: Electronic Library and Information Systems,
Volume 40, Number 3, pages 211–218, 2006.

[17] S.E. Robertson and K.S. Jones. Simple, proven ap-
proaches to text retrieval. Update, 1997.

[18] M. Sahlgren. An introduction to random indexing. In
Methods and Applications of Semantic Indexing Work-
shop at the 7th International Conference on Terminol-
ogy and Knowledge Engineering, TKE 2005, 2005.

[19] G.K. Zipf. Human behavior and the principle of least
effort: An introduction to human ecology. Addison-
Wesley Press, 1949.

50



Modelling Disagreement Between Judges for Information Retrieval
System Evaluation

Andrew Turpin Falk Scholer
School of Computer Science & IT

RMIT University
GPO Box 2476
Melbourne 3001

{andrew.turpin,falk.scholer}@rmit.edu.au

Abstract The batch evaluation of information
retrieval systems typically makes use of a testbed
consisting of a collection of documents, a set of
queries, and for each query, a set of judgements
indicating which documents are relevant. This paper
presents a probabilistic model for predicting IR system
rankings in a batch experiment when using document
relevance assessments from different judges, using
the precision-at-n family of metrics. In particular, if
a new judge agrees with the original judge with an
agreement rate of α, then a probability distribution
of the difference between the P@n scores of the two
systems is derived in terms of α.

We then examine how the model could be used to
predict system performance based on user evaluation
of two IR systems, given a previous batch assessment of
the two systems together with a measure of the agree-
ment between the users and the judges used to gen-
erate the original batch relevance judgements. From
the analysis of data collected in previous user experi-
ments, it can be seen that simple agreement (α) between
users varies widely between search tasks and informa-
tion needs. A practical choice of parameters for the
model from the available data is therefore difficult. We
conclude that gathering agreement rates from users of
a live search system requires careful consideration of
topic and task effects.

Keywords Information retrieval; Evaluation; User

studies

1 Introduction
To test whether one information retrieval system is bet-

ter than another, researchers either adopt the Cranfield

methodology of batch assessment, or test their systems

with humans in a user experiment. The batch assess-

ment methodology requires a collection of documents,

a set of queries, and, for each query, a judgment on

some or all of the documents indicating whether they

are relevant to that query or not. Assessing systems,

Proceedings of the 14th Australasian Document Comput-
ing Symposium, Sydney, Australia, 4 December 2009.
Copyright for this article remains with the authors.

therefore, is a matter of running each query to get a

ranked list of documents, noting which is relevant or not

according to the relevance judgements, and summaris-

ing the ranked list of relevance values into an overall

performance score. The alternative approach requires

a group of human users, the designing of a suitable

experiment that controls for any biases you may wish to

exclude (for example, education or computer literacy),

defining an outcome metric (for example, time taken

to find a useful answer document), and then measuring

how users perform with different retrieval systems.

The batch method is by far the cheapest, easiest, and

more repeatable of the two methodologies, and as such

has dominated IR research for the last three decades.

Recently, however, a series of papers has shown that the

two methodologies do not necessarily reach the same

conclusions regarding relative system performance.

That is, if batch experiments show system A to be better

than system B, user experiments may show there is no

difference between the systems [1, 2, 5, 6, 7, 11, 13],

or that system B is superior [12].

Our recent work has focussed on trying to quantify

and rectify this seeming mismatch between the two ex-

perimental approaches [9, 10]. A key potential source

of mismatch is the different relevance criteria of the

judges used to construct the “ground truth” batch judge-

ments, and the users in the user based experiment. De-

termining the relevance of a document to a query is a

complex, multi-faceted task [4]. It often depends on the

reason that the relevance judgement is being made, a

task effect; the query itself, a topic effect; and of course

the person making the judgement, a judge effect. There

are many other factors that influence human judgement

in general, including motivational biases, preconcep-

tions, salience and availability, and perseverance [8];

these may all have additional effects on the criteria that

judges use to decide if a document is relevant or not.

In this paper we develop a probabilistic model of

agreement between relevance judges, and derive how

this is expected to affect the results of a batch-based

evaluation of IR system performance. We then inves-

tigate how agreement values could be obtained from a

user study, so that the model might be used to transfer

the outcomes from a batch experiment to a new user

51



population. Analysis of the data from the user experi-

ments shows that agreement between users is subject to

substantial variation from both task and topic effects.

2 Preliminaries
Let a batch evaluation testbed consist of: a set

of documents, D = {d1, . . . , d|D|}; N queries,

Q = {q1, . . . , qN}; and for each query-document pair

a relevance judgement

R(di, q) =

{
1, document di is relevant to query q,

0, otherwise.

A system, returns a ranked list of m documents

[di1 , . . . , dim
] for query q, which are mapped to a

vector of relevance judgements in retrieved order

J = [R(di1 , q), . . . , R(dim
, q)].

Judgement vectors can be reduced to a single score

in various ways, and many different performance

metrics have been proposed for representing the overall

performance of IR systems. In this paper we use the

precision-at-n documents metric, usually written P@n,

which is the proportion of the top n documents of the

list that are relevant. Formally,

P@n =
1

n

n∑
i=1

J [i].

The score for a system is the mean P@n over all queries

in the corpus. A system with a statistically significantly

higher score than another is defined to be superior in the

batch mode of system comparison, and is assumed to be

superior in the user mode of comparison. This has been

shown to be the case for P@1 in user experiments when

the measured outcome is “time to save first relevant

document” [9], and “satisfaction” [7], and for the tasks

and users employed in those studies.

For example, if System B has a score of P@3=0.33,

then on average only 1 of the top 3 documents is

relevant, while if System A has a score of P@3=1.0,

then the top 3 documents are always relevant for all test

queries. It is implicitly assumed in IR experimentation

that System A is superior to System B.

3 Modelling changes in judges
Using a testbed such as those from the Text REtrieval

Conference [16] will yield system rankings that

should be comparable with other experiments based

on different queries with the same collection [15]

or – with suitable standardisation – across different

queries and collections [17]. That is, if System A

is found to be statistically significantly better than

System B when running a batch experiment, then this

relationship should in general continue to hold for

different queries, and collections. If, however, you

kept the same set of documents and queries, but used

an alternate relevance judge, so that R(d, q) became

R′(d, q), then system rankings may alter. In particular,

i JA[i] JB [i] δi J ′A[i] J ′B [i] δ′i
1 1 0 1 0 0 0

2 1 0 1 1 1 0

3 0 0 0 0 1 -1

4 1 1 0 1 1 0

5 1 0 1 0 0 0

Δ(5) = 3/5 Δ′(5) = −1/5

Table 1: An example calculation of Δ(5) and Δ′(5)
when System A has a P@5 value of 0.8 and 0.4 with

different judgements, and System B has P@5 of 0.2 and

0.6 respectively.

the P@n score for System B might increase, and the

P@n score for System A might decrease, so that B

becomes the superior system.

If we assume that the new judge has some probabil-

ity of agreeing with the judge used to build the original

corpus (independently for any query-document pair),

then we could derive a probability distribution of the

new scores for System A and B. In turn, this can be used

to derive a probability distribution on the difference be-

tween the two systems, and we can hypothesise about

how transferable system rankings are between judges.

Definition 1 Let JA be the relevance vector given by
System A for query q using corpus judgements R(d, q),
and JB the relevance vector given by System B. For the
same document lists, let J ′A and J ′B be the relevance
vector given using judgements R′(d, q) for System A
and B respectively.

We can now define the difference in P@n scores

between the systems for query q using either set of rel-

evance judgements, and then derive a probability distri-

bution for that difference based on agreement probabil-

ities between judges.

Definition 2 For some ranked position 1 ≤ i ≤ n, let
δi = JA[i] − JB [i], and δ′i = J ′A[i] − J ′B [i]. Then
the difference in P@n scores for the systems using ei-
ther set of relevance judgements is given by Δ(n) =∑n

i=1
δi/n and Δ′(n) =

∑n
i=1

δ′i/n respectively.

Table 1 shows an example of how Δ(5) and Δ′(5)
is calculated. In this instance, using the second set

of judgements has decreased System A’s superiority to

Δ′(5) = −0.2, that is, System B is now apparently

better than System A.

Without loss of generality, we will from now

assume that System A has a higher P@n score than

System B using the corpus judgements JA and JB .

Thus we are interested in deriving a probability

distribution for Δ′(n), and in particular the probability

that Δ′(n) ≥ 0; that is, System A remains superior

with a new set of judgements.

Definition 3 Let α0 be the probability that the new
judge agrees with a R(d, q) = 0 judgement in the

52



JA[i] JB [i] J ′A[i] J ′B [i] δ′i Probability Probability×δ′i
0 0 0 0 0 α0α0 0

0 0 0 1 -1 α0(1-α0) -α0(1-α0)

0 0 1 0 1 (1-α0)α0 α0(1-α0)

0 0 1 1 0 (1-α0)(1-α0) 0

E00 = 0

0 1 0 0 0 α0(1-α1) 0

0 1 0 1 -1 α0α1 -α0α1

0 1 1 0 1 (1-α0)(1-α1) (1-α0)(1-α1)

0 1 1 1 0 (1-α0)α1 0

E01 = 1− α0 − α1

1 0 0 0 0 (1-α1)α0 0

1 0 0 1 -1 (1-α1)(1-α0) -(1-α0)(1-α1)

1 0 1 0 1 α1α0 α0α1

1 0 1 1 0 α1(1-α0) 0

E10 = α0 + α1 − 1

1 1 0 0 0 (1-α1)(1-α1) 0

1 1 0 1 -1 (1-α1)α1 -α1(1-α1)

1 1 1 0 1 α1(1-α1) α1(1-α1)

1 1 1 1 0 α1α1 0

E11 = 0

Table 2: All possible cases for judgement of a document in a ranked list at position i by the corpus and new

judges, with their corresponding probabilities. For each possible pair of JA and JB values, the expected value of

δ′i, labelled Ex for each x, is computed as the sum of the four entries above it.

corpus, thus R′(d, q) = 0, and α1 be the probability
that the new judge agrees with a R(d, q) = 1 judgement
in the corpus, hence R′(d, q) = 1.

For any rank i in the top n documents for a single

query, the entries in the relevance vectors for System A

and System B for that position is either: JA[i] = 0
and JB [i] = 0, both systems returned an irrelevant

document in that position; JA[i] = 1 and JB [i] = 1,

both system returned a relevant document in that posi-

tion; and the two discriminating cases JA[i] = 1 and

JB [i] = 0, or JA[i] = 0 and JB [i] = 1. Table 2

shows, for each of these four possible cases, the four

possible relevance vector entries at a particular rank i

that might result using different judgements (J ′A[i] and

J ′B [i]). In addition to the δ′i values for each case, the

probability of realising each combination is given in

the second last column, which is the product of the

appropriate agreement probabilities. For example, in

the first row the probability of JA[i] = 0 and J ′A[i] = 0
is α0, and JB [i] = 0 and J ′B [i] = 0 is also α0, so

total probability of that event is α0α0. In the second

row, JA[i] = J ′A[i] = 0, but JB [i] = 0 is judged

as J ′B [i] = 1 with probability (1 − α0), so the total

probability is α0(1−α0). The final column is summed

for each of the four possible cases of JA[i] and JB [i] to

give the expected value of δ′i for that case, labelled E00,

E01, E10, and E11 respectively.

Definition 4 For a given query q and Systems A and B,
let c00 be the number of rank positions in the top n for
query q where JA[i] = 0 and JB [i] = 0, and like-
wise for c10, c01 and c11. That is, cxy = |{JA[i] =
x and JB [i] = y, 1 ≤ i ≤ n}|. Note, Δ(n) = (c10 −
c01)/n.

For each position in a ranked list, EJA[i]JB [i] gives

the expected value of δ′i, and so the expectation of

Δ′(n) can be calculated as:

E[Δ′(n)] = E

[
n∑

i=1

δ′i/n

]

= (c00E00 + c01E01 + c10E10

+c11E11)/n

= (1− α0 − α1)(c01 − c10)/n

= (α0 + α1 − 1)Δ(n) (1)

Intuitively this makes sense. If new judges agree

perfectly with the corpus judges, then α0 = α1 = 1,

then E[Δ′(n)] = Δ(n): there is no expected difference

in the system’s scores with either judgement set. If new

judges disagree completely with the corpus judges, then

α0 = α1 = 0, then E[Δ′(n)] = −Δ(n): that is, the

expected system scores are the reverse of the original.

We can also compute the variance of Δ′(n). Recall

that Var(X) = E(X2)− E(X)2 by definition, so:

53



Var(Δ′(n))

= Var

(
n∑

i=1

δ′i/n

)

=
n∑

i=1

Var(δ′i)/n2

=
1

n2

n∑
i=1

(
E[(δ′i)

2]− E[δ′i]
2
)

= (c00(2α0(1− α0))

+c11(2α1(1− α1))

+(c01 + c10)(1− α0 − α1 + 2α0α1)

−(1− α0 − α1)
2(c01 − c10)

2)/n2 (2)

Equations 1 and 2 are for a single query, q, but are

easily extended to a score computed over a set of N

queries because the P@n metric assigns equal weight to

all ranked positions. That is, computing the mean P@n

value over the top n documents retrieved for N queries

is the same as computing P@Nn for a concatenation

of the N J [1..n] relevance vectors for each query. If

we use the notation Ji to represent the relevance vector

J for query i, and JS = J1[1..n]J2[1..n]..JN [1..n] to

represent the concatenation of the first n elements of all

Ji’s, then:

1

N

N∑
i=1

(P@n of Ji) =
1

N

N∑
i=1

1

n

n∑
j=1

Ji[j]

=
1

Nn

nN∑
k=1

JS [k]

= P@Nn of JS .

Henceforth we will limit our discussions to the single

query case for notational convenience.

Equation 2 contains cxy terms, which will alter de-

pending on system, query and judgements. However, if

we fix n, or assume the maximum possible separation

between systems on the corpus, the equations can be

simplified to something immediately useful.

3.1 The P@1 case
When considering P@1, the expression for Var(Δ′(n))
simplifies to something manageable. As we are inter-

ested in the case where System A is better than Sys-

tem B on query q using the corpus judgements, then

P@1=1 for System A and for System B, P@1=0. Hence

c00 = c11 = c01 = 0, c10 = 1, n = Δ(n) = 1, and

E[Δ′(n)] = α0 + α1 − 1

Var(Δ′(n)) = α0 + α1 − α2

0
− α2

1
.

Assuming Δ′(n) is normally distributed with mean

E[Δ′(n)] and a standard deviation of
√

Var(Δ′(n)),
then we can compute Pr[Δ′(n) ≥ 0] which is shown in

Figure 1. To be more than 50% confident that a new set

of judgements on the corpus will keep System A as su-

perior with the P@1 metric, the sum of α0 and α1 must

Agreement with irrelevant: αα0

A
gr

ee
m

en
t w

ith
 re

le
va

nt
: αα

1

 0.05 
 0.1 

 0.15 

 0.2 

 0.25 

 0.3 

 0.35 

 0.4 
 0.45  0.5 

 0.55 
 0.6 

 0.65 
 0.7  0.75  0.8 

 0.85  0.9 
 0.95 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 1: Contour plot of the probability of Δ′(1)
exceeding zero (hence System A remaining superior)

with the P@1 score, when the corpus is re-judged by a

judge that agrees α0 and α1 proportion of the time with

the original judge’s 0 and 1 judgements, respectively.

be larger than 1 (approximately). To be 95% confident

that System A will remain superior, both agreement

probabilities must be over 80%.

3.2 The extreme case
Just as for the P@1 case, assuming P@n=1 for Sys-

tem A and P@n=0 for System B allows simplification

of Equations 1 and 2 as all of c00, c11 and c01 are 0, and

c10 = n.

Thus

E[Δ′(n)] = α0 + α1 − 1

Var(Δ′(n)) = ((1− α0 − α1 + 2α0α1)

−(α0 + α1 − 1)2)/n

If we assume that α0 = α1 = α, then we can

plot E[Δ(n)] and a 95% confidence interval as

±1.96
√

Var(Δ′(n)) for different n values. This is

shown in Figure 2.

To be 95% sure that System A remains superior with

new judgements, agreement must be at least 90% for

P@1 (intersection of dark grey ellipse and the 0 line),

75% for P@5 (intersection of medium grey ellipse and

the 0 line), and 70% for P@10 (intersection of light

grey ellipse and the 0 line).

3.3 Other cases
It is possible to simplify Equations 1 and 2 for other

values of n where System A and System B are not sep-

arated extremely, that is, when the gap between Sys-

tem A and System B is less than one: Δ(n) < 1. The

technique involves labelling each possible combination

of JA[i] and JB [i] for all i, but is omitted from this

54



0.0 0.2 0.4 0.6 0.8 1.0

−2
−1

0
1

2

Agreement αα0 == αα1

E
[[ΔΔ

′′]]

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

Figure 2: Expected Δ′(n) values (black) and 95%

confidence limits for n = 1 (dark grey), n = 5
(medium grey) and n = 10 (light grey) assuming

P@1=1 for System A and P@1=0 for System B.

paper as we concentrate on the P@1 metric in our user

studies.

4 Practical considerations
In this section of the paper we turn our attention to

an investigation of the likely values α0 and α1 when

users conduct a web-based search task. In particular, we

examine data from one of our previous user studies that

involved both document judgements and search-and-

click judgements, and see if α values are stable across

different topics and tasks for a given pair of users.

4.1 User experiment
Participants for our user study were recruited

form RMIT University. All were postgraduate

or undergraduate students studying for degrees in

computer science and information technology. As

a result, most were very familiar with searching

for information on the web; in a pre-experiment

questionnaire the average user indicated that they

search “once or more a day”. Experiments were carried

out in compliance with the RMIT University Human

Research Ethics Committee. 40 users participated in

the study; however, three were unable to complete the

full experiments, and are therefore excluded from the

analysis.

Participants were asked to carry out two tasks: a

judging task, and a search task. For both, documents

and topics were sourced from the TREC GOV2 collec-

tion, a crawl of 426 Gb of data from the .gov domain

from 2004 [3].

Judging task: For the first task, participants were

asked to imagine that they are writing a report, based on

a provided information need, and to mark documents

that were presented as relevant or not relevant for

inclusion in the report. Participants were asked to carry

out this task for three TREC topics (numbers 707, 770

and 771); the description and narrative fields of the

topics were displayed to users as information needs.

Participants were therefore making binary decisions

about relevance, when presented with documents that

had previously been judged by TREC assessors on a

three-point scale (not relevant; relevant; and highly

relevant). There was no time constraint for making

decisions for the judging task. However, it became

clear that carrying out the task for all three topics

resulted in severe fatigue effects. The third topic

completed by each user is therefore removed from the

analysis.

Searching task: Participants also carried out a

searching task. Here, when presented with an

information need, users were asked to search for and

identify a relevant answer document as quickly as

possible. Users could enter a single query to a search

system, designed to be similar in appearance to popular

commercial search engines such as Google, Yahoo! or

Bing. Unknown to the user, for each topic they were

assigned to a system of a particular quality; that is, the

system would return a ranked answer list with a pre-

determined P@1 level. For this task, 24 informational

topics were chosen from TREC topics 700–850 (topics

developed for use with the GOV2 collection). To

construct the P@1 controlled lists, judged documents

were selected from the two highest-performing runs

submitted to the TREC terabyte track in 2004, 2005

and 2006. That is, all documents used in the lists could

plausibly be returned in response to the topics by a

modern information retrieval system.

After being presented with a search results list, a

user could select a document for viewing. They could

then take one of two actions: save the document as a

relevant answer; or close the document, and return to

the results list. In the analysis below, these actions are

taken as judgements of the relevance or non-relevance

of the document, respectively.

Note that the user studies were not explicitly

designed to answer the questions raised in this paper;

rather we are retrospectively analysing the data to get

insights into likely values of α0 and α1. Full details of

the user studies are available in previous papers [9, 10].

4.2 Agreement on the judging task
Figure 3 shows the distribution of agreement values be-

tween all pairs of users for the judging task. As agree-

ment is not symmetrical [14], each user pair is counted

twice, usually with different values. As can be seen,

agreement varies anywhere from 100% down to 7.7%

for users 14 and 11 on α0.

Perhaps of more interest is the difference in agree-

ment for any user pair that judged the same two topics.

Figure 4 shows that on any two topics, both α0 and

55



Agreement αα0 (%)

P
ro

po
rti

on
0.

00
0.

05
0.

10
0.

15
0.

20

5 25 45 65 85
Agreement αα1 (%)

5 25 45 65 85

0.
00

0.
05

0.
10

0.
15

0.
20

Figure 3: Distribution of agreement amongst all pairs of users on the judging task.

Difference αα0 (%)

P
ro

po
rti

on
0.

00
0.

10
0.

20
0.

30

−75 −35 −5 25 55
Difference αα1 (%)

−75 −35 −5 25 55

0.
00

0.
10

0.
20

0.
30

Figure 4: Distribution of the difference in agreement amongst pairs of users on the judging task.

α1 can vary widely in the judging task. This makes

it difficult to choose a representative agreement value

for any pair of judges. Note that as we had to remove

the third topic judged for each user from the data set,

not all pairs of users completed the same two topics. In

total 534 of the 1369 pairs are included.

4.3 Agreement on the search task
Figure 5 shows the distribution of agreement values be-

tween all pairs of users for the searching task. Here we

have taken the event where a user selected a document

from the ranked list but did not save it as an “irrelevant”

judgement, while the selection and explicit saving of an

item is taken as a “relevant” judgement. For any pair of

users, we computed α0 and α1 over all topic-document

pairs that both users selected from the ranked lists for

viewing. We only included pairs where at least 6 topic-

document pairs were judged as relevant and irrelevant

by the first user in the pair, giving 758 user pairs. Again,

agreement is not symmetric, and so each pair of users

is counted twice, typically with different values. As can

be seen, the distribution of agreement values is similar

to those for the judging task.

4.4 Agreement across tasks
Figure 6 shows the distribution of the difference in α0

and α1 for pairs of users between the searching and

judging tasks. Again, the difference across tasks can

be large, making it difficult to choose a representative

agreement value for any pair of judges/users.

Figure 7 plots each user pair that has an agreement

value for both tasks. As is apparent, there is no guar-

antee that if a pair of users did not agree in the judging

task, they will not agree in the search task, and vice

versa.

56



Agreement αα0

P
ro

po
rti

on
0.

00
0.

05
0.

10
0.

15
0.

20

5 25 45 65 85
Agreement αα1

5 25 45 65 85

0.
00

0.
05

0.
10

0.
15

0.
20

Figure 5: Distribution of agreement amongst all pairs of users on the searching task.

Difference αα0 (%)

P
ro

po
rti

on
0.

00
0.

10
0.

20
0.

30

−75 −35 −5 25 55
Difference αα1 (%)

−75 −35 −5 25 55

0.
00

0.
10

0.
20

0.
30

Figure 6: Distribution of the difference in agreement amongst pairs of users on the searching task and judging task.

5 Conclusions
We have presented a simple probabilistic model based

on agreement between judges that can predict the effect

that altering judges will have on system performance as

measured through a batch evaluation experiment. When

evaluating performance with P@1, for example, to be

95% confident that one system will remain superior to

a second after judges are changed, the agreement be-

tween relevance assessments of the judges must be at

least 80%.

The model can also be used to assist in selecting

metrics. For example, for the P@n family of metrics,

it can be seen that the larger the value of n (that is,

the more information from the result list that is con-

sidered), the lower the required level of agreement be-

tween judges to remain confident that the relative sys-

tem performance will not change. In this paper we have

concentrated on the P@n metrics; in future work we

plan to extend the approach to other metrics.

Examining the agreement values in one of our user

studies has revealed large topic and task effects. That

is, for any pair of users, their agreement may alter on

different topics or tasks by over 50%. Thus, applying

the model presented in Section 3 to predict the effect

of changing judges on a corpus requires more sophisti-

cated measuring of α0 and α1 than was possible with

our available user data. In future work, we plan to

investigate controlled experiments for gathering repre-

sentative agreement values between different users of

retrieval systems.

References
[1] Azzah Al-Maskari, Mark Sanderson and Paul Clough.

The relationship between IR effectiveness measures and

user satisfaction. In Proceedings of the ACM SIGIR

57



●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●●

●●

●

●●

●

● ●

●
●

●

●

●

●
● ● ●

●

●
●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●●

●

●
●

●

●

●

●
●

●●●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●
●

●

●

●●

●

●

●
●

●

●

● ●

●
●

●

●
●

●

●
●

● ●
●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

αα0 search task (%)

αα 0
 ju

dg
e 

ta
sk

 (%
)

●

●
●

●

●●

●

● ●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●●

●●
● ●

●

●

●

●

●

●

● ●

●
●

●●

●

●
●

●

● ●

●
●

●

● ●
● ●

●

●

● ●
●

●

● ●
●
●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●
●

●

●●
●
●

●

●
●

●

●

●

●

●●

●
●

●
●

● ●
●

●

●

●
●

●●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●
●

●

●●

● ●

●

●
●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●●
●

●●

●
●●●

●●

●

●

●●

●

●

●

●

●

● ●
● ●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
● ● ●

●●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●
●

●

●
●●

●

●

● ●

●

●
●●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

● ●

●

● ● ●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

αα1 search task (%)

Figure 7: The agreement on each task for each pair of users.

International Conference on Research and Development
in Information Retrieval, pages 773–774, Amsterdam,

Netherlands, 2007.

[2] James Allan, Ben Carterette and Joshua Lewis. When

will information retrieval be “good enough”? In Pro-
ceedings of the ACM SIGIR International Conference
on Research and Development in Information Retrieval,
pages 433–440, Salvador, Brazil, 2005.

[3] Stefan Büttcher, Charles Clarke and Ian Soboroff. The

TREC 2006 terabyte track. In The Fifteenth Text
REtrieval Conference (TREC 2006), Gaithersburg, MD,

2007. National Institute of Standards and Technology.

[4] Carlos Cuadra and Robert Katter. The relevance of

relevance assessment. In Proceedings of the American
Documentation Institute, Volume 4, pages 95–99, 1967.

[5] William Hersh, Andrew Turpin, Susan Price, Benjamin

Chan, Dale Kraemer, Lynetta Sacherek and Daniel

Olson. Do batch and user evaluations give the same

results? In Proceedings of the ACM SIGIR International
Conference on Research and Development in Informa-
tion Retrieval, pages 17–24, Athens, Greece, 2000.

[6] Scott B. Huffman and Michael Hochster. How well does

result relevance predict session satisfaction? In Pro-
ceedings of the ACM SIGIR International Conference
on Research and Development in Information Retrieval,
pages 567–574, Amsterdam, Netherlands, 2007.

[7] Diane Kelly, Xin Fu and Chirag Shah. Effects of rank

and precision of search results on users’ evaluations of

system performance. Technical Report TR-2007-02,

University of North Carolina, 2007.

[8] Arie Kruglanski and Icek Ajzen. Bias and error in

human judgement. European Journal of Social Psychol-
ogy, Volume 13, pages 1–44, 1983.

[9] Falk Scholer and Andrew Turpin. Metric and relevance

mismatch in retrieval evaluation. In The Fifth Asia In-
formation Retrieval Symposium (AIRS 2009), Sapporo,

Japan, 2009. To appear.

[10] Falk Scholer, Andrew Turpin and Mingfang Wu. Mea-

suring user relevance criteria. In The Second Inter-

national Workshop on Evaluating Information Access
(EVIA 2008), pages 47–56, Tokyo, Japan, 2008.

[11] Catherine Smith and Paul Kantor. User adaptation:

good results from poor systems. In Proceedings of the
ACM SIGIR International Conference on Research and
Development in Information Retrieval, pages 147–154,

Singapore, Singapore, 2008.

[12] Andrew Turpin and William Hersh. Why batch and

user evaluations do not give the same results. In Pro-
ceedings of the ACM SIGIR International Conference
on Research and Development in Information Retrieval,
pages 225–231, New Orleans, LA, 2001.

[13] Andrew Turpin and Falk Scholer. User performance

versus precision measures for simple web search tasks.

In Proceedings of the ACM SIGIR International Con-
ference on Research and Development in Information
Retrieval, pages 11–18, Seattle, WA, 2006.

[14] Alexander von Eye and Eun Young Mun. Ana-
lyzing Rater Agreement: Manifest Variable Methods.

Lawrence Erlbaum Associates, 2004.

[15] Ellen M. Voorhees and Chris Buckley. The effect

of topic set size on retrieval experiment error. In

Micheline Beaulieu, Ricardo Baeza-Yates, Sung Hyon

Myaeng and Karlervo Järvelin (editors), Proceedings of
the ACM SIGIR International Conference on Research
and Development in Information Retrieval, pages 316–

323, Tampere, Finland, 2002.

[16] Ellen M. Voorhees and Donna K. Harman. TREC: ex-
periment and evaluation in information retrieval. MIT

Press, 2005.

[17] William Webber, Alistair Moffat and Justin Zobel.

Score standardization for inter-collection comparison of

retrieval systems. In Proceedings of the ACM SIGIR
International Conference on Research and Development
in Information Retrieval, pages 51–58, Singapore, Sin-

gapore, 2008.

58



 
 

University Student Use of the Wikipedia 
 

Andrew Trotman 
Department of Computer Science 

University of Otago 
Dunedin, New Zealand 
andrew@cs.otago.ac.nz 

 

David Alexander 
Department of Computer Science 

University of Otago 
Dunedin, New Zealand 

dalexand@cs.otago.ac.nz 
 

 

Abstract: The 2008 proxy log covering all student 
access to the Wikipedia from the University of Otago 
is analysed. The log covers 17,635 student users for 
all 366 days in the year, amounting to over 577,973 
user sessions. The analysis shows the Wikipedia is 
used every hour of the day, but seasonally. Use is low 
between semesters, rising steadily throughout the se-
mester until it peaks at around exam time. The analy-
sis of the articles that are retrieved as well as an 
analysis of which links are clicked shows that the 
Wikipedia is used for study-related purposes. Medical 
documents are popular reflecting the specialty of the 
university. The mean Wikipedia session length is 
about a minute and a half and consists of about three 
clicks. 

The click graph the users generated is compared 
to the link graph in the Wikipedia. In about 14% of the 
user sessions the user has chosen a sub-optimal path 
from the start of their session to the final document 
they view. In 33% the path is better than optimal sug-
gesting that users prefer to search than to follow the 
link-graph. When they do click, they click links in the 
running text (93.6%) and rarely on “See Also” links 
(6.4%), but this bias disappears when the frequency of 
these types of links’ occurrence is corrected for.  

Several recommendations for changes to the link 
discovery methodology are made. These changes in-
clude using highly viewed articles from the log as test 
data and using user clicks as user judgements. 

 
Keywords: Information Retrieval, Link Discovery. 

1. Introduction  
Keeping the link structure up-to-date in a large hyper-
text collection is difficult. When a new document is 
added to the collection it is necessary to link from that 
document to the collection and from the collection to 
that document. When a document is deleted all links 
from the collection to the document must be removed. 
Finally, when a document changes, new links must be 
added and old links deleted. Deleting links is a me-
chanical process, but recommending links for new or 
changing documents is problematic and is an active 

field of research known as Link Discovery. 
Milne & Witten [11] use machine learning to learn 

links for documents to be added to the Wikipedia. 
INEX has the Link-the-Wiki track [3] in which the 
task is to analyse a document (also from the Wikipe-
dia) and to construct an ordered list of links from 
which a user can choose; Geva [1] and Jenkinson et al. 
[7] provide the best solutions. 

The recent INEX study by Huang et al. [5] raises 
questions about the validity of the methods of assess-
ment that had been used with all previous solutions to 
the Link Discovery problem, and therefore the validity 
of the solutions themselves. 

The prior INEX protocol was as follows: A dump 
of the Wikipedia is taken. From that dump a single 
document is extracted (the orphan). All links between 
the orphan and the collection are removed. The task is 
to recommend links for the orphan. Performance is 
measured relative to the links that were originally in 
the orphan. 

Huang et al. introduced a new protocol to INEX, 
based on the Cranfield methodology. In this protocol, 
INEX participants’ runs were pooled and manually 
assessed. Importantly, the links in the original 
Wikipedia articles were added to the pool. Most im-
portantly, the Wikipedia articles themselves were 
scored against the pool. Unexpectedly, the Wikipedia 
articles performed no better than the best submitted 
runs. 

This result suggests that there are many links in the 
Wikipedia that are not considered relevant to the topic 
of the articles. The nature of those non-relevant links 
is not known, but could be studied by analysing the 
INEX assessments. 

This approach would shed light on the nature of 
relevant and irrelevant links in the Wikipedia and 
could be used both to help recommend new links and 
to remove bad links. But a link that is relevant to the 
content of the page may not be relevant to the infor-
mation need of the user. To find useful links it is nec-
essary to study how users use links. This raises our 
research question: How do users use the Wikipedia 
link structure? 

To answer this question we studied the log of the 
University of Otago student web proxy, which all stu-
dent users of the University computing facilities must 
pass through, for the 2008 calendar year. From the log 
we extracted all references to the Wikipedia.  

Proceedings of the 14th Australasian Document Compu-
ting Symposium, Sydney, Australia, 4 December 2009. 
Copyright for this article remains with the authors. 

59



Before studying the link-clicking behaviour dis-
played in the log, we performed a number of prelimi-
nary analyses in order to better understand the data, 
and its applicability to our goal of improving the link 
structure of Wikipedia. These included examining the 
request frequency at different times of day and times 
of year, calculating the length of user sessions, and 
finding the most commonly-requested pages. The re-
sults of these analyses are presented in Sections 3.1 
and 3.2 

In Section 3.3, the link-clicking behaviour seen in 
the log is analysed, with particular focus on the ques-
tion of whether or not the current link graph is being 
used efficiently. This question is addressed in two 
ways. The first is to determine the proportion of links 
clicked on in each article, and to look for patterns in 
the types of links clicked. The second is to determine 
whether or not users are reaching their destinations by 
following links, and if so, whether or not they are do-
ing so in the most efficient way possible. 

2. Prior Work 
Prior IR research on logs has focused on search engine 
log analysis. Zhang & Moffat [14], for example, pre-
sent an analysis of the MSN log while Spink et al. [13] 
present an analysis of an Excite log.  

Internet use by students has previously been stud-
ied; however such studies are typically conducted 
through surveys, for example Metzger et al. [9]. 

Proxy log use has been limited. Kamps et al. [8] 
used a (3 month long) New Zealand high school proxy 
log to validate INEX 2007 results. Their analysis is 
short. They state: the number of queries; the number 
of unique queries; the number of clicks in the Wikipe-
dia; the number of queries with Wikipedia clicks; and 
the number of unique queries with Wikipedia clicks. 

There is a growing body of work in link recom-
mendation. Early work [10, 11] conducted outside 
INEX considers the problem of generating a set of 
links. INEX considers link discovery to be a recom-

mender task and consequently systems generate a 
ranked list of results. Geva’s solution [1] at INEX is to 
match the titles of Wikipedia documents against the 
text of a document, preferring longer titles if several 
overlap. The Jenkinson et al. solution [7] is based on 
Itakura & Clarke [6]. They generate a list of all an-
chors used in the collection along with a list of all 
documents that are targeted by each anchor text. They 
rank anchor texts on the frequency with which they 
occur as links, as a proportion of their overall fre-
quency. They then search for these in the new docu-
ment and recommend links based on the above fre-
quency. The two approaches perform comparably. 

 

3. Analysis 
In this section an analysis of the proxy log is given. 
The global statistics are presented followed by an 
analysis of the sessions. Finally the use of the hyper-
text links is given. 

3.1. Global Statistics 
The proxy log covers the period from 1st January 
2008 to 31st December 2008. It covers 366 days be-
cause 2008 was a leap year. The proxy configuration 
at the university consists of a set of proxies each log-
ging and fulfilling user requests. There were a total of 
6 proxy servers and so the analysis is over 2,196 
source log files. One of these files (from 30 April 
2008) was lost and so the analysis is short by one sixth 
on that date. 
All lines from the log that contained the (case insensi-
tive) word Wikipedia were extracted. There were a 
total of 16,665,418 references in the extracted log, of 
which 15,696,225 were to the English Wikipedia and 
969,193 were to other sites. The references were made 
by 17,635 students (the university had 20,752 enrolled 
during 2008). Further fundamental numeric statistics 
are shown in Table 1. 

1
10

100
1000

10000
100000

1000000
10000000

100000000

en
w

w
w de ja zh fr es ar

si
m

pl
e ko it nl m
s th sv pt m
i

m
et

a id ru cs pl fa da
no

st
al

gi
a no ro hu he fi af hi tr

N
um

be
r 

of
 R

eq
ue

st
s

Figure 1: Frequency of use of the versions of the Wikipedia seen more than 500 times in the log.  Eng-
lish is the preferred language followed by German, Japanese, Chinese, French, Spanish and so on. The 

subdomains for language versions of Wikipedia are ISO 639 codes. 
 

60



Table 1: Fundemental statistics of the log 
Duration of Log 1/Jan/2008 – 31/Dec/2008 
Rows in Log 16,665,418 
Rows for English Wikipedia 15,696,225 
Users in Log 17,635 
Total enrolled students 20,752 
Sessions in Log 577,973 
Articles Accessed 340,477 
Articles in Wikipedia 2,600,000 (approx.) 
Wikipedia Subdomains 202 (inc. typos) 
 

 
Figure 2: Frequency of use of all versions. 

 
Figure 3: Access to the Wikipedia by time of day. 

 
The Wikipedia exists in many different languages 

and forms. Each of these versions has its own subdo-
main of wikipedia.org. In the log there are 202 refer-
ences to different variants (including spelling errors). 
The most common is the English Wikipedia while the 
least common (occurring only once) is spe-
cies.wikipedia.org, the Wikipedia Free Species Direc-
tory. 

Figure 1 graphs the frequency of use of those va-
riants of the Wikipedia seen in the log more than 500 
times.  The graph shows that English (subdomain en) 
is the primary language used at Otago, with European 
and Asian languages also popular. The M�ori Wikipe-
dia (subdomain mi) was the 17th most popular version, 
accessed 2,953 times. 

All of the subdomains shown in Figure 1 are iden-
tified by the ISO 639 codes for their languages, except 
www (an entry point to Wikipedia, having links to the 
most popular language versions), simple (the Simple 
English Wikipedia, in which articles are written at a 
level suitable for non-native English speakers or chil-

dren), meta.wikimedia.org (a wiki containing informa-
tion useful to editors of the various Wikimedia pro-
jects), and nostalgia (a static copy of a 2001 version 
of Wikipedia). 

Figure 2 shows the request frequency of all sub-
domains of wikipedia.org and wikimedia.org. It shows 
that the subdomains do not completely follow a 
power-law distribution.  

Timestamps in a search engine log are relative to 
the search engine location. It is therefore not possible 
to know the user-time at which each query was given. 
In a proxy log of the type used in this study, however, 
the user time is the same as the time recorded at the 
proxy. 

Figure 3 shows the mean number of requests per 
minute at each hour of the day. At midnight there is 
moderate access steadily falling to low at 5am where 
access picks up and stabilizes at about 11am. A local 
peak is seen at 3pm with a dip at dinner-time, picking 
up at about 7pm and falling again at about 10pm. Stu-
dent use of the Wikipedia is round-the-clock. 

This finding is in line with results seen by others. 
Zhang & Moffat [14] found that there was no hour of 
the day at which the MSN search engine was com-
pletely unused from within the US. The US, however, 
is a somewhat larger geographical area then the Uni-
versity of Otago (and has a larger population). 

Publicly available search engine logs tend to cover 
a very short period of time. The MSN log is one 
month in length, the Excite logs are one day, and the 
Alta Vista log is about six-weeks. From such short 
logs it is not possible to make any observations about 
seasonal user behaviour, analyses have been restricted 
to daily patterns. 

Zhang & Moffat [14] present a day-by-day analy-
sis of the MSN log, which covers May 2006. They 
show a clear drop in use over weekends and a pattern 
of peaking early in the week and dropping towards the 
end. 

Shown in Figure 4 is the total number of Wikipe-
dia requests per day seen in the proxy log. Use is 
clearly seasonal varying from fewer than 1,000 ac-
cesses per day in December to over 14,000 accesses 
per day in June and October. Unsurprisingly the peak 
is around the university’s exam period. 

It is reasonable to conclude from this seasonal ac-
cess pattern that the Wikipedia forms an important 
part of the student study regime at the University of 
Otago. If this is the case then it is also reasonable to 
expect many of the most frequently requested pages to 
be related to academic study. 

The 20 most frequently requested Wikipedia arti-
cles are shown in Table 2. The homepage (Main Page) 
is the most viewed Wikipedia page, being requested 
with more than 23 times the frequency as the next 
most popular page. This is as expected as many users 
will enter the Wikipedia via the homepage rather than 
typing an article’s URL manually. 

Column 3 shows a manual classification of the 
given pages into the categories Work-Related (W), 

61



Informational (I) and Entertainment (E). Of the top 
20, half (10) can be considered work-related while the 
other half are entertainment (2) and informational (8). 
Most of the work-related pages are medical, reflecting 
the importance of the medical sciences to the Univer-
sity. This provides further evidence that the Wikipedia 
is, indeed, being used by students as an aid to their 
study during the exam period.  

It should be noted that the classification is ad-hoc, 
and was arbitrarily chosen by the two authors. In par-
ticular, all medical pages in the table are classified as 
work-related on the assumption that these pages are 
mostly requested by the university's large number of 
medical students, rather than by people seeking medi-
cal advice. The classification of some pages is clearly 
ambiguous; the Treaty of Waitangi page could be con-
sidered informational due to the treaty's relevance to 
the location of the university (New Zealand), or work-
related due to its potential relevance to History stu-
dents. 

Plotted in Figure 5 is the number of times each of 
the 340,477 requested articles was retrieved (ordered 
by frequency). There are a small number of pages re-
quested a very large number of times. (Those articles 
appear to be informational pages about the Wikipedia, 
Wikis, New Zealand, the University of Otago, and 
death!) This distribution of request frequencies sug-
gests that more useful results could come from cluster-
ing pages by subject area. We hypothesise that this 
would show other subject areas being looked up with 
comparable frequency to the medical sciences, but that 
those requests would be distributed among a greater 
number of pages, leading to their absence in Table 2. 

It is not only reassuring that the Wikipedia is used 
for study purposes within the university, but also reas-
suring that it is not primarily used for smut. Spink et 
al. [13] provide a list of the 75 most frequently seen 
search terms in the Excite query log, the top 10 of 
which are: and, of, sex, free, the, nude, pictures, in, 
university, pics. It appears as though the Wikipedia is 
being used honourably by students. 

3.2. Session Statistics 
Identifying a user’s session in a search engine query 
log has proven to be problematic because it is not 
clear what the user is doing between one log entry and 
the next. The same problem exists when looking at a 
proxy log such as the one used in this study, because 
only the user actions that result in an HTTP request 
are recorded. 

The proxy log used in this study distinguishes us-
ers, and identifies the requested page, dates, time, etc., 
but not the referrer. Therefore, although it is known 
what was done, by whom, and when, it is not certain 
what a user was doing before making a particular re-
quest. Identifying a user’s session under these circum-
stances is problematic because without the referrer it 
is difficult to identify the start (or end) of a session. 

 
Figure 4: Access to the Wikipedia by date. 

Semester-times, breaks and examination periods 
are indicated. 

 
Table 2: Top 20 most retrieved pages, classified 
as Work-Related (W), Informational (I) or 

Entertainment (E) 
Page Requests Class 
Main Page 75583 I 
Wiki 3256 I 
New Zealand 1686 I 
Deaths in 2008 1315 I 
University of Otago 861 I 
Dunedin 859 I 
Standard deviation 857 W 
Wikipedia 806 I 
Dopamine 669 W 
Blood pressure 561 W 
The Dark Knight (film) 557 E 
Aldosterone 556 W 
Glycolysis 546 W 
Tyrosinase 541 W 
Gossip Girl (TV series) 541 E 
Treaty of Waitangi 516 I 
Tuberculosis 514 W 
Meningitis 512 W 
Multiple sclerosis 511 W 
HIV 510 W 

 
He & Göker [2] define a web search session as a 

set of consecutive requests by a user with no longer 
than some time limit from one request to the next. 
They conclude that for web search log analysis the 
optimal time is between 10 and 15 minutes. There 
was, however, very little difference observed between 
the sessions produced using a time limit of 15 minutes 
and those produced using a time limit of 60 minutes. 

It is reasonable to assume that a user navigating 
the Wikipedia will spend longer reading documents 
than a user searching the web spends reading a results 
list. For this reason, and for this study, a session is 
defined as a set of consecutive requests by the same 
user with a gap of no more than 60 minutes between 
adjacent requests. Further investigation is needed to 
determine whether or not this is a suitable time limit 
for proxy logs. 

62



 
Figure 5: Number of times each document is 

retrieved ordered from most to least frequent. 
 

 
Figure 6: Session lengths ordered from longest to 

shortest.  Sesson times in seconds and in number of 
clicks are both shown. 

 
Table 3: Top 20 non-wikipedia session origins 

Count Source 
2030 http://rds.yahoo.com/ 
1527 http://nz.wrs.yahoo.com/ 
1433 http://content.answers.com/ 
427 http://hk.wrs.yahoo.com/ 
203 http://s.scribd.com/ 
203 http://wrs.search.yahoo.co.jp/ 
154 http://au.wrs.yahoo.com/ 
149 http://mycroft.mozdev.org/ 
130 http://tw.wrs.yahoo.com/ 
129 http://sp.ask.com/ 
110 http://uk.wrs.yahoo.com/ 
82 http://www.scribd.com/ 
81 http://digg.com/ 
76 http://static.getfansub.com/ 
76 http://www.microsoft.com/ 
68 http://www.nationmaster.com/ 
60 http://www.apple.com/ 
57 http://wrs.yahoo.com/ 
52 http://i.ixnp.com/ 
52 http://pixel.quantserve.com/ 

 
Session length can be measured in several ways 

including the number of requests and the total time 
between the first and last request. In the case of a sin-
gle-request session, however, the session time must be 
considered to be zero because it is impossible to tell 

how long the user spent looking at the single page that 
was requested. 

In Figure 6 the sessions from the proxy log are 
shown ranked from the longest to the shortest. In total 
there were 577,973 sessions. When measured by time, 
the longest had 26 requests over 86,441 seconds (1 
day and 41 seconds), and the median had 2 requests 
over 93 seconds. It is reasonable to conclude that the 
longest session is not human generated (one click an 
hour for a day) and so there are, in all likelihood, ro-
bots running at the university that are downloading 
data from the Wikipedia each hour. 

When measured by number of requests, the longest 
had 2,340 requests over 8,550 seconds (a mean of one 
click every 3.76 seconds for 2 hours 22 minutes and 
30 seconds), and the median had 3 requests over 93 
seconds. Again it is reasonable to conclude that the 
longest session is not a human, but a robot. 

In some cases users chose to search the Wikipedia 
using a search engine. In these cases they might have 
either added the word Wikipedia to their query or site-
restricted their search to a wikipedia.org site. 

Table 3 shows the top 20 non-Wikipedia site ori-
gins appearing in the log. It is important to recall that 
the analysed log only includes requests that contain 
the substring Wikipedia – and so this table does not 
truly reflect the number of sessions originating outside 
the Wikipedia. It is surprising that Google does not 
appear, but this is possibly because of Google's use of 
asynchronous requests for result lists on supporting 
browsers. 

Coupling this result with the number of requests 
for the Wikipedia homepage leads to the conclusion 
that the students tend to go directly to the Wikipedia 
and then search, rather than using an Internet search 
engines to find information in the Wikipedia. 

3.3. Link Statistics 
The primary motivation for this investigation is the 
understanding of how users navigate the Wikipedia so 
that this knowledge may be used to improve the per-
formance of link recommender systems. 

For the purpose of this investigation a user is 
deemed to have clicked a link in order to retrieve an 
article if, within a session, there was a page requested 
earlier in that session that contains a link to the re-
trieved page. 

An alternative would be to consider only the user’s 
most recently requested page as a potential link 
source, which would reduce the number of false posi-
tives. This was rejected because of anecdotal evidence 
that users surfing the Wikipedia have multiple pages 
open at once, meaning that the user’s click sequence 
may resemble part of a breadth-first traversal of the 
link graph. 

For brevity, the term click will hereafter be used 
without qualification to refer to a request that is be-
lieved to have been caused by a click on a particular 
link. It is important to note that this information may 

63



not be accurate, and a proxy log with referrers should 
ideally be used in future research. 

Presented in Table 4 are the top 20 most clicked 
links. Of particular note is the link from the homepage 
to Deaths in 2008. This can be directly attributed to 
the link “Recent Deaths” at the bottom of the “in the 
news” section of the homepage. Of the top 20 links, 
13 are clearly work-related while 5 are entertainment 
and 2 are informational. 

Shown in Figure 7 is the distribution of link clicks 
ordered from most popular to least popular. By in-
spection it can be seen to roughly follow a power-law 
distribution.  Most links are clicked only once but 
some links are very popular. 

Figure 8 shows the distribution of clicked links on 
a per document basis. It can be seen that of the links in 
a document, very few were clicked even though there 
are many links in the documents. This cannot be ex-
plained by the presence of “boilerplate” links such as 
the What links here link because these links are not 
included in the collection from which the relevant data 
was extracted. 

 
 
 

Table 4: Source and target articles of the 20 
most clicked links. 

Source Target Clicks Class 
Main Page Deaths in 2008 3092 I 

NAD 
Nicotinamide 
adenine dinucleo-
tide 

282 W 

Nicotinamide 
adenine dinucleo-
tide 

FAD 239 W 

Tyrosinase Melanin 233 W 
Lactate Lactic acid 219 W 
ADH Vasopressin 206 W 
Tyrosine Dopamine 202 W 
Heroes Heroes (TV series) 186 E 
Main Page Wikipedia 181 I 
Melanin Melanocyte 179 W 

South Park List of South Park 
episodes 176 E 

Gossip Girl Gossip Girl (TV 
series) 174 E 

Adjuvant Immunologic ad-
juvant 162 W 

Thiamine pyro-
phosphate 

Pyruvate dehydro-
genase 161 W 

Heroes (TV series) List of Heroes 
episodes 151 E 

House (TV series) List of House 
episodes 141 E 

Systole Systole (medicine) 133 W 
Vitamin E Tocopherol 133 W 
Melanin Melanoma 124 W 

Diaphragm Thoracic dia-
phragm 124 W 

 
 

 
Figure 7: Frequency of use of clicked links 

 

 

 
Figure 8: Number of clicked links per document 

by absolute count (above) and relative to the num-
ber of links in the document (bottom).  In most 

documents only one link was clicked despite there 
being many links that might have been chosen. 
 
Huang et al. [4] present the metric used in the 

INEX Link-the-Wiki track. It is a mean average preci-
sion (MAP) based metric which assumes that all rele-
vant links are equally relevant.  This assumption may 
not be valid; the users may show bias for certain links.  
In future work we will examine these potential biases 
by determining the prior probability of the click fre-
quency distributions seen in each document. Given the 
already observed bias from the homepage to the recent 
deaths page it is reasonable to believe that some links 
are more popular than others.  If this is the case then 

64



the appropriateness of the INEX Link-the-Wiki met-
rics should be examined. 

6.4% of those links that are clicked are from the 
See Also section of the document whereas remaining 
93.6% are from the running text.  6.4% is also the 
proportion of links in those documents that are See 
Also links.  This suggests that there is no user prefer-
ence to these links over the running text links. This is 
surprising because the See Also links are at the bottom 
of the page, although Fitts’s Law may apply. 

INEX offers two tasks in the Link-the-Wiki track: 
file-to-file linking, and anchor-to-BEP (best entry 
point) linking. In the former the task is to identify arti-
cles related to a new article to be added to the Wikipe-
dia. This is equivalent to the task of adding See Also 
links to an article. In the latter task the link discovery 
system must identify anchor-texts in the running text 
of the new article and targets within the Wikipedia. 

The discovery that running-text links appear to be 
as important as the See Also links suggests that the 
two INEX tasks are also equally important. 

Potamias et al. [12] propose an algorithm for ap-
proximating the shortest path between two nodes in a 
large graph. Several hubs are chosen based on an es-
timate of their centrality in the graph, and a single-
source shortest path calculation is performed from 
each hub to all nodes in the graph. The shortest path 
estimate for a pair of nodes is calculated by determin-
ing the length of the path between the nodes through 
each hub in turn, and taking the shortest of those 
paths. 

The actual path taken in each session was com-
puted and the lengths of the paths are shown in Figure 
6. The shortest path they could have taken (from the 
start to the end of their session) can be estimated using 
the algorithm of Potamias et al. The difference is the 
slack in the session. That is, assuming the user has one 
information need per session and upon fulfilling it 
they stop using the Wikipedia, the number of wasted 
clicks (and consequently the amount of wasted time) 
can be estimated. 

 
Figure 9: Number of clicks that could be saved 

if the user navigated the Wikipedia using the 
shortest path from the start of their session to the 

end of their session. 
 

 Figure 9 shows the difference between the actual 
length and the estimated shortest path for each ses-
sion. Positive numbers indicate that clicks would be 
saved if the user had chosen the shortest path; nega-
tive numbers are due to users arriving at their destina-
tion by methods other than clicking links. 

The shortest path estimation algorithm was used 
because of the number of sessions and the magnitude 
of the link-graph.  It should be noted that the result is 
always pessimistic. It computes a number that is no 
smaller than the shortest path. Despite this, 83,761 
(14%) user sessions would be reduced in length if the 
user had followed the shortest path. In 192,375 (33%) 
sessions the user found a path shorter than the esti-
mated shortest path (perhaps by searching). 231,317 
sessions are optimal. For the remaining 70,520 ses-
sions no path could be found (the link graph is not 
strongly connected). 

Assuming users are doing their utmost to find the 
information they seek, it is pertinent to ask why they 
waste so many clicks in their information seeking. 
Further investigation is needed; however it could be 
due to information overload. Given the extensive 
interlinking between Wikipedia articles, it may simply 
be too difficult to spot which links to click. If this is 
the case then a reduction in the size of the link graph 
(that is, the removal of links) may result in a better 
user experience. This result is in line with the manual 
assessment experiments of Huang et al. [5], which 
suggest that many of the links in the Wikipedia are not 
relevant. Further, since 33% of the sessions are shorter 
than the shortest path, it is reasonable to conclude that 
users’ current response to viewing over-linked docu-
ments is to resort to searching. 

The mean number of clicks that could be avoided 
if a user followed the shortest path is 0.018 clicks per 
session. 

However, it is also possible that many of the 
wasted clicks seen are a result of users browsing 
Wikipedia for trivia, merely because they find it inter-
esting. (For example, clicking links that go from the 
name of a day, month or year to a list of events that 
happened in that time period.) It is therefore important 
not to take the link-graph reduction goal to its logical 
conclusion by removing all trivial links, as this would 
diminish users' enjoyment of Wikipedia, which might 
in turn cause the non-trivial information content in 
Wikipedia to stagnate. Therefore, it is important to 
balance the removal of links that hinder navigation 
with the retention of links that, while not strictly rele-
vant, are sometimes used and do not hinder naviga-
tion. 

It is pertinent to ask whether the first document the 
user viewed should have been linked to the last docu-
ment they viewed. Computing this is equivalent to 
solving the link discovery problem, but an estimate 
might be made using one of the previously published 
link discovery algorithms. The Itakura & Clarke [6] 
algorithm as implemented by Jenkinson et al. [7] is 
fast and might make a good candidate algorithm, as 

65



might Geva’s title matching algorithm [1]. Computing 
the optimal link graph for the Wikipedia is left for 
future work. 

4. Discussion and Conclusions 
The University of Otago student proxy server logged 
all accesses to the Internet for the 2008 calendar year.  
From this log all accesses to the Wikipedia were ex-
tracted and analysed. In total 16,665,418 requests 
were made by 17,635 users.  

The analysis suggests that students use the 
Wikipedia primarily as an encyclopaedia for study-
related purposes.  They typically use it for a very short 
period of time (a few minutes) and search from the 
Wikipedia rather than via an Internet search engine.  
They prefer to use it close to exams, and they use it at 
all times of the day and night. 

The analysis of the link statistics suggests that 
there is some bias in the users’ click pattern, as very 
few of the available links are clicked, but further work 
is needed to determine the nature of this bias. Users 
appear to click on a very small proportion of the links 
in a document, but there is no bias towards See Also or 
running-text links. If indeed there is bias, then it may 
be appropriate to re-examine the metrics used to 
measure the performance of link discovery systems. 

On the assumption that a user is trying to fulfil one 
information need in each session, the amount of slack 
in a user session was computed.  In 14% of sessions 
the user did not choose the shortest path from the start 
of their session to the end.  In 33% of cases the user 
found a path shorter than the shortest path which sug-
gests that the link-graph of the Wikipedia is not help-
ing those users and they are resorting to methods other 
than browsing in order to find their information.  

This study was conducted with the goal of improv-
ing link discovery systems such as those seen in the 
INEX Link-the-Wiki track. The results suggest that by 
removing non-useful links from the Wikipedia (sim-
plifying the graph) the user will find it easier to 
browse in order to fulfil their information need, but it 
is important not to take this too extreme, and to re-
move harmless links merely because they are not rele-
vant, as this would decrease the utility of the Wikipe-
dia. 

Further work might be conducted on the proxy log. 
Previous studies have suggested that 4-digit year links 
are not considered relevant by INEX assessors.  The 
nature of the links the user clicked remains unknown, 
as does the nature of relevant links in the INEX as-
sessments. 

The INEX Link-the-Wiki track has two tasks.  In 
the file-to-file task a set of randomly selected docu-
ments are chosen from the Wikipedia. The links be-
tween those documents and the Wikipedia are re-
moved and the system must predict the links that were 
present.  As a consequence of the Wikipedia log en-
tries having been extracted from the full proxy log, 
there now exists a complete year-long log of which 

articles were chosen and which links were clicked.  
This log might be used as the source of articles for the 
INEX track.  If the articles were chosen from those 
accessed in the log then performance could be meas-
ured relative to those links that were clicked. 

The log might also be used in the Link-the-Wiki 
anchor-to-BEP task in which the link discovery sys-
tem must choose anchors and target document / best 
entry point pairs.  Although best entry points are not 
typically linked to in the Wikipedia, the anchor text 
and target document pairs can be deduced from the 
Proxy log using the method outlined above. 

Much of this study was devoted to understanding 
how university students use the Wikipedia.  It is heart-
ening to see the use is generally related to their study, 
but disheartening to see that use is driven by the ex-
amination schedule. 

5. References 
[1] Geva, S., GPX: Ad-Hoc Queries and Automated 

Link Discovery in the Wikipedia. INEX 2007 pp. 
404-416. 

[2] Göker, A. and D. He, Analysing Web Search Logs 
to Determine Session Boundaries for User-
Oriented Learning, In Adaptive Hypermedia and 
Adaptive Web-Based Systems. 2000. pp. 319-322. 

[3] Huang, D.W., et al., Overview of INEX 2007 Link 
the Wiki Trac. INEX 2007 pp. 373-387. 

[4] Huang, W.C., S. Geva, and A. Trotman, Overview 
of INEX 2008 Link the Wiki Track, INEX. 2008p. 
314-325. 

[5] Huang, W.C., A. Trotman, and S. Geva, The Im-
portance of Manual Assessment in Link Discov-
ery, SIGIR 2009 

[6] Itakura, K.Y. and C.L. Clarke, University of Wa-
terloo at INEX2007: Adhoc and Link-the-Wiki 
Tracks, INEX 2007. pp. 417-425. 

[7] Jenkinson, D., K.-C. Leung, and A. Trotman, 
Wikisearching and Wikilinking, in pre-
proceedings of INEX 2008. 2008. 

[8] Kamps, J., M. Koolen, and A. Trotman, Compara-
tive Analysis of Clicks and Judgments for IR 
Evaluation,.WSCD 2009. 

[9] Metzger, M.J., A.J. Flanagin, and L. Zwarun, Col-
lege student web use, perceptions of information 
credibility, and verification behavior. Comput. 
Educ., 2003. 41(3):271-290. 

[10] Mihalcea, R. and A. Csomai, Wikify!: linking 
documents to encyclopedic knowledge. CIKM 
2007. pp. 233-242. 

[11] Milne, D. and I.H. Witten, Learning to link with 
wikipedia, CIMK 2008 pp. 509-518. 

[12] Potamias, M., et al., Fast shortest path distance 
estimation in large networks, CIKM 2009. 

[13] Spink, A., et al., Searching the Web: The public 
and their queries. JASIST 2001. 53(2):226-234. 

[14] Zhang, Y. and A. Moffat. Some Observations on 
User Search Behavior. ADCS 2006. pp. 1-8 

66



Feature Selection and Weighting Methods in Sentiment Analysis

Tim O’Keefe
School of Information Technologies

University of Sydney
NSW 2006, Australia

toke9145@uni.sydney.edu.au

Irena Koprinska
School of Information Technologies

University of Sydney
NSW 2006, Australia

irena@it.usyd.edu.au

Abstract Sentiment analysis is the task of identifying
whether the opinion expressed in a document is positive
or negative about a given topic. Unfortunately, many
of the potential applications of sentiment analysis are
currently infeasible due to the huge number of features
found in standard corpora. In this paper we systemat-
ically evaluate a range of feature selectors and feature
weights with both Naı̈ve Bayes and Support Vector Ma-
chine classifiers. This includes the introduction of two
new feature selection methods and three new feature
weighting methods. Our results show that it is possible
to maintain a state-of-the art classification accuracy of
87.15% while using less than 36% of the features.

Keywords Information Retrieval, Natural Language

Techniques and Documents

1 Introduction
The opinions of other people have always been impor-

tant to us, and in particular we are often concerned with

the prevailing sentiment of those opinions. Often gov-

ernments want to know how voters feel about a policy,

corporations want to know how customers feel about a

product and movie goers want to know if others would

recommend a movie. The idea behind sentiment anal-

ysis is to provide this information by building a system

that can classify documents as positive or negative, ac-

cording to the overall sentiment expressed within those

documents.

Early approaches to sentiment analysis tended to

focus on classifying documents according to the out-

of-context sentiment of individual features [14]. While

these approaches did not require domain-specific train-

ing data, their accuracy was quite poor. Subsequent

research focused on supervised learning techniques that

are common in text categorisation tasks [9], such as

Support Vector Machine (SVM) and Naı̈ve Bayes (NB)

classifiers. Though these techniques are far more ac-

curate than the earlier text-based approaches, they are

a lot more computationally expensive to run due to the

large number of features.

Proceedings of the 14th Australasian Document Comput-
ing Symposium, Sydney, Australia, 4 December 2009.
Copyright for this article remains with the authors.

In fact, in the Pang et al. [9] movie review data set

that has become the de facto standard there are just

under 51,000 unique words and symbols. Very few

of these features actually provide useful information

to the classifier, so feature selection can be used to

reduce the number of features. Despite the fact that its

use is commonplace, there has been little research into

the effects of different methods of feature selection

in sentiment analysis. In this paper we address this

gap by comparing three feature selection methods at

a number of selection thresholds, using six feature

weighting methods. The feature selection methods

include Categorical Proportional Difference (PD), a

recently proposed method that was successfully used

for topic-based text categorisation, and two methods

based on sentiment values from SentiWordNet (SWN)

[2] that we introduce: SWNSS and SWNPD. The

feature weighting methods include Feature Frequency

(FF), Feature Presence (FP), TFIDF, and three other

methods based on words grouped by their SWN values

that we introduce: SWN-SG, SWN-PG and SWN-PS.

All tests were conducted using both SVM and NB.

Our results show that PD and SWNSS were able to

maintain or improve accuracy when used with suitable

weightings while SWNPD tended to reduce accuracy,

though not in all cases. SVM with PD as a feature se-

lector achieved our highest accuracy of 87.15% which

is comparable with the state-of-the art, but uses a vastly

reduced set of features.

2 Background
While there was some early work in word-level sen-

timent analysis [3] and a semi-automatic approach to

document-level sentiment analysis [13], the real genesis

of document-level sentiment analysis was the work of

Turney [14]. The basic idea behind Turney’s approach

was to average the sentiment of the adjectives within

each document and then classify the document depend-

ing on whether the average was positive or negative.

To find the sentiment of adjectives, Turney used the Al-

taVista search engine to determine how often individual

adjectives co-occured with the words “excellent” and

“poor.” Words that co-occured more often with “ex-

cellent” were deemed positive and words co-occuring

more often with “poor” were deemed negative.

67



Authors Data

split

Classifier Cross

Valida-

tion

Feature

Selec-

tion

Baseline

Accuracy

(%)

Best

Accuracy

(%)

Pang et al. [9] 700+

700-

NB, ME, SVM 3-fold No N/A 82.9

Pang & Lee [8] 1000+

1000-

NB, SVM 10-fold Yes 87.15 87.2

Mullen & Collier [7] 700+

700-

Hybrid SVM (Turney values,

Osgood values, lemma models)

10-fold No 83.5 86

König & Brill [6] 1000+

1000-

Pattern-based, SVM, Hybrid 5-fold No 87.5 91

Abbasi et al. [1] 1000+

1000-

Genetic Algorithms (GA), In-

formation Gain (IG), IG + GA

10-fold Yes 87.95 91.7

Prabowo & Thelwall

[10]

1000+

1000-

Hybrid (rule + closeness mea-

sure + SVM)

10-fold No 87.3 87.3

Table 1: Results reported in the literature on various versions of the Pang et al. [9] movie review data set.

The first use of supervised learning in sentiment

analysis was by Pang et al. [9]. Their aim was to

determine whether sentiment analysis could be treated

as a special case of topic-based categorisation with

two topics: positive and negative. To achieve this

they tested Naı̈ve Bayes (NB), Maximum Entropy

(ME), and Support Vector Machine (SVM) classifiers,

all of which have performed well in topic-based

categorisation. For features, they used the words

and symbols of the documents as either a unigram

or a bigram bag-of-features, with unigrams generally

performing better. They tested Feature Frequency (FF)

and Feature Presence (FP) and found that by using a

SVM with unigram FP they could achieve an accuracy

of 82.9% in a 3-fold cross validation test. Table 1 lists

some of the best results that have been reported in the

literature.

2.1 Feature Selection
Most researchers employ basic feature selection in their

work in order to improve computational performance,

with a few using more complicated approaches [5, 8, 1].

To date there have only been two papers that have

entirely focused on using feature selection to improve

sentiment analysis. The first was by Pang & Lee [8],

who used a SVM trained on subjective and objective

text to remove objective sentences from the corpus. In

their initial results they found that document sentiment

classification accuracy actually declined. They then

conducted some “non-obvious feature engineering”

by making it more likely that sentences adjacent to

removed sentences would be removed as well, which

slightly improved accuracy over their baseline.

The other work that used sophisticated feature se-

lection was by Abbasi et al. [1]. They found that using

either information gain (IG) or genetic algorithms (GA)

resulted in an improvement in accuracy. They also com-

bined the two in a new algorithm called the Entropy

Weighted Genetic Algorithm (EWGA), which achieved

the highest level of accuracy in sentiment analysis to

date of 91.7%. The drawback of this new method is

that while it can efficiently classify items, it is very

computationally expensive to conduct the initial feature

selection, since both GA and IG are expensive to run.

2.2 SentiWordNet
SentiWordNet (SWN) is an extension of WordNet that

was developed by Esuli & Sebastiani [2], which is in-

tended to augment the information in WordNet with in-

formation about the sentiment of the words in WordNet.

Our research uses the information provided by senti-

ment in some detail, so we will describe it here. Each

synset in SWN has a positive sentiment score, a neg-

ative sentiment score and an objectivity score. When

these three scores are summed they equal one, so they

give an indication of the relative strength of the posi-

tivity, negativity and objectivity of each synset. Esuli

& Sebastiani [2] obtained these values by using several

semi-supervised ternary classifiers, all of which were

capable of determining whether a word was positive,

negative, or objective. If all the classifiers agreed on a

classification then the maximum value was assigned for

the associated score, otherwise the values for the posi-

tive, negative and objective scores were proportional to

the number of classifiers that assigned the word to each

class.

The drawback in using SWN is that it requires word

sense disambiguation to find the correct sense of a word

and its associated scores. Whilst there has been sig-

nificant research into this problem, we decided that it

was out of scope to use any sophisticated word sense

disambiguation for this project, so we simply took the

highest positive and negative values that we could find

for each word. This is based on the assumption that in a

subjective document it is reasonably likely that the most

subjective sense of a word is being used. Preliminary

testing confirmed that using the most subjective senses

68



tended to outperform the senses that are known to be

most frequent.

3 Data & Evaluation
We use two different supervised learning approaches to

sentiment analysis: Support Vector Machines (SVM)

and Naı̈ve Bayes (NB). SVM and NB classifiers were

originally used in sentiment analysis by Pang et al. [9],

who found that SVM classifiers generally outperformed

NB. In order to be as comparable to Pang & Lee as

possible we use the SVM implementation developed by

Joachims [4], called SVMLIGHT . For Naı̈ve Bayes we

use the implementation available in Weka [15].

The data set we use is the set of 1000 positive and

1000 negative movie reviews from IMDb1 that was in-

troduced in Pang et al. [9]. For all of our experiments

we conduct 10-fold cross validation, and we use paired

t-tests at a confidence level of 0.05 to establish signifi-

cance.

4 Feature Weighting Methods
4.1 Unigram Features
In the domain of sentiment analysis, and more generally

text categorisation, it is common to use the words and

symbols within the corpus as features in the feature

vectors. Though there are other ways of representing

the words and symbols, we will be using unigrams,

where each unique word or symbol is counted as one

feature. Pang et al. [9] found that unigrams fairly com-

prehensively out-performed bigrams and combinations

of unigrams and bigrams. The different feature weights

for the unigrams are discussed below.

4.1.1 Feature Frequency (FF)

The simplest way to represent a document with a vector

is the feature frequency method that was originally used

in sentiment analysis by Pang et al. [9]. The method

uses the term frequency, i.e. the frequency that each

unigram occurs within a document, as the feature values

for that document. So if the word “excellent” appeared

in a document ten times, the associated feature would

have a value of ten.

4.1.2 Feature Presence (FP)

Pang et al. [9] were also the first to use feature presence

in sentiment analysis. Feature presence is very similar

to feature frequency, except that rather than using the

frequency of a unigram as its value, we would merely

use a one, to indicate that the unigram exists in the doc-

ument. Multiple occurrences of the same unigram are

ignored, so we get a vector of binary values, with ones

for each unique unigram that occurs in the document,

and zeros for all unigrams that appear in the corpus but

not in the document.

1http://www.imdb.com

4.1.3 Term Frequency - Inverse Document
Frequency (TF-IDF)

TF-IDF is a common metric used in text categorisation

tasks [11], but its use in sentiment analysis has been

less widespread, and surprisingly it does not appear to

have been used as a unigram feature weight. TF-IDF

is composed of two scores, term frequency and inverse

document frequency. Term frequency is found by sim-

ply counting the number of times that a given term has

occured in a given document, and inverse document

frequency is found by dividing the total number of doc-

uments by the number of documents that a given word

appears in. When these values are multiplied together

we get a score that is highest for words that appear

frequently in a few documents, and low for terms that

appear frequently in every document, allowing us to

find terms that are important in a document.

4.2 SentiWordNet Word Groups
While unigram features have emerged as the most ac-

curate approach to sentiment analysis, there has still

been significant work in using other types of features

[14, 7, 10]. While most of this previous research has

shown that grouping or summing words based on their

out-of-context sentiment has not performed well on its

own [14, 9], some researchers have used these sorts

of features to augment unigrams [7]. We add to this

research by using SWN to put the words found in each

document into groups, which we can then use as fea-

tures for classifiers.

4.2.1 SWN Word Score Groups (SWN-SG)

One of the interesting features of SWN is that there are

only a limited number of values that the positive and

negative word scores can take on, due to the way those

scores are calculated. We can take advantage of this

fact to group words with the same positive or negative

score, so that rather than having features that corre-

spond to words, we have features that correspond to

groups of words. The value of a feature would then be

the number of words in the document that have the same

positive or negative SWN score. So for example if the

sentence “The acting was excellent, the special effects

were amazing, and the script was terrific” appeared in

a document we might find that “excellent,” “amazing,”

and “terrific” all had the same positive score. When

we turn that sentence into a feature vector one of the

features would correspond to that positive score and

would have a value of three, since there are three words

with that score.

4.2.2 SWN Word Polarity Groups (SWN-PG)

Since SWN gives words both a positive and negative

score, we can find whether a word is more positive than

negative and vice versa. This allows us to define two

features, positive and negative, which correspond to the

counts of positive and negative words respectively. So

69



words that are more positive than negative add one to

the positive feature and words that are more negative

add one to the negative feature. The end result is a fea-

ture vector with two features, the first being the number

of positive words and the second being the number of

negative words in the document.

4.2.3 SWN Word Polarity Sums (SWN-PS)

The final feature type that we introduce is similar to the

word polarity groups, except that we actually sum the

positive and negative scores, rather than just tallying

the number of words with those scores. So when we

convert a document into a feature vector there are two

features. The first one is the sum of the SWN posi-

tive scores of all words that have a higher positive than

negative score. The second feature is the sum of the

SWN negative scores of all words that have a higher

negative score than positive score. Any words that have

no positive and no negative score, or where the positive

and negative scores are equal, are ignored. The scores

are adjusted for document length, so different length

documents can be more accurately compared.

5 Feature Selection
When we set out to classify a document we generally

start off with a very large number of words that need

to be considered, even though very few of the words

in the corpus are actually expressing sentiment. These

extra features have two clear drawbacks that we would

like to eliminate. The first is that they make document

classification slower, since there are far more words

than there really needs to be. The second is that they

can actually reduce accuracy, since the classifier must

consider these words when classifying a document.

Clearly there is an advantage in using fewer

features, so in order to remove some of the unnecessary

features, we use feature selection. As the name

suggests, feature selection is a process where we

run through the corpus before the classifier has been

trained and remove any features that seem unnecessary.

This allows the classifier to fit a model to the problem

set more quickly since there is less information to

consider, and thus allows it to classify items faster. In

this section we describe several different methods of

feature selection.

5.1 Categorical Proportional Difference
(PD)

Categorical Proportional Difference (PD), introduced

by Simeon & Hilderman [12], is a metric which tells

us how close to being equal two numbers are. We can

use this to find unigrams that occur mostly in one class

of documents or the other, by using the positive doc-

ument frequency and negative document frequency of

a unigram as the two numbers. In other words if a

unigram occurs predominantly in positive documents

or predominantly in negative documents then the PD

of the unigram will be close to one, whereas if it oc-

curs in about as many positive documents as negative

documents then its PD will be close to zero. While

Simeon & Hilderman use a more general equation for

multi-class problems, we use a simplified equation for

our two-class problem, which is as follows:

|PositiveDF −NegativeDF |
PositiveDF + NegativeDF

A high score from this equation indicates that the uni-

gram is telling us a lot, and a low score indicates that

the unigram is telling us very little. For example if

the word “actor” appears in exactly as many positive

documents as negative documents then finding the word

“actor” in a new document will tell us nothing about it

and as such its PD score will be zero. Conversely, if the

word “excellent” appears in only positive documents

then finding the word “excellent” in a new document

would give us a good clue that the document is positive,

and as such it would have a PD score of one. So to use

PD as a feature selector we simply need to remove any

features where the result of the equation is less than or

equal to some threshold value.

5.2 SWN Subjectivity Scores (SWNSS)
The SWN feature selector is actually able to distinguish

objective and subjective terms, which is useful since

only subjective terms should carry sentiment. To do

this we use the SWN subjectivity score, which is found

by adding the positive and negative SWN scores of a

unigram together. This is the opposite of the objectivity
score that is defined by Esuli & Sebastiani [2], but its

use is equivalent. To use it as a feature selector we

simply remove any unigrams whose subjective score is

less than a certain threshold. When this feature selector

is used, unigrams that are not found in SWN, such as

names and misspellings, are removed from the corpus

as well (although arguably the names of certain actors

could give strong clues about the quality of a movie).

5.3 SWN Proportional Difference
(SWNPD)

While the SWN subjectivity feature selector can find

words that have some a priori sentiment attached, it

cannot tell us whether that sentiment is consistent or

meaningful. It is entirely possible that a word may have

a SWN subjectivity score of one, indicating that it is

very subjective, but its positive and negative scores may

be 0.5 each. This may make the word uninformative as

a feature so there could be value in removing it. To

do this we define SWN Proportional Difference, which

uses the SWN positive and negative scores in the PD

equation, as follows.

|SWNPos− SWNNeg|
SWNPos + SWNNeg

Similarly to PD, SWNPD will be high for words that are

mostly positive or negative, and low for words that are

70



a mix of both. By using this score we hope to remove

subjective words that have an ambiguous polarity from

the corpus.

6 Results and Discussion
Table 3 shows in bold the best results achieved for each

classifier with each feature selection method. The best

accuracy result was 87.15%, which was achieved using

PD feature selection with a threshold of 0.125 (which

uses 18,149 features or 36% of the total) and FP as

a feature weighting method. For comparison, Table

1 shows other results reported in the literature. All

approaches used the same dataset which was created by

Pang et al. [9] and is the de facto standard for sentiment

analysis. Note that the evaluation methodology and

the number of instances varies between the approaches

which makes it difficult to compare the results. Having

said that, our best accuracy is 4.55% lower than the best

reported result of 91.7% by Abbasi et al.[1].

Our approach offers several key advantages

though. Firstly, Abbasi et al’s EWGA method is quite

computationally expensive. Our best result, though less

accurate, is much more computationally efficient, and

can make both classification and training faster. Our

method is also much simpler and easier to implement.

Furthermore we start from a baseline that is 2% lower

than Abbasi et al, which reduces the significance of

the accuracy difference. The next best accuracy of

91% was achieved by König & Brill [6], who used

pattern matching techniques. Their method is also

very computationally expensive and has the additional

drawback of requiring human intervention. Other

approaches in the literature tend to have an accuracy

that is similar to ours [7, 5, 9, 8], though without using

feature selection.

6.1 Comparison of Classifiers
Figure 1 shows the best accuracy for the two classi-

fiers with all the different feature weighting methods

and feature selection methods. For the unigram based

feature weights, our results confirm the findings of Pang

et al.[9], which is that SVM classifiers are significanly

more accurate than NB classifiers. However, for the

word group based feature weights the results are less

clear. In 8 of the 12 best results for the word group

based feature weights, there was less than 0.5% differ-

ence between the NB and SVM classifiers, though in

the remaining four cases the SVM clearly performed

better. This finding shows that while SVM classifiers

are substantially more accurate than NB classifiers for

unigram based feature weights, they may not necessar-

ily be the best approach for other types of features.

6.2 Comparison of Feature Selectors
Table 3 compares the results between the three feature

selectors and the baseline where no feature selection

was used for both SVM and NB. The results show that

PD SWNSS SWNPD

0 14,617

(28.71%)

0.125 18,149

(35.64%)

8,250

(16.2%)

7,433

(14.6%)

0.25 14,860

(29.18%)

7,094

(13.93%)

6,870

(13.49%)

0.375 10,342

(20.31%)

6,061

(11.9%)

5,943

(11.67%)

0.5 9,180

(18.03%)

4,919

(9.66%)

5,750

(11.29%)

0.625 6,716

(13.19%)

3,607

(7.08%)

4,868

(9.56%)

0.75 6,034

(11.85%)

2,302

(4.52%)

4,485

(8.81%)

0.875 5,767

(11.33%)

1,326

(2.6%)

4,431

(8.7%)

1 5,758

(11.31%)

739

(1.45%)

4,431

(8.7%)

Table 2: Number of selected features by each feature

selector for the various selection thresholds.

PD and SWNSS were successful in maintaining clas-

sification accuracy when used with appropriate thresh-

olds, and SWNPD was able to maintain accuracy in all

cases except for three. PD in particular was able to

statistically significantly improve accuracy for nine out

of 12 combinations of classifiers and feature weights,

while SWNSS and SWNPD were able to improve ac-

curacy in three and one cases respectively. Table 2

shows the number of features selected by each feature

selection method at each threshold.

From the results in Table 3 one might conclude that

PD was the best feature selection method. However,

Figures 2a and 2b provide more information. They

show that at low thresholds PD is quite successful at

improving accuracy for all of the feature weights, but at

higher thresholds accuracy drops sharply. Conversely,

both SWNSS and SWNPD have relatively flat lines,

indicating that they are more able to find the most

effective features at any threshold.

6.3 Comparison of Feature Weights
Figure 2 a), c) and e) show the results for SVM for

the three feature selection methods respectively, while

Figure 2 b), d) and f) show the same for NB. The x-

axis corresponds to the feature selection threshold; as

the threshold increases, the number of selected features

decreases. The starting point marked with a ‘B’ cor-

responds to the baseline where no feature selection is

used. In general we found FP was the most accurate

feature weighting method, which is in agreement with

the results of Pang et al. [9]. Interestingly, the ac-

curacy of FF increased steeply when feature selection

was applied. We speculate that this was due to the

presence of stop-words, so we conducted a further test

of FF with SVM and all words appearing in 1000 or

71



�� �� ������ �	
��� �	
��� �	
���

�


�

��

��

��

��

��

��

��

��


��

���������	
�������
	��

���


�

(a)

�� �� ������ �	
��� �	
��� �	
���

�


�

��

��

��

��

��

��

��

��


��

����������	�
��	��	
	�
��

���


�

(b)

�� �� ������ �	
��� �	
��� �	
���

�


�

��

��

��

��

��

��

��

��


��

������������	
��������	��

���


�

(c)

Figure 1: Accuracy results (%) for SVM and NB when used with different feature selectors with different

thresholds and the six feature weighting methods.

None PD SWNSS SWNPD

FF 72.5 85.5 ↑ 81.3 ↑ 79.85 ↑
t=0.25 t=0.375 t=0.125

FP 85.95 87.15 85.3 83.55 ↓
t=0.125 t=0 t=0.125

TF-IDF 85.9 85.6 86.55 82.95 ↓
t=0.125 t=0 t=0.125

SWN-SG 65.5 71.75 ↑ 66.75 65.45

t=0.25 t=0.5 t=0.125

SWN-PG 62.2 67.1 ↑ 62.2 62

t=0.5 t=0.125 t=0.5

SWN-PS 62.85 69.35 ↑ 62.85 63.2

t=0.25 t=0.375 t=0.125

(a) SVM Results

None PD SWNSS SWNPD

FF 68.65 77.2 ↑ 72.9 ↑ 71

t=0.5 t=0.875 t=0.125

FP 80.65 81.5 81.3 79.75
t=0.25 t=0.125 t=0.125

TF-IDF 75.3 77.6 ↑ 74.4 73.3 ↓
t=0.25 t=0.25 t=0.125

SWN-SG 59.9 65.2 ↑ 63.1 ↑ 60.05

t=0.375 t=1 t=0.125

SWN-PG 62 67.35 ↑ 62 62.1

t=0.5 t=0.125 t=0.25

SWN-PS 62.7 69.25 ↑ 62.7 62.9

t=0.25 t=0 t=0.125

(b) NB Results

Table 3: Comparison between the three feature selection methods and no feature selection for SVM and NB with

all six feature weightings. The best accuracy (%) for each feature selector is shown in bold with statistically

significant gains over the baseline marked with an up arrow (↑) and statistically significant losses marked with a

down arrow (↓).

more documents removed. This achieved an accuracy

of 83.95%, which indicates that the case for ignoring

FF is not as clear cut as the results of Pang et al. [9]

suggest.

Unigram based methods consistently outperformed

the SWN word group methods for both SVM and NB

with all combinations of feature weights and selectors.

This finding is in agreement with the findings by Pang

et al. [9] and Turney [14], who both noted that summing

any out-of-context sentiment scores of individual words

does not seem to capture the subtleties that exist in sub-

jective writing. The features produced by SWN-SG,

SWN-PG, and SWN-PS illustrate this point quite effec-

tively since they all have approximately equal scores for

positive and negative words regardless of the sentiment

of the document. This is shown in Figure 3, where we

would expect the positive bars to be higher for posi-

tive documents and the negative bars to be higher for

negative documents. Instead the bars are approximately

equal, indicating that there are about as many positive

and negative words in positive documents as there are

in negative documents.

7 Conclusions
In this paper we empirically and systematically evaluate

the performance of a number of feature selection and

feature weighting methods for sentiment analysis. In

particular, we introduce two new feature selection

methods - SWNSS and SWNPD - and compare them,

at a number of selection thresholds, with PD, a recently

proposed method, shown to be very successful for

topic-based classification. We also introduce three

feature weighting methods - SWN-SG, SWN-PG and

SWN-PS - and compare their performance with the

standard and popular FF, FP and TF-IDF methods. The

experiments are conducted using two classifiers, SVM

and NB, on the movie review data set that has become

the de facto standard dataset for sentiment analysis.

We achieved an accuracy of 87.15% using PD as

a feature selector, FP as a weighting mechanism and

SVM as a classifier. This is a promising result as it

is comparable with previous state-of-the-art results

but is much less computationally expensive. All the

feature selectors we tested were able to improve the

72



Threshold

Accuracy (%)

B 0.25 0.5 0.75 1

50

60

70

80

90

FF

FP
TFIDF

SWN-SG
SWN-PG
SWN-PS

(a) SVM - Categorical Proportional Difference

Threshold

Accuracy (%)

B 0.25 0.5 0.75 1

50

60

70

80

90

FF

FP

TFIDF
SWN-SG
SWN-PG
SWN-PS

(b) NB - Categorical Proportional Difference

Threshold

Accuracy (%)

B 0 0.25 0.5 0.75 1

50

60

70

80

90

FF
FP

TFIDF

SWN-SG

SWN-PG
SWN-PS

(c) SVM - SentiWordNet Subjectivity Scores

Threshold

Accuracy (%)

B 0 0.25 0.5 0.75 1

50

60

70

80

90

FF
FP

TFIDF

SWN-SG

SWN-PG
SWN-PS

(d) NB - SentiWordNet Subjectivity Scores

Threshold

Accuracy (%)

B 0.25 0.5 0.75 1

50

60

70

80

90

FF
FP
TFIDF

SWN-SG

SWN-PG
SWN-PS

(e) SVM - SentiWordNet Proportional Difference

Threshold

Accuracy (%)

B 0.25 0.5 0.75 1

50

60

70

80

90

FF

FP

TFIDF

SWN-SG
SWN-PG
SWN-PS

(f) NB - SentiWordNet Proportional Difference

Figure 2: Accuracy results (%) for SVM and NB when used with different feature selectors with different

thresholds and the six feature weighting methods.

73



Figure 3: Average number of words with each SWN

positive and negative score, from each class of docu-

ments.

performance over the baseline without feature selection

when used with appropriate weighting methods.

Overall, PD was the most successful at improving

accuracy, although SWNSS was able to achieve the

smallest feature sets whilst maintaining accuracy. The

unigram based feature weights - FP, FF and TF-IDF

- outperformed SWN-SG, SWN-PG and SWN-PS.

Overall, FP was the most successful feature weighting

method for both SVM and NB.

Future work will include evaluating more feature

selection methods, particularly some of the common

ones from text categorisation, such as information gain

and χ2. It would also be valuable to combine some of

the feature selectors to see if better feature sets can be

produced. Lastly, there would be significant value in

repeating these tests on another data set.

References
[1] A Abbasi, HC Chen and A Salem. Sentiment

analysis in multiple languages: Feature selection

for opinion classification in web forums. ACM
Transactions On Information Systems, Volume 26,

Number 3, 2008.

[2] A. Esuli and F. Sebastiani. SentiWordNet: a

publicly available lexical resource for opinion

mining. In Proc. of LREC 2006 - 5th Conf. on
Language Resources and Evaluation, Volume 6,

2006.

[3] V. Hatzivassiloglou and K. R. McKeown. Pre-

dicting the semantic orientation of adjectives. In

Proc. of the eighth conf. on European chapter of
the ACL, pages 174–181, 1997.

[4] T. Joachims. Making large-scale support vector
machine learning practical, Advances in kernel

methods: support vector learning. MIT Press,

Cambridge, MA, 1999.

[5] A. Kennedy and D. Inkpen. Sentiment classifi-

cation of movie reviews using contextual valence

shifters. Computational Intelligence, Volume 22,

Number 2, pages 110–125, May 2006.

[6] A. C König and E. Brill. Reducing the human

overhead in text categorization. In Proceedings of
the 12th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages

598–603, 2006.

[7] T. Mullen and N. Collier. Sentiment analysis using

support vector machines with diverse information

sources. In Proc. of the Conf. on Empirical Meth-
ods in Natural Language Processing EMNLP,

pages 412–418, 2004.

[8] B. Pang and L. Lee. A sentimental education:

Sentiment analysis using subjectivity summariza-

tion based on minimum cuts. In Proc. of the ACL,

pages 271–278. ACL, 2004.

[9] B. Pang, L. Lee and S. Vaithyanathan. Thumbs

up?: sentiment classification using machine learn-

ing techniques. In EMNLP ’02: Proc. of the
ACL-02 conf. on Empirical methods in natural
language processing, pages 79–86. ACL, 2002.

[10] R. Prabowo and M. Thelwall. Sentiment analysis:

A combined approach. Journal of Informetrics,

2009.

[11] F. Sebastiani. Machine learning in automated text

categorization. ACM Comput. Surv., Volume 34,

Number 1, pages 1–47, 2002.

[12] M. Simeon and R. Hilderman. Categorical propor-

tional difference: A feature selection method for

text categorization. In AusDM, pages 201–208,

2008.

[13] R. M. Tong. An operational system for detecting

and tracking opinions in on-line discussions. In

Working Notes of the ACM SIGIR 2001 Workshop
on Operational Text Classification, pages 1–6,

2001.

[14] P. Turney. Thumbs up or thumbs down?: semantic

orientation applied to unsupervised classification

of reviews. In ACL ’02: Proc. of the 40th Annual
Meeting on ACL, pages 417–424. ACL, 2002.

[15] I. H Witten and E. Frank. Data Mining: Practical
machine learning tools and techniques. San

Francisco, Morgan Kaufman Publishers, 2005.

74



The Use of Topic Representative Words in Text Categorization

Su Nam Kim♠ and Timothy Baldwin♥

♠ ♥ Computer Science and Software Engineering
♥ NICTA VRL

University of Melbourne
Victoria, 3056, Australia

{snkim,tim}@csse.unimelb.edu.au

Min-Yen Kan♣

♣ Computer Science
National University of Singapore

Singapore, 117417, Singapore

kanmy@comp.nus.edu.sg

Abstract We present a novel way to identify the rep-
resentative words that are able to capture the topic of
documents for use in text categorization. Our intuition
is that not all word n-grams equally represent the topic
of a document, and thus using all of them can poten-
tially dilute the feature space. Hence, our aim is to in-
vestigate methods for identifying good indexing words,
and empirically evaluate their impact on text catego-
rization. To this end, we experiment with five differ-
ent word sub-spaces: title words, first sentence words,
keyphrases, domain-specific words, and named entities.
We also test TF·IDF-based unsupervised methods for
extracting keyphrases and domain-specific words , and
empirically verify their feasibility for text categoriza-
tion. We demonstrate that using representative words
outperforms a simple 1-gram model.

Natural Language Techniques and Documents, Text
Categorization

1 Background and Motivation
Automatic text categorization is the task of classifying

documents into a set of predefined categories. It is one

of the more heavily researched areas in natural language

processing (NLP) due to its immediate applicability in

applications such as text filtering [1], word sense dis-

ambiguation [11] and automated authorship attribution

and genre classification [8].

The conventional approach to text categorization

utilizes supervised machine learners such as support

vector machines (SVMs) and Maximum Entropy (ME)

models, and represents each document as a bag of

word n-grams [40, 14, 10]. Empirically, SVMs have

been shown to be superior to other machine learning

techniques such as Naive Bayes (NB), Rocchio and

decision trees over a range of tasks [40, 10].

While the predominance of research in text

categorization is on machine learning models, there

has also been significant research on feature extraction

[4, 2, 24, 21] and feature weighting/selection [18, 41,

Proceedings of the 14th Australasian Document Comput-
ing Symposium, Sydney, Australia, 4 December 2009.
Copyright for this article remains with the authors.

7]. While the majority of research has used simple

n-grams to represent documents [4], this has been

expanded in various ways, including word clusters [2],

complex nominals [24], words from automatically

extracted sentences [21], and title words/keyphrases(or

keywords) [13]. Similarly, while most research has

used simple term weighting (TF and/or TF·IDF
variants), some have used attributes such as mutual

information [18], chi-square [41], and gain ratio [7] to

weight and/or select features.

Our interest is in the impact of different term types

on text categorization. Our intuition is that not all word

n-grams equally represent the topic of a document,

and thus using all of them can potentially dilute the

feature space. Hence, our aim is to investigate methods

for identifying good indexing words, and empirically

evaluate their impact on text categorization. To find

representative topic words, we tested five different

word groups: title words, first sentence words,
domain-specific words, named entities, and keyphrases.

Title words and first sentence words are based on

the notion of document zoning. Domain-specific
words and named entities, on the other hand, are

typified as occurring with markedly-high occurrence in

documents of particular domains. Finally, keyphrases

are representative words, as identified by dedicated

methods such as [12] and [36]. We also test combining

the different term types with conventional terms

n-grams.

A secondary area of interest in this research is ex-

ploration of the utility of unsupervised term extraction

methods. As a result, we are particularly interested

in the utility of unsupervised keyphrase and domain-

specific word extraction methods on text categorization.

2 Zone-based Term Extraction
Our first term extraction method is based on document

zoning, i.e. the extraction of terms based on the docu-

ment structure. A common approach in keyphrase ex-

traction and topic detection is to use titles as a represen-

tation of the document topic. For example, [26] showed

that sentences in particular article sections, such as the

introduction and conclusion, contain more keyphrases

in scientific articles.

75



In our work, we drew on methods such as [21] in

extracting important sentences from documents based

on the simple heuristic that the title and first sentence

often contains key facts about the news story. From

these observations, we select the title words and first
sentence words as candidate terms. In each case, we ex-

tract out the component 1-grams, to minimize reliance

on parsing or manual processing. We also filter terms

by their combined occurrence in the document set, se-

lecting only those terms which occur with frequency

≥ 1, 2 or 3. The final number of title words is 8,622,

3,878, and 2,357, for cutoffs of 1, 2 and 3, respectively,

and the corresponding number of first sentence words is

11,565, 5,819, and 3,905, respectively. These numbers

are based on the evaluation data described in Section 6.

3 Keyphrases
Keyphrases are simplex (i.e. 1-gram) nouns or noun

phrases that represent the key ideas of the document.

Keyphrases can serve as a condensed summary of the

document and also as high-quality index terms. In the

past, the majority of keyphrase studies have used three

types of statistics to extract keyphrases: (1) document
co-occurrence, i.e. TF·IDF-style statistics relating

keyphrases to their relative co-occurrence across

documents [12, 26]; (2) keyphrase co-occurrence,

i.e. the extent to which keyphrases occur together in the

same documents [37]; and (3) term co-occurrence,

i.e. local contiguity of terms in keyphrases [28].

We quickly summarize related work first. KEA
[12] is a very simple and popular keyphrase extraction

and indexing tool. It uses two main features: TF·IDF
to capture document co-occurrence, and distance to

signify the relative locality of keyphrase occurrences

within documents. These features have been broadly

used in keyphrase extraction, e.g. by [37] in addition

to keyphrase co-occurrence. [26] extended the basic

KEA approach by applying linguistic features such as

document zones. GenEx [36] uses more syntactic

features, such as document positions and stemming. [3]

uses head noun-based heuristics. [35] use modelling

based on information loss between preceding and

proceeding document extents. Textract [28] ranks

keyphrase candidates by their degree of domain-

specificity and term cohesion in a text analysis system.

[38] uses information from clustered documents for

keyphrase extraction over single documents.

3.1 Unsupervised Keyphrase Extraction
As keyphrases are known to be representative of

document topics, it is also natural to use them as terms

for document categorization. Hulth and Megayesi [13]

used a supervised keyphrase extraction method, seeded

with 500 abstracts annotated with keyphrases. To avoid

documents without keyphrases, they controlled the

number of keyphrases to between 3 and 12.

While supervised techniques work well, they

require manually-built annotated corpora, which has

Word set T1(.02) T2(.04) T3(.06)

original 7,889 5,733 4,497

1+NP 25,343 15,257 10,679

Table 1: Number of collected keyphrases

implications both in terms of resource creation and

domain adaptability. We are interested in minimizing

such efforts, and thus committed to using unsupervised

or minimally-supervised methods. To the best of

our knowledge, very few unsupervised keyphrase

extraction methods exist. Therefore, we used the

features used in KEA to build our own unsupervised

keyphrase extractor. That is, we use TF·IDF and first
position, i.e. the inverse of the offset from the start of

the document, such that documents which occur earlier

in the document are preferred as keyphrase candidates.

First, we calculate the score for each candidate as

shown in (1), combining TF·IDF and first position.

Score = TF·IDF + (1− first position of Wi

# of total terms
) (1)

We then extract the top-N candidates as keyphrases.

In other keyphrase extraction research, N has typically

been set to 15, but in our case, we decided to experiment

with different thresholds. This is because the docu-

ments used in text categorization testbeds are short, and

thus result in comparatively few keyphrase candidates.

We selected thresholds by examining the score drop.

Specifically, we set the threshold to the point at which

the number of domain-specific terms gained at the cur-

rent similarity value is no more than a fixed proportion

(e.g. 2%) of keyphrases previously selected. Due to this

use of threshold, our keyphrase extractor did not assign

any keyphrases for a few documents.

Keyphrases can be either simplex nouns or

NPs. [13] found that breakdown-keyphrases (i.e. all

unigrams contained within a keyphrase) performed

better for text categorization. Hence, we also convert

keyphrases into their component unigrams. However,

we observed that whole keyphrases are often better

descriptors of the document topic (e.g. import goods
vs. goods). Thus, we tested another set, called 1+NP,

which combines 1-grams with the original keyphrases.

Table 1 shows the number of collected keyphrases

for the entire document collection (see Section 6)

at different threshold settings, for both the original

keyphrases and 1+NP. Figure 1 additionally shows the

proportion of documents containing different numbers

of keyphrases for the three thresholds.

To assess the quality of our unsupervised keyphrase

extractor, we sampled 100 documents from the training

data and had two human annotators manually assign

keyphrases to 50 documents each. The total number of

manually-assigned keyphrases in the 100 sample docu-

ments was 1, 486. Performance is shown in Table 2.

76



# of documents (%)

# of Keyphrases
 0

 2

 4

 6

 8

10

12

14

16

 0  5  10  15  20  25
 0

 2

 4

 6

 8

10

12

14

16

 0  5  10  15  20  25
 0

 2

 4

 6

 8

10

12

14

16

 0  5  10  15  20  25

Threshold 2
Threshold 3

Threshold 1

Figure 1: Proportion of documents assigned differing

numbers of keyphrases

Precision Recall Fscore

T1(.02) 9.76% 23.85% 13.85%

T2(.04) 15.32% 15.62% 15.47%

T3(.06) 21.02% 10.86% 14.32%

Table 2: Performance of keyphrase extraction

4 Domain-Specific Terms
Automatic domain-specific term extraction is a classi-

fication process where the terms are categorized using

a set of predefined domains with supervised machine

learning models. It has been studied for application in

areas such as keyphrase extraction [12, 38] and word

sense disambiguation [19].

Much of the work has been carried out using su-

pervised machine learning techniques in the context of

term categorization and/or text mining. [9] focused on

simplex terms using corpus comparison, and verified

the collected data using automatic and manual valida-

tion. [31] projected the categorized terms onto a pre-

defined set of semantic domains exploiting web knowl-

edge, and used the context to map the terms onto do-

mains. [29] proposed an unsupervised method for ex-

tracting domain-specific terms, and used them to check

word and keyword error rates.

In this paper, we test two unsupervised domain-

specific word extraction approaches, drawing on work

in the context of keyphrase extraction [16]. The first

one (D1) is based on simple TF·IDF. The second

method (D2) was proposed by [29], and is based on the

difference in TF for a given domain relative to other

domains, based on:

D2 = domain specificity(w) =

cd(w)

Nd

cg(w)

Ng

(2)

where cd(w) and cg(w) denote the number of occur-

rences of term w in the domain text and general docu-

ment collection, respectively. Nd and Ng are the num-

bers of terms in the domain corpus and in the general

corpus, respectively. If term w does not occur in the

general corpus, then cg(w) is set to 1; otherwise it is set

to the highest count in the general corpus.

We use the same thresholding method for the two

methods as described in Section 3.1.

Method Term set T1(.02) T2(.04) T3(.06)

D1 original 2,918 1,573 1,157

1+NP 3,969 1,918 1,344

D2 original 3,692 2,759 2,368

1+NP 7,169 5,021 4,215

Table 3: Number of collected domain-terms words

Overlap D1 D2

T1 1,612 55.24% 43.67%

T2 593 37.70% 21.49%

T3 404 34.92% 17.06%

Table 4: Overlap between domain-specific words col-

lected by D1 and D2

# of domain−specific words in a domain

# of domains

 0

 5

10

15

20

25

30

 0  5  10  15  20  25  30  35  40
 0

 5

10

15

20

25

30

 0  5  10  15  20  25  30  35  40
 0

 5

10

15

20

25

30

 0  5  10  15  20  25  30  35  40

Threshold 1
Threshold 2
Threshold 3

Figure 2: Number of domains containing differing

numbers of domain-specific terms for D1

Table 3 details the number of terms and 1+NP ex-

tracted by D1 and D2 over the document collection de-

scribed in Section 6, over three different threshold val-

ues. We also calculated the overlap in terms extracted

by the two methods, and report the numbers in Table 4.

The numbers in the second and third columns show the

portion of terms extracted by the D1 and D2, respec-

tively, which overlap with terms extracted by the second

method.

The number of domains containing differing num-

bers of terms is shown in Figures 2 and 3. D1 pro-

duced less domain-specific words in total (as shown in

Table 3), but the keyphrases are better distributed across

the domains.

In separate research, we manually evaluated the

terms extracted by the two methods, and found that D1

marginally outperformed D2 [16].

5 Named Entities
Named entity recognition is the task of identifying

atomic elements in a document which belong to

predefined categories such as location, person, and

organization. It has been applied to contexts including

Question-Answering (QA) [23] and information

retrieval [34]. The standard approach is based on

structured classification methods such as hidden

Markov models (HMMs) or conditional random fields

(CRFs). Recently, research has focused on semi-

77



# of domain−specific words in a domain

# of domains

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  5  10  15  20  25  30  35  40
 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  5  10  15  20  25  30  35  40
 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  5  10  15  20  25  30  35  40

Threshold 2
Threshold 3

Threshold 1

Figure 3: Number of domains containing differing

numbers of domain-specific terms for D2

Length F1(f ≥ 1) F2(f ≥ 2) F3(f ≥ 3)

original 11,431 6,538 4,650

1+NP 23,440 9,883 6,234

Table 5: Number of extracted named entities

supervised [27] and/or unsupervised approaches [5] to

named entity recognition.

The relevance of named entities (NEs) to this re-

search is that we expect they will be indicative of doc-

ument domains. For example, Gulf and Kuwait often

occur in the domain of oil and not other domains. Thus,

we trial named entities as a term type in text categoriza-

tion.

We experiment exclusively with the named entity

recognition software of the University of Illinois

at Urbana-Champaign (UIUC NER).1 UIUC NER
makes extensive use of non-local features and external

knowledge resources (i.e. gazetteers extracted from

Wikipedia), as well as semi-supervised learning.

It identifies four entity types (i.e. person, location,

organization and miscellaneous), and is reported to

have achieved 90.80 F1-score over the CoNLL-03

NER shared task

Table 5 shows the number of named entities

extracted by UIUC NER over our document collection

(see Section 6). We used three different frequency

cutoffs to select the candidate NEs (fNE ≥ 1, 2, 3),

and once again experimented with both the original

NEs and the 1+NP method of breaking down the NEs.

6 Text Categorization
We now describe our integrated approach for perform-

ing text categorization, incorporating the various ex-

tracted term types from the preceding sections.

As our dataset, we use the Reuters newswire corpus,

with 21,450 articles from 1987, spanning 135 topics.

The number of articles with no category label, one label

and multiple labels are 31%, 57% and 12%, respec-

tively. This dataset has been used widely for text cat-

egorization research. In particular, we use the Modified

1http://l2r.cs.uiuc.edu/˜cogcomp/asoftware.
php?skey=FLBJNE

Lewis Split, comprising 7,771 training and 3,019 test

documents across 90 domains.2

In preprocessing, we performed part-of-speech

(POS) tagging using the Lingua POS tagger, and POS-

sensitive lemmatization using morpha [22].3 Then we

built classifiers using SVMlight,4 with TF·IDF term

weighting in an attempt to generate as competitive as

possible a text categorization system.

As our benchmark, we use 1-grams with a

frequency cutoff of 1, 2 and 3 (i.e. all terms occurring

less than N times are ignored), along with stopping.

The best results were achieved for a frequency cutoff

of 3, with a micro-averaged F-score of 78.54%.

Table 6 shows the text categorization performance

of the various term extraction methods, organized into

four groups: (1) individual extraction methods; (2) the

combination of all extraction methods; (3) the combi-

nation of individual extraction methods with 1-grams;

and (4) the combination of all extraction methods with

1-grams. In each case, we report the micro-averaged

precision, recall and F-score (β = 1) for the given

method over the test data. All values which surpass

the benchmark performance (F3) at a level of statistical

significance (based on approximate randomisation, p <

0.05) are indicated in bold. In Table 6, F1, F2 and F3

refer to the three frequency cutoffs used for title words,

first sentence words and named entities (f ≥ 1, 2, 3),

while T1, T2 and T3 refer to the three thresholds used

for keyphrases and domain-specific words. We also

present the performance over the top-10 topics in Ta-

ble 7.

7 Text Categorization Results
Looking first at the individual methods (the top section

of Table 6), we notice that only keyphrases were able to

surpass the performance of the benchmark, closely fol-

lowed by title and first sentence words, then named en-

tities, and finally domain-specific terms. Almost no dif-

ference was observed between using the original terms

extracted by each of the methods, and combining the

original terms with their unigram components (1+NP).

In general, the standalone methods tended to do bet-

ter in terms of both precision and recall for lower cut-

off/threshold values, that is larger numbers of noisier

terms tended to boost performance across the board.

When we combine all five term extraction methods

(considering D1 and D2 separately), the results

exceed those of the benchmark in all cases for the

lowest threshold/cutoff values, and in select cases

for higher values. None of these gains were found

to be statistically significant, and yet the result is

encouraging as the best of the combined methods

outperforms the best of the standalone methods,

2http://www.daviddlewis.com/resources/
testcollections/reuters21578/

3The only use we made of the POS tags was in lemmatization.
4http://svmlight.joachims.org/svm\

_multiclass.html

78



F1/T1 F2/T2 F3/T3

Word Length Prec. Recall Fscore Prec. Recall Fscore Prec. Recall Fscore

Benchmark 1 87.15% 70.26% 77.80% 87.48% 70.53% 78.09% 87.98% 70.93% 78.54%

Title (T) 1 87.48% 70.53% 78.09% 87.58% 70.61% 78.18% 87.58% 70.61% 78.18%

First (F) 1 87.58% 70.61% 78.18% 87.48% 70.53% 78.09% 87.35% 70.42% 77.98%

Keyphrase (K) 1 88.01% 70.95% 78.57% 87.45% 70.50% 78.07% 87.68% 70.69% 78.27%

1+NP 87.78% 70.77% 78.36% 87.65% 70.66% 78.24% 87.65% 70.66% 78.24%

Domain (D1) 1 86.26% 69.54% 77.00% 85.70% 69.08% 76.50% 83.44% 67.27% 74.49%

1+NP 86.26% 69.54% 77.00% 85.70% 69.08% 76.50% 83.44% 67.27% 74.49%

Domain (D2) 1 84.67% 68.26% 75.58% 82.78% 66.73% 73.90% 81.75% 65.91% 72.98%

1+NP 84.67% 68.26% 75.58% 82.78% 66.73% 73.90% 81.75% 65.91% 72.98%

NE (N) 1 86.16% 69.46% 76.91% 85.53% 68.95% 76.35% 84.87% 68.42% 75.76%

1+NP 86.32% 69.59% 77.06% 85.53% 68.95% 76.35% 85.17% 68.66% 76.03%

T+F+K+D1+N 1 87.98% 70.93% 78.54% 87.91% 70.87% 78.48% 87.78% 70.77% 78.36%

1+NP 88.11% 71.03% 78.66% 87.72% 70.71% 78.30% 87.91% 70.87% 78.48%

T+F+K+D2+N 1 88.05% 70.98% 78.60% 87.95% 70.90% 78.51% 88.01% 70.95% 78.57%

1+NP 88.15% 71.06% 78.69% 88.08% 71.01% 78.63% 88.25% 71.14% 78.77%

B3+Title 1 87.72% 70.71% 78.30% 87.85% 70.82% 78.42% 87.55% 70.58% 78.15%

B3+First 1 87.78% 70.77% 78.36% 87.62% 70.63% 78.21% 87.82% 70.79% 78.39%

B3+Keyphrase 1 88.18% 71.09% 78.72% 87.85% 70.82% 78.42% 88.05% 70.98% 78.60%

1+NP 88.31% 71.19% 78.83% 88.38% 71.25% 78.89% 88.15% 71.06% 78.69%

B3+D1 1 87.95% 70.90% 78.51% 88.08% 71.01% 78.63% 87.95% 70.90% 78.51%

1+NP 87.95% 70.90% 78.51% 88.08% 71.01% 78.63% 87.95% 70.90% 78.51%

B3+D2 1 87.45% 70.50% 78.07% 87.32% 70.59% 77.95% 87.68% 70.69% 78.27%

1+NP 87.45% 70.50% 78.07% 87.32% 70.59% 77.95% 87.68% 70.69% 78.27%

B3+NE 1 87.58% 70.61% 78.18% 87.68% 70.69% 78.27% 87.98% 70.93% 78.54%

1+NP 87.58% 70.61% 78.18% 87.65% 70.66% 78.24% 87.45% 70.50% 78.07%

B3+T+F+K+D1+N 1 88.28% 71.17% 78.80% 88.31% 71.19% 78.83% 88.25% 71.14% 78.77%

1+NP 88.44% 71.30% 78.95% 88.15% 71.06% 78.69% 88.21% 71.11% 78.75%

B3+T+F+K+D2+N 1 88.31% 71.19% 78.83% 88.28% 71.17% 78.80% 88.48% 71.33% 78.98%
1+NP 88.44% 71.30% 78.95% 88.38% 71.25% 78.89% 88.48% 71.33% 78.98%

Table 6: Performance of text categorization

Benchmark (F3) Individual Individual+1-grams All candidates All candidates+1-grams

89.55% 89.59% 89.96% 90.02% 90.07%

Table 7: Performance over the top-10 topics

suggesting that there is complementarity between the

term extraction methods. Comparing D1 and D2, our

simple TF·IDF-based unsupervised term extraction

method is marginally superior to D2 (the method of

[16]).

Next, when we combine the individual methods

with the terms from the benchmark method, the

results improve uniformly, with the best-performing

method (keyphrases with 1+NP terms) surpassing the

benchmark method at a level of statistical significance.

This indicates that keyphrases, as extracted using

our adaptation of KEA, can successfully complement

simple 1-grams in text categorization.

Finally, when we combine the benchmark term

representation with all of the term extraction methods,

we again achieve statistically significant gains almost

50% of the time, once again pointing to the utility

of term extraction methods in text categorization

applications. Comparing these results with those for

the standalone term extraction methods combined with

the benchmark system, the full set of five methods is not

able to improve significantly beyond the performance

of keyphrase extraction with the benchmark system.

Looking to the results over the top-10 topics, we

find a similar trend, with keyphrases producing the best

standalone performance, and all term extraction meth-

ods combined with 1-grams producing the best overall

performance.

8 Conclusions
In this work, we evaluated the impact on text

categorization of five representative term extraction

methods, namely title words, first sentence words,

keyphrases, domain-specific words, and named

entities. We used the output of the different methods,

either individually or in combination, as the source of

terms for text categorization, and verified that we were

able to achieve statistically significant improvements

over a benchmark text categorization method using

either keyphrase extraction in combination with the

benchmark term representation, or the combination

of all term extraction methods, again in combination

with the benchmark term representation. On the basis

of this, we concluded that keyphrases were the pick

of the terms experimented with, but also that there is

complementarity between the different term types.

79



Acknowledgements
NICTA is funded by the Australian Government as rep-

resented by the Department of Broadband, Communi-

cations and the Digital Economy and the Australian Re-

search Council through the ICT Centre of Excellence

program.

References
[1] G. Amati and D. DAloisi and V. Giannini and

F. Ubaldini, A framework for filtering news and

managing distributed data, Journal of Universal

Computer Science, 1997, 3(8), pp. 1007–1021.

[2] L.D. Barker and A.K. McCalluma, Distributional

clustering of words for text categorization, In Pro-

ceedings of 21st ACM International Conference

on Research and Development in Informatoin Re-

trieval, 1998, pp.96–103.

[3] K. Barker and N. Corrnacchia, Using noun phrase

heads to extract document keyphrases, In Proceed-

ings of the 13th Biennial Conference of the Cana-

dian Society on Computational Studies of Intelli-

gence: Advances in Artificial Intelligence, 2000,

pp. 40–52.

[4] W.B. Cavnar and J.M. Trenkle, N-gram-based text

categorization, In Proceedings of SDAIR, 1994, pp.

161–175.

[5] M. Collins and Y. Singer, Unsupervised Models for

Named Entity Classification, In Proceedings of the

Joint SIGDAT Conference on Empirical Methods

in Natural Language Processing and Very Large

Corpora, 1999, pp. 100–110.

[6] D. Okanohara and Y. Miyao and Y. Tsuruoka

and J. Tsujii, Improving the Scalability of Semi-

Markov Conditional Random Fields for Named En-

tity Recognition, In Proceedings of COLING/ACL,

2006, pp. 465–472.

[7] F. Debole and F. Sebastiani, Supervised term

weighting for automated text categorization, In

18th ACM Symposium on Applied Computing,

2003, pp.784–788.

[8] J. Diederich and J. Kindermann and E. Leopold and

G. Paass, Authorship attribution with support vec-

tor machines, Applied Intelligence, 2003, 19(1/2),

pp.109–123.

[9] P. Drouin, Detection of Domain Specific Terminol-

ogy Using Corpora Comparison, In Proceedings of

the 4th LREC, 2004, pp. 79–82.

[10] S. Dumais and J. Platt and D. Heckerman and M.

Sahami, Inductive learning algorithms and repre-

sentations for text categorization, In Proceedings of

CIKM, 1998, pp. 148–155.

[11] G. Escudero and L. Marquez and G. Rigau, Boost-

ing applied to word sense disambiguation, In Pro-

ceedings of 11th European Conference on Machine

Learning, 2000, pp. 129–141.

[12] E. Frank and G.W. Paynter and I. Witten and C.

Gutwin and C.G. Nevill-Manning, Domain Spe-

cific Keyphrase Extraction, In Proceedings of the

16th IJCAI, 1999, pp. 668–673.

[13] A. Hulth and B. Megayesi, A Study on Automati-

cally Extracted Keywords in Text Categorization,

In Proceedings of the 21st COLING/ACL, 2006,

pp. 537–544.

[14] T. Joachims, Text categorization with support

vector machines: Learning with many relevant

features, In Proceedings of ECML, 1998, pp. 137–

142.

[15] M. Kida, M. Tonoike, T. Utsuro and S. Sato,

Domain Classification of Technical Terms Using

the Web, Systems and Computers, 2007, 38(14),

pp. 2470–2482.

[16] S. Kim, T. Baldwin and M-Y. Kan, An Unsuper-

vised Approach to Domain-Specific Term Extrac-

tion, In Proceedings of the Australasian Language

Technology Workshop 2009, to appear.

[17] Y. Ko and J. Park and J. Seo, Improving text

categorization using the importance of sentences,

Information Processing and Management, 2004,

40(1), pp. 65–79.

[18] D.D. Lewis, An evaluation of phrasal and clus-

tered representations on a text categorization task,

In 15th ACM International Conference on Research

and Development in Informaton Retrieval, 1992,

pp. 37–50.

[19] B. Magnini and C. Strapparava and G. Pezzulo

and A. Gliozzo, The role of domain information

in word sense disambiguation, Natural Language

Engineering, 2002, 8(4), pp. 359–373.

[20] Y. Matsuo and M. Ishizuka, Keyword Extrac-

tion from a Single Document using Word Co-

occurrence Statistical Information, International

Journal on Artificial Intelligence Tools, 2004,

13(1), pp. 157–169.

[21] R. Mihalcea and S. Hassan, Using the essence

of texts to improve document classification, In

Proceedings of RANLP, 2005.

[22] G. Minnen and J. Carroll and D. Pearce, Applied

morphological processing of English, Natural Lan-

guage Engineering, 2001, 7(3), pp. 207–223.

[23] D. Molla and M. van Zaanen and D. Smith,

Named Entity Recognition for Question Answer-

ing, In Proceedings of ALTW, 2006, pp. 51–58.

80



[24] A. Moschitti and R. Basili, Complex linguistic

features for text classification, In Proceedings of

26th European Conference on Information Re-

trieval Research, 2004, pp.181–196.

[25] D. Nadeau and P.D. Turney and S. Matwin, Un-

supervised Named-Entity Recognition: Generating

Gazetteers and Resolving Ambiguity, In cogprints,

2006, pp. 266–277.

[26] T. Nguyen and M.Y. Kan, Key phrase Extraction

in Scientific Publications, In Proceeding of Interna-

tional Conference on Asian Digital Libraries, 2007,

pp. 317-326.

[27] S. Pakhomov, Semi-Supervised Maximum En-

tropy Based Approach to Acronym and Abbrevi-

ation Normalization in Medical Texts, In Proceed-

ings of 40th ACL, 2002, pp. 160–167.

[28] Y. Park and R.J. Byrd and B. Boguraev, Automatic

Glossary Extraction Beyond Terminology Identifi-

cation, In Proceedings of COLING, 2004, pp. 48–

55.

[29] Y. Park and S. Patwardhan and K. Visweswariah

and S.C. Gates, An Empirical Analysis of Word

Error Rate and Keyword Error Rate, In Proceedings

of International Conference on Spoken Language

Processing, 2008, pp. 2070–2073.

[30] L. Ratinov and D. Roth, External Knowledge and

Non-local Features in Named Entity Recognition,

In Proceedings of NAACL, 2009.

[31] L. Rigutini and E. Di Iorio and M. Ernandes and

M. Maggini, Automatic term categorization by ex-

tracting knowledge from the Web, In Proceedings

of 17th ECAI, 2006, pp. 531–535.

[32] G. Salton and A. Wong and C.S. Yang, A vector

space model for automatic indexing, Communica-

tions of the ACM, 1975, 18(11), pp. 61–620.

[33] F. Sebastiani, Machine learning in automated text

categorization, ACM Computering Surveys, 2002,

34(1), pp. 1–47.

[34] S. Sekine and K. Sudo and C. Nobata, Extended

Named Entity Hierarchy, In Proceedings of LREC,

2002.

[35] T. Tomokiyo and M. Hurst, A Langauge Model

Approach to Keyphrase Extraction, In Proceed-

ings of ACL Workshop on Multiword Expressions,

2003, pp.33–40.

[36] P. Turney, Learning to Extract Keyphrases from

Text, In National Research Council, Institute for

Information Technology, Technical Report ERB-

1057, 1999.

[37] P. Turney, Coherent keyphrase extraction via Web

mining, In Proceedings of the 18th IJCAI, 2003,

pp. 434–439.

[38] X. Wan and J. Xiao, CollabRank: towards a col-

laborative approach to single-document keyphrase

extraction, In Proceedings of COLING, 2008, pp.

969–976.

[39] I. Witten and G. Paynter and E. Frank and C.

Gutwin and G. Nevill-Manning, KEA:Practical

Automatic Key phrase Extraction, In Proceedings

of the fourth ACM conference on Digital libraries,

1999, pp.254–256.

[40] Y. Yang and X. Liu, A re-examination of text

categorization methods, In Proceedings of SIGIR,

1997, pp. 42–49.

[41] Y. Yang and J.O. Pedersen, A comparative study

on feature selection in text categorization, In Pro-

ceedings of 14th International Conference on Ma-

chine Learning, 1997, pp. 412–420.

81



���� ��	
���
���� ��� ������� ��������
 ����	 ����

 ����
�
�����

����

���������� 	���1
 ��
��� ����1
 ��� ��1 ��� ������ 	������2

1������ �� �����

���� "�������	*
<
����* �� ������� 
�� "�������	*

>������
�� ���@�����* �� "�������	*
>������
�� \^^^ _����
��


�
������
 ������
 ����"�#$&���������
2`��
��
��� �� ��
����� �������

���@�����*�� {�
	�
`������ }^~\ ��� ��
�
��

������$*���������*��+

�������� ;� ���� <�<��
 �� <��<��� �� ����<������� ����
��������� �<<���*�
 ����� =������ �����
 ��>��������=
 ��
Z�[;
 ���*� �� ���� �� ������� \������ ��*������ ���� ��
*����*��� ����� �� <������
 ����� 
������� ��������*� �����
>��� ��� \������ ]�^�<���� *��<��� 	�� �<<���*� �

����
���� ��� ���������� �>>��� ���� �� ��&����� �� <��<����� ���
����������� ��� �����

� ��������� \������ ��"� >�� ������
��� <��<����
 ��� �����

� ����������� ���� �"<������ 
�"�
�*���� _�������
�
 �����
 ��>�������� ��� ���� �� �*�����
��������� ������������ ���� `�*����*��� ������ 	�� Z�[;
�<<���*� �"����� ��� �<<���*� �� ����
� 
����� ��*����*���
������ |"<�������� ���� ������������� ��*������ >��� ���
\������ ]�^�<���� *�

�*���� ���� ���� ����
���

�������	 ������� ���� ��	
���
����� 
���
� �����

�����
��	�

 
���
� �����

����� �����
�* ����������


 ��
�����
���

������ ������� �
� ��� ���
� �� ������	�� ��
������� 
�� ��
�
������
�� <�� ����
���� ��� ���� ����
 �� ������� 
� ��
��
������� �������� ��� 
� �� ��
������
� �������� <���
����
���� 
 ��� @
��
��� �� ������� �
�	�
	� ����� �� �������
��� ���
��� ��������	� �
���
�� ����
� "
��
�� ���	 ���	�
�
�
�� ���	
���� 
�� �
�
*��
� <�� ����
���� 
 �
��� �������

����������	 �� 
�� 
�
� ��	
����	��� �������
 �����
��� ����
��	���� ������� ��	
������ � �����!�� "##$% ��������
 ��� 
��	
��
���� ������	 ��
� 
�� ��
���	%

�� �
���� �� 

���
�� ����
� ��� ��
���	���	� 
�� �� "
��
��

�� ��	��
� ���������
����� �� ������� ���� ��������� �������	
����
�� �
@� ���� 
������ �� ��������� ��� ��
�
������ ����
�@��� 
��� �������	 ����
�� 
�� ����
�
����� ���� �
�� ������
"� 
@��� ��� �������� �� ��������� �������	 ��
��
��� 
�� ��
�
��� ��� �������� ���	������ ������������ ������� �� ����� ����
�� ����
���
��@� ����� ��� ��

��� �� ��������
 
�������� ����
�������� ������� 
������� �
� �� ��
����� �* ������ ���
 
��
��� 
��@� �����������
���	 
��
� �� 
 ����
���
��@� �
* �����
��� �������	 ������������� _� 
 ������� ����� ��������� ���
� ��
������� ������	� 
�� @
��
��� 

* ������� ������ �

� �
	���
������� ����� ��������
 
��� �
� 
 ������� ���������� �� ��
����
�
� ������� ���*� 
�� @������� ��� 
 ��� ������� ��
������ <��
��

���� ��
�� ��������
� ��
�������� ��������


�� ������� �����@��� �� ���� �������� 
	� 
��� 
�� 
��� ���
������� ���
� 
�� ������ 
� 
 �
���� ��
� �@�� �
��� �����������
��	�*� ��� ������� ��������
 �
	�� ���� �� ���
��� ��� ��� ���
��
�
����� �� ���� ���
�� �� �� ��������� �� ���� ��� �������
�*
�� �� �
�� ��� �� ��� �
�� �� ���
���� 
�� ������ �� ��� ���
��
_�� ����� ������ ����� ��
� �� ������� ��	
���
���� ������
� ��
��������
 ���� ���������	 ����� 
���
����	 �� ����	���� 
�
��
��	��� ����� �� 
 ������� 
������� 
� ���� ���� �� ������ ����
���� ���	�� ��
�
���� ����� ���� ��� 
���
� ��	�

 ���� �
�
��� �� ����	������ �� ����� �� ����
�� ��	�

 ����� ���
 

��������
 �
	�� ��� ��������	 ������
� 
��� �� �@����
��

� ��� �� ������� ������	 ���
�� ��
������� 
�� ��
������
�
� ��� �� ������� @
��
���
� ��� �� ��
����
� ������� 
�� ������ �������
� {�� �� @��
���
�* �����

82



"���� 

* �� ��� ������� �� �
���� ��� ����� ��� ������ ��
������� ��	
���
����� ��� ��� �������	 
������ 
�� ����������
�� ��� 
���
�� ��� ���������� �� 	����
�� �� ��� �
��� ��
��� �������� ��

� ������� ��� ������� ���� ��	
���
���� 
��
���
���� �
� �� ��
������� �� ��� �
��	������

� �����@���� 
������� ��	� ��
����	��
���� �� �������
���

������� ����� ������� �������� �
�	�
	� �������	��
���

��*� 
 ������	
����� ������ �� �
���*�� �� ��
��
��� ��	
���
���� 
����� ��	� ��� ����� �� ���� ����
����� ���� �� �� ����
��� ��� �������
�*��
��� 
������
��	� ��< ��^��

� �������@���� 
������� ����� 
�� ���� ��
����
���� 
��
��

���* ���� ���* ��
��� ��
������
� �
�
 ����@�� ���

����� ���� �� ������
 ��� ��	
���
����� <�� ����
����
��
������
� 
������ ����	 ��������� 
���
� �����

���� ����

��
� �� ����
�� ������
�
���� ����� ���* �� ��� ���	�


��
������� ���
 
 ������ ��� �����

"�� ��
��
��� �� �����@���� 
������ 
�� ��@����� "�� ���
���� �� ����
���	 ��� 

��
��* ��	
����� ������ 
�� �
�

��
���� �����	 �� �������@�� _���� ��� �������� ������ 

���* ���


����� ������� ���� ������ 

* ���* ��@�� 
 �

�� ������� ��
��������
 ������� ����� ����� �������@��
���
�*�{{�� �����

�� ������

��� ��� �������
�* �
��� 
������� `�������� �����
��	 
�� ��������� @
��
�� �
� ��
� �� ��������� ��
���
����� ��
��
�
����� �����������	 ��� �

� ����� <������
���� 
������
��	 �� ��� ��� ������
����
� ������� ���� ��	
���
���� �
���
��� ������ ��


�* ���� ��� �
����	� �� �
������
��� ������� ��
��������� ������
 ��� ����	 @��* ���������� ����� 

* �����
�
�� ��
� ��� �����@���� 
������ ���� �� ����� ��	
���
����
�*���
 
�� ���
 ���
������� �� ��
������
�� �������@�� "� 

��
��� �� ����� �������	 �*���
�� ��� ��	
���
���� ����� �� ����
��� �* ���@�����	 
�� ������� ���� ���� ��� ������� ���
� ��
�
������� �������� ��� ��

���� ����@��� ��� ��������	 �������


��� 

* �� �
�� �� ����� ���
��� ��� ������� ���
 ���@���
���� ����� ��� ��
�	� ��� �
* ��� @
��
�� �� ���� �
���
��*� <��
��

���� ��
���
� ��
�
���� �� ��
���� �� ��
����
���� ������� ����@
������ ���� ��

�� ��� �

� 
���� ���� ����
@������� 
�� ����� ����� ��� �� ����	����� ��������* 
�

 ���� ��� ��� ��
��������������� �������� ��	
���
���� �*��
��
� _� ��� ��
� �� ������	� �� ������

��� �� ��	
���
����
�
�	���� �� ������� ��������
 ������ ����	 ������
����������

�� �*���
� 
�� ���������

"� 
@��� ��� ������ �� ����
���	 
�� 

���
����	 ��	
�����
���� 
�� �������� ��� ��������� ������
 
�� �������
� ������
���� 
���*��	 �������	 
������ �� ������� ��������
 
����
����� 
 ��
��� �������@���� ��
������
� 
����� �
���� ��	�



���
� �����

����������� ����� ������ �� ��� ��
������
� �
�

���
 ���� 
����	 �� ������� ��������
 ������� �� �������� ��
���� �
���� �� ������ ��� ��� �� ��
�
������
��� 
���
� ������


���� �� �� ��	
�����
��� �� ����� �� ��
���� ��	�

 �������
���� ��	
���
����� "� 
����@� ���� 	�
�� �� ��������� 
 ���
������� �

�� �����
�* �������������� ����� �� ���� �� ���
���
��� ��� ~������� ������� ��	
����� "�� ��	�

 �����


�� ���� ���
�
��� �* ��� �����
����� "�� ����

���� �� ������

�* ���������� �� �
��� �� ��� 
���
� �����

���� �� 
�������	
��	
����� ����� ��	�

 
���
� �����

���� ����� ��� ������

���� �� ���� ��� ��� ��� ����� �������*� �� �@����
�� ��� ��
��
�
���� �� ��
������
� ��
	� �� 
���
� �����

���� �� ��� ����	�
������ �� ���	�

 ����� ���*�

" ���&���	 �
����	
���� ��
������
� 
������ ��� ���� ��	
���
���� 
�� ���� ����
������� �� ��� ������� ��	
���
���� ����
���� "��* 
�� ���

����
���� ��
� 

�� ��� �� ��
������
� �����

���� ����
����
���
 ���� �� �������* ������ "�� ���� ������ �� ��� ���*   ��
���
��	�� ������ ���� �* ��� ��	
���
���� 
������

�����
��*� ��� ��
������
� 
������ ���� �� ������� ��	
���
�
���� �
� �� ��
������� ���� ��� ��������	 	������ �����

����
"����* ���	� ������* 
�� 
���
� �����

������ _�������* �
�
����*� ������� 
�� {������ "�� 
����
�* �� ��� ��	
���
����
�� ��

���* �@
��
��� ����	 ��� ��
��� ���
�� 
�� ���������

�
������

R =
c

N
, and P =

c

n

� �� ��� ���
�� �
�� �� ��� ��	
���
����
_ �� ��� ��������� �
�� �� ��� ��	
���
����
* �� ��� ��
��� �� ��������* ���������� ��	
����� �����
Z �� ��� ��
��� �� ������ ������� ����� �� ��� ���� �
�

� �� ��� ��
��� �� ��	
����� ����� �� ��� ���� �
�


�� 
 ������ ����*� 
� 
�������* @
����*�_�� 
����� �
� ����
�������� �* <��	 �� 
�� �\� �� ��	
��� ����� �� 
 �������@����


����� _�������* @
����* 
�
����� ��� ����
�����* �� 
 ��
��

���� �������� ����	 
 ����� _ ���� �� ���
�
��� ���
 ��� ���
��� ���� �* ���	��	 ��� ������������ �� 
 �
����
�� ���� ���

��� ���� �* ����	 
������� @
����* ��������� �� ����������	 ���
��
��� �� �������� ��������	 
�� ��
����	 ��
�
������ _� _�
@
��� �� 
 �
����
�� ���� �� ��� 
���

� ��
��� �� ��������
��������	 �� ��
����	 ��
�
������ "�� ��	��� ��� ��
���� ���

��� ����������� ��� ���� ���

�����

���� �����* �
� ���� 	���� ��
�
���� ��������� ����
������ ¡�
 �¢� �£� 
�� �
� �£� ���� ��� ������* 
�
���� ��
����� ���� ��	
���
���� 
�	�����
� _ ��
�
���� �������� �� 

�������� ���� �� ��� �@��
�� ������* �� ����� ��
� ��� ���
� ���
����* �� ����@���
� ��
�
������ ����	 ���� ������* �����* ���
���� ���	
��� ����������*� "��	 
�� ¡�� ��\� ���������� ���
���
�������� �� 
 �
����
�� ���� ���� 
�� �������� ��������	

�� ��
����	 ���	�����
�
����� 
���
���	 �� ��� ������� "�� ���
����* @
���� 
�� �
����
��� ��� ����� ��
�
����� 	�@�� ��
� ���*
����� �� ������ ��� ���� �
�� ���� �� ��� ��	�� �
�� ���� �� ����
�
����
�� ����� �� ������* @
���� �� ������ ���� 
�� ��	�� ���
�
����
�� ���� ����� �� 
� 
���
� ����� ����
� �����

����

�� ��� ����@�� 
�	�����
� 
�� 

���* ���� �� ������	 ���	�


������

83



�����
��*� 
���
� �����

���� �� ���� �� 
�
���� ���
�����	�� �� 
�����
���� ��� ��� 
�������	 ��
�
������ "��
�����	�� 
�����
����� ��� 
��� �����* �� �� ��
� ���* ���
 
 �����
"�� ���
��
 ���� ��� �
����
���	 ��� 
�����
���� ����� ��� 
��
�
���� ��� ��
�
����� ���

A(xy) = MI(x, y) = log2(

freq(xy)
N

freq(x)
N

freq(y)
N

)

� log2(
p(xy)

p(x)p(y)
) ���

����� A(xy) �� ��� 
�����
���� ����� �� ���	�

 ��
�
�����
xy� freq(x) �� ��� ��������* �� ��
�
���� � ��������	 �� ���
	�@�� ������� freq(xy) �� ��� ��������* �� ��� ��
�
����� ���
������ �� �������� �* *� ��������	 �� ��� ������� Z �� ��� �����
�� ��
�
������ �� ��� 	�@�� ������� ���� �� 
� ����

�� �� ���
����
�����* �� ��
�
���� x ��������	 �� ������� �
����
��� 
�
freq(x)/N �

�
��� �� ����
� ¤ ������ ����� `
� �� 
�� ��� ������� ���
@������ 
� �
���@�� 
���
� �����

��������� ���
��
 �� ��	�

��� ���	�

 ����� ����	 ��	������� 
�
�*����

Improved MI(xy) = 0.39 ∗ log2(p(xy)) − 0.28 ∗ log2(p(x))

−0.23 ∗ log2(p(y)) − 0.32 ���

"���� ������
��� ������� �����
�� ����	 ���� ���
��
 �
� ��
�
��
� ��������� ���� ��
� �� ���	��
� 
���
� �����

���� ���
��
�
"��* 
��� ��@������ 
������ ���
��
 �
���� ��������
� ������


�������� ���
��
 ����� ��������� ��� ��������* �� ��� ��
��

���� ��������	 
�� ��� ��
�
���� ��������	 ��� ���	�

 
� �����
��@�� 
 ��
�
���� �������� � vxyz� ��� 
�����
���� �����	�� ��
���	�

 xy �� �
����
��� ���
�

CI(xy) = 0.35 ∗ log2(p(xy)) + 0.37 ∗ log2(p(v))

+ 0.32 ∗ log2(p(z)) − 0.36 ∗ log2(pdocwt(vx))

− 0.29 ∗ log2(pdocwt(yz)) + 5.91 ���

����� pdocwt �� ��� ���	���� ����
�����* ��� 	�@�� ��� ��
��

���� �� ���	�

 �� ������ �* ����������	 ��������* �� �����

��� ����� ��
� ��
�
���� �� ���	�

 
���
��� "�� ��������
�
�����

���� ���
��
 �
� ���� ���@�� ������ �� ���
 �� ������
����� "���� �� 
 ¢¥ �
���@�
��� �� 
@��
	� ��
�
���	 ����
��� ���
��
�

' *�+��� /�
��� �������
���
"� �@����
� ��� ��
��
����� �� ��� 
���
� �����

���� 
��
���
���� ��������	 ��� ���������� ��� 
�� �� �� ����	�����	
����� ���� ��� ��
�
����� ���*� �� ������� 
 ��� ��
��� ���
�����@���� 
����� � ��	�

 
���
� �����

���� ������ ��
��	
��� ��	�

 ������ ���
�� 
���
� �����

���� �� ��@���
���� �
��� �� 
���
� �����

���� �� ��	
���� �* ���
����	

�� ���� ��������
� �����

����� "�� ���
 �� �� ��
��� �����
�* ������	 ��� ��� ���� �����
���� ������ 
 	�@�� ��������
�* ��
�����	 ��������
� �����

����� �
���� ��
� ������	 ���
������ "��� �
� ����� �* ��� �� 
�� �}�������� "�� ��� 
��
�
���� ��
�
����� 
��   ��������� ��   ���
�
����� �����	� 
 ���
���� �� ���	
��� ����� �
��� �� @
���� �� 
���
� �����

����

�� ���������� �� �������� ��� ��� ���� ����� 
�� �� �����
��@��@��� 
�� 
���
� �����

���� �� 	�����
	 ��� ���� 
��
�
���� ��
�
����� �� ����������� "�� �����
�* | �� 
 ���������	
�L|R�� ���������	 �� 
 ���� ��������	 ¡� 
�� 
 ��	�� ��������	 ��
�� �����
���� �
��� �� ��� �����
�* ��������������� �� 
�
�
����� ��� 
�����
���� ��@�� �� ��� ���� 
�� ��	�� ��������	�� "��
�����
�* ���������� �� 
�* 
�������	 ��	
���� �� ������� 
��

BC(L|R) = MI(L, R)

= sgn ∗ (A(LR))2 �\�

������

sgn =

��
�
−1, if A(LR) < 0

1, if A(LR) >= 0

����� � �� ��� 
�����
���� ����� �� ��	
��� Si 
�� ��	
���
Si+1� "�� ����� ��� 
���
� �����

���� ����� �� � 
�� �� ���

��� ��������� �� 
�� 
���� ��� �����
�*� �����
��* ���
��
��	� ��
�
����� ��
� ����� ��	����� ���������* �
@� 
 ��	� 
��
��
� �����

���� @
���� �����
���	 
 �����	 
�����
���� �������
���
� �� �� ���� �������* ��
� ����� ���� �� 
 �����
�* �������
���
� ���� ��� �����
���� 
�� �����
����� ��� ��
�
����� ���
����� ��� �����
���� 
�� ���������� 
� �
����
�� ������

<�� 
�* ����� �����	� �� �
@�

s = c1c2c3 · · · cici+1 · · · cn �~�

����� s �� ��� 
 ����� �����	 � ����
����	 � ������� ��
�
��
����� "���� 

* �� 
 �����
�* ������� 
�* �
�� �� 
�������	
��
�
����� cici+1� ��@�� 
 �������� �� � ��
�
����� �� �
� ���
��@� 
 ��
����� ���� �� 
�� �������� ��	
���
������ �� ��� �
��
�������� ��	
���
���� S� �� �
@�

S = [c1c2 · · · ci] | [ci+1ci+2 · · · ci+k] | · · · | [cn−mcn−m+1 · · · cn]

= S1S2 · · ·Sx �¦�

[c1c2c3 · · · cl]� �� Si,�� 
 ���	�� ��	
��� ���
 ��� ������
��������s� 
 �
����
�� ����� ������� 
 ����
�� ��	
���
����
�
� ��� ������� ����� �������� ����� �� �� ������� �* 
 
����
��
� �
� 

�� ��� ���� ������ �
��� �� ��� �
����	 ������ ��� 
��
�������� ��	
���
������ "���� ������ 
�� �
����
��� �* 
����

��
���	 
�� �����
�* ���������� @
����� "�� ��	�

 
���
�
�����

���� ���
��
 �� ���� ������� 
��

NGMI(S) = [BC(S1|S2), BC(S2|S3), · · · , BC(Sn−1|Sn)]

=
n
Σ

i=1
BC(Si|Si+1)

=
n
Σ

i=1
MI(Si, Si+1) �¢�

84



�� ���@���� ���� �* ����
� ¤ ���� ���� 
�� `
� �� 
�� ����
��� 
���
� �����

���� �
� ���* ���� �� ��
� ���� ��� ��
��

����� 
� 
 ��
�� "�� ����

 ����
� �����

���� �@����
��
���� ��
��
����� �� �� ����	 ��� 
���
� �����

���� �� 
 

��
��� ����� �� ��������� �� ��� �
����
�� ������� <�����*� �* ���
������	 �����
���� ��� ���	�� �� ��� ����� ������� 
��
����
�����
���� 
�� �� @
��
��� ���	���� 
�� �������*� �* ������	

� ��� ��	
���
���� �� 
������� ����� 
� ���� �
���� ��
� ���
���� 
� 
 ��
�� �� ���� �
���� �����
�* ���������� �� �
����
���
�� 
 ��� @
��������

MIpair, MIsum, MImin, MImax and MImean�
���@����	 ��
� ��� ���	�� �� ���������	 Si �� �� 
�� ��� ���	��

�� ���������	 Si+1 �� �� �� �
@��

MIpair(Si, Si+1) = MI(Crightmost(Si), Cleftmost(Si+1))

= MI(Cn(Si), C1(Si+1)) �£�

����� Cn(Si) �� Crightmost(Si) �� ��� ��	�� 
��� ��
�
����
�� Si � C1(Si+1) �� Cleftmost(Si+1) �� ��� ���� 
��� ��
�
����
�� Si+1� �� ����������	 ���* 
� 
��� ��� ��
�
����� �
�� ����
�� ��� �����
�*� �� �
@�

MIsum(Si, Si+1) = MI(Cn(Si), C1(Si+1)C2(Si+1))

+ MI(Cn(Si), C1(Si+1))

+ MI(Cn−1(Si)Cn(Si), C1(Si+1))

+ MI(Cn−1(Si)Cn(Si), C1(Si+1)C2(Si+1)) �}�

MImin(Si, Si+1) = min(MI(Cn(Si), C1(Si+1)C2(Si+1)),

MI(Cn(Si), C1(Si+1)),

MI(Cn−1(Si)Cn(Si), C1(Si+1)),

MI(Cn−1(Si)Cn(Si), C1(Si+1)C2(Si+1))) ��^�

MImax(Si, Si+1) = max(MI(Cn(Si), C1(Si+1)C2(Si+1)),

MI(Cn(Si), C1(Si+1)),

MI(Cn−1(Si)Cn(Si), C1(Si+1)),

MI(Cn−1(Si)Cn(Si), C1(Si+1)C2(Si+1))) ����

MImean(Si, Si+1) = (MI(Cn(Si), C1(Si+1)C2(Si+1))

+ MI(Cn(Si), C1(Si+1))

+ MI(Cn−1(Si)Cn(Si), C1(Si+1))

+ MI(Cn−1(Si)Cn(Si), C1(Si+1)C2(Si+1)))/k ����

����� Cn−1(Si) �� ��� ������ ��
�
����� �� �� ������� �������	
�
���
�� ��
����	 ���
 �����
�* 
�� ��� ��	�� 
��� ��
�
����
�� ��� ���� �
�� ���� ���������	 Si� C2(Si+1) �� ��� ������ ��
��

����� �� �� ������� �������	 ����
�� ��
����	 ���
 �����
�* 
��
��� ���� 
��� ��
�
���� �� ��� ��	�� �
�� ���� ���������	 Si+1�

k =

��
�

2, length(Si or Si+1) <= 2 and at begining or end of S

4, length(Si and Si+1) > 2

��

NGMIpair(S) =
n−1
Σ

i=1
MIpair(Si, Si+1) ����

NGMIsum(S) =
n−1
Σ

i=1
MIsum(Si, Si+1) ��\�

NGMImin(S) =
n−1
Σ

i=1
MImin(Si, Si+1) ��~�

NGMImax(S) =
n−1
Σ

i=1
MImax(Si, Si+1) ��¦�

NGMImean(S) =
n−1
Σ

i=1
MImean(Si, Si+1) ��¢�

��@�� �@��
�� ������ �� ������� ��� 
�� �������� ��	
���
�
������ ��� ����� ��� ����� �� 
 ��	
���
����� ��� 
��� �����* ���
�� �� �
@� ��� ��	�� ������� <�� 
�* �
������
� ������ �� ��� ������

�* ���������� �� @
���� 
�� ��	
��@�� �� 
�� �����* ���������
��
� �� 
�� ��� ��������	 ����� �� ��� 
������ _ ���
���� ��

�
��� 

* ���� ����
�� ����� 	�@�� 
 ����� ��	
���
����

S1(ab|cdef) = [MI(ab, cdef)]

S2(ab|c|def) = [MI(ab, c), MI(c, def)]


�� �
����
�� NGMImin(S1) 
�� NGMImin(S2)�

NGMImin(S1) = min(MI(b, c), MI(ab, c),

MI(b, cd), MI(ab, cd))

NGMImin(S2) = min(MI(b, c), MI(ab, c),

MI(b, cd), MI(ab, cd))

+ min(MI(c, d), MI(bc, d),

MI(c, de), MI(bc, de))

� ;�	
 ��
�

�%
 ������	� ;�	
 ��
�

"�� ��������	 
������� ���� ������ ���
 ��� ������� @������
�� ��� ��������
� �����
� �
�	
���

��
��� ������ ���
�	 ����	���	�§
����
��	 �������
����� �~^ ���� �
��*�� 
��

�<��	 ������ _�� ���� ���
 ��� 
��@� 
�	�� �� 
 
�� �� ��
��
���
� �������� ��
������� 
�� ��
������
� �������� 
�� �������
�
�	�
	� @
��
���� "���� �
	�� ���� 
�����
���* ������ ��
��*

� ���� �
	���

�%" <�>����� "##? ;�	
 ��
�

�� ��� ������ ������
����
� ������� ���� ��	
���
���� �
���
��� ���� ���� ����� 
�� ���� 	����� �� �
�
 ��
�� �
@��	 ��
����	�
������	 
�� 	������
��
��� ���@���� �* _�
��
�
 �����
� ���*
���@�����* �� ���	 ���	� �����	 ���@�����* 
�� ���������
����
��� ��������@��* ����� "�� 	������
��
�� �
�
 �� ��	�

����� ���� ��������	 ��� ���� ��������
����� ������� �* ���
�
�� ������ ���
���� ¨
�� �
�
 ��� ����
��� ��� ���
 �� ����
���� ������	 ������ ��
������� �� ��
������
��

85



�������� _� �� ��� ���
¡��� £���¢¥ ¢¦�~^¥ ¢}�~£¥ ¢£�¦^¥ ¢���\¥
���� �£�¢�¥ ���~^¥ �^�\�¥ ���\^¥ �¦�£¦¥

"
��� �� �������
	� �� ������	�

 
�� ��	����	�

 ����� ��
���� �
�


�%' *�+��� @���	 �
�
�	
��	 Q�� ;�	
 ��
�

��>���������
Y��������� ����	 � ��	�

 
�� ��	�

 �����
[���������� ����	 � ��	�

 ������ � © ��

"
��� � ����� 
����� �^¥ �� ��	�

 ����� �� 
��� ���� �
�

���� 
�� ��	����	�

 ������ 
�� ��� ���� �� ���
 �ª£^¥� 
��
������	�

 ������ ������ ��
� ��� ��
��
�� 	��� �
�
 ���
 ���
������� ����
��� �
� ������ �������
	� �� ������	�

 ������
���* ¢���\¥� "���� ��
������
� �
�
 �����
��� ��
� ��
��*
��
�����	 ��� ���	�

 ����� ����� ��� �
����* ��� ���� ��� ��
	�

 ���� ��	
���
�����

? \]�������
�� ��	���

?%
 �
���� ��

��� Q��^����� ;�!��

"�� ��
������
� �����

���� ��� ��� ������� �
�	�
	� �� ���
����
�����	� ���� 
����	 �� ��� ������� ��������
 «�¡ ������ ����
"���� 
�� ~¦�¦¦� ����
����� �¢��¦^��}} ������� ��
�
������

�� ���\¦\ ������ ������� ��
�
����� �� ���
�� <�� 
�* ��
�
��
��� �������� ���� ���	�� ���� ��
� ��� ����� ������������	 ����
�������� 
�� �������� �� 
 �����	 �
����� ��������* �
���� �����
��� ���� �� ���� 
 ��
����� �
��� �� @��* �
�	�� ���* ����� �����	
�
������ 
���
���	 �� ��� ������ 
��� ��
� ��¦ ��
�� 
�� �����
��¦ �� 
�����
���* ������ �� ������ ��
� ��� ��������* �
��� �
�
��� ���� ���	�

 
�
��*�

?%" �
�� @���	

�� ����	���� ��
� 
� ����
 ��
�
���� ���� 
 ����������� �� 

������������ �
���� �� ���
�
��� ���
 ��� 
���
� ���� ���
���
�� ��� �����	 ��
������
� 
�����
����� <��
 ��� �����	 �
�����
��������* �
���� ��� ��� �^ ���	�����
�
���� ����� ���� ���
��	���� ��������* ��@�� �^^�^^^ ��
��� ���� �������� 
�   ����
��������

?%' ������
�
��� _��	

"�� ������� ��	
���
���� ������
���� ���� ������
�� ����	
��������� ��	
���
���� 
������ 
�� ���� �
�
� "���� ��� �

��

�� ������������ 
�� ������ �� "
��� ��

` ������
�
��� ������
��	

`%
 /� ������
��
"�� 
�	�����
 ���� �� �� ��� �� ��	
��� ���	�

 ����� �� ��
�
�� ����
� 
�� ���� ����� _� ���* ���� ��� ���	�

 ��������*
�
��� ����� ����� ����� ���� 
 ��������* 	��
��� ��
� \� 
��
��� ��������� �� ��� �� ��~� ��@�� 
� ����� �����	 �� ��
�
������
��� 
�����
���� �����	��� �� �
�� �
�� �� 
�������	 ��
�
�����

�� ������ ��� "�� �
�� ���� ��	���� @
��� �� ������� ���� ���
������ ��	����� �� ����� 
�� �
��� ���� ��� �

� @
����� ��� ��	��

��� �
�� �� ������� "�� ���	�

 ���� ���� ��� ��	���� @
���


��	�� ��� ���� �� ����
����* ������ ����� �� �
���� ����� ��
��	��� ��
� ��� ���������� "�� ��

����	 ��
�
����� 
�� ����
���������� 
� ������
�
���� ������

`%" �/� ������
��
�� `
� �� 
�� ��� 
������ ��� ���� �� ��������� 
�	�����
��
��
�
�
��@� <���
�� �
�����<�� 
�� <���
�� �
����<��
���� �
���
����� �� ������
 ��� ��	
���
���� ���� "�� ��	�

���
���� ������� ��� ���� 
�	�����
� ��
��� ���
 ��� ��	���
���	 �� ��� ��������� 
�� ��������� ����� ��� ���� �<� ��
���	���* 
��� ������� ��
� <� �� 
�� ����� ������
����� �� ���
��� ���� �� ��� ��� �<� 
�	�����
 �� ��	
��� ���	�

 ������
"�� ���	�

 ��������* �
��� ���* ����� ����� ���� ��������*
��	��� ��
� \� 
�� ��� ��������� �� ��� �� ���~� ����� �� ��� �
�
�

���� ���� �* `
� �� 
�� �
@��	 
 ��	
���
���� ������ ����
��� ��	���� ���
�� 
�� ������ ��������� �
�� �� 
�� ����� ��� ���
����
����� ��@�� ��� �������� _��`¨� ��� ��

���� ��� �����
�� ��	
�����	 �� ���� �<� 
�	�����
 
���

<���� ���* ��� ���	�

 _� �� ����������� �� ��� 
�����
����
����� �� �� �� ����� ��
� ��� ���������� _ �� 
 ���	�� ��
�
����
����� "��� �� �� ���� �� �� ����������� ����@��� �� ��� �����
�� _� �� ��	��� ��
� ��� ���������� ���� ���� ���	�

� _� 
��
�� 
�� ����������� �� �� 
��� �
� 
 ����� 
��@� ��� ���������
��� _��� �� ��	���� _� �� ���� ������ 
� 
 ����� {� ����� �
���
�� �� �
� ��� ��	��� @
���� _ �� ���� 

���� 
� 
 ����
�
����
���� 
�� �` 
��� ����� �� �� ���������� �� ������ �������
�� �� 
 ���	�

 ����� "��� ������� ����
�� ����� 
�� ����� 
��
��	
������

`%' *+/� ������
��
��@�� 
 ������� ��
�
���� ��������� s =
c1c2c3 · · · cici+1 · · · cn� ��� ���� ��	
���
���� �������
����	 ��� ���� �
� ��������	 ������

�� "�� ����� " ��
�
����� ��� ��� ������
����� " �
� ��� �� ���
� c1c2c3 · · · cx 
�� ������@�� ���
 ��� ����	
����� ���� �
��� ��	
�����	�

�� ����� 
 ���� �� 
�� �������� ��	
���
����� � Slist �� ��� "
��
�
������ "�� ����� ����� �� Slist���
�� 2x− 1� <�� ��
��
�
������ ����� ���� �� �^�� ���
��
������ ��� ��	
���
�
����� ���� �� ��
�@�� ���
 ��� ���� �� ���* ����
�� 
�*

86



��� �

� `����������
��"�¡_� ���� ��"�¡_� ������� ���� ��	
���
���� �*���
 ������ ��
�����
���� @������ �¦�� ���
 ������� _�
��
* �� ���������

����	 ��� �������� ���� �
�
� �� �
� ��@������ �
��� �� 
������
*�� ������ �
���@ 
���� �~�
�� ���� ���	��
� 
���
� �����

���� ���
��
 ��������	 ��� �������� ���� �
�

��� ���� ��� �
���@�� 
���
� �����

���� ���
��
 �������� �* `
� �� 
�� �������	 ��� �������� ���� �
�

����¬�_�� ���� NGMIpair���
��
 ����	 ��� �������� ���� �
�

����¬��� ���� NGMIsum���
��
 ����	 ��� �������� ���� �
�

����¬��� ���� NGMImin���
��
 ����	 ��� �������� ���� �
�

����¬�_« ���� NGMImax���
��
 ����	 ��� �������� ���� �
�

����¬�¨_� ���� NGMImean���
��
 ����	 ��� �������� ���� �
�

����¬���¬�� ���� NGMImin���
��
 ��
�����	 ���������� ���	
��� ����	 ��� �������� ���� �
�
� "�� ��	
���
���� ������� ����
��

�� 
���
�* ��	
����� ����� ���� ���	�� 
��� ��
� ��� ��
�
������ ��� ����� ���� �� ������� ����� �� ��� ���������� 
�
������
��� 
�� 
��� ����   ���� ¦�� �� ��� ��	
���
���� 
�	�����
�

����¬���¬��¬_� �

� ���� ����¬���¬�� ��� ��� ����	 ��� _�
��
�
 �����
 ���� �
�

����¬���¬��¬�� �

� ���� ����¬���¬�� ��� ��� ����	 ��� ���* ���@�����* �� ���	 ���	 ���� �
�

����¬���¬��¬�� �

� ���� ����¬���¬�� ��� ��� ����	 ��� �����	 ���@�����* ���� �
�

����¬���¬��¬��� �

� ���� ����¬���¬�� ��� ��� ����	 ��� ��������� ����
��� ���� �
�


"
��� �� "�� ���� �� 
�� ��	
���
���� ����

��������	 ��
� �� ��� �� ��������* �
����

Slist =

�����
����

c1|c2c3 · · · cx

c1|c2|c3 · · · cx

c1|c2c3| · · · cx

. . .

�� <�� �
�� �����
�* �� ��� �
����
�� ��	
���
����� 
���*
�����
�* ���������� �
����
����� 
�� ��
 ��� �� ������
��� �
�� ��	
���
�����

\� ���� Slist �
��� �� ��� ��	
���
���� ������ �� 
�������	
������ �� 
�
�� ��
� ��� ����� ������ ��� 
��� �����* �� ��
�� �
@� ��� ������� �����
�����

~� ������ ��� ����� ��	
���
���� ��
@��	 ��	���� �
��� 
� ���
���� ��	
���
�����

Sbest = c1c2c3 · · · cx = W1W2 · · ·Wy

¦� "��� ���� ���� ���* �� �������� �� ���� �� 
 ���� ����� ���
�
��
���� ��� �����¬���¬�� �� ����¬���¬��¬_��
������ <�� 
�* �����Wi�c1c2 · · · ck� �� ��� ���� ��	
���
�
���� Sbest ���� ���	�� 
��� ��
� ��� ��
�
������ �� ����
�� ������� ������ ���� 
� �� ���@���� ���� ��	
���
����
���������� � �� ���� ~� �����

Wi = wi1wi2 · · ·wiz

"��� ������� ��	
���
���� ���� �� 
������� ���* �� �� 
����
��� ��������	 ����������� ���� ��� ����� ��	
��� �wi1� 
��
��� �
�� ��	
��� �wiz� �� Wi 
�� ��� ������
�
���� �����
�� �� ������ wi1 �� wiz�� 
 ������
�
���� ���� 
�� �� �� ��
���� ����� ����� <�� ��

���� �� W2����
��� 
 ���� ����
w21 
� ��� ��	�����	� ���� ��� ���� ��	
���
���� Sbest

���
 ���� ~ ��� ����
��

Sbest = W1[w22w23 . . . w2z ] · · ·Wy

¢� _����� 
�� ��� ��	
���� �� Sbest 
� ����� ������ ���
������	 ��� �
�� ���� Wy �
�� ���� ��� ����	
����� �����
"�� �
�� ��	
����� ���� �� �������� �� ��� ����	
�����
���� ����� ��� ����� �� ����� " ��
�
����� �
� 
�����
�* 
��
��� ���� ��	
���
���� Sbest

* �
@� ����� 
 ���	 ���� ��
��� 
������

£� ��
�� ��� ��	
���
���� ���� 
�� ����
� ��� ��	
���
����
������� ���
 ���� ��¢� ����� 
�� ��� ��

����	 ��
�
�����

�� �����
���

"�� ������� @������ �� ���� 
�	�����
 ����� ����
���� *���
"�� ��	
���
���� ������

��� �� 
������

���* ¦^^^ �����
��� �������

j \&����
��� ��� �����	�	
�� ���� ������� �� ��
�
�� ��� ������

��� �� ��� ���������
��	
���
���� ���� �� ���� ��� �������� ���� �
�
 
�� ��� �
���
��� ���� �
�
� "�� ��
�
����� �� ��� ���������� �� ��� ��������
���� �
�
 �� ���� 
� 

��� ������

��� 
�
����
��� ��� �����
���*��	 ��� ���� ���� @
��
��� _���� ��� ������

��� �� ��	�

���
���� ���� �� ��� 
�� �
�
 �� 
�
����� �* �@��
�� ���
��
�
���

j%
 _��	 {� 
�� ������	� ;�	
 ��
�
"�� ��������� @
���� 
�� ����� ������������	 ��
���� �� ����
�����* ���������� ����� �� �
�� ��� 
	
���� �������� ���� �
�
 
��

87



	�@�� �� "
��� �� "�� ���
�� ��	���� �� 
�� ���� �� ��� ��������
���� �
�
 
�� 	�@�� �� "
��� \�

"
��� � ����� ��� 
���
� �����

���� ���� 
�� ���������*
��
���� �* ��������	 ���* ���	�

 ������ 
�� ��� ���� ����

�� 
��� �� ����
�� ����� ���� �� �� ��@�� ��
�
������ �@��
����	� ��� ���� ���� 
����@� ���* 
����� ~^¥ ��������� �
��
�@��
��� "�� ��
��� �� ��������* ���������� ����� 
�� ��
��
�
� ��� 
�� ���� �� ��� �������� ���� �
�
� "�� 
���
� �����

�
���� ���� �������* 
 ��	� ��
��� �� ���	�

 ����� 
����
���*�

�� ��� ����¬���¬�� ��� �������� ��
��
� ������� ��� ����

��� ��	����	�

 ����� ��������* ����������� "�� ������� ��
��� ����¬���¬�� ��� ��
�����
�� 
� �����
�� �� ��� �@���

�� ��������� �
��� ��
����	 ¦��¦\¥ ���
 ~��~�¥� ��� ��� ��
�
���� �� ��������* ���������� ��	����	�

 ����� ����� ��
� ��
��� ������� ��	�

 ����� 
�� ����� 
�� ���� ��� �� ��� �������
��	
���
�����

`������ ��� ���� �� ��������* ���������� ��	�

 ������ ���
����¬���¬�� ��� ����� �
� ��� ��	���� ���
�� �
�� �� 
��
����� "�� ���
�� �
��� �� 
���
� �����

���� ����� ¦}��¢¥ 
��
¦£�¦�¥ ��������@��*� ��
� ������ 
�� ������ {���� ����
���� �
@� ���	���* �@�� ¦^¥ ���
�� �
��� "�� ���
�� �
�� �� ��"�
�¡_��~¦�~£¥� �� ��� ����������	 ��� ���
��@��* ��	� ����������
_�� ����������	 ��� ��
��� �� ��� ���	�� ��
�
���� ����� �����
������ �* ��� ��"�¡_� ��� �� ��� �������� ���� �
�
 �� ��	�����
�
���* ��	��� ��
� ����� �� ����� ���� ��� ���� 
 ��� ����������
���� ��		���� ��
� ��� ��"�¡_� ������ ���� ��	
���
���� �*��
��
 �� 
����
�� 
� ����	�����	 ��� ���
 �� ������� �����������
���� ��
������� �� ��
������
��� ��� �� �
��� �� ��� ������ �� 
����
���
 ����
���� ��� ��� �� ��"�¡_� ����� �� ������

����

{@��
��� ��� �����@���� 
������ ���

��* �������� ���
�
���@�� �� ������ ����� ���
 ��� ������� ���*� �� ����� ��	
���
�
���� ������� �
@� ���
��@��* 
 �

�� ��
��� �� ����� ������
"��� ����
��� ��* ��"�¡_� �
� 
 ��	� ��������� ��� 
 ���
���
��� �� �����
��� 
� ����� ����� 
 ������ ������� ����� ��� ���
���� ����� ��� ��
��� ���������� ����� ����� �� ��	�� _��
��
� ��
�� �� ��� �����
��� �� ��� ��������� ���
��� �� ��� �
�	��
����
��
����

j%" _��	 {� 
�� <�>� ��� ;�	
 ��
�
�� �
� �� �� ����� ��
� 
�� ��� ��	
���
���� ���� �� ��� �
���
��� ���� �
�
 
�� ���
��� �������* ����	 ��� �����	 ��������* �
�
��� ���
���� ���
 ��� ������� ��������
 ������ ������� 
�*
�������	� �� ��� �
������ ��
����	 �
�
� "�� ��
����	 ���� ��
�� �
�� ��
������* ����������� �� ��� ���� ������� "�� ���
��
��	���� ��� 
�� �
������ ���� 
�� 	�@�� �� "
��� ~�

"
��� ~ ����� ��
� ��� ���
�� �
��� �� 
�� �
������ ��� 
��

����� ¢^¥� ����� �����
��� ��� ������ ����������� 
�����*
�� ���� �� ��	
�����	 ��	�

 ������ {� ������ ���� �
�
�� 
��������� �� ��� �
�� ��
� ��� ������� ��������
 ������ ��

 
���� �
�	�
	� ������ 
�� ����� �� ��@��� ��� �
�	�
	� ��
��� �
������ ����� "
��� \ 
�� �
��� ~ 
��� ���� ��
� ��� ���
�
�� �
�� �� ���� 
����� ����	 NGMImin ���
��
 ���� ����
����� ���
��
���� �� ��� ��	����� 
�� ���������� �
�� 
����� ��

	�




��
"�

¡_
�

�
�

��
�

�
�

�
�¬

�_
��

�
�

�
�¬

��
�

�
�

�
�¬

�
��

�
�

�
�¬

�
_

«
�

�
�

�¬
�

¨_
�

�
�

�
�¬

�
��

¬�
�

�
�¦

��
~¥

\�
\

\�
�^

~¥
\�

^
\�

�£
¢¥

\^
¦

\}
��

}¥
�¦

~
\£

�}
~¥

�~
^

\£
�¢

}¥
�¦

�
\£

�¦
~¥

�\
�

~^
�^

^¥
�\

�
\}

�\
^¥

�¦
£

�
£¢

��
^¥

�^
\�

¢}
�^

�¥
��

�£
¢�

�^
¦¥

�\
�}

¢�
�¦

\¥
��

�}
¦�

��
~¥

��
¢}

¦}
�¢

\¥
��

^¢
¦�

�£
�¥

��
¢}

¦\
��

}¥
��

�£
¢�

�¢
¦¥

�~
�^

�
£�

�¦
�¥

}¢
^

^
�£

�\
}¥

��
�

�£
�¦

~¥
��

\
�}

�~
�¥

�^
\

�£
�~

^¥
��

�
�}

��
¦¥

��
�

�}
�}

�¥
}¦

\
¢~

�¦
£¥

�£
^

^
�¦

��
}¥

�}
��

�~
�¥

�^
�\

��
�¥

�¢
��

��
^¥

�}
��

��
¦¥

�}
��

��
�¥

£
~

�^
^�

^^
¥

�
^

^
}�

^}
¥

�
¦�

�~
¥

�
\�

¢¦
¥

�
¦�

^¦
¥

�
¦�

^¦
¥

�
^�

^^
¥

^
¦

^
^

^
^�

^^
¥

^
^�

^^
¥

^
^�

^^
¥

^
^�

^^
¥

^
^�

^^
¥

^
^

¢
^

^
^

^�
^^

¥
^

^�
^^

¥
^

~^
�^

^¥
�

^�
^^

¥
^

^�
^^

¥
^

^
{

@�
�


��
¦�

�^
�¥

�¦
^\

¦~
��

£¥
�¢

�£
¦�

�^
\¥

�£
�~

~�
�£

£¥
�£

�£
\£

�¢
�¥

�¢
£~

~�
�~

�¥
�£

^�
\£

�^
^¥

�¢
¢¦

\}
�}

�¥
�£

�\
¦�

�¦
\¥

�}
}�

"

��

�
��

"�
�

��
��

��
��

�

�

�
��

��
��

��
��

��
	

��



��
��

��
��

��
��

�*
��

��
���

��
�

�
��

��
��

��
�

��
��

��
��

��
��

�

�


�{
@�

�

��

��
��

��
��

�
­

®
��

��
��

��
��*

��
��

���
��

�
�

��
��

¯®
��


�
��

��
��

��
�

�
��

��
�

88



��"�¡_� �� ��� ����¬�_�� ����¬��� ����¬��� ����¬�_« ����¬�¨_� ����¬���¬��
~¦�~£¥ ¦^�}~¥ ¦\�¢�¥ ¦\�£�¥ ¦��}¦¥ ¦��~¦¥ ¦��¦~¥ ¦��}}¥ ¢^��¦¥

"
��� \� ���
�� �
�� �� ��	
���
���� ���� ����	 �������� ���� �
�


����¬���¬��¬_� ����¬���¬��¬�� ����¬���¬��¬�� ����¬���¬��¬���

¦£�}¦¥ ¢��£~¥ ¢���¦¥ ¦}�£¦¥

"
��� ~� ���
�� �� ��	
���
���� ���� �� ��� �
������ ���� �
�


¢^¥� �����	� 
�� ��� �����

| ������	���	
�� ���� �
���� �� �
@� ��������� 
 ��
��� �������@���� 
�����
���� ����	 �����* ��� ������� ���� ��
������� ��
�� ���
 ���
��������
 ������ �� ��	
��� ��	�

 ������ �� �� �
��� ��

���
� �����

���� �����*� ��� �@����
�� ��� ��
��
���� ��
��� ���	��
� 
���
� �����

���� �
��� 
������ �� ����	�����	
���* ���	�

 ����� �* ����������	 ��� ���	
��� �� �����
�*�
���������� �� ��� 
��
���� ��	
�����

"� ��

��� ��� ��
�������* �� ��	
���
���� ���� ��	�

 
��
��
� �����

���� 
�� �� ���� ��� ���� ��	�

 
���
� �����

�
���� ���
��
� 
 ��� �� ��	
���
���� ���� ��������	 
 ��� ���
��	 
 ��
����������
�� ���� ��	
���
���� �*���
 ���"�¡_���
��� ���� ����	 ��������� 
���
� �����

���� ���
��
� ��� 
��
���� 
�� ��@� ���� ����	 ��������� ��	�

 
���
� �����

�
���� @
��
��� �NGMIpair� NGMIsum� NGMImin� NGMImax�

�� NGMImean� ���� �������� ��� ������

��� ��
�
������
{�� ������
���� ���� NGMImin 
����� ������
�� ����


��	 
�� @
��
���� "�� ���������� ��
��� �� ��������* �������
���� ������ 
�� �@��
�� ���
�� �
�� �� ���� ��	
���
���� ����
���� ������
	��	 ������� �� ��	
�����	 ��	�

 ����� ��� ����
���� ��������
 
��������

_� ���� �� 
 ��
��� �������@���� 
����� ������� �����
��	 
��� �������	� �� ��� �
�	�
	�� �� ���� ����
���* �������
��� ���� ���������	� ���� ��	
���
���� �� �������� 
�� ����
�
����� 
�� ��� �� ������
����������
�� �*���
�� �* ���@����	 ���
�
������ ��	�

 ���� ��	
���
�����

_��������	
��� ������ ������
����
� ������� ���� ��	
���
���� �
���

��� � ������ ��


�*� http://www.sighan.org/
bakeoff2005/data/results.php.htm�

��� `
�� °�� ¡��� "� ¨�� 
�� ����� �� �� �� _ ��� ��
������
�
� ���
��
 ��� ������� ���� ��	
���
���� ��������
���	
��������
� �����

����� £���£}�

��� `���*��� ¡�� 
�� �
����
��� �� "�� ��������
 «�¡ ����
���� "���� ����

�\� �
��� <��	� �
�	 ����� �� �� «� `� ����<������� ����
��������� �> \������ \��<�� ����� �**������ �����	��
������ ¯ ���������	� �^^~� ��� ¦}\��¢^��

�~� ��������� �� ��
�����	 "�������	*� ������� _�
��
*
�� ��������� ������� �����
� 
�
�*��� �*���
 ��"�
�¡_�� http://www.ict.ac.cn/jszy/jsxk_zlxk/
mfxk/200706/t20070628_2121143.html�

�¦� ��������� �� ��
�����	 "�������	*� ������� _�
��
* ��
��������� ��"�¡_����������� �� ��
�����	 "�������	*�
������� ¡����
� _�
�*��� �*���
�� http://ictclas.
org�

�¢� ¡�
� �� <��
 ��
�
���� �� ���� � _� 
�����
���� �� ������


���� �����*� \��<���� _��*������ �> \������ � ����
����
 ��������� �� \ ��}}^�� �^\������

�£� ¡�
� ��� 
�� �
�� �� _� 
�����
���� �� �����

���� ����
��* �� ������� ���� ��	
���
����� \��<���� _��*������
�> \������ � �������
 ��������� �� � ��}}\�� ��~����\�

�}� �
����	� ��� `
*
�	� ��� 
�� "���� �� �� ������� ����
��	
���
���� ������� ����	 ������� 
�� �
�����
����
��
����	 �
�
� �� _��*������� �> ��� ���� ������������

*��>����*� �� \��<��������
 
��������*� ������������
�±� ��_� �}}£�� _�����
���� ��� ��
���
����
� ¡��	����
����� ��� ��¦~����¢��

��^� ���	� <�� <��	� <�� 
�� ���
���
� _� ������� ��	
���
�
���� 
�� ��� ���� ��������� ����	 ���������
� �
���

������� ~¦��

���� ����_�� ������ ������
����
� ������� ���� ��	�

���
���� �
����� `
�
� http://www.sighan.org/
bakeoff2005/�

���� ����
�� ��� 
�� ����� �� _ ��
������
� 
����� ��� ������	
���� �����
���� �� ������� ����� \��<���� _��*������
�> \������ � �������
 ��������� �� \ ��}}^�� ��¦���~��

���� "�
�
�� �� ±�� ���
�� ��� ���� °�� 
�� ������� �� �� _
��
����������
��� 
�	�����
 ��� ������� ���� ��	
���
�
����� \��<��� ��������� `�� � ��^^^�� �¢~���}��

��\� "��	� ������ 
�� ¡��� ���±� ���������
���� �� �������
����� ���
 
 ������� \��<���� _��*������ �> \������
� �������
 ��������� �� � ��}}\�� ��~����\�

89



An Automatic Question Generation Tool for Supporting Sourcing and
Integration in Students’ Essays

Ming Liu
School of Elec. & Inf. Engineering

University of Sydney
NSW

liuming@ee.usyd.edu.au

Rafael A. Calvo
School of Elec. & Inf. Engineering

University of Sydney
NSW

rafa@ee.usyd.edu.au

Abstract This paper presents a domain independent
Automatic Question Generation (AQG) tool that gener-
ates questions which can be used as a form of support
for students to revise their essay. The focus here is on
generating questions based on semantic and syntactic
information acquired from citations. The semantic in-
formation includes the author’s name, the citation type
(describing the aim of the cited study, its results or an
opinion), the author’s expressed sentiment, and the syn-
tactic information of the citation. Pedagogically, the
question templates are designed using Bloom’s learn-
ing taxonomy where the questions reach the Analysis
Level. We used 40 undergraduate students essays for
our experiment and the Name Entity Recognition com-
ponent is trained on 20 essays. The result of our ex-
periment shows that the question coverage is 96% and
accuracy of generated questions can reach 78%. This
AQG tool will be integrated into our peer review system
to scaffold feedback from peers.

Keywords Question Generation, Electronic

Feedback System for Sourcing and Integration in

Students’Essay

1 Introduction
Progress made in question answering systems has mo-

tivated a recent growth in automatic question genera-

tion systems. Two types of question generation tasks

are normally considered. The first is text-to-question,

where a document is provided to an AQG system that

generates a question for which the answer is contained

in the text. The second type is as a component of an

Intelligent Tutoring System where a dialogue between

the student and the ITS, and a set of propositions, is

used as the input to the AQG component. In this case

the question is aimed at helping the student elicit an

answer containing the propositions.

The former AQG systems can support reading

comprehension tasks, automatically suggesting

questions that tutors can use in their teaching. Similar

systems can be used to generate questions in the

Proceedings of the 14th Australasian Document Comput-
ing Symposium, Sydney, Australia, 4 December 2009.
Copyright for this article remains with the authors.

medical or security domain, where a system suggest

questions to a practitioner based on a the case file. The

second type of AQG systems is useful in a growing

number of tutoring systems that have natural dialogue

capabilities (e.g. Autotutor discussed later).

In this study we are concerned with building

an AQG component for a third type of pedagogical

applications: supporting students in their academic

writing. In this context the common way of addressing

the AQG problem is substantially changed:

∙ The driver for the technology is pedagogical so

the questions should be framed in a pedagogical

theoretical framework.

∙ The domain may be very general and a corpora for

background knowledge might not be available.

∙ The questions must be generated from a single

document, instead of a whole corpora

∙ The target audience of the questions is the same

author of the document. The author should know

the answers, so the goal here is to trigger reflection

or get the student to expand on a topic.

Most different genres of academic writing contain

citations of third party work on which the student is

expected to comment (as in a literature review) or which

is being used as evidence in an argument. When writing

an essay or literature review, students are expected to

learn and reason from multiple documents which re-

quire the skill of sourcing (i.e., citing sources as evi-

dence to support their arguments) and Information In-
tegration (i.e., presenting the evidences in a cohesive

and persuasive way).

The development of student’s sourcing and integra-

tion skills can be supported by using trigger questions

such as Does the essay provide evidence for the claims
it makes? or Does the conclusion follow from the argu-
ment? But such questions are too general and not likely

to provide strong support in the process of writing on a

specific topic. More specific questions need to be asked.

Most of the current AQG systems rely on shallow

semantic parsing with entity recognizers. For example,

Name Entity Recognizer,Verbnet [14] and Framenet [1]

90



can only ‘understand’ the semantic role of the entities

such as agent, time, location and object in a sentence

and generate factual questions. To generate deep ques-

tions related to a student’s essay, AQG systems depend

on some type of domain knowledge. AutoTutor [8] can

generate deep questions, using domain specific knowl-

edge in Computer Literacy or Physics.

This paper describes a new AQG system that in-

cludes a name entity recognizer for citation extraction, a

pattern-matching based classifier for citation type clas-

sification and a sentiment analysis component for de-

tecting the author’s opinion polarity. These pieces of

information are used to generate template-based ques-

tions during student’s academic writing activities and

targeting specific levels of Bloom’s learning objectives

taxonomy. Section 2 provides a brief review of the

extensive literature focusing on approaches and systems

that support learning experiences with sourcing and in-

tegration as learning goals. Section 3 describes the sys-

tem’s architecture while Section 4 its evaluation, in-

cluding coverage and correctness. Section 5 concludes.

2 Related Work
Natural Language Processing techniques have been

used to develop a number of tutoring and feedback

systems. Section 2.1 reviews some of the projects

developing writing support tools, and Section 2.2

systems that generate questions automatically.

2.1 Electronic Feedback System for
Sourcing and Integration

Numerous projects have used computational

approaches to assessing and providing automatic

feedback on writing, most of the focus being on the

assessment [15]. Despite a variety of initiatives to

improve the quality of automatic feedback the efficacy

of the systems remains to be proven and more research

is needed. Meanwhile providing timely and appropriate

feedback at key stages of the writing process remains

a manual task, and a serious challenge for university

lecturers.

Some of the early systems include Writers Work-

shop a system developed by Bell Laboratories, and Ed-

itor [16] both focused on grammar and style. Studies on

the impact of Editor [2] concluded that the pedagogical

benefits of grammar and style checking are limited. It

could also be argued that these systems only aimed at

supporting writing to communicate and did not address

the issue of supporting writing to learn, important in

today’s curriculum design.

SaK, a writing tutoring system developed at the Uni-

versity of Memphis [18] is based on the notion of voices

that speak to the writer during the process of composi-

tion. SaK uses avatars to give the impression of giving

each voice a face and a personality [18]. Each avatar

provides feedback on a different aspect of the composi-

tion, saying what is good or bad about the text but with-

out correcting it. SaK uses Latent Semantic Analysis

(LSA) to calculate the average distance between con-

secutive sentences and provide feedback on the overall

coherence of the text. LSA is a technique used to mea-

sure the semantic similarity between texts and has been

described thoroughly elsewhere [11]. SaK can also an-

alyze the purpose of a sentence, identifying clusters of

topics amongst the students so when the topic of a new

composition is not identified the student can be asked

for an explanation or reformulation.

Sourcer’s Apprentice Intelligent Feedback

(SAIF) [3] is an automated feedback tool for writing

essays which can be used to detect plagiarism,

uncited quotation, lack of citations and limited content

integration problems. Once a problem is detected,

SAIF can give helpful feedback to the student as shown

in Table 1.

Problem Feedback prompts student to:

1a. Unsourced copied material
(plagiarism)

Reword plagiarism and model
proper format.

1b. Unsourced copied material
(quotation)

Explicitly credit source and model
proper format.

2. Explicit citations Explicitly make a minimum of 3
citations.

3. Distinct sources mentioned Cite at least 2 different sources.
4. Excessive quoting Paraphrase more instead of relying

on quotations too heavily.
5. Integration from multiple
sources

Include a more complete coverage
of the documents in set.

Table 1: Types of Problems SAIF addresses and the

intended goal of feedback

SAIF also uses Latent Semantic Analysis (LSA)

techniques for plagiarism detection, computing the

similarity between each essay sentence and the source

sentences in LSA semantic space. For finding the

explicit citations, SAIF uses a Regular Expression

Pattern Matching technique to detect the explicit

citations by recognizing phrases containing the

author’s name (e.g. According to, As stated in, State).

Evaluations showed [3] that SAIF provides helpful

feedback for students to use more explicit citations in

their essays. However, this tool only addressed some

basic problems for sourcing and integration. Moreover,

it required a large number of source documents to build

the LSA semantic space and a large number of pattern

matching rules had to be predefined.

Glosser is an automated feedback system for

student’s writing [17]. It uses textual data mining

and computational linguistics algorithms to quantify

features of the text, and produce feedback for the

student. This feedback is in the form of generic trigger

questions (adapted to each course) and document

features that relate to each set of questions. For

example, by analyzing the words contained in each

paragraph, it can measure how close two adjoining

paragraphs are. If the paragraphs are too far this can

be a sign of what is called lexical cohesiveness and

Glosser flags a small warning sign. Glosser (1.0)

provides feedback on four aspects of the writing:

structure, coherence, topics, and concept visualization.

91



Glosser does not address sourcing directly, but four

trigger questions (and the text features above) are pro-

vided:

1. Are the ideas used in the essay relevant to the ques-

tion?

2. Are the ideas developed correctly?

3. Does this essay simply present the academic refer-

ences as facts, or does it analyse their importance

and critically discuss their usefulness?

4. Does this essay simply present ideas or facts, or

does it analyse their importance?

The AQG algorithms described here are designed

to be integrated into Glosser and provide support for

sourcing an integration of citation sentences. The stu-

dents upload a composition and Glosser provides the

different forms of feedback. Other approaches for in-

cluding the automatically generated questions include

embedding them within an email, or using them as part

of a peer-review process.

2.2 Question Generation
One of the first automatic question generation systems

proposed for supporting learning activities was AUTO-

QUEST [19]. In this case, as in most of the current

research questions are generated from external sources

that the student reads (as opposed to writes).

The approach used here is similar to that of

Kunichika et. al. [10] who proposed an AQG approach

based on both the syntactic and semantic information

extracted from the original text based on DCG (Definite

Clause Grammar). Their educational context was the

assessment of grammar and reading comprehension

around a story. The extracted syntactic features

include subject, predicate verb, object, voice, tense

and sub clause. The semantic information contains

three semantic categories: noun, verb and preposition,

used to determine the interrogative pronoun for

the generated question. For example, in the noun

category, several noun entities can be recognized

including the Person, Time, Location, Organization,

Country, City, Furniture. In the verb category, the

bodily actions, emotional verbs, thought verbs and

transfer verbs can be identified. It also builds the

semantic links among the time, location and other

semantic categories when an event occurs. Because

this technique extracts substantial syntactic and time

/ space semantic information from sentences, the

generated questions can be more sophisticated and

provide better support. The empirical result shows

that 80% questions were considered by experts as

appropriate for novices learning English and 93% of

the questions were semantically correct.

AutoTutor, developed by the Graesser et al [8] at

the University of Memphis, is an ITS that improves stu-

dent’s knowledge in computer literacy and Newtonian

physics through an animated agent asking a series of

deep reasoning questions that follow Graesser-Person

taxonomy [7]. In each of these themes a set of top-

ics have been identified. Each topic contains a focal

question, a set of good answer aspects, a set of hints,

prompts or elaborations which used to elicit each good

answer aspect, a set of anticipated bad answers and so

on. The system initiates a session by asking a focal

question about a topic and the student are expected to

write an answer containing 5-10 sentences. The system

can generate hints or prompts for the student to elicit the

correct and complete answer. The authors showed that

AutoTutor’s questioning approach had a positive im-

pact on learning with an effect size on a pretest post-test

study of approximately 0.8 standard deviation units in

the areas of computer literacy and Newtonian physics.

However, the system is domain dependent and requires

a large number of human resources to predefine the con-

tent of each topic.

3 System Design and Architecture
The AQG tool described here is designed to generate

questions from a student’s essay and a set of templates

designed by the instructor. The system was evaluated

using a corpus of student essays discussed in Section

4. Sentences from that corpus are used here as exam-

ples on how the questions are generated. The corpus

contains essays on the topic “English as a Global lan-

guage”.

In this section we provide an overview of the sys-

tem’s architecture shown in Figure 1 and describe each

step in a pipeline process. The input to the system is an

essay and the output is the generated questions.

Table 2 shows an example of questions generated by

the AQG tool and their mapping to cognitive levels in

Bloom’s Taxonomy. In this example, the questions are

generated from the raw sentence written by a student as

part of an essay.

The question generation process follows 3 steps

shown in Figure 1:

Step 1. Pre-processing. This includes citation ex-

traction, filtering ‘noisy’ segments, splitting complex

sentences and sentence transformation if it uses a noun

or passive voice to refer to resources. There are two

major components to perform these tasks: 1 Sentence
Extractor, performs citation sentence extraction using

the combination of trained Stanford Name Entity Rec-

ognizer [5], and a Pronoun Resolver, which is imple-

mented by finding the nearest Name Entity appeared

before the pronoun, and 2 Filter performs the rest of

tasks which involved to clean up ”noisy” segment, split

complex sentences, transform other types of citation

form to reporting verb type by using Tregex Pattern

Match Techniques[12].

Examples of students’ compositions include:

1. According to Crystal, more people in the world
speak Chinese than any other language.

92



Level Description Example

Recognition
Ability to identify the spe-
cific content.

1.Who is Graddol?
2.What does Graddol
point to in his
study?(Sourcing)

Recall
Ability to retrieve the spe-
cific content from memory.

The same to Recognition

Comprehension

Ability to understand the
learning material in terms
of generation inferences,
interpretation information,
explanation and summa-
rization information.

Why would Graddol point
to the social and economic
inequality that the dom-
inance of English could
lead to? (What evidence
does Graddol provide to
prove that?) (Sourcing)

Application

Ability to apply the knowl-
edge from the learning ma-
terial to a problem or situa-
tion.

How did you present
Graddol opinion as
evidence to confirm the
thesis in your essay?(
Integration)

Analysis
Ability to disassemble the
elements and find the rela-
tionship between elements.

1. Is Crystal against Grad-
dol’s opinion? 2. Since
you say Crystal’s opinion
is against Graddol, can
you find the contradic-
tive evidence provided by
Crystal? (Integration)

Table 2: An example of questions generated from the

sentence “Graddol on the other hand points to the
social and economic inequality that the dominance of
English could lead to”.

Figure 1: System Architecture

2. Although Crystal and Graddol use many statisti-
cal evidence to discuss the spread of English as a
Global language and the resulting consequences
of this,Wallraff actually challenges the notion
that English has the global status most people
believe it to have.

3. Wallraff’s opinion is that there is a rate of growth
of other languages in the USA which is higher than
the rate of growth of English.

In sentence 1 the noisy segment is shown in Bold. Sen-

tence 2 is a complex sentence divided into two simple

sentences shown in Bold and Italics respectively. Sen-

tence 3 uses the noun ‘opinion’ to refer to the reference

and the system will convert it into a reporting verb type

(explained later). The new reported verb type version

for Sentence 3 is:

Wallraff states that there is a rate of growth of other
languages in the USA which is higher than the rate of
growth of English.

To achieve these, the input sentence is parsed into a

Phrase Structure tree, and then the Tregex Expressions

are used to detect the syntactic patterns, and finally we

use Tsurgeon to perform required opersions.

Tregex, developed by Stanford NLP group, is a

powerful pattern matching technique which can match

an individual word, regular expression, a POS tag or

group of POS tags such as a Noun Phrase. Once the

matched node is found by the Tregex, the Tsurgeon

tool can perform delete, add, remove the node from the

syntactic tree as shown in Figure 2 .

According to a study by Hyland [9], there

are mainly three grammatical ways to refer to

sources, which use Reporting Verb, Noun and Passive

construction. Here, we call this as three grammatical

patterns for citation. In our implementation, the citation

sentence which is either Noun or Passive construction

patterns would be transformed into reporting verb

pattern because it would be easier to transform

the citation sentence with reporting verb pattern

into questions in later stage. Therefore, the Tregex

Expression are defined to detect the three grammatical

patterns and extract right Subject, Predicate Verb,

Predicate, Auxiliary Verb for processing in later stage.

The code segment in Figure 2 is used to split the

complex sentence 2.

find_adv=TregexPattern.compile
("ADVP =rb >>,(NP >(S > ROOT)) | > S");

find_clause=TregexPattern.compile
("SBAR=sbar<(IN<Although|though)<S");

find_comma=TregexPattern.compile
("/,/=comma \$ (NP >( S > ROOT ))");

Tsurgeon.parseOperation("delete rb");
Tsurgeon.parseOperation("delete sbar");
Tsurgeon.parseOperation("delete comma");

Figure 2: An example of code segment using Tregex-

Pattern and Tsurgeon for splitting a complex sentence

Step 2. Syntactic and Semantic features. The pur-

pose of this step is to extract the Syntactic feature and

Semantic feature, such as the citation type (Study Re-

sult, Author’s Opinion, Aim of Study) and the Author’s

Opinion Polarity. AQG then inserts the Semantic fea-

tures as facts into a prolog knowledge base to be used

in Step 3. There are two components to perform these

tasks: a Sentence Feature Extractor which performs

Syntactic Feature and Semantic feature extraction, and

a Sentiment Classifier which detects the Author’s Opin-

ion Polarity.

93



Sentence Feature Extractor uses Tregex Expression

on the Syntactic Tree for pattern match to extract

syntactic features: Subject, Predicate Verb, Link Verb,

Modal Verb and Predicate which are essential elements

for question generation. In addition to Syntactic

Features Extraction, Sentence Feature Extractor also

uses predefined Reporting verb to define the Citation

Type by matching the predicate verb in a sentence. In

our database, Reporting Verb have been classified into

three categories which correspond to different citation

types.

Sentiment Classifier is used to detect the Author’s

opinion polarity about a topic. For the sentiment

analysis AQG defines three elements: Opinion Holder,

Topic and Opinion Polarity. At the moment, AQG

only handles one Author appearing in a sentence and

the opinion holder is the Author mentioned in the

citation sentence. The topic is detected by choosing

the most frequent noun or noun phrases among

citation sentences expressed as a Sentence-Term matrix

containing rows corresponding to the citation sentences

and columns corresponding to the terms appeared in the

sentence. Because AQG doesn’t consider the number

of times a word appears, a Binary Weighting schema

is used. The topic is chosen by finding the term with

maximum value and the Equation 1 is defined below,

where 𝑎𝑖𝑗 = 1 if the term j appears in the citation

sentence i, n is the number of citation sentences in an

essay and the m is the number of terms appearing in

these sentences.

max∀𝑗∈𝑚{
𝑛∑

𝑖

𝑎𝑖𝑗} (1)

For example, two citation sentences are extracted from

an essay.

1. “The increasing use of English is also negative
in respect to the advantage gained by its native-
speakers, not to mention the ”threat to the identity
of nations” through the inevitable increase of use
of minority languages (Crystal, 1992).”

2. “Graddol on the other hand points to the social
and economic inequality that the dominance of En-
glish could lead to.”

The word ‘English’ has been chosen as Topic be-

cause it has the largest value 2 according to Equation

1. After the Opinion Holder and a Topic are detected,

AQG detects the Opinion Polarity about the topic. The

Opinion Polarity is decided by the Sentiment Region

containing sentiment words in a sentence. The size of

Sentiment Region is very important and AQG defines it

as the set of nearest sentiment words around the topic

in a sentence, and use the SENTIWORDNET [13] to

determine the sentiment of a word. The SENTIWORD-

NET, a publicly available lexical resource for opinion

mining, is an extension of WORDNET2 [4] and has

defined three categories for a word sentiment with some

magnitude: positive, negative and neutral.

Sentence Opinion
Holder

Topic Polarity Sentiment words list

S1 Crystal English Negative (negative=-1.0), gain=0.5, in-
crease=0.5

S2 Graddol English Negative Inequality=-1.0

Table 3: an example of Author’s Sentiment Classifica-

tion

Table 3 shows the result of Sentiment Classifica-

tion from the two citation sentences in the above ex-

ample. Crystal is the Opinion Holder for Sentence 1,

the English is chose as the Topic and the Opinion Po-

larity is Negative because AQG calculates the sum of

the two nearest sentiment words: Negative=-1.0 and

increase=0.5 which is negative. It is similar to sentence

2. Once finishing the sentiment analysis AQG will in-

sert the extracted facts including Opinion Holder,Topic

and Opinion Polarity into our prolog knowledge base

showed in Figure 3 which will be used to infer if the

Author’s opinion is against/support each other.

#Facts
author(crystal).
author(graddol).
against(graddol,english).
against(crystal,english).
opinion(english).
#Inference rules
support(person1,noun1).
against(person2,noun2).
ally(X,Y):-support(X,Z),support(Y,Z),opinion(Z),X\=Y.
ally(X,Y):-against(X,Z),against(Y,Z),opinion(Z),X\=Y.
enemy(X,Y):-support(X,Z),against(Y,Z),opinion(Z),X\=Y.
enemy(X,Y):-against(X,Z),support(Y,Z),opinion(Z),X\=Y.

Figure 3: An example of Author’s Opinion Polarity in

Prolog knowledge base

Step 3. Generation This is the final step to generate

template-based questions where the Question Genera-
tor uses the extracted syntactic features and the knowl-

edge base, and then matches the predefined patterns

in our Rule Repository, and finally generates template-

based questions. In our current implementation, we

have defined 5 rules and each rule defines the pattern

for matching and 5 question templates. Each citation

sentence would be applied by only one of the five rules.

If a citation sentence matches both reporting verb and

sentiment words, we would consider the rule for re-

porting verb because sentiment words have higher error

rate to determine the citation type. In the future, we

will use Machine Learning techniques to train a cita-

tion type classifier which will use the weight of se-

lected features (reporting verb, sentiment words, num-

bers and etc) rather than current fixed pattern matching

technique. Table 4 shows that the five rules are defined

in our Rule Repository.

The Pattern Matching is based on the Reporting

Verb and Word Sentiment in the citation sentence. In

94



Rules Pattern Citation
Type

The Purpose of Generated Question

Rule 1 Reporting
Verb

Opinion Ask the student to provide evidence
which support the Opinion (Sourc-
ing), to provide other Author’s con-
tradictive opinion or result about
the topic(Integration) if applicable

Rule 2 Reporting
Verb

Aim of
Study

Ask the student to identify the mo-
tivation for this Author’s study and
the outcome of the study (Sourc-
ing).

Rule 3 Reporting
Verb

Result Ask the student to identify if the
Author’s Result is objective and
what opinion does the result sup-
port (Sourcing)

Rule 4 Sentiment
Word

Opinion The same to Rule 1

Rule 5 Sentiment
Word

Result The same to Rule 3

Table 4: The Rule Definition for Patterns and Templates

our database, the reporting verb has been classified

under one of three citation types and matches the

predicate verb extracted from Step 2. If they are not

matched, the sentiment words is used to detect the

citation type. In our Rule repository, the question

templates are designed according to the citation type.

For example,

Graddol on the other hand points to the social and
economic inequality that the dominance of English
could lead to.

The predicate verb is point to and it matches a

reporting verb under Opinion Type in our repository,

then we apply Rule 1 shown in Table 4 to generate the

template-based questions. Table 5 gives an example of

question templates defined in Rule 1 and Table 2 shows

an example of generated template questions defined in

Rule 1. As you noticed, the following questions are

generated by using prolog inference engine described

in Step 2.

1. Is Crystal against Graddols opinion? 2. Since
you say Crystals opinion is against Graddol, can you
find the contradictive evidence provided by Crystal?
(Integration)

If the sentence does not contain any reporting verb

but some sentiment words, then it is also considered as

the Author’s Opinion. For example,

The increasing use of English is also negative in
respect to the advantage gained by its native-speakers,
not to mention the “threat to the identity of nations”
through the inevitable increase of use of minority lan-
guages (Crystal, 1992).

As the word Negative has been detected as a senti-

ment word, the sentence is consider as expressing Au-

thor’s Opinion, and then AQG applies Rule 4 to gen-

erate questions. Rule 5 is similar to Rule 4 for pattern

matching except the sentence does not contain the sen-

timent words and the citation are expressed as Study

Result.

Pattern The predicate verb matches reporting verb for express-
ing Authors opinion purpose.

Template

∙ Who is [Author Name]?

∙ What does [Author Name] [predicate verb
Lemma]?

∙ In the [Author Name]s study, do you agree that
[Author Name] [Predicate]? Have you evaluated
[Author Name]s opinion?

∙ Why would [Author Name] [Predicate]? (What
evidence does [Author Name] provide to prove
that?)

∙ How did you present [Author]’opinion as evi-
dence to confirm the thesis in your essay?

∙ Is [other Author Name] against [Author Name]’s
opinion? Since you say [Other Author Name]s
opinion is against [Author Name], can you find
the contradictive evidence provided by [Other
Author Name]?

Table 5: A Example of Question Template in Rule 1

4 Evaluation
This section describes a preliminary evaluation of the

technique focused on two aspects : 1) The Question

Coverage. 2) The Semantic Correctness of generated

questions. In the last section we comment on planned

evaluations that will study the learning impact of such

a system, and self (the writer’s view) and 3rd person re-

ports on the quality features of the questions generated.

The evaluation was performed using 40 essays

written by students at the University of Sydney.

Students gave informed consent as approved by the

Human Ethics Committee of the University of Sydney.

4.1 Question Coverage
The citation sentence extraction approach is based

on the Author Name Recognition. The Expected

Number of Questions depends on the total number

of citation sentences. Table 6 shows that AQG can

reach 96% coverage. This dataset contains 127

citation sentences(127*2=254 questions) and 123

citation sentences (123*2=246 questions) are extracted

by AQG. We only evaluate 2 generated questions

per citation sentence because some template-based

questions only require Author Name, a relatively easy

task, the evaluation does not include these questions.In

other words, two questions are evaluated per citation

sentence. For example, in Rule 1 question 3 and 4 are

evaluated which is shown in Table 5. The problem for

missing these citation sentence extraction is that some

Author Names are not identified by the Name Entity

Recognizer which cause these citation sentences can

not be detected by AQG.

Expected Number
of Questions

Number of Gener-
ated Questions

The Question Cov-
erage

254 246 96%

Table 6: Question Coverage

95



4.2 The Correctness of Generated Ques-
tions

123 citation sentences were extracted from the 40 es-

says. Of these, 5 citation sentences had serious gram-

matical errors which caused the sentence Parser to fail.

Therefore only the 118 remaining sentences were con-

sidered for evaluation. Because we only evaluate two

questions per rule, the total number of evaluated ques-

tions is 236.

Table 7 shows that the semantic correctness of ques-

tion reach to 78%. One of the main problems is that

the rules used are too rough to handle multiple Authors

appeared in a sentence. For example, the sentence

“Wallraff suggests that the number of Spanish
speakers in the USA has grown by 50% in the 1980-
1990 census, thus refuting Crystal and Graddol’s
arguements for English being a global language.”

Another major problem is the misclassification for

the citation type: Opinion and Result. For example, the

sentence

“Many Chinese-speakers (four out of five of about
2.4 millions) in America prefer to speak Chinese at
home rather than English (Wallraff, 1999).”

In this case, although it contains prefer as a senti-

ment word with a positive term, the citation sentence

should be considered as Study Result.

Rules Number of Gener-
ated Questions

Number of Seman-
tic Correct Ques-
tions

Rule 1 82 72
Rule 2 12 12
Rule 3 40 36
Rule 4 64 34
Rule 5 38 30
Total 236 184

Table 7: Question Generation Result

5 Conclusion and Discussion
Sourcing and Integration are important quality features

in writing, and are part of the skills that college stu-

dents must learn to master. The importance of asking

questions has been shown to be an important part of

teaching and learning experiences, so we designed an

implemented a tool for automatically generating ques-

tions from an essay.

This domain independent AQG tool supports stu-

dent’s essay writing in the areas of sourcing and inte-

gration. Although we have not yet been able to assess

the impact on student learning, the system was evalu-

ated using real student essays.

Both the question coverage and the semantic

correctness of generated questions were evaluated.

Although the performance of Name Entity Recognizer

would be different under different domain, the focus

of current work is on interesting question generation.

The pattern matching algorithm is based on Hyland’s

citation study that describes the most common ways

of citing third party work. The algorithm captures the

major forms of citation and as shown to have excellent

accuracy.

Reasoning techniques were implemented in Prolog

to detect when two authors are against each other and

the generated question can reach to Analysis Level in

Bloom’s Taxonomy.

The tool can not only detect how many citations the

writer has used in their essay but also generate spe-

cific or content related questions. Compared to cur-

rent question generation systems, our tool can generate

pedagogically deep questions in a somewhat domain

independent form (it still requires templates that may

required adaptation). It also presents novel results for

using the authors’ sentiment to generate questions.

Some limitations of this early work are obvious as

the need to handle multiple authors in a sentence and to

improve the classification of the citation type.

In future work, we will integrate the AQG tool into

Glosser and to our peer review system so it provides

extra information to support students’ engagement with

the writing (or peer-reviewing) process. for example,

in a peer-reviewing scenario, the peer could not only

evaluate the essay but also the author’s answers to

these automatically generated questions and provide

better feedback. We will also improve the technique by

adding ways for extracting multiple authors’ arguments

in a sentence and use other machine learning techniques

to improve the Citation Type classification accuracy.

Acknowledgements
The authors would like to thank Jorge Villalon and

Setphen O’Rourke for the development of TML and

Glosser. Ming is partially supported by a N.I. Price

scholarship. This project was partially supported by

an Australian Research Council Discovery Project

DP0986873.

References
[1] C. F. Baker, C. J. Fillmore and J. B. Lowe. The

berkeley framenet project. In Proceedings of the 17th
international conference on Computational linguistics,

pages 86–90, Morristown, NJ, USA, 1998. Association

for Computational Linguistics.

[2] T. J. Beals. Between Teachers and Computers: Does

Text-Checking Software Rea lly Improve Student Writ-

ing? English Journal, pages 67–72, 1998.

[3] M. A. Britt, P. Wiemer-Hastings, A. A. Larson and C. A.

Perfetti. Using intelligent feedback to improve sourcing

and integration in students’ essays. Int. J. Artif. Intell.
Ed., Volume 14, Number 3,4, pages 359–374, 2004.

[4] C. Fellbaum and G. Miller. WordNet: An Electronic
Lexical Database. The MIT Press, 1998.

[5] J. R. Finkel, T. Grenager and M. Christopher. Incorpo-

rating non-local information into information extraction

systems by gibbs sampling. In ACL ’05: Proceedings
of the 43rd Annual Meeting on Association for Com-
putational Linguistics, pages 363–370, Morristown, NJ,

USA, 2005. Association for Computational Linguistics.

96



[6] X. Gong, Y. H.and Liu. Generic text summarization

using relevance measure and latent semantic analysis.

In SIGIR ’01: Proceedings of the 24th annual in-
ternational ACM SIGIR conference on Research and
development in information retrieval, pages 19–25, New

York, NY, USA, 2001. ACM.

[7] A. C. Graesser and N. K. Person. Question asking dur-

ing tutoring. American Educational Research Journal,
Volume 31, pages 104–137, 1994.

[8] A. C. Graesser, K. VanLehn, C. P. Rosé, P. W. Jordan

and D. Harter. Intelligent tutoring systems with con-

versational dialogue. AI Mag., Volume 22, Number 4,

pages 39–51, 2001.

[9] K. Hyland. Academic attribution: citation and the

construction of disciplinary knowledge. Applied Lin-
guistics, Volume 20, pages 341–367, 1994.

[10] H. Kunichika, T. Katayama, T. Hirashima and

A. Takeuchi. Automated question generation methods

for intelligent english learning systems and its evalua-

tion. pages 1117–1124. Proc. of ICCE01, 2001.

[11] T. K. Landauer, D. S. McNamara, S. Dennis and

W. Kintsch. Handbook of Latent Semantic Analysis.

Lawrence Erlbaum, 2007.

[12] R. Levy and A. Galen. Tregex and tsurgeon: tools

for querying and manipulating tree data structures. In
Proceedings of the Fifth International Conference on
Language Resources and Evaluation., 2006.

[13] S. Osinski and D. Weiss. Conceptual clustering using

lingo algorithm: Evaluation on open directory project

data. In In IIPWM04, pages 369–377, 2004.

[14] K. K. Schuler. VerbNet: A broad-coverage, com-
prehensive verb lexicon. Ph.D. thesis, University of

Pennsylyania, 2005.

[15] M. D. Shermis and J. Burstein. Automated essay
scoring: A cross-disciplinary perspective, Volume 16.

The MIT Press, 2003.

[16] E. C. Thiesmeyer and J. E. Thiesmeyer. Editor:A Sys-
tem for Checking Usage, Mechanics, Vocabulary, and
Structure. New York: Modern Language Association,

1990.

[17] J. Villalon, P. Kearney, R. A. Calvo and P. Reimann.

Glosser: Enhanced feedback for student writing tasks.

In Proc. Eighth IEEE International Conference on Ad-
vanced Learning Technologies ICALT ’08, pages 454–

458, July 1–5, 2008.

[18] P. Wiemer-Hastings and A. C. Graesser. Select-a-

Kibitzer: A computer tool that gives meaningful feed-

back on student compositions. Interactive Learning
Environments, Volume 8, Number 2, pages 149–169,

2000.

[19] J. H. Wolfe. Automatic question generation from text

- an aid to independent study. SIGCUE Outlook,

Volume 10, Number SI, pages 104–112, 1976.

97



You Are What You Post: User-level Features in Threaded Discourse

Marco Lui and Timothy Baldwin
University of Melbourne

VIC 3010 Australia

saffsd@gmail.com, tb@ldwin.net

Abstract We develop methods for describing users
based on their posts to an online discussion forum.
These methods build on existing techniques to describe
other aspects of online discussions communities, but
the application of these techniques to describing users
is novel. We demonstrate the utility of our proposed
methods by showing that they are superior to existing
methods over a post-level classification task over a
published real-world dataset.

Keywords Document Management, Information Re-

trieval, Web Documents

1 Introduction

People like to talk. In particular, people like to talk to

other people that share their interests, resulting in ev-

erything from hobby groups to clubs to professional as-

sociations. The internet gives people the ability to talk

to each other on an unprecedented scale, and this has

fostered the growth of publicly-accessible communities

around a gamut of topics, from technology (Slashdot1)

to knitting (Ravelry2), to social interaction for its own

sake (Facebook3).

The most natural form of communication is through

dialogue, and in the internet age this manifests itself via

modalities such as forums and mailing lists. What these

systems have in common is that they are a textual rep-

resentation of a threaded discourse. The Internet is full

of publicly-accessible communities which engage in in-

numerable discourses, generating massive quantities of

data in the process. This data is rich in information,

and with the help of computers we are able to archive

it, index it, query it and retrieve it. In theory, this would

allow people to take a question to an online community,

search its archives for the same or similar questions,

follow up on the contents of prior discussion and find

an answer. However, anyone with any experience in

searching for an answer to a technical question online

would agree that the situation is seldom that simple.

1http://www.slashdot.org
2http://www.ravelry.com
3http://www.facebook.com

Proceedings of the 14th Australasian Document Comput-
ing Symposium, Sydney, Australia, 4 December 2009.
Copyright for this article remains with the authors.

One problem with current approaches to accessing

threaded discourse data is that they do not take into

account the structure of the discourse itself. The bag-

of-words (BOW) model standardly used in text classi-

fication and information retrieval (IR) discards all con-

textual information. However, even in IR it has long

been known that much more information than simple

term occurrence is available. In the modern era of web

search, for example, extensive use is made of link struc-

ture, anchor text, document zones, and a plethora of

other document (and query, click stream and user) fea-

tures [15].

The natural question to ask at this point is, “What

additional structure can we extract from threaded dis-

course?” Previous work has been done in extracting

useful information from various implicit relationships

between chunks of data in threaded discourse; we de-

scribe this in more detail in Section 2. However, one

dimension that has not yet been explored is how we can

use information about the identity of the participants

to extract useful information from the structure of the

discourse. In this paper we will examine how we can

extract such user-level features, and how we can use

them to improve performance over established tasks.

We use the term threaded discourse to describe

online data that represents a record of messages

exchanged between a group of participants. The

two most common examples of this are forums and

mailing lists. In this paper, the data that we examine

in Section 5 originates from a site which bridges both.

Indeed, the techniques we describe should generalize to

any data which can be mapped into a similar structure.

There are several dimensions to the structure of

threaded discourse that can be useful. For this paper,

we will focus on the relationships between participants,

which we refer to as the user-level structure. However,

most instances of threaded discourse do not encode

relationships between users explicitly. Therefore,

we must infer the user-level relationships from

relationships in other dimensions of the data. In

particular, we focus on the following levels of threaded

discourse structure:

Post-level: The individual unit contributions submitted

by participants

Thread-level: Groupings of posts into a discussion on

a particular topic

98



Our contribution in this paper is to develop methods

for describing users based on their posts to an online

discussion forum. We demonstrate the utility of our

proposed methods by showing that they are superior

to existing methods over a post-level classification task

over a dataset from Nabble.4

The research presented in this paper forms a compo-

nent of a larger research agenda on the utility of user-

level characteristics in a variety of user forum tasks [?].

2 Related Work

This section provides a first-gloss overview of related

work on thread- and post-level text classification, and

feature-based approaches to capturing user characteris-

tics. We return to present the aspects of this work that

are most relevant to our research in greater detail, as

detailed below.

Wanas et al. [16] detail a set of post-level features

extracted based on a more structured approach. They

evaluate their feature set over a classification task

involving post and rating data derived from Slashdot.

Their task involves classifying discrete posts into one

of three quality levels (High, Medium or Low) where

the gold-standard is provided by annotations from the

community itself. We implement part of their feature

set for experiments conducted in this paper; more detail

is provided in Section 4.

Agrawal et al. [1] describe a technique for partition-

ing the users in an online community based on their

opinion on a given topic. They find that basic text clas-

sification techniques are unable to do better than the

majority-class baseline for this particular task. They

then describe a technique based on modeling the com-

munity as a reply-to network, with users as individual

nodes, and edges indicating that a user has replied to a

post by another user. They find that using this represen-

tation, they are able to do much better than the baseline.

Fortuna et al. [5] build on the work done by [1], defining

additional classes of networks that represent some of

the relationships present in an online community. We

describe these networks in detail in Section 4, and adapt

them to generate user-level features.

Weiner et al. [17, 18] propose a set of heuristic

post-level features to predict the perceived quality of

posts using a supervised machine learning approach.

The data they evaluate over is extracted from Nabble,

and they use the ratings provided by users as the gold-

standard for a correct classification. They conclude that

post-level classification using their feature set provides

a substantial improvement over the majority-class

baseline. We describe the dataset in greater detail

Section 5.1, and use it as the basis of our evaluation.

In work on thread classification, Baldwin et al.

[2] attempted to classify forum threads scraped from

Linux-related newsgroups according to three qualities:

4http://www.nabble.com

Task Orientation: Is the thread about a specific prob-

lem?

Completeness: Is the problem described in adequate

detail?

Solvedness: Has a solution been provided?

They manually annotated a set of 250 threads for these

qualities, and extracted a set of features to describe each

thread based on the aggregation of features from posts

in different sections of the thread. We apply a sim-

ilar idea, but instead of aggregating over sections of

the thread, we aggregate posts from a given user. The

results from [2] were inconclusive, but we have found

that their feature set can be effective when aggregated

by user. Full details of the feature set are presented in

Section 5.3.

3 Applications
While our experiments in this paper focus exclusively

on a post-level classification task, this research has po-

tential impact in a much wider range of settings, as

outlined in this section.

3.1 Information Access
A key application of this paper is to support improved

information access over internet forums, building on the

work of Baldwin et al. [2]. The underlying intuition

here is that not all contributions on a forum are equal in

their usefulness, and that we often find that certain users

are consistently outstanding in their contribution. Note

that this is not the same as the user being an expert —

other qualities come into play, such as how clear their

explanations are, as well as how much effort they put

into responding. Indeed, a relatively inexperienced user

may post a detailed description of how he or she tackled

a particular problem, which could be extremely valu-

able to a similar inexperienced user tacking a similar

problem.

3.2 User Profiling
In some situations, we may wish to identify users

with particular characteristics. For example, Kim et

al. [9] use Speech Act Analysis to classify student

contributions according to Speech Act categories,

thereby identifying roles that participants play, using

this information to identify when participants require

assistance. This approach can be enhanced with

user-level features.

3.3 User Karma
Karma is formalization of the notion of how influential

a user is in an online community. It is the subject of

much discussion in web communities as it is critical

to the self-organizing structure of some communities,

such as Reddit.5 It is even more influential in other

5http://www.reddit.com

99



Feature name Description Type

distribution Mention of the name of a Linux distribution Boolean

beginner Mention of terms suggesting the posted is inexperienced Boolean

emoticons Presence of “smiley faces” Boolean

version numbers Presence of version numbers Boolean

URLs Presence of hyperlinks Boolean

words Number of words in post Integer

sentence Number of sentences in post Integer

question sentence Number of questions in post (sentences ending in ‘?’) Integer

exclaim sentence Number of exclamations in post (sentences ending in ‘!’) Integer

period sentence Number of sentences ending in a period Integer

other sentence Number of sentences not falling into the above three categories Integer

Table 1: The ILIAD feature set

Feature name Description Type

onThreadTopic Post’s relevance to the topic of a thread Float

overlapPrevious Post’s largest overlap to a previous post Float

overlapDistance How far away the previous overlapping post is Integer

timeliness Ratio of time interval from previous post to average inter-post interval in thread Float

lengthiness Ratio of length of post to average length of post in thread Float

formatEmoticons How often emoticons are used with respect to number of sentences Float

formatCapitals How often capitals are used with respect to number of sentences Float

weblinks How often weblinks are used with respect to number of sentences Float

Table 2: The WANAS feature set

communities, where it is used to give incremental mod-

eration powers to users (e.g. Stack Overflow6). There

is no body of formal research associated with it, and

sometimes the exact mechanism is a closely-guarded

secret. User-level features are relevant to this because

they can be used to more fully describe a user, which

in turn can be used to compute a karma score that takes

into account more aspects of the user’s participation.

3.4 Automatic Grading
Lui et al. [12] use a text classification approach to per-

form content analysis. This task involves automatically

grading participation by students in an online learning

community. They make use of a fairly simplistic model

of the content. It may be possible to improve their

approach by extracting more detailed structural infor-

mation from participants’ contributions.

4 User-Level Features
In Section 2, we outlined existing methods for extract-

ing features to describe posts and threads. In this sec-

tion, we present methods for extracting features for de-

scribing users.

4.1 Aggregate
The first type of user-level feature we consider are fea-

tures derived from aggregation over features describ-

ing individual posts. We implement two post-level fea-

6http://www.stackoverflow.com

ture sets. The first, which is henceforth referred to as

ILIAD, is derived from [2] and is described in Table 1.

The second, which is henceforth referred to as WANAS,

is derived from [16], and is described in Table 2.

From each of ILIAD and WANAS we derive a user-

level feature set by finding the mean of each feature

value over all of the user’s posts. These feature sets

are referred to as ILIADAGG and WANASAGG, respec-

tively.

4.2 Network-Based
Fortuna et al. [5] present a method of describing forum

data using Social Network Analysis. The network is a

graph representation of relationships within the forum,

reminiscent of algorithms such as PageRank [4]. In the

case of PageRank, each node represents a webpage and

each edge represents a hyperlink. In [5], the authors

define 3 author networks, where each node represents

an author, and 2 thread networks, in which each node

represents a thread. The meaning of an edge varies

for each network, and each edge may be directed or

undirected according to the network.

The authors then use each of these networks to ex-

tract features on a per-post basis. We briefly summarize

the method here; more detail is provided in [5].

For Author Networks, each post is assigned a fea-

ture vector v of length N , where N is the total number

of nodes, or equivalently, the total number of authors in

the network. v has at least one feature set to 1, which

corresponds to the author of the post. Authors directly

100



connected to the post author in the network receive a

feature value of 1, and authors that are second-level

neighbours of the post author are set to a feature value

of 0.5. All other values in v are set to 0. Since each

post has a unique author, this network can be used to

describe authors without modification.

For Thread Networks, the method for computing a

feature vector is similar to that for Author Networks.

The key difference is that in this instance, the vector v

is of length T , where T is the total number of threads

in the forum. Therefore, each value vT in the vector

describes a relationship to a particular thread. In [5],

the authors are interested in the relationship between

posts, so they assign to each post the feature vector of

the thread it belongs to. However, in our case we do not

wish to describe a post directly; instead, we are inter-

ested in describing the author. To do this, we consider

every thread that the author has posted in. For each

of these threads, we set the feature corresponding to the

thread to 1. We then set all the immediate neighbours of

the threads to 1 as well, and the second-level neighbours

thereafter to 0.5.

In our work, we consider two Author Networks and

one Thread Network:

POSTAFTER (Author Network)

POSTAFTER is modeled on the reply-to network de-

scribed in [5]. Our data does not contain exact informa-

tion about the reply structure in a thread, so we approx-

imate this information by the temporal relationship be-

tween posts. Effectively, we have made the assumption

that within a thread, each post replies to the post im-

mediately preceding it in terms of the time-of-posting.

We expect that this will generally be the case, but in the

context of the original work by [1] on partitioning users

by opinion, it is possible that, given three posts A, B

and C, B and C both reply in objection to A, therefore

defining a different network from ours. Nonetheless,

our results will show that our approximation is admis-

sible in that it can be used to augment a BOW feature set

to exceed a benchmark result; we will present evidence

of this in Section 5.3.

POSTAFTER is parameterized with two values: dist

and count. Being an Author Network, the nodes repre-

sent authors. Two authors A1 and A2 have a directed

edge from A1 to A2 if and only if A1 submits a post

to a thread that is within dist posts of a post in the

same thread by A2 on at least count occasions. For

our experiments, we used dist = 1 and count = 3.

THREADPARTICIPATION Author Network

THREADPARTICIPATION is implemented as described

in [5]. In this network, nodes are again authors, and

each undirected edge indicates that two authors have

posted in the same thread on at least k occasions. In the

original work, the authors set k = 5, but in out case,

we use k = 2 as the network is too sparse for higher

settings of k.

COMMONAUTHORS Thread Network

COMMONAUTHORS is implemented as described

in [5]. In this network, nodes are threads, and each

undirected edge indicates that two threads have at

least m authors in common. We followed the original

research in setting m = 3.

5 Evaluation
We evaluate the effectiveness of the features described

in Section 4 by utilizing them for a classification task.

In this paper, we focus exclusively on a post-level clas-

sification task, which allows us to assess the usefulness

of user-level features in describing post-level data.

5.1 Dataset
The data set we are using is based on that from Weimer

and Gurevych [17]. The data consists of 16562 posts

across 2956 different threads. Separately, there are

4508 annotations spanning 4291 distinct posts, rating

the quality of the post. Each annotation consists of

an ordinal rating from 1 to 5 stars, with more stars

indicating better quality. We filtered the annotated

posts by removing all posts with an empty body. We

also removed all posts that had an average rating of

exactly 3.0. This eliminated posts that were rated

3 once, as well as posts that received contradictory

ratings, such as a post rated 1 by one user and 5 by

another, leaving 4094 rated posts. We divided posts

into two groups, corresponding to posts with an average

rating > 3.0, which we consider GOOD, and posts with

an average rating ≤ 3.0, which we consider BAD. In

the 4094 rated posts, there were 2060 GOOD posts and

2034 BAD posts. Our approach to filtering the data is

generally consistent with that in [17]. Differences in

our use of the dataset are discussed in Section 6.

5.2 Methodology
For each post, we extracted the feature sets described

in Section 4, as summarized in Table 3. For user-level

feature sets, we use the features corresponding to the

post’s author to describe the post. We evaluate various

combinations of these feature sets by carrying out 10-

fold cross-validation [10], as follows:

1. Divide the data randomly into 10 partitions

2. For each partition, train a classifier on the other 9

partitions

3. Use the trained classifier to predict the categories

of the instances in the selected partition

4. Pool together the predictions from the 10 iterations

and evaluate

The partitioning is performed once and re-used for each

pairing of learner and feature set. We repeat this proce-

dure using a number of different learners. The learners

used, along with their parameter settings, are as fol-

lows:

101



Label Type

BOW Post

ILIAD Post

WANAS Post

ILIADAGG User

WANASAGG User

POSTAFTER Author Network

THREADPARTICIPATION Author Network

COMMONAUTHORS Thread Network

Table 3: Feature sets used in classification

SVM: Support vector machines [8] as implemented in

bsvm [6], using the package default values which

correspond to an RBF kernel.

SkewAM: Nearest-prototype skew divergence, as imple-

mented in hydrat [13]. This is a Rocchio-style

approach [7], where a centroid is computed for

each class by finding the arithmetic mean of all the

instances of the class. Classification is then car-

ried out by assigning the class of the single nearest

neighbour. The distance metric we use is skew di-

vergence [11], with a mixing parameter α = 0.99.

Maxent: Maximum entropy modeling [3] as

implemented in the Maximum Entropy Toolkit
[19]. We use L-BFGS for parameter estimation

[14], with 10 iterations of the training algorithm.

For each cross-validated result, we report the overall

classification accuracy (Acc), which is the proportion

of correct predictions made by the classifier; a larger

number is, naturally, better. When comparing a result

to a benchmark value, we also provide the p-value for

a two-tailed paired t-test. We can conduct a paired t-

test because for each result, the partitions used have

been kept constant and thus the performance over them

is directly comparable. The null hypothesis is always

that the difference in the mean accuracy over all 10

partitions is identical for both results being compared.

Therefore, a low p-value indicates that it is highly im-

probable that the two combinations of feature sets being

considered have led to the same results. To facilitate

discussion of statistical significance, we will consider

a p-value < 0.05 to be statistically significant. This

corresponds to the 5% significance level that is com-

monly reported. In tables, p-values that are statistically

significant at the 5% significance level are shown in

bold.

Our experiments were performed using hydrat
[13], an open-source framework for comparing

classification systems. hydrat provides facilities

for managing and combining feature sets, setting up

cross-validation tasks and automatically computing

corresponding results.

5.3 Results
The baseline for this task is a majority-class (ZeroR)

result of 0.489. Although this is a binary task, the

Learner Accuracy

SVM 0.780

SkewAM 0.812

Maxent 0.820

ZeroR 0.489

Table 4: Accuracy for each learner when utilizing only

the BOW feature set

Feature Set Acc p

BOW 0.780 —

ILIAD 0.723 2.1×10−6

WANAS 0.751 7.3×10−4

ILIADAGG 0.831 2.4×10−6

WANASAGG 0.829 2.7×10−4

POSTAFTER 0.636 5.1×10−13

THREADPARTICIPATION 0.670 1.1×10−10

COMMONAUTHORS 0.671 4.2×10−11

Table 5: Accuracy for each feature set over SVM (results

higher than the baseline are highlighted in bold; p is the

probability that the result differs from the benchmark

only due to chance)

majority-class result is less than 0.5 because the

majority class varies across partitions. In 8 of the 10

partitions, it was the overall majority class (GOOD),

whereas in 2 of the 10 partitions, it was the majority

class in the training data but overall minority class

(BAD).

We establish benchmark results for this task using

only the BOW feature set. The overall accuracy for

each learner is summarized in Table 4. Immediately,

it is apparent that the benchmark result is significantly

better than the baseline. The best result over only the

BOW feature set is attained by Maxent, with an accu-

racy of 0.820.

Next, we consider each learner over each individual

feature set. For Maxent and SkewAM, this always

leads to results that are below the BOW benchmark.

For SVM, however, the aggregate features ILIADAGG

and WANASAGG do better than the BOW benchmark,

attaining an accuracy of 0.831 and 0.829, respectively.

These are different from the BOW result with

p = 2.4×10−6 and p = 2.7×10−4 respectively. Both

results are statistically significant. We report results for

each feature set in Table 5.

We then investigate the use of the various feature

sets to augment BOW, as presented in Table 6. A fairly

consistent picture emerges from this: the ILIAD and

ILIADAGG feature sets cause performance to drop

when combined with the BOW feature set, whereas

all other feature sets cause performance to rise with

respect to BOW.

We also experimented with feature ablation, by

examining the result of removing one feature set at a

time from the full set of features. The results for this are

reported in Table 7. Surprisingly, removing a particular

102



Learner Feature Sets Present Acc p

SVM

BOW 0.780 —

BOW ILIAD 0.746 0.001
BOW WANAS 0.790 0.202

BOW ILIADAGG 0.768 0.136

BOW WANASAGG 0.797 0.041
BOW POSTAFTER 0.780 0.978

BOW THREADPARTICIPATION 0.790 0.243

BOW COMMONAUTHORS 0.786 0.492

SkewAM

BOW 0.812 —

BOW ILIAD 0.799 0.041
BOW WANAS 0.827 0.005
BOW ILIADAGG 0.805 0.236

BOW WANASAGG 0.830 0.001
BOW POSTAFTER 0.825 0.019
BOW THREADPARTICIPATION 0.827 0.008
BOW COMMONAUTHORS 0.829 0.005

Maxent

BOW 0.820 —

BOW ILIAD 0.624 0.000
BOW WANAS 0.843 0.025
BOW ILIADAGG 0.564 0.000
BOW WANASAGG 0.849 0.002
BOW POSTAFTER 0.834 0.127

BOW THREADPARTICIPATION 0.836 0.088

BOW COMMONAUTHORS 0.840 0.043

Table 6: Accuracy for each learner when combining

each feature set with BOW (results better than the BOW

benchmark for each learner are highlighted in bold; p is

the probability that a result differs from the benchmark

only due to chance, and p-values significant at the 5%

level are highlighted in bold)

feature set can result in a statistically significant

performance increase for both SVM and SkewAM. For

SVM, the feature set in question is BOW, whereas

for SkewAM, removing THREADPARTICIPATION or

COMMONAUTHORS leads to a statistically significant

increase in results. Maxent is the only learner where

there is no significant increase resulting from removing

a single feature set.

Finally, we proceed to test other combinations of

feature sets. We exhaustively tested all possible com-

binations of two and three feature sets, as well as all

feature sets, all feature sets minus one, and all feature

sets minus ILIAD and ILIADAGG. The best com-

bination that we found was using BOW, WANAS and

COMMONAUTHORS, with Maxent as the learner. This

produced an accuracy of 0.854. However, the top 10

combinations of features and learners all produced very

similar results, so we cannot conclude that this is the

undisputed best combination overall. We also found

that the best combination of feature sets for SVM was

different from that for Maxent, but was still extremely

close to the best result. The top 10 combinations that

we found over the classifiers considered are reported in

Table 8.

6 Discussion
As noted in Section 5.1, our dataset is based on data

originally used in [17]. Our task is most similar to the

ALL task of [17], in that we do not divide the data on

the basis of the Nabble sub-forum it originates from.

We have also filtered the data slightly differently. The

Learner Feature Set Acc p

SVM

ALL 0.775 —

−BOW 0.796 0.005
−ILIAD 0.775 1.000

−WANAS 0.775 0.949

−ILIADAGG 0.770 0.508

−WANASAGG 0.776 0.897

−POSTAFTER 0.775 0.949

−THREADPARTICIPATION 0.778 0.731

−COMMONAUTHORS 0.777 0.834

SkewAM

ALL 0.776 —

−BOW 0.689 0.000
−ILIAD 0.778 0.750

−WANAS 0.769 0.248

−ILIADAGG 0.788 0.099

−WANASAGG 0.764 0.024
−POSTAFTER 0.785 0.140

−THREADPARTICIPATION 0.811 0.000
−COMMONAUTHORS 0.812 0.000

Maxent

ALL 0.741 —

−BOW 0.687 0.003
−ILIAD 0.648 0.000
−WANAS 0.730 0.503

−ILIADAGG 0.697 0.082

−WANASAGG 0.714 0.129

−POSTAFTER 0.741 0.975

−THREADPARTICIPATION 0.737 0.768

−COMMONAUTHORS 0.738 0.825

Table 7: Accuracy for feature ablation over the full

feature set for each learner (results better than the BOW

benchmark for each learner are highlighted in bold; p is

the probability that a result differs from the benchmark

only due to chance, and p-values significant at the 5%

level are highlighted in bold)

original authors made use of 3418 posts, whereas we

use 4094 posts. The bulk of the difference is due to

the original authors eliminating posts which they deter-

mined to be non-English. We did not do this because

some of our methods do not make use of any language-

specific information, so we were still able utilize the

non-English data. According to [17], there are 668 non-

English posts.

The remaining difference results from the original

authors opting to eliminate any posts with ‘contradic-

tory ratings’, in that the post received ratings both > 3
and ≤ 3, whereas we only eliminated posts where the

average rating was = 3.0. In practice, the difference is

negligible as it only accounts for 8 out of 4291 posts.

The original authors report a maximum accuracy of

0.775 over their ALL task. Their values are not directly

comparable to ours because the two tasks are not iden-

tical, as we have described above. However, they are

very similar, so our best accuracy of 0.854 suggests that

our technique would yield an improvement if applied

directly to the original task.

We found that, even in isolation, user-level features

can outperform a benchmark based on the conventional

IR bag-of-words approach, to a high level of statisti-

cal significance. This is important because it justifies

the use of user-level features for post-level classifica-

tion tasks. Furthermore, we showed that most of the

user level feature sets can be added to the basic bag-

of-words model to improve its performance, and that

103



Learner
Feature Sets

Acc p

BOW ILIAD WANAS ILIADAGG WANASAGG POSTAFTER THREADPARTICIPATION COMMONAUTHORS

Maxent � � � 0.854 0.002
Maxent � � � � � � 0.850 0.002
Maxent � � � 0.850 0.002
Maxent � � 0.849 0.002
SVM � � � 0.848 0.006
SVM � � 0.847 0.004
Maxent � � � 0.847 0.006
Maxent � � � 0.845 0.012
Maxent � � 0.843 0.025
Maxent � � � 0.842 0.027

Table 8: Top 10 Results over different combinations of learner and feature sets (p is the probability that the result

differs from the Maxent BOW benchmark only due to chance; p-values significant at the 5% level are highlighted

in bold)

this behaviour is consistent across a range of different

learners.

Table 8 suggests that the ILIAD feature set is gener-

ally ineffective, which may explain the poor results re-

ported in [2]. However, the SVM learner is able to make

effective use of the user-level aggregates of ILIAD,

ILIADAGG, whereas the Maxent learner is not. This

is reflected in both the single-featureset experiment re-

ported in Table 5, as well as the overall results in Ta-

ble 8. The reason for this is not immediately obvious,

and further investigation may yield insight into how to

reconcile the two.

Another obvious difference between the results

from the Maxent and SVM learners is that Maxent
performs best in the presence of the BOW features,

whereas SVM performs better without the BOW

features. This trend is clearly visible in Table 7,

where for SVM, removing the BOW features leads to a

statistically significant increase in the results, whereas

for Maxent and SkewAM, it causes a significant drop.

This trend is also visible in Table 8, where we see

that the top results for Maxent include BOW, whereas

the top results for SVM exclude it. Again the reason

for this is not immediately clear. What is clear is

that each learner is effective over different sets of

features, so there may be scope for further work in

terms of applying meta-classification techniques such

as stacking in order to further improve results.

It is important to consider the implications of using

user-level features for performing a classification task

over the ‘quality’ of a post. The fact that user-level

features in isolation can perform better than the baseline

is a strong case for the argument that users are con-

sistently good or consistently bad, indicating that the

quality of a user’s previous posts is a good predictor for

the quality of future posts. However, we also expect that

the quality of an individual post can vary; it therefore

makes sense that the best results we have obtained use

a mixture of features, some reflecting purely the con-

tent of the post, and some reflecting the overall posting

trends of the user.

7 Further Work

Previous studies have either used only a single classifi-

cation method [5, 16, 17, 18], or have not found signif-

icant differences between the relative performance of

learners with respect to a given feature set [2]. How-

ever, we have seen that over the data being examined in

this paper, learners respond better to particular feature

sets. We intend to investigate this further by applying

the technique to a wider variety of tasks over a greater

number of datasets.

We have also adopted a relatively simplistic

approach to aggregating post-level features at a user

level, simply computing the arithmetic mean of the

feature values. Further work would involve taking more

information into account, for example the variance and

skew in each post-level feature when examined at a

user-aggregate level. Another dimension to be taken

into account is that a user’s knowledge and attitude

evolve over time, so we may need to introduce some

kind of temporal weighting to the post-level features

we aggregate to produce the user-level profile.

Finally, it is also important to note that the gold-

standard labels are provided by anonymous internet

users, and that each post often has only a single

annotation. It is therefore difficult to establish exactly

how well the annotation reflects the opinion of the

entire community with respect to the post annotated.

Further work in this respect would involve establishing

datasets where there are a number of annotations for

each post, so as to be able to judge inter-annotator

agreement and have a feeling for the upper bound in

terms of possible classifier performance on the task.

8 Conclusion

In this paper, we have shown that user-level features can

improve performance over classification tasks involving

posts. We started by defining threaded discourse as

an umbrella term for online discussions, and deriving

several sets of features for describing users based on

techniques for describing other aspects of the threaded

discourse.

104



We evaluated our features over a dataset that

has been used in previous research, defining a task

similar to that previously investigated. We established

a majority-class baseline for the task, as well as a

benchmark result based on a conventional bag-of-

words model for each post. We investigated our feature

sets in isolation, as well as their interactions, across

three different off-the-shelf learners. We found that

in general, user-level features performed significantly

better than simple BOW features on the given task,

and that different learners seemed to prefer a different

combination of feature sets.

We succeeded in our primary goal of showing that

user-level features are effective in classifying posts ac-

cording to quality, and we expect that the use of these

features will generalize well to tasks over other aspects

of threaded discourse, for example in profiling users or

in classifying threads.

References
[1] Rakesh Agrawal, Sridhar Rajagopalan, Ramakrishnan

Srikant and Yirong Xu. Mining newsgroups using

networks arising from social behavior. In Proceedings
of the Twelfth International World Wide Web Conference
(WWW’03), pages 529–535, Budapest, Hungary, 2003.

[2] Timothy Baldwin, David Martinez and Richard Baron

Penman. Automatic thread classification for linux user

forum information access. In Proceedings of the Twelfth
Australasian Document Computing Symposium (ADCS
2007), pages 72–9, Melbourne, Australia, 2007.

[3] Adam L. Berger, Stephen A. Della Pietra and Vincent

J. Della Pietra. A maximum entropy approach to natural

language processing. Computational Linguistics, Vol-

ume 22, Number 1, pages 39–71, 1996.

[4] Sergei Brin and Larry Page. The anatomy of a large-

scale hypertextual web search engine. Computer Net-
works and ISDN Systems, Volume 30, Number 1-7,

pages 107–117, 1998.

[5] Blaz Fortuna, Eduarda Mendes Rodrigues and Natasa

Milic-Frayling. Improving the classification of news-

group messages through social network analysis. In

Proceedings of the Sixteenth ACM Conference on Infor-
mation and Knowledge Management (CIKM ’07), pages

877–880, Lisboa, Portugal, 2007.

[6] Chih-Wei Hsu and Chih-Jen Lin. BSVM-2.06. http:

//www.csie.ntu.edu.tw/cjlin/bsvm/, 2006. Re-

trieved on 15/09/2009.

[7] David Hull. Improving text retrieval for the routing

problem using latent semantic indexing. In Proceedings
of the 17th Annual International ACM SIGIR Con-
ference on Research and Development in Information
Retrieval (SIGIR ’94), pages 282–291, Dublin, Ireland,

1994.

[8] Thorsten Joachims. Text categorization with support

vector machines: learning with many relevant features.

In Proceedings of the 10th European Conference on Ma-
chine Learning, pages 137–142, Chemnitz, Germany,

1998.

[9] Jihie Kim, Grace Chern, Donghui Feng, Erin Shaw and

Eduard Hovy. Mining and assessing discussions on the

web through speech act analysis. In Proceedings of
the ISWC’06 Workshop on Web Content Mining with
Human Language Technologies, Athens, USA, 2006.

[10] Ron Kohavi. A study of cross-validation and boot-

strap for accuracy estimation and model selection. In

Proceedings of the 14th International Joint Conference
on Artificial Intelligence (IJCAI-95), pages 1137–1145,

Montréal, Canada, 1995.

[11] Lillian Lee. Measures of distributional similarity. In

Proceedings of the 37th Annual Meeting of the As-
sociation for Computational Linguistics, pages 25–32,

College Park, USA, 1999.

[12] Andrew Kwok-Fai Lui, Siu Cheung Li and Sheung On

Choy. An evaluation of automatic text categorization

in online discussion analysis. In Proceedings of the
Seventh IEEE International Conference on Advanced
Learning Technologies (ICALT 2007), pages 205–209,

Niigata, Japan, 2007.

[13] Marco Lui and Timothy Baldwin. hydrat. http:

//hydrat.googlecode.com, 2009. Retrieved on

15/09/2009.

[14] Robert Malouf. A comparison of algorithms for max-

imum entropy parameter estimation. In Proceedings
of the 6th Conference on Natural Language Learning
(CoNLL-2002), pages 49–55, Taipei, Taiwan, 2002.

[15] Christopher D. Manning, Prabhakar Raghavan and Hin-

rich Schütze. Introduction to Information Retrieval.
Cambridge University Press, Cambridge, UK, 2008.

[16] Nayer Wanas, Motaz El-Saban, Heba Ashour and

Waleed Ammar. Automatic scoring of online discussion

posts. In Proceedings of the 2nd ACM Workshop on
Information Credibility on the web (WICOW ’08), Napa

Valley, USA, 2008.

[17] Markus Weimer and Iryna Gurevych. Predicting the

perceived quality of web forum posts. In Proceedings
of the 2007 Conference on Recent Advances in Natural
Language Processing (RANLP-07), Borovets, Bulgaria,

2007.

[18] Markus Weimer, Iryna Gurevych and Max Mühlhäuser.

Automatically assessing the post quality in online dis-

cussions on software. In Proceedings of the 45th Annual
Meeting of the ACL: Interactive Poster and Demonstra-
tion Sessions, pages 125–128, Prague, Czech Republic,

2007.

[19] Le Zhang. Maximum entropy toolkit. http:

//homepages.inf.ed.ac.uk/lzhang10/maxent_

toolkit.html, 2004. Retrieved on 15/09/2009.

105



Investigating the use of Association Rules in Improving Recommender
Systems

Gavin Shaw
School of Information Technology

Queensland University of Technology
Brisbane QLD Australia

g4.shaw@student.qut.edu.au

Yue Xu
School of Information Technology

Queensland University of Technology
Brisbane QLD Australia

yue.xu@qut.edu.au

Shlomo Geva
School of Information Technology

Queensland University of Technology
Brisbane QLD Australia

s.geva@qut.edu.au

Abstract Recommender systems are widely used on-
line to help users find other products, items etc that they
may be interested in based on what is known about that
user in their profile.

Often however user profiles may be short on infor-
mation and thus when there is not sufficient knowledge
on a user it is difficult for a recommender system to
make quality recommendations. This problem is often
referred to as the cold-start problem.

Here we investigate whether association rules can
be used as a source of information to expand a user
profile and thus avoid this problem, leading to improved
recommendations to users. Our pilot study shows that
indeed it is possible to use association rules to improve
the performance of a recommender system. This we
believe can lead to further work in utilising appropriate
association rules to lessen the impact of the cold-start
problem.

Keywords Information Retrieval, Personalised Doc-

uments, Recommender Systems, Association Rules.

1 Introduction
Recommender systems are designed to understand a

users interests, learn from them and recommend items

(whether they be products, books, movies etc) that

will be of interest to the user. This requires them to

personalise their recommendations. Recommendation

systems usually work most effectively when user

profiles are extensive and/or the applicable dataset has

a high information density. When the dataset is sparse

or user profiles are short, then recommender systems

struggle to provide quality recommendations. This is

often known as the cold-start problem.

Proceedings of the 14th Australasian Document Comput-
ing Symposium, Sydney, Australia, 4 December 2009.
Copyright for this article remains with the authors.

Our proposal here focuses on one aspect of the cold-

start problem; short user profiles. When a user (can

be a new user) has very few ratings in their profile,

recommender systems may fail to provide recommen-

dations that interest the user. Both collaborative based

[5] and content based [2] can suffer, due to collaborative

systems failing to find similar users and content systems

having problems due to lack of being able to obtain the

content interests of the user.

We propose expanding a user profile (eg. so it con-

tains more ratings) through the use of association rules

derived from the dataset. By doing so we expand pro-

files based on patterns and associations of items, topics,

categories etc (which should give relevant consequents)

and thus give more information to a recommender sys-

tem. This would reduce the effect of the cold-start prob-

lem and result in better quality recommendations earlier

on.

2 Related Work
Much work has been done in the area of recommender

systems. Work focusing on solving the cold-start prob-

lem includes collaborative & content hybrids [1] [5],

ontology based systems [3] and taxonomy driven rec-

ommender systems [6] [7]. However, all of these pro-

posals have drawbacks. The hybrid systems can lack

novelty, resulting in recommendations that are exces-

sively content centric [7]. The onotolgy based system

requires a well defined ontology to be created, some-

thing that can be difficult and would limit the system to

what is defined/covered within the ontology. Taxonomy

based systems work better, but still have low perfor-

mance. Also the HTR system proposed in [6] performs

only marginally better than the TPR system proposed

in [7], although it is more time efficient. The taxonomy

based approach in [7] does have the advantage of being

able to be applied to many domains.

106



Work has also focused on the other cold-start prob-

lem, when a new item is introduced and recommenda-

tions are required, but no one has yet rated that item [5].

For this cold-start problem collaborative systems can

not help, but content based systems can [5]. We focus

on the cold-start problem of new users, rather than new

items.

3 Proposed Approach - Using Association
Rules to Expand User Profiles

Here we outline our proposed approach and investiga-

tion into solving the cold-start problem in recommender

systems.

3.1 Background
In its simplest form, a recommender system takes what

it knows about a particular user (perhaps a profile) and

attempts to predict what that given user would be inter-

ested in and recommend those items to the user. Infor-

mation can take the form of what a user has rated, what

other users with similar tastes have rated, the content

of the rating (if any) and the content of the item(s). In

the case of TPR [7] it uses a given user’s rating history

of items and the user’s implicit taxonomic preferences

to determine new items that will interest the user. Both

a user’s history and implicit taxonomic preferences can

be easily obtained from the dataset without any extra

effort on the users behalf.

The drawback to this is when a user has a small

number of ratings (what we refer to as a ’short profile’)

it becomes difficult to effectively determine the users

implicit taxonomic preferences. Thus recommendation

quality suffers.

3.2 Expanding User Profiles
sually at the heart of every recommender system are the

user profiles. It is from this that recommenders base

their work. In order to improve the quality of recom-

mendations being made to users with short profiles, we

propose to use association rules to expand the number

of entries in their profiles.

We have a set of users U = {u1, u2, ..., un} and a

set of items I = {i1, i2, ..., im}. Every user u ∈ U

has a set of rated items R(u) ⊆ I whereby if an item

i is in the set R then user u has rated it. We also have

a taxonomy T containing topics (or categories) t in a

multi-level structure, where each topic has one parent

or supertopic, but may have many children or subtopics.

Thus the taxonomy can be visualised as a tree. Each

path from the root to a leaf is called a descriptor which

is an ordered list consisting of the topics on the path.

For any item, it may have more than one descriptor.

Let D = {d1, d2, ..., do} be the set of all descriptors,

for an item i ∈ I , its descriptors can be represented as

{d1(i), d2(i), ...} which is a subset of D. All of this in-

formation can be used to expand existing short profiles.

Firstly, using the set of users U and the taxonomy

T we can build a transactional dataset where each user

u is a ’transaction’ and all the topics t in the taxonomy

make up the datasets attributes. Then we populate the

dataset using the set of users U, the set of rated items

R and the set of taxonomic descriptors D. This is done

by determining the items i rated by the user u and their

positions within the taxonomy. Each item will corre-

spond to one or more paths through the taxonomy from

the root to a leaf. That is, the item may have one or

more descriptors. For a user ux and a ∈ R(Ux), using

the descriptors {d1(a), d2(a), ...}, we place a positive

value ’1’ in the user’s transaction at each topic involved

in these descriptors. All other topics in the transaction

will be marked with a negative value ’0’. From this we

can construct a transactional dataset that shows users’

interests in topics, not items.

Second, we then mine the transactional dataset for

frequent patterns and derive association rules from

these patterns. The frequent patterns and rules will not

come from just one taxonomy level, but rather mutiple

levels and will also include cross-level patterns and

rules. This will give us association rules between topics

that interest users. These rules allow us to discover

topics that frequently appear together as part of a user’s

interest. This rule set will then be used to expand user

profiles to solve the cold-start problem.

Next, we create the user profiles that will be needed

by the recommender system. For our investigation we

use the TPR system first proposed in [7]. In order to

achieve this we will use the set of users U, the set of

rated items R, the taxonomy T and the set of descriptors

D to create a set of user profiles P = {p1, p2, ..., pn}.
Here for each user u ∈ U we determine the leaf topics

that correspond to each item i ∈ R(ux) through the

use of the descriptor(s) d(i). These leaf topics are then

added to the profile p(ux) so that p(ux) contains a list

of leaf topics for which user ux has rated at least one

item i in each leaf topic t. The set of user profiles P is

known as the user taxonomy profiles and is used by the

TPR approach to perform recommendations. This set

of profiles P will serve as our baseline.

Finally, we expand the user profiles. For this we

take the set of user profile P and the association rule set

we derived in the second step. For each user profile

p(ux) we extract all of the topics t within and gen-

erate a list of all the combinations possible from the

group of topics. Each combination represents a pos-

sible antecedent of an association rule. We take each

combination and search the set of association rules for

any rules that have that exact set of topics as its an-

tecedent. If such a rule exists we can then take its

consequent and the topics within and add them to the

profile p(ux). Thus this generates a set of expanded

user profiles which we show in our experiments have

the potential to improve recommendations over profiles

that have not been expanded.

107



3.3 Imposing Restrictions on User Profile
Expansion

We have outlined our proposal for using association

rules to expand user profiles in order to improve rec-

ommender system quality. However, it is possible that

we may want to place limitations on the expansion of

user profiles.

1. Restrict the expansion to short profiles. The idea

behind this proposal is to expand users who have

very few ratings and thus suffer from the cold-start

problem. Users with many ratings do not have this

problem. Thus a restriction should be imposed on

how many topics can be in the user profile p before

there is too many to warrent expansion. This limit

would be dependent on several factors.

2. Restrict the number of rules used when expanding

a user profile. It is entirely possible that when de-

riving the association rules from the transactional

dataset that a large list may be generated. It is

also possible that from this, when expanding a user

profile that a large number of rules and their con-

sequents will be considered for inclusion in the

expanded user profile. This may lead to poorer

performance as many more topics are added and

more items from a wider selection become recom-

mended. Therefore it may be benefical to limit the

number of association rules that are used in expan-

sion to those that have the highest support, con-

fidence or other appropriate interestingness mea-

sure.

4 Experiments and Evaluation
Here we outline the pilot experiment we undertook to

study the value of our proposal to use association rules

in expanding user profiles to improve recommendation

quality.

4.1 Evaluation Metrics
In order to evaluate the performance of the baseline set

of profiles and the expanded set of profiles we follow

the same approach detailed in [6]. The past ratings of

each user u ∈ U is divided into a training component

and a test component. For the experiments, the recom-

mender system will recommend a list of n items for user

ui based on the training set. The recommendation list

will be evaluated against the test set. For our experi-

ments we use exactly the same training and test sets as

used in [6].

In our work we use precision, recall and F1-

measure to determine the overall performance of the

recommender system. This allows us to compare

the standard approach against our proposal of using

association rules for user profile expansion.

4.2 Dataset
For this investigation we use the BookCrossing

dataset (obtained from http://www.informatik.uni-

freiburg.de/ cziegler/BX/) which contains users, books

and the ratings given to those books by the user. The

taxonomy tree and descriptors are orginally sourced

from Amazon.com and are exactly the same as those

used in [6]. From this we build a transactional dataset

that contains 92,005 users (transactions) and 12,147

topics from the taxonomy. The dataset is populated

using the descriptors that belong to 270,868 unique

books. This dataset is then mined to derive the

association rules from it.

From the BookCrossing dataset we also build the

base set of user profiles P. This set of profiles contains

85,415 distinct users with a total of 10,662 leaf topics

contained in the taxonomy. As already mentioned the

ratings for each user are divided into a training set and

a test set. The set of user profiles P is based on the

training set. The average number of leaf topics in a

user profile is 27.08 and the highest number of leaf

topics in a given user profile is 3,173 leaf topics. This

set of user profiles will serve as the baseline in our

experiments and is also the set that will be expanded

using the derived association rules.

4.3 Experiment Results
To validate our proposal we conducted a series of ex-

periments to see whether using association rules to ex-

pand user profiles improves recommendation quality.

From the transactional dataset we set the minimum con-

fidence threshold to 50% and are able to derive 37,827

association rules using the MinMax rule mining algo-

rithm [4]. We then go through the user profiles in the

training set and for any profile p ∈ P (train) that has

5 or less topics listed we attempt to expand using the

association rules. This yields a total of 15,912 user

profiles which we consider to be short profiles. After

attempting profile expansion we then make up to 10

recommendations for these 15,912 users and measure

the overall performance of the recommender system.

We compare our proposed approach (involving the ex-

panded profiles) against the baseline of the same 15,912

user profiles with no expansion. All experiments use

the TPR recommender system first presented in [7].

As shown in Table 1 the baseline set of user pro-

files (which there is no profile expansion) scores only

0.00619, 0.0571 and 0.0112 for precision, recall and

F1-measure respectively. When using expanded pro-

files we manage to achieve up to 0.00815, 0.0754 and

0.0147 for precision, recall and F1-measure. This is an

improvement of approximately 31.5% over the base-

line. This level of improvement was achieved when

we used the top 5 rules (ranked by their confidence

score) to expand user profiles. Table 1 also shows that

the performance of our proposed approach improves

as more rules are used in expanding a user’s profile.

However, the improvement is between using the top 2

108



Table 1: Experimental results for TPR using the short user profiles.

Approach Precision % Recall % F1-Measure %

Baseline (No Rules) 0.00619 0.0571 0.0112

Expanded (1 Top Rule) 0.00649 4.77% 0.0595 4.28% 0.0117 4.72%

Expanded (2 Top Rules) 0.00714 15.21% 0.0655 14.66% 0.0128 15.16%

Expanded (3 Top Rules) 0.00732 18.15% 0.0672 17.77% 0.0132 18.12%

Expanded (4 Top Rules) 0.00792 27.79% 0.0729 27.75% 0.0143 27.79%

Expanded (5 Top Rules) 0.00815 31.54% 0.0749 31.22% 0.0147 31.51%

or top 3 rules is small. A similar situation also occurs

between the top 4 and top 5 rules.

This experiment shows that the overall performance

of the recommender system can be improved through

the use of our proposed approach, with a 30+% im-

provement being achieved, which we believe supports

our proposal. The efficiency of the recommender is

not negatively impacted, as while our expanded pro-

files take longer to make recommendations for, the time

taken is inline with that needed to process a profile with

a similar number of topics without profile expansion.

We also conducted a second smaller experiment.

We took the 15,912 user profiles that had been deemed

to be short and while attempting to expand them, we

determined which profiles were actually expanded.

From the 15,912 short profiles we were able to expand

11,273 profiles. We then evaluated the recommender

system on just these profiles. As Table 2 shows the

use of the top 5 association rules to expand these user

profiles resulted in an improvement in the performance

of the recommender system of 39.7% over the

baseline. This experiment shows that for users whose

profile can be expanded, noticable improvements in

recommendation performance are achievable. Thus it

appears that association rules can make a difference in

recommender system performance.

Table 2: Experimental results for TPR using only the

short user profiles that were sucessfully expanded.

Approach F1-Measure %

Baseline (No Rules) 0.0113

Expanded (5 Top Rules) 0.0158 39.74%

5 Conclusion and Future Work
In this paper we proposed the idea of using association

rules to expand user profiles in order to improve recom-

mendations. We outline an approach whereby the rules

can be discovered and used, increasing the number of

topics in a user profile that only has a few existing rat-

ings. Our experiment shows that the proposed approach

can improve the performance of a recommender system

under the cold-start problem. This approach allows a

user profile to obtain more topic information without

extra input from a user and allows a new user to get

better recommendations faster.

Further work includes discovering if there is a better

measure to rank the rules so that the rules selected are

the best for expanding the user’s profile. Also more in-

vestigation into how many of the top rules to use needs

to be undertaken. This would help determine if it is

possible to use too many rules during profile expansion

such that recommender performance is degraded. Fi-

nally, with the issue of redundant rules, this application

could be used to help confirm that rules removed as

redundant do not cause information loss. This could

be done by comparing the performance of a rule set

containing redundant rules against one that does not.

Acknowledgements Computational resources and
services used in this work were provided by the HPC
and Research Support Unit, Queensland University of
Technology, Brisbane, Australia.

References
[1] R. Burke. Hybrid Recommender Systems: Survey and

Experiments. User Modelling and User-Adapted Inter-
action, Volume 12, pages 331–370, 2002.

[2] P. Melville, R. J. Mooney and R. Nagarajan. Content-

Boosted Collaborative Filtering for Improved Recom-

mendations. In 18th National Conference on Artifi-
cial Intelligence (AAAI’02), pages 187–192, Edmonton,

Canada, July 2002.

[3] S. E. Middleton, H. Alani, N. R. Shadbolt and D. C. De

Roure. Exploiting Synergy Between Ontologies and

Recommender Systems. In The Semantic Web Workshop,
World Wide Web Conference (WWW’02), pages 41–50,

Hawaii, USA, May 2002.

[4] N. Pasquier, R. Taouil, Y. Bastide and G. Stumme. Gener-

ating a Condensed Representation for Association Rules.

Journal of Intelligent Information Systems, Volume 24,

pages 29–60, 2005.

[5] A. I. Schein, A. Popescul, L. H. Ungar and M. Pennock.

Methods and Metrics for Cold-Start Recommendations.

In 25th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval
(SIGIR’02), pages 253–260, Tampere, Finland, August

2002.

[6] L.-T. Weng, Y. Xu, Y. Li and R. Nayak. Exploiting Item

Taxonomy for Solving Cold-start Problem in Recommen-

dation Making. In IEEE International Conference on
Tools with Artificial Intelligence (ICTAI’08), pages 113–

120, Dayton, Ohio, USA, November 2008.

[7] C.-N. Ziegler, G. Lausen and L. Schmidt-Thieme.

Taxonomy-driven Computation of Product Recommen-

dations. In International Conference on Information
and Knowledge Management (CIKM’04), pages 406–

415, Washington D.C., USA, November 2004.

109



The Methodology of Manual Assessment in the Evaluation 
of Link Discovery 

Wei Che (Darren) Huang 
Faculty of Science and Technology 
Queensland University of Technology 

Brisbane, Australia 
w2.huang@student.qut.edu.au 

Andrew Trotman 
Department of Computer Science 

University of Otago 
Dunedin, New Zealand 

 andrew@cs.otago.ac.nz  

Shlomo Geva 
Faculty of Science and Technology 
Queensland University of Technology 

Brisbane, Australia  
s.geva@qut.edu.au 

 
Abstract - The link graph extracted from the Wiki-
pedia has often been used as the ground truth for 
measuring the performance of automated link dis-
covery systems. Extensive manual assessments expe-
riments at INEX 2008 recently showed that this is 
unsound and that manual assessment is essential. 
This paper describes the methodology for link dis-
covery evaluation which was developed for use in the 
INEX 2009 Link-the-Wiki track. In this approach 
both manual and automatic assessment sets are gen-
erated and runs are evaluated using both. The ap-
proach offers a more reliable evaluation of link dis-
covery methods than just automatic assessment. A 
new evaluation measure for focused link discovery is 
also introduced. 

Keywords 

Wikipedia, Link Quality, Manual Assessment, Eval-
uation. 

1. Introduction 
The Wikipedia free encyclopedia is the most popular 
collaborative information repository on the web. It 
continues to enjoy increasing popularity amongst 
web users as well as amongst a diverse set of know-
ledge content editors [1]. Wikipedia documents are 
densely linked in the traditional way, from text anc-
hors in one document to a target document. Although 
external links to other web pages outside the Wiki-
pedia also exist, the link structure within the Wikipe-
dia is quite different from that of the Web. The use of 
hyperlinks on the Web tends to vary, ranging from 
elaboration to referential to navigational. Text anc-
hors do not necessarily denote the concept of the 
target, and even if they do they often take the user to 
a different but related web site. 

The Wikipedia link structure is typically built by 
matching text anchors to semantically related entries. 
Most links within the Wikipedia have a strong se-
mantic relationship between the anchor context and 
the target context. The purpose of a Wikipedia link is 
almost invariably to provide more detailed informa-
tion about something. The majority of the links are 
conceptual rather than navigational.  

In a growing collection, such as the Wikipedia, 
the maintenance of the link graph can quickly be-
come more time-consuming and complicated than 
adding content. Newly created documents should be 
linked to from text anchors in existing pages. Links 
to deleted documents must be erased. There is also 
general maintenance of the link graph for documents 
that change or are extended. 

Several [2, 3, 4, 5] automated link discovery algo-
rithms have been proposed as methods to alleviate 
the link maintenance problem. The INEX Link-the-
Wiki Track [6] takes the traditional link discovery 
problem a step further with focused link discovery. 
The aim is to identify text anchors in a source docu-
ment and a best entry point (BEP) in a target docu-
ment. In HTML a BEP is a named anchor and an 
anchor-to-BEP link is specified using #name on the 
end of the target document’s URL. 

Focused systems are potentially more useful to 
the user because of the reduced need to navigate (es-
pecially in a long document or on a mobile device). 
Anchor-to-BEP link discovery is also a harder (and 
more interesting) problem than anchor to document 
discovery because of the focused relationship be-
tween the anchor context and the target document 
BEP context. The current method of link discovery is 
based on the page name matching or similarity. A 
broad range of technologies, e.g. natural language 
processing, data mining, machine learning, informa-
tion retrieval, information extraction and link discov-
ery, are encouraged to integrate to resolve the issue 
of linking anchor to best entry points. 

After two years of INEX experiments it appeared 
as though the problem of the file-to-file link discov-
ery was solved. Two fundamentally different ap-
proaches (anchor link analysis [3] and page name 
analysis [2]) could identify high quality links when 
evaluated against links already in the Wikipedia. 
Near perfect precision scores at high recall levels 
were seen. 

However, after extensive manual assessment of 
INEX runs it became clear that the use of the existing 
link graph lead to biased and optimistic evaluation 
[7]. It appears as though the near perfect scores are 
achieved because a substantial proportion of the links 
in the Wikipedia are in fact generated automatically 
using similar methods to those used by the link dis-

Proceedings of the 14th Australian Document Computing 
Symposium, Sydney, Australia, 4 December 2009. 
Copyright for this article remains with the authors 

110



covery systems being evaluated. Manual assessment 
appears to be essential for robust evaluation of link 
quality. 

There are other reasons for manually assessing 
link discovery systems at INEX: 

1. There appear to be many links in the Wikipedia 
that are not useful. Some links are inserted au-
tomatically and may not be considered relevant 
by users of the Wikipedia (for instance, links to 
year documents).  

2. The Wikipedia is largely linked from an anchor 
to a whole document; best entry points are rarely 
seen. It is, therefore, not possible to use the ex-
isting Wikipedia link graph to evaluate anchor to 
BEP link discovery systems.  

3. In the Wikipedia it is quite reasonable to expect 
some anchors to target multiple destinations. 
There could, for example, be a variety of themat-
ic links, multilingual links, or links which extend 
the anchor's context with varying degrees of 
complexity (simple vs. full Wikipedia). The ex-
isting link graph does not support the evaluation 
of systems which support multiple links per anc-
hor discovery. 

The need for a robust and standardized manual 
assessment and evaluation methodology is the moti-
vation for this paper. We hope that this methodology 
will be adopted for link discovery experiments 
beyond INEX 2009. 

2. Wikipedia 
There are more than 200 different language versions 
of the Wikipedia (September 2009). They are freely 
available as a database and are particularly well 
suited to IR experiments.  

Between 2006 and 2008 INEX used a dump of 
the English Wikipedia consisting of 659,388 docu-
ments. For 2009 INEX has used a fresh dump con-
sisting of 2,666,192 documents. The documents were 
converted from the original Wiki-markup to XML. 

 
Figure 1: Relationship between document length and 

number of link in the INEX 2009 Wikipedia collection. 

Presented in Figure 1 is the relationship between 
document size and the number of outgoing links. 
There are no very short documents with a high link 
count and there are very few long documents with 
few links. Most documents link to between 10 and 
100 different pages within the collection. 

There are 24,168 homonym disambiguation pag-
es. These pages are not suitable for link discovery 
experiments as they are (essentially) content-free.  

3. Related Work 
The 2008 INEX Wikipedia collection [8] was con-
verted from Wiki-markup into XML for XML-IR 
experiments. The 2009 INEX collection was also 
converted into XML but for use in a broader set of 
experiments. One point of difference between the 
two collections is the semantic annotations present in 
the 2009 collection (see Schenkel et al. [9]). 

The Wikipedia has already been used as an IR 
corpus in several evaluation initiatives. Since INEX 
2006 it has been used for the evaluation of ad hoc 
XML retrieval and for XML Document Mining. At 
CLEF 2006, it was used for question answering [10].  

A link suggestion tool, Can We Link It, was devel-
oped by Jenkins [11]. It extracts a number of anchors 
which have not been discovered in an article and that 
might be linked to other Wikipedia documents. Us-
ing this tool the user can add new anchors and cor-
responding links back from a Wikipedia article. Mi-
halcea & Csomai present the Wikify [4] system. It 
integrates automatic keyword extraction and word 
sense disambiguation to identify the important con-
cepts in a document and links these to corresponding 
documents in the Wikipedia.  

Link discovery systems are typically evaluated 
against the Wikipedia itself. Pages are selected as IR 
topics, the algorithms are run over the topics, and the 
result compared to the links that are already in the 
document. Mihalcea & Csomai [4] used the Turing 
test to further validate their results. Milne & Witten 
[5] used the Mechanical Turk to solicit links for the 
AQUAINT collection. INEX considers link discov-
ery to be a recommender task and so the results list is 
ranked; set based evaluation is inappropriate. 

Two evaluation frameworks, DIRECT [12] at 
CLEF and EPAN [13] at NTCIR, provide a GUI and 
modules for evaluation. INEX assesses all topics, and 
also uses a GUI evaluation tool for ad hoc retrieval. 

4. Experimental Methodology 
A subset of the Wikipedia collection is chosen as a 
topic set. All anchor links to and from the topics, 
from and to the collection, are removed (orphaning 
the documents). Specifically, a random set of (6600 
in 2008, 5000 in 2009) documents was chosen as the 
topics for file-to-file linking; track participants no-

0-1024
1024-2048

2048-5120
5120-10240

10240-51200
> 51200

0

50000

100000

150000

200000

250000

300000

350000

98395

205184

337661

170797

56203

3972

Pure text in 
bytes

N
um

be
r o

f d
oc

um
en

ts

Number of links

0-1024

1024-2048

2048-5120

5120-10240

10240-51200

> 51200

111



minated topics (50 in 2008, 33 in 2009) for anchor-
to-BEP linking. The goal is to identify both outgoing 
and incoming links from and to those topics. 

INEX offers two linking tasks: file-to-file and 
anchor-to-BEP. The former is a low-cost entry-level 
task for new participants (and as a sanity check for 
the latter task). The task is to identify up to 250 doc-
uments that the topic should link to; no anchor or 
BEP need be identified. 

In the anchor-to-BEP task the system can identify 
up to 50 outgoing anchor texts per topic. For each 
anchor at most 5 target document/BEP pairs are al-
lowed. For incoming link discovery, a set of at most 
250 anchors (in the collection) targeting BEPs in the 
topic are to be identified. Both incoming and out-
going links are from anchor to BEP. 

A text anchor is identified by its position (offset 
and length) within the document. A BEP is identified 
by its position. Positions are specified as character 
offsets (excluding markup) from the document start. 

Participants were invited to submit runs. In total 
30 runs were submitted in 2008. It was prior to the 
2009 submission deadline at the time of writing. 

5. Manual Assessment 

5.1 Methodology 
In 2008 two sets of assessments were generated, one 
from the Wikipedia and the other from the runs.  

The Wikipedia ground-truth assessment set con-
sisted of just those links already in the Wikipedia. It 
is an automatically generated set of links from anc-
hors to documents.  

Submission runs were pooled. The pooling 
process combines overlapping anchor texts to form a 
pool-anchor which is presented to the assessor. A 
pool-anchor might contain a number of anchors as 
well as a set of target BEP links. All the links already 
in the Wikipedia topic were added to the pool. The 
pool was then manually assessed. 

For the purpose of evaluation it is assumed that 
all non-assessed links are non-relevant. However, as 
the pool was exhaustively assessed, there is a reusa-
bility issue and does not affect submitted runs.  We 
note that the same convention is used in other forums 
and tracks (such as TREC).  

A validation tool was provided and distributed to 
assist developers of focused link discovery systems. 
It allowed participants to view their submissions in 
an interface similar to that used by the assessors. The 
tool helped participants debug their submissions (the 
calculation of BEP can be non-trivial), as well as 
perform sanity checks on their algorithms. 

5.2 Assessment 
Built on experience using the INEX ad hoc assess-
ment tool, a GUI-based relevance assessment tool 
(i.e. GPXrai) was custom designed and built for the 
manual assessment of link discovery pools (see Fig-
ure 2). The interface is comprised of a split screen. 

The topic pane is located on the left hand side. 
The right hand pane is used to show the target docu-
ment. Two distinct assessment modes are provided, 
one for outgoing links, the other for incoming links. 

 
Figure 2: INEX 2009 Link-the-Wiki Assessment Tool 

Outgoing links are initially assessed. The topic 
document is displayed with highlighted pool anchors. 
In the first instance the assessor goes through all the 
anchors and rejects (a mouse right-click) those which 
are obviously irrelevant. The pool can contain many 
such anchors, for instance year or other coincidental 
links. Each link for each remaining anchor is then 
displayed, in turn, with the right pane showing the 
target document. The assessor then either rejects (a 
mouse right-click), or accepts the target as relevant 
(by double-clicking to indicate the BEP, then mouse 
left-click).  

Incoming links are assessed in a similar manner, 
but the locations of the anchor and BEP are swapped. 
Now the anchors are from other documents and the 
BEPs are inside the topic document. The assessor is 
required to accept or reject each prospective link. 

In INEX 2008 the pools contained between 405 and 
1722 links. Assessment logs suggest that between 4 
and 6 hours were required to assess a topic. On aver-
age, only 7.4% of a pool was judged relevant. 

6. Evaluation 
A portable (Java) evaluation tool, LtwEval, was de-
veloped for evaluation purposes. It is GUI based and 
provides numerous evaluation metrics including: 
precision, recall, MAP, and precision@R. Different 
runs can be evaluated and compared to each other.  
Precision/recall graphs can be generated for sets of 
runs (see Figure 3). Anchor-to-BEP runs can be eva-

Status of anchor is pre-
sented by different color. 

Ongoing 

Fully non-relevant 

Completed 

Current Selected 

BEP Icon with relevant BG
color (Green) 

112



luated as either file-to-file or anchor-to-BEP. The 
tool was distributed to participants. 

 
Figure 3: INEX 2008 Link-the-Wiki Evaluation Tool 

The “best” metric to use for focused link discov-
ery evaluation is not obvious. As with all metrics, it 
is important to first define the use-case of the appli-
cation. The assumption at INEX is that link-
discovery is a recommendation tasks.  The system 
produces a ranked list of anchors and for each a set 
of recommended target/BEP pairs. The user navi-
gates a limited number of anchors and selects only a 
few to embed in the new document. 

A link discovery system might identify a very 
large number of possible links. The Wikipedia has a 
page for each letter in the Latin alphabet and so each 
letter of each word might be linked. It also contains 
potentially overlapping links, for example there is a 
page for world, a page for war, and a page for world 
war. The user is expecting the system to identify 
relevant anchors and links, and to place these at the 
top of the results list.  The list should also be com-
prehensive because it is not clear that the document 
author can know a priori which links will be relevant 
to a reader of the document.  That is, link discovery 
is a recall oriented task 

The Mean Average Precision based metrics are 
very good at taking rank into account and are recall 
oriented. They are also very well understood. A good 
metric for link discovery should, consequently, be 
based on MAP.  The difficulty is computing the re-
levance of a single result in the results list. 

For the anchor The Theory of Relativity, an equal-
ly good anchor might be Relativity.  For evaluation 
purposes it is assumed that if the target is relevant 
and the anchor overlaps a relevant anchor then the 
anchor is relevant; fanchor(i) = 1. This is subtly differ-
ent from the world war problem above, different in 
so far as the target must also be relevant.  Of course, 
this definition of relevant anchor aids in reusability. 

The assessor might have assessed any number of 
documents as relevant to the given anchor.  If the 
target of the anchor is in the list of relevant document 
then it is considered relevant; fdoc(i) = 1. In the INEX 

ad hoc track the BEP is considered to be subjective.  
If the search engine can put the relevant passage on 
the user's screen then it is considered a “hit”.  The 
contribution of the links’ BEP is a function of dis-
tance from the assessor’s BEP: 

����(�) = �� − 0.9 × 	(
, �)�    �� 0 ≤ 	(
, �) ≤ �0.1                     �� 	(
, �) > �  

Where 	(
, �) is the distance between submis-
sion BEP and result BEP in character. Therefore, the 
score of ����(�) varies between 0.1 (i.e. d is greater 
than n) and 1 (i.e. the submission and result BEPs are 
exactly matched). The score of 0.1 is reserved for the 
right target document with an indicated BEP not in 
range of n. n typically is set up as 1000 (characters). 
The score of a result in the results is then: 

� = �(�������(�)) × �∑ ������ (�) × ����� (�)����� ��� ! 

Where m is the number of returned links for the 
anchor and mi is the number of relevant links for the 
anchor in the assessments. As the result list is re-
stricted to 5 targets per anchor mi is capped at 5 for 
evaluation.  A perfect run can thus score a MAP of 1. 

7. Conclusion and Outlook 
Although it has appeared as though link discovery is 
a solved problem, manual assessment of participants 
runs at INEX 2008 showed that, in fact, it is not.  The 
INEX result raises new questions about methodolo-
gies for link discovery evaluation, and in particular 
focused link discovery systems. 

In this contribution we propose and describe a 
new comprehensive methodology. This methodology 
is based on manual assessment of link relevance. A 
new metric is proposed to measure the performance 
of a run.  Our methodology is being used for the IN-
EX 2009 Link-the-Wiki track. 

Our further work will focus on evaluation quality 
and on the efficiency of the manual assessment. This 
will be done using assessor surveys and interviews.  

We remain fascinated by the appalling perfor-
mance of the Wikipedia itself when evaluated against 
the manual assessments. It is our expectation that, 
once the methodology is stable, link discovery sys-
tems will outperform human created hypertext links. 

References 
[1] Alexa, The Web Information Company http://www. 

alexa.com/topsites. 
[2] Geva, S., GPX: Ad-Hoc Queries and Automated Link 

Discovery in the Wikipedia, INEX 2007, pp. 404-416. 
[3] Jenkinson, D., K.-C. Leung, A. Trotman, Wikisearch-

ing and Wikilinking, INEX 2008, pp. 374-388. 

113



[4] Mihalcea, R., A. Csomai, Wikify!: linking documents 
to encyclopedic knowledge, CIKM 2007, pp. 233-242. 

[5] Milne, D., I.H. Witten, Learning to link with wikipe-
dia, CIKM 2008, pp. 509-518. 

[6] INEX (2009) http://www.inex.otago.ac.nz/tracks/ 
wiki-link/wiki-link.asp. 

[7] W.C. Huang, Trotman, A., Geva, S (2009), The Im-
portance of Manual Assessment in Link Discovery, 
SIGIR 2009, pp. 698-699. 

[8] Denoyer, L., Gallinari, P. (2006) The Wikipedia XML 
Corpus, ACM SIGIR Forum, 40(1):64-69. 

[9] Schenkel, R., Suchanek, F. M., Kasneci, G. (2007) 
YAWN: A Semantically Annotated Wikipedia XML 
Corpus, BTW 2007, pp. 277-291. 

[10] WiQA: Question answering using Wikipedia (2006) 
http://ilps.science.uva.nl/WiQA/index. html 

[11] Jenkins, N., Can We Link It, http://en.wikipedia. 
org/wiki/User:Nickj/Can_We_ Link_It. 

[12] Mitanura, T., Nyberg, E. Shima, H., Kato, T., Mori,   
T., Lin, C.Y., Song, R., Lin, C. J., Sakai, T., Ji, D., 
Kando, N., Overview of the NTCIR-7 ACLIA Taska: 
Advanced Cross-Language Information Access 
NTCIR-7, pp. 11-25. 

[13] Di Nunzio, G. M. and Ferro, N., DIRECT: A System 
for Evaluating Information Access Components of 
Digital Libraries, ECDL 2005, pp. 483-484.  

 

114



Web Indexing on a Diet: Template Removal with the Sandwich Algorithm

Tom Rowlands, Paul Thomas, and Stephen Wan
CSIRO ICT Centre

tom.rowlands@csiro.au, paul.thomas@csiro.au, stephen.wan@csiro.au

Abstract Web pages contain both unique text, which
we should include in indexes, and template text such as
navigation strips and copyright notices which we may
want to discard. While algorithms exist for removing
template text, most rely on first completing a crawl and
then parsing each page. We present a cheap and effi-
cient algorithm which does not parse HTML and which
requires only a single pass of the document. We have
used two web corpora to investigate the performance of
a retrieval system using our algorithm and have found
similar eectiveness with an index 9-54% smaller. Fur-
ther experiments using a marked-up corpus have shown
97% of desired lines are returned.

Keywords Web documents, information retrieval

1 Introduction
Retrieving information from within a web document is

made more difficult by the presence of template text.

Such templates include, for example, the header and

footer information that sandwiches the real content of

the document. These are typically inserted automat-

ically by HTML authoring tools and scripts that dy-

namically generate HTML pages, in order to provide

a website with a consistent look-and-feel. Ideally, an

information retrieval system would be able to discard

such template material when it doesn’t contribute to the

topic of a page.

In this paper, we treat template detection and re-

moval as a longest common subsequence (LCS) prob-

lem, giving an efficient solution. Our experiments with

the WT10g corpus and an enterprise data set demon-

strate gains in efficiency with low complexity.

2 Related work
Related work has been characterised as using either a

local or a global approach [3]. A local approach exam-

ines a page in isolation to find the template material. In

contrast, a global approach determines shared templates

by examining two or more documents from a collection.

Most approaches handle templates with a two-pass

algorithm: the first pass identifies the template and the

second extracts it. Approaches to identifying the tem-

plate have included structural comparisons, often us-

Proceedings of the 14th Australasian Document Comput-
ing Symposium, Sydney, Australia, 4 December 2009.
Copyright for this article remains with the authors.

ing the document object model of the HTML docu-

ment. Tree comparison methods have been used to ex-

amine similarities in HTML tag elements [8]. Simi-

larly, Wang et al. [9] look for tables specifying layout.

Visual blocks have been segmented using classification

approaches [7].

In contrast to examining document structure, other

approaches simply examine page text and are thus

cheaper to run. Word-level features such as term

frequency and word position statistics have been

exploited to induce templates [2]. A similar approach

using text fragment frequencies is explored by

Gibson et al. [3]. Our work is similarly non-structural

but does not require any statistical modelling.

3 The sandwich algorithm
We investigate template detection and removal from

the viewpoint of improving the efficiency of a web

search engine. As such, we start with the constraint

that the solution must be able to operate as documents

are crawled.

The algorithm is derived from the intuition that,

given the prevalence of HTML authoring tools and

website content management systems, documents in

the same directory will likely share the same template.

The template lines are detected by comparing the

target file—line by line—with a sibling document

in the directory, referred to here as a peer. The

longest common subsequence (LCS) of lines is a

non-contiguous set of lines in common to a document

and its peer. Our approach assumes all such lines are

from a template and can be discarded. The remaining

lines are considered indexable material and kept. If

there are no other pages in the directory, and therefore

no candidate peers, no template removal is attempted.

Our approach is global but reduces to a single pass.

That is, identification of the template is performed

per document, and template material is removed at

the same time. As a result, this approach can be

implemented in a crawler before material is stored. If

the crawl is breadth-first, in most cases an appropriate

peer will simply be the last page crawled.

Different algorithms produce the LCS in O(n2)
to O(n logn) time [5, 6], where n is the number

of lines in each document. No HTML parsing is

required; the algorithm is entirely independent of

115



the markup language.1 The algorithm can remove

template text from “split” content, where template

material is injected in between portions of useful text.

Implementation is straightforward and simpler than

competing approaches, which makes template removal

an option where engineering resources are limited.

4 Experiments
Our early experiments consider two measures. First,

we examine the effectiveness and efficiency of a re-

trieval system which employs the sandwich algorithm.

Second, a corpus with templates explicitly marked al-

lows us to investigate our algorithm’s accuracy. (These

only provide a quick check of the algorithm’s perfor-

mance; in this first work we have not conducted an

in-depth comparison with competing, more complex,

techniques.)

To investigate the performance of a retrieval system

which incorporates the sandwich algorithm, we used

PADRE [4]—which implements a variant of BM25—

and two corpora. The WT10g corpus, used by the

TREC web track [1], includes about 1.7 million web

pages from a variety of hosts. Peers were found for

92% of pages. We used three sets of associated queries

(“topics”). Topics 451–500 (from TREC 2000) and

501–550 (from TREC 2001) are reverse engineered

from search engine query logs. Topics EP1–145, also

from TREC 2001, concentrate on finding home pages.

Since by removing navigation blocks we will remove a

number of links to each site’s entry page, performance

on this latter set of queries seems likely to degrade.

The second corpus is in the media domain, and was

collected from a large, national media organisation’s

website. It comprises about 760,000 documents for

which peers were found for 98%. 88 queries were used

from a sample of the organisation’s query log, with

judgements by an author who was familiar with the

organisation. A subset of this corpus has templates

explicitly marked.

In these experiments, which used a pre-existing

crawl, a page’s peer was based on its name n: it

was that page in the same directory whose name was

closest to n. “Closest” was defined with respect to edit

distance.

The first question we ask is: how much more effi-
cient can an index be if templates are removed? To our

knowledge, template removal approaches have not been

examined by this measure. Table 1 summarises the size

of each corpus with and without processing; and the

number of postings in an index of each.

Since a lot of templates are formatting or script-

ing instructions, which will not be indexed anyway, the

savings in postings are less than the savings in corpus

size—however even the smallest saving, 9% of postings

for WT10g, seems worthwhile, and the figures for the

1If the input is known to be, e.g., HTML or SGML then a tokeniser

could be run first and the LCS computed over streams of tokens. We

have not yet pursued this idea.

As-is LCS removed

WT10g 10.7 GB 9.0 (−17%)

1.4×109 postings 1.2×109 (−9%)
media 12.3 GB 4.0 (−67%)

1.1×109 postings 0.5×109 (−54%)

Table 1: Corpus and index sizes for two corpora, before

and after processing.

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●●●
●●●

●

●

●

●

●

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Query

A
P

● As−is
Templates removed

Figure 1: AP scores for queries 451–500, processed

with and without templates in the index.

media corpus represent a substantial savings. The fig-

ures for WT10g are smaller than the 40–50% suggested

by Gibson et al., but the WT10g crawl is older than the

one used there and the use of templates has been grow-

ing since [3]. By insisting on exact string matches we

are also conservative in identifying possible templates.

Although a substantial fraction of the index has been

removed, retrieval performance is unaffected. Figure 1

illustrates the AP scores for each of topics 451–500: on

most queries there is no discernable change and overall

there is no significant difference (Wilcoxon p > 0.99).

Topics 501–550 and EP1–145, and the media set, are

similar (p > 0.2, p > 0.5, and p > 0.4 respectively).

A further question is: how accurate are we in
removing templates? We compared our output, line

by line, with a subset of the media corpus explicitly

marked by the organisation. Blank lines and content-

less HTML (e.g. a sole <p> on a line) were not

considered in the comparison. The precision and recall

of lines classified as non-template material (and hence

kept) is 57% and 97% respectively, with an F1 score

of 0.59. The algorithm is correctly keeping the great

majority of interesting text, although our conservative

approach means we are also keeping a portion of

templates.

5 Conclusions and Future Work
Templates represent a substantial, though generally

uninformative, portion of text on the web. Removing

templates leads to a reduction in index size, without

a drop in query performance. Line-based LCS

116



comparison provides a cheap method for template

detection and removal, allowing for easy integration

within a web crawler. In future work, we intend to

use the sandwich algorithm with question answering

systems and automatic text summarisers, both of

which can benefit greatly with the accurate removal of

irrelevant template material.

Acknowledgements
We thank the anonymous reviewers for their feedback

and for their useful ideas.

References
[1] Peter Bailey, Nick Craswell and David Hawking. Engi-

neering a multi-purpose test collection for web retrieval

experiments. Info Proc & Management, Volume 39,

Number 6, pages 853–871, November 2003.

[2] Laing Chen, Shaozhi Ye and Xing Li. Template detection

for large scale search engines. In Proc. ACM Symposium
on Applied Computing, pages 1094–1098, 2006.

[3] David Gibson, Kunal Punera and Andrew Tomkins.

The volume and evolution of web page templates. In

Proc. WWW, pages 830–839, 2005.

[4] David Hawking, Peter Bailey and Nick Craswell. Effi-

cient and flexible search using text and metadata. Tech-

nical Report 2000/83, CSIRO Mathematical and Infor-

mation Sciences, 2000. http://es.csiro.au/pubs/

hawking_tr00b.pdf.

[5] Daniel S. Hirschberg. Algorithms for the longest com-

mon subsequence problem. J. ACM, Volume 24, Num-

ber 4, pages 664–675, 1977.

[6] James W. Hunt and Thomas G. Szymanski. A fast

algorithm for computing longest common subsequences.

Comm. ACM, Volume 20, Number 5, pages 350–353,

1977.

[7] Ruihua Song, Haifeng Liu, Ji-Rong Wen and Wei-Ying

Ma. Learning block importance models for web pages.

In Proc. WWW, pages 203–211, 2004.

[8] Karane Vieira, Altigran S da Silva, Nick Pinto, Edleno S

de Moura, João M B Cavalcanti and Juliana Freire. A fast

and robust method for web page template detection and

removal. In Proc. CIKM, pages 258–267, 2006.

[9] Yu Wang, Bingxing Fang, Xueqi Cheng, Li Guo and

Hongbo Xu. Incremental web page template detection.

In Proc. WWW, pages 1247–1248, 2008.

117



Analyzing Web Multimedia Query Reformulation Behavior 

Liang-Chun Jack Tseng 
Faculty of Science and 

Technology 
Queensland University of 

Technology 
Brisbane, QLD 4001, Australia 

ntjack.au@hotmail.com

Dian Tjondronegoro 
Faculty of Science and 

Technology 
Queensland University of 

Technology
Brisbane, QLD 4001, Australia 

dian@qut.edu.au

Amanda Spink 
Faculty of Science and 

Technology 
Queensland University of 

Technology
Brisbane, QLD 4001, Australia 

ah.spink@qut.edu.au

Abstract  Current multimedia Web search engines 
still use keywords as the primary means to search. 
Due to the richness in multimedia contents, general 
users constantly experience some difficulties in 
formulating textual queries that are representative 
enough for their needs. As a result, query 
reformulation becomes part of an inevitable process 
in most multimedia searches. Previous Web query 
formulation studies did not investigate the 
modification sequences and thus can only report 
limited findings on the reformulation behavior. In this 
study, we propose an automatic approach to examine 
multimedia query reformulation using large-scale 
transaction logs. The key findings show that search 
term replacement is the most dominant type of 
modifications in visual searches but less important in 
audio searches. Image search users prefer the 
specified search strategy more than video and audio 
users. There is also a clear tendency to replace terms 
with synonyms or associated terms in visual queries. 
The analysis of the search strategies in different types 
of multimedia searching provides some insights into 
user’s searching behavior, which can contribute to the 
design of future query formulation assistance for 
keyword-based Web multimedia retrieval systems.

Keywords Web log analysis, multimedia search, 
query reformulation, search strategy 

1. Introduction 
The prevalence of multimedia information on the Web 
has changed user’s information need from textual to 
multi-modal (i.e. audio, image, and video) searching. 
Multimedia search is more complex compared to 
general Web searches as evidenced by the longer 
session times and query lengths [11, 18]. Web 
multimedia search users also perform many query 
modifications, and have more difficulties in finding 
the appropriate terms to represent their needs. In 
addition, image search has the longest session length 
(i.e. more queries per session) [19] and more terms per 

query than video and audio searches [18]. Therefore, it 
is important to investigate user’s multimedia query 
formulation behavior in order to better understand the 
characteristics and obstacles in different types of 
multimedia searches.  

Existing studies have attempted to understand 
user’s information searching behavior and the search 
trends from Web log analysis [7, 15, 19]. These 
studies have shown that users submit relatively short 
search queries, typically around three terms per query 
[15]. Most users do not review many results, typically 
only the first result page [9, 11]. Such little contextual 
information and brief interaction between the user and 
the search engine limited the understanding of user’s 
searching behavior, especially when the analysis is 
based on individual transaction records [13, 16]. Thus, 
it is necessary to investigate multiple queries in order 
to provide more contextual information for Web log 
analysis.

The current study aims to discover multimedia 
query reformulation behavior and search strategies by 
applying novel log analysis procedures. To our 
knowledge, this is the first study to automatically 
analyze contextual information beyond two 
consecutive transaction logs. This approach also 
allows us to compare the search strategy 
characteristics among different types of multimedia 
searches and provide insights for future system 
development. 

2. Related studies 

2.1 Limitations of current Web log 
analysis
Web logs can be effectively used to understand 
general users’ online searching behavior on a large 
scale [6, 8, 9, 11, 15] and are generally more objective 
and non-intrusive than other data collection methods 
[6]. Such unique characteristics make Web log data 
representative of user’s unaltered behavior and thus 
regarded as the most convenient way to study real 
users [6]. However, the findings from individual 
transaction log are usually limited to the descriptive 
data without explanatory information about user’s 

Proceedings of the 14th Australasian Document 
Computing 
Symposium, Sydney, Australia, 4 December 2009. 
Copyright for this article remains with the authors.

118



searching behavior [16]. Recent studies have begun 
extracting contextual information from consecutive 
query modifications [5, 13, 14]. However, most 
studies are limited in the amount of queries that can be 
investigated because of the need for manual reviewing 
processes [12, 16, 20]. Other studies using large-scale 
data only examine searching behavior based on two 
consecutive query modifications. Thus, the full 
potential of contextual Web log analysis has yet to be 
discovered.

The analyses of contextual search information 
mainly focus on identifying new search sessions based 
on query modifications between consecutive queries 
[5, 10, 13]. He, Goker, and Harper [5] compared the 
effectiveness of using the time interval between two 
clicks and query modification patterns in detecting 
new search sessions. While the combination of these 
two methods produced the best results, query 
modification patterns accounted for the majority of the 
improvements. Ozmutlu and Cavdur [13] applied this 
method to Excite search engine logs. Their findings 
supported the usefulness of query modification 
patterns. Query modification pattern and time interval 
also have a significant effect on judging topic shifts 
[14]. In the comparison with several Support Vector 
Machine methods, the use of query modification 
pattern achieved at least 95% precision and recall in 
topic continuation, and 35% or more in topic shift 
cases, far better than its SVM counterparts. Similarly, 
Lau and Horvitz [12] used query modification pattern 
and time intervals between two consecutive queries to 
successfully predict user’s upcoming search behavior 
based on a Bayesian probability model. Query 
modification has also been used for studying the 
uptake and effectiveness of terminology feedback 
provided by retrieval systems [1].  

2.2 Web query reformulation behavior 
and search strategies 
The term “modification” and “reformulation” have 
been used interchangeably in many Web log analysis 
studies without explicit clarification of the differences 
[10, 16]. In this study, we use “reformulation” to refer 
to user’s overall behavior of formulating different 
versions of related queries in a session, whereas 
“modification” represents each change to the query. 
Thus query modifications can be classified into certain 
patterns and the overall query reformulation behavior 
implies user’s search strategies. 

Bruza and Dennis [4] investigated user’s query 
reformulation behavior by manually classifying more 
than one thousand queries into one of the eleven types 
of query modifications. With the exception of the 
repeating queries, term substitution was found to be 
the most dominant type of query modifications, 
followed by term addition and deletion. A similar 
finding was also reported from the study on a meta-
search engine Dogpile.com [10]. Jansen, Spink, and 

Narayan [10] investigated query reformulation 
behavior among large-scale Web log data. Despite the 
large proportion of formulating new search queries, 
query reformulation (which is equivalent to 
substitution in [4]) accounted for more than 15% of all 
eight types of modifications, with specialization (i.e. 
addition) occurring more than twice of generalization 
(i.e. deletion). They also concluded that major search 
content transitions were between Web and image 
collections.

Currently, only limited query modification studies 
have investigated more than two consecutive queries 
to infer user’s search strategies [16] or tactics [2]. 
Rieh and Xie [16] manually investigated 313 sessions 
of five modifications or more to classify the overall 
query reformulation approach into one of the eight 
distinct strategies, including: generalized, specified,
dynamic, parallel, block-building, multi-tasking,
recurrent, and format (details in Section 4.6). 
Although they did not report the frequency for each 
strategy, they concluded that the first four (i.e. 
generalized, specified, dynamic, and parallel) are the 
most popular strategies. A similar categorization of 
search strategies can also be found in [2]. 

3. Research questions 
Our focus is user’s Web multimedia searching 
behavior which can be revealed by consecutive query 
modifications. We investigate the entire session of 
user’s query modifications to infer the searching 
behavior. The three main questions that we attempt to 
answer are: 

1. What are the frequent modifications in Web 
multimedia queries and do they differ among the 
multimedia searches? 

2. What can the sequence of query modifications tell 
us about user’s query reformulation behavior? 

3. What search strategies can be inferred from query 
modification sequences? How can they contribute to 
the improvement of keyword-based Web multimedia 
retrieval systems? 

4. Methodology

4.1 Dogpile log aggregation and query 
modification records 
Dogpile is one of the leading online meta-search 
engines, which incorporates the indices of top search 
results from Google, Yahoo!, MSN Live, and 
Ask.com. For this study, a total of 1,228,310 records 
taken on May 15th, 2006 have been used in our 
analysis. The original Dogpile transaction log contains 
five fields that we use for our analysis: 

IP: the IP address of the computer submitting the 
query. 

119



Cookie: the unique identifier which Dogpile system 
sends to a particular computer with a pre-defined valid 
period. 

Time: the time of the day when user submits the 
query. 

Query: the original search text submitted to the 
system. 

Vertical: the search type option which user selected 
on Dogpile’s search page. In this study, we separate 
the logs with “images”, “video”, and “audio” option 
selected and replicate the analyses for comparison.

4.2 Browsing record aggregation 
The Dogpile transaction logs are sorted based on 
different user identification (i.e. a unique combination 
of Internet Protocol (IP) and cookie) in a 
chronological order. Consecutive transaction logs with 
identical queries represent browsing records and are 
aggregated with the foremost record. If the last record 
has the same time stamp as the first record in current 
browsing aggregation, the duration will be logged as 
zero length (e.g. the last aggregation in Table 1 and 
Table 2). Table 1 and 2 illustrate the original log and 
aggregated record respectively. 

IP Cookie Time Query Vertical

64.105.73.70 2187RDPA47YLJOB 6:05:33 PM pod of dolphins Images

64.105.73.70 2187RDPA47YLJOB 6:06:03 PM group of dolphins Images
64.105.73.70 2187RDPA47YLJOB 6:06:18 PM group of dolphins Images
64.105.73.70 2187RDPA47YLJOB 6:06:18 PM group of dolphins Images

64.105.73.70 2187RDPA47YLJOB 6:08:56 PM dolphins Images
64.105.73.70 2187RDPA47YLJOB 6:08:56 PM dolphins Images
64.105.73.70 2187RDPA47YLJOB 6:08:56 PM dolphins Images

Table 1. Original Dogpile search logs with browsing 
records

1 pod of dolphins  I 0:00:30

1 group of dolphins  pod,group R 0:02:53

1
bottlenose 
dolphins  

group 
of,bottlenose R 0:00:00

DurationCurrent query Modified terms Modification 
pattern

Session 
No.

Table 2. Query modification table with aggregated 
modification records 

4.3 Modification pattern classification 
Each aggregated transaction record is classified into a 
query modification pattern based on the content of the 
current query and the previous query. We use four 
modification patterns for our classification. The 
definitions for each modification pattern are: 

Initial query (I): current query has no terms in 
common with the previous query 

Addition modification (A): current query contains all 
search terms from the previous query, as well as some 
new terms 

Deletion modification (D): current query omits some 
terms from the previous query 

Replacement modification (R): deletion and addition 
of terms happen simultaneously to form the current 
query 

Thus an initial query represents a new search topic 
since no search terms are carried over from previous 
query. Some studies also classify replacement 
modification as “reformulation” [5, 13, 14]. However, 
as users can freely reformulate the query by changing 
the order of search terms without affecting the search 
results, we use the term “replacement” to clearly 
indicate such modification. Details of the 
classification algorithm can be found in [5]. We built a 
program to automatically classify queries by their 
modification patterns and aggregate consecutive 
browsing records in Table 2. 

4.4 Session aggregation 
A search session is a series of related queries 
submitted by same user. In addition to being defined 
by a unique combination of IP and cookies, a query 
with no terms in common with its preceding query is 
regarded as the beginning of a new session, thus 
classified as the “initial query”. By calculating the 
number of sessions with same IP and cookie 
combination, we are able to identify the average 
search topics submitted by a user.  

4.5 Modification sequence 
Once the query modification records have been 
generated, consecutive modifications within each 
session can be classified into several predetermined 
modification sequences. We used our program to 
identify the occurrence of thirty-six types of 
modification sequences, incorporating two or three 
predetermined modifications. Sessions with less than 
two modifications are discarded as they provide little 
information about user’s behavior. The two–
modification-sequences comprise one initial query (I), 
followed by two query modifications which can be 
either of the replacement, addition, or deletion 
modification. Thus, nine patterns (3*3) can be 
formulated for the two-modification sequences. 
Similarly, twenty-seven patterns of three-
modification-sequences (3*3*3) can be formulated. 
The main purpose of this analysis is to discover the 
frequent patterns of modification sequences that users 
follow, thus revealing user’s preference for 
consecutive query modifications and providing in-
depth information for search strategy analysis. 

4.6 Search strategies based on 
modification sequence analysis 
When typical modification sequences emerge from 
our analysis, we calculate the changes in the number 

120



of query terms within each sequence. Such changes 
can determine if users adopt some particular search 
strategies. We construct our strategy classification 
based on the higher level categorization in [16]. The 
list of modification strategies used in this study, as 
well as the detail descriptions of our analysis 
assumptions are as follows:

Generalized reformulation 

A user may begin with several search terms and 
subsequently drop some of the terms to include more 
results. This generalized reformulation is often 
manifested by consecutive term deletion changes [16]. 
It can also be characterized by replacing the query 
with fewer terms. Modification sequences in which 
subsequent queries always have fewer or equal terms 
to the precedent queries belongs to this category.

Specified reformulation 

When a user persistently specifies a query by adding 
more terms or changing to more specific phrases, we 
classify this approach as specified reformulation. In 
our analysis, modification sequences in which a 
subsequent query always has more or equal terms to 
its preceding query belongs this category. 

Dynamic reformulation 

When a user inconsistently switches between 
generalized and specified reformulation, we 
characterize such approach as dynamic reformulation. 
Such modification pattern manifests the unplanned 
nature of user’s search process. Users who adopt this 
search strategy generally have the most 
unconsolidated search problems, and require more 
interaction with the retrieval system. Modification 
sequences in which subsequent queries can have either 
fewer or more terms than precedent queries exhibit 
dynamic search strategy. 

Constant reformulation 

Constant search occurs when a user modifies terms of 
the same concept level which shares some common 
characteristics, for example when substituting with 
related objects (e.g. from PC to Mac) or synonyms. 
This strategy is characterized by having a constant 
number of query terms across the entire modification 
sequence, regardless of the existence of replacement 
modifications. The same query specificity suggests a 
one-to-one relationship between the original and new 
terms.  We used the term “constant reformulation” to 
reflect this unique characteristic. 

5. Results

5.1 Query modification 
From Table 3, image searches are the dominant type 
of multimedia search in our dataset with more than 
50% of sessions and users attributed to image 
searches. Audio is the second popular type of 

multimedia search whereas video is the least popular. 
As Table 4 shows, initial queries are the majority of 
query modification across all multimedia searches. 
Replacement modification is more than twice of the 
addition modification in visual searches (i.e. image 
and video searches) but much less in audio searches. 
Deletion is the least type of modification in all 
searches.  

Comparing the distribution of the four 
modifications in multimedia searches, audio search 
users are more likely to formulate new search topics as 
they have larger proportion of initial queries and more 
topics per user than image and video searches. The 
number of topics submitted by both image and audio 
users varies a lot (SD=21.60 and 22.39 respectively) 
while video users shows a much uniformity pattern 
(SD=8.33). For the number of modifications, image 
and video users have the same amount of 
modifications (1.71 modifications on average) while 
audio users show slightly fewer modifications per 
session (1.63 on average). Overall, image and video 
search users are very similar in terms of query 
modifications. 

Image % Video % Audio % Total
Log records 597,760 48.7 231,941 18.9 398,609 32.5 1,228,310
Sessions 183,825 52.9 52,405 15.1 110,945 32.0 347,175
Users 60,701 52.1 21,677 18.6 34,088 29.3 116,466

Table 3. Statistics of image, video, and audio search 
logs in Dogpile dataset

Image % Video % Audio %
Initial 183,825 58.6 52,405 58.5 110,945 61.2
Replacement 82,292 26.2 22,225 24.8 33,645 18.6
Addition 30,716 9.8 8,817 9.8 22,553 12.4
Deletion 16,757 5.3 6,124 6.8 14,176 7.8
Total 313,590 100.0 89,571 100.0 181,319 100.0

Average 3.03 2.42 3.25
SD 21.60 8.33 22.39

Average 1.71 1.71 1.63
SD 1.68 1.68 1.42

Topics per user

Modifications per session

Table 4. Statistics of query modification records

5.2  Modification sequence 
Two-modification-sequence analysis 
The frequencies of each modification sequence pattern 
(in percentages) are presented in Table 5 and 6. Table 
5 signifies the popularity of replacement modification 
in all types of multimedia searches, as evidenced by 
the dominance of I-R-R and I-A-R sequences. On the 
contrary, the unlikelihood of consecutive deletion 
modification is manifested by the low occurrence of I-
D-D sequences (i.e. less or equal to 1% in all 
multimedia searches). 

Figure 1 shows that both image and video searches 
have prominently more I-R-R sequences than audio 
searches. The audio searches have much more I-A-D
sequences than the other two types of searches, thus 

121



making it more evenly distributed in the top three 
modification sequence patterns. All multimedia 
searches show a similar distribution beyond the top 
three patterns.  

Image Video Audio

I-R-R 41.2% 39.2% 26.8%

I-A-R 24.9% 22.2% 23.6%

I-A-D 10.9% 13.4% 21.9%

I-R-A 5.6% 5.3% 6.2%

I-R-D 5.4% 6.8% 6.9%

I-D-A 5.1% 6.2% 7.1%

I-A-A 3.9% 3.3% 4.3%

I-D-A 2.3% 2.6% 2.1%

I-D-D 0.6% 1.0% 1.0%
Table 5. Comparison of the frequencies in two-

modification-sequence patterns

Figure 1. The distribution of the two-modification-
sequence patterns among Image, Video, and Audio 

searches 

Three-modification-sequence analysis 
The dominance of replacement and addition 

modification continued in the analysis of three–
modification-sequences. As shown in the high 
frequencies of both I-R-R-R and I-A-R-R sequences in 
Table 6, about 50% of all three modification 
sequences in image and video searches are associated 
with replacement and addition modifications. 
Similarly to the distribution in two-modification-
sequence analysis, both image and video searches 
have much higher proportion of consecutive 
replacement modifications (i.e. I-R-R-R sequences) 
than audio searches. The top three modification 
sequence patterns distribute more evenly in audio 
searches with a slightly more I-A-D-A sequences than 
the other two types of searches. For modification 
sequence patterns beyond the top five, all multimedia 
searches demonstrate similar distribution, thus provide 
little information for characterizing different types of 
multimedia searches. Figure 2 shows that I-R-R-R
sequences are more prominent in both image and 
video searches as the distribution decreased more in 
the top three modification sequence patterns than 
audio searches. The top five patterns account for over 
half of the three-modification–sequence in all 

multimedia searches and only one pattern contains the 
deletion modification. When we further differentiate I-
R-R sequence into I-R-R-R, I-R-R-A, and I-R-R-D
sequences, the prevalence of replacement over 
addition and addition over deletion continued (I-R-R-
D not shown in Table 5). Hence, user’s preference for 
replacing terms and the unlikelihood of deletion 
modification in the early stage of query modification 
can be confirmed. 

Image Video Audio

I-R-R-R 35.3% 32.4% 21.6%

I-A-R-R 20.1% 17.3% 16.7%

I-A-D-A 5.3% 6.3% 11.1%

I-R-A-R 4.5% 4.1% 3.6%

I-R-R-A 3.9% 3.5% 2.6%

Total 69.1% 63.7% 55.6%
Table 6. Comparison of the top 5 frequencies in three-

modification-sequence patterns

Figure 2. The distribution of the top 5 three-
modification-sequence patterns among Image, Video, 

and Audio searches

5.3 Search strategies based on 
modification sequence 
We investigated search strategies based on the 
consecutive replacement sequences (i.e. the I-R-R and 
I-R-R-R sequences) because of their prominence in the 
modification sequence analysis. As Table 7 shows, 
about 40% of all I-R-R sequences exhibit a dynamic 
search strategy. From Table 8, the proportion of 
dynamic search increases to more than 50% in I-R-R-
R sequences. While this large proportion of dynamic 
search can be anticipated, constant search which 
accounts for nearly one-third of all consecutive 
replacement sequences is more revealing. Because the 
query length is held at constant within each session in 
constant searches, it appears to be a one-to-one 
relationship between the replaced term pairs. A 
reasonable explanation is the interchange of synonyms 
or associated terms of the same construct (e.g. “PC” to 
“Mac”, “UK” to “USA”, or “girls” to “boys”). Both 
Table 7 and 8 show more specified searches than 
generalized searches, but the difference is only 

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

I�R�R I�A�R I�A�D I�R�A I�R�D I�D�A I�A�A I�D�A I�D�D

Image Video Audio

0%

5%

10%

15%

20%

25%

30%

35%

40%

I�R�R�R I�A�R�R I�A�D�A I�R�A�R I�R�R�A

Image Video Audio

122



noticeable in image searches. This indicates that 
image users are more prone to adopt specified strategy 
(i.e. gradually adding more search terms as the 
searching progresses) than other types of multimedia 
users. In other words, image users progressively 
consolidate or learn more information about their 
problems through the interaction with the Web search 
engine. The percentage for the search strategy analysis 
from I-R-R and I-R-R-R sequences are presented in 
Table 7 and Table 8 respectively. 

Image Video Audio

Dynamic 40.1% 40.6% 42.7%

Constant 34.8% 34.3% 28.5%

Specified 15.2% 12.8% 15.2%

Generalized 9.9% 12.3% 13.5%
Table 7. The percentage of each search strategy 

from I-R-R modification sequences 

Image Video Audio

Dynamic 52.9% 52.9% 58.3%

Constant 27.2% 25.7% 22.1%

Specified 11.9% 11.3% 10.1%

Generalized 8.0% 10.1% 9.4%
Table 8. The percentage of each search strategy from 

I-R-R-R modification sequences
As shown in Figure 3 and 4, both strategy analyses 

from I-R-R and I-R-R-R sequences suggested the 
highest constant search strategy in image searches. 
Thus image searches require most synonym or related 
term replacement modification than other types of 
multimedia searches, and such characteristic should 
benefit image searches more from term suggestion 
functionalities when refining the search queries. While 
video searches have slightly less proportions of 
constant searches than in image searches, they shared 
very similar distribution across the four types of 
search strategies. On the other hand, audio search 
users are more prone to adopt a dynamic search 
strategy.

In order to verify the replaced terms in constant 
search sequences, we implemented a Brill tagger1 [3] 
to identify the part-of-speech of the replaced term 
pairs (i.e. the terms from the original query paired 
with the terms from the replacement query). Among 
the randomly selected 1465 constant I-R-R-R
modification sequences, a total of 3003 replaced term 
pairs have been successfully tagged using the Brill 
tagger. More than 70% of these term pairs (2125 in 
total) have same part-of-speech, reassuring our 
explanation of interchanging between synonyms or 
associated terms of same construct in these constant 
search sequences.
                                                                
1 Details on the tagger implementation can be found in [17]. 

Figure 3. Comparison of the search strategies from     
I-R-R modification sequences 

Figure 4. Comparison of the search strategies from     
I-R-R-R modification sequences 

6. Discussion and future work 
The statistics of query modification revealed that all 
multimedia search users shift their search topics more 
than refining their queries. Such phenomenon is most 
evident in audio searches as initial queries are more 
than triple of the replacement queries. The 
replacement queries are more than twice the addition 
queries in both image and video searches, whereas 
audio searches have notably more addition queries. 
Deletion queries are the least type of modifications in 
all multimedia searches, especially in image searches. 
Overall, when users do modify their queries, they tend 
to replace their search terms rather than adding or 
removing them. Such modification tendency is more 
prominent for visual searches (i.e. image and video 
searches). Although the number of topics searched by 
one user varies a lot, users searched around two to 
three different topics on average. In terms of in-
session modification analysis, the majority of users 
only perform little modifications to their queries and 
visual search users modify their queries slightly more 
than audio users.  

The analysis of modification sequence pattern 
suggests the tendency to replace and add search terms 
when modifying visual queries. The distribution of 
modification sequences shows a tendency toward the 
consecutive replacement modification sequences (i.e. 
the I-R-R and I-R-R-R sequences) in visual searches. 
This tendency also distinguishes visual searches from 
audio search and suggests the need for interchanging 
related search terms. In other words, visual search 

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

Dynamic Constant Specified Generalized

Image Video Audio

0%

10%

20%

30%

40%

50%

60%

Dynamic Constant Specified Generalized

Image Video Audio

123



users are more willing to interact with the system than 
audio search users. 

In terms of search strategies, the changes in 
number of terms within I-R-R and I-R-R-R sequences 
reveal that about 40%-50% of users engage in 
dynamic searches. This typically reflects the 
unplanned nature of Web multimedia searching, which 
manifests the need for initiating several guessing runs 
to consolidate user’s problem, or to find the 
appropriate search terms. Nevertheless, about one 
third of users adopt constant search strategy in which 
they replace search terms with an equal number of 
terms, suggesting the high likelihood of interchanging 
with synonyms or related terms. This constant search 
strategy also differentiates visual searches from audio 
searches. While visual searches always have higher 
proportion of constant searches, image users adopt 
most constant search strategy among all multimedia 
searches. Hence it can be assumed that image users 
should benefit most from knowledge or ontology 
based query expansion or term suggestion assistance. 
The reason of less constant search strategy in audio 
searches may be that audio searchers tend to use the 
song title or singer’s names in their queries [19], 
resulting the replacement of these proper nouns other 
than interchanging similar terms in visual searches.  

When the change of terms shows a unidirectional 
pattern, all multimedia searchers are more prone to 
adopt the specified approach. This finding is 
consistent with prior study’s conclusion on user’s 
primary concern of retrieval precisions [9]. In 
particular, image search users show a stronger 
preference for adopting this approach than other types 
of multimedia users. Typical scenario would be that 
image search users need to see widely before they 
know exactly what they are searching for or how their 
target images should look like. This characteristic 
implies the importance of a browsing tool that helps 
users compare different results and thus consolidate 
their problems quicker. A hierarchy arrangement of 
the results or term suggestions should also be useful.  

Compared with general Web search studies, the 
current study findings are consistent with Jansen and 
Spink’s [8] conclusion on the complexity of user’s 
Web search behavior as one-query session increased 
over the years and users modify their queries less and 
less. This is to say that general Web users share the 
same characteristics with our user pool. Hence the 
effectiveness of the interaction between the user and 
the system is substantial to the improvement of query 
modification process. Future work should include a 
user study to understand the reasons behind each 
modification, as well as the corresponding search 
strategies. A semantic level analysis of replaced terms 
would also help discover the aspects of multimedia 
content that users modify most, such as the visual 
descriptors or the semantic meanings of the retrieved 
objects.

The prevalence of consecutive replacement 
modifications implies the need for an effective 
relevance feedback mechanism that would help users 
refine the importance of their query terms, perhaps 
with advanced search term suggestions based on the 
replaced terms (e.g. automatically displays synonyms 
or associated terms when user deletes a term). In terms 
of search strategies, the current study confirms the 
preference for the specified approach among image 
searchers. An interactive retrieval system that can 
gradually obtain more information about user’s image 
problem would be helpful in guiding the user to 
explore the entire collection, and hence improve the 
query reformulation effectiveness. 

7. Limitations  
Due to the aim of using automatic approach to 
discover user’s query modification behavior, this 
study only perform the part-of-speech analysis of 
replaced terms in constant search sequences. This 
limits our understanding of the types of terms being 
modified during the reformulation process. However, 
user’s overall search strategy can still be inferred from 
our analysis. Although we have successfully 
discovered some unique characteristics among 
different types of multimedia searches, these findings 
are yet to be compared with general Web searches to 
address the differences in terms of query modification 
behavior and search strategies. 

8. Conclusion
The current study investigated users’ multimedia 
searching behavior based on their query modification 
methods. Our analysis showed that around 60% of 
query modifications are to formulate new search 
topics. Image and audio users searched more topics on 
average than video users. Our approach to analyze 
Web multimedia query modifications went beyond 
two consecutive queries. The analysis of session 
modifications revealed that visual search users (i.e. 
both image and video users) modify their queries 
slightly more than audio users. Visual search users 
also tend to replace search terms with other related 
terms rather than merely narrowing or broadening 
their searches. Generally speaking, visual searches 
showed similar modification patterns with much more 
consecutive replacement modifications than in audio 
searches. In terms of search strategies, the relatively 
high proportion of constant search strategy in visual 
searches indicates the importance of term suggestion 
assistance that helps user find the synonyms or related 
terms more easily. Our search strategy analysis also 
showed the tendency of adopting a specified approach 
in image searches, which suggests a need for query 
formulation assistance to help users gradually specify 
of their problems. 

We present an automatic analysis procedure in this 
study, thus maximizing the ability to apply the same 

124



analysis to different data sets, as well as allowing 
comparisons with general Web user’s searching 
behavior. By adopting the analysis procedure, it is 
possible to extract more information about user’s 
query modification behavior, especially the search 
strategies based on the statistical evidence. Future 
multimedia retrieval systems can utilize these different
search characteristics to improve query formulation 
process and search efficiency. 

9. References 
[1] P. Anick. Using terminological feedback for web 

search refinement: a log-based study. In 
Proceedings of the 26th annual international ACM 
SIGIR conference on Research and development in 
information retrieval, pages 88-95, 2003. 

[2] M. J. Bates. Information search tactics. Journal of 
the American Society for Information Science, 
Volume 30, pages 205-214, 1979. 

[3] E. Brill. A simple rule-based part of speech tagger. 
In Proceedings of the workshop on Speech and 
Natural Language, pages 112-116, 1992. 

[4] P. D. Bruza and S. Dennis. Query Reformulation 
on the Internet: Empirical Data and the 
Hyperindex Search Engine. In Proceedings of the 
RIAO 97 Conference, pages 488-499, 1997. 

[5] D. He, A. Goker, and D. J. Harper. Combining 
evidence for automatic Web session identification. 
Information Processing & Management, Volume 
38, pages 727-742, 2002. 

[6] B. J. Jansen. Search log analysis: What it is, what's 
been done, how to do it. Library & Information 
Science Research, Volume 28, pages 407-432, 
2006. 

[7] B. J. Jansen, A. Goodrum, and A. Spink. Searching 
for multimedia: analysis of audio, video and image 
Web queries. World Wide Web, Volume 3, pages 
249-254, 2000. 

[8] B. J. Jansen and A. Spink. An analysis of Web 
searching by European AlltheWeb. com users. 
Information Processing and Management, Volume 
41, pages 361-381, 2005. 

[9] B. J. Jansen and A. Spink. How are we searching 
the World Wide Web? A comparison of nine 
search engine transaction logs. Information 
Processing & Management, Volume 42, pages 
248-263, 2006. 

[10] B. J. Jansen, A. Spink, and B. Narayan. Query 
Modifications Patterns During Web Searching. 
In Fourth International Conference on 

Information Technology (ITNG'07), pages 439-
444, 2007. 

[11] B. J. Jansen, A. Spink, and J. Pedersen. An 
analysis of multimedia searching on AltaVista. 
In 5th ACM SIGMM International Workshop on 
Multimedia Information Retrieval, pages 186-
192, 2003. 

[12] T. Lau and E. Horvitz. Patterns of Search: 
Analyzing and Modeling Web Query Refinement. 
In Proceedings of the 7th international 
conference on user modeling, pages 119-128, 
1999. 

[13] H. C. Ozmutlu and F. Cavdur. Application of 
automatic topic identification on Excite Web 
search engine data logs. Information Processing 
& Management, Volume 41, pages 1243-1262, 
2005. 

[14] S. Ozmutlu. Automatic new topic identification 
using multiple linear regression. Information 
Processing & Management, Volume 42, pages 
934-950, 2006. 

[15] S. Ozmutlu, A. Spink, and H. C. Ozmutlu. 
Multimedia web searching trends: 1997-2001. 
Information Processing & Management, Volume 
39, pages 611-621, 2003. 

[16] S. Y. Rieh and H. Xie. Analysis of multiple 
query reformulations on the web: The interactive 
information retrieval context. Information 
Processing & Management, Volume 42, pages 
751-768, 2006. 

[17] T. Simpson and T. Dao. WordNet-based 
semantic similarity measurement. The Code 
Project.com, Oct. 1, 2005. [Online]. Available:
http://www.codeproject.com/KB/string/semantic
similaritywordnet.aspx. [Accessed: Jun. 10, 
2009]. 

[18] A. Spink and B. J. Jansen. Searching multimedia 
federated content web collections. Online 
Information Review, Volume 30, pages 485-495, 
2006. 

[19] D. Tjondronegoro, A. Spink, and B. J. Jansen. A 
study and comparison of multimedia Web 
searching: 1997-2006. Journal of the American 
Society for Information Science and Technology, 
Volume 60, pages 1756-1768, 2009. 

[20] M. Zhang, B. J. Jansen, and A. Spink.  
Information Searching Tactics of Web Searchers. 
In 69th Annual Meeting of the American Society 
for Information Science and Technology, Austin, 
USA, 2006. 

125



Term Clustering based on Lengths and Co-occurrences of Terms

Michiko Yasukawa and Hidetoshi Yokoo

Department of Computer Science
Gunma University

1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan

{michi, yokoo}@cs.gunma-u.ac.jp

Abstract Document clustering is useful for address-

ing vague queries and managing large volumes of docu-

ments. However, conventional algorithms for document

clustering do not consider the lengths of terms in the

cluster labels. Some cluster labels have considerably

different lengths. Cluster labels with different lengths

result in wasted space on the screen. To counter this

problem, we have developed a new method for term

clustering. Our method considers both lengths and co-

occurrences of terms while clustering them. Therefore,

our method can achieve an efficient document search

even with limited area on the screen.

Keywords Information Retrieval, Web Documents

1 Introduction

A single-term query is usually ambiguous, and it

results in a large number of documents. Search result

clustering is very effective in managing such a large

number of searched documents[1][2][3]. We have

developed a model for classifying a set of searched

documents into clusters of related terms[4]. The

developed system was found to be useful for PC users

but not for the users of mobile terminals. This is

because the number of terms in each cluster label

varies. Further, the number of letters in each term

varies. For example, the number of letters in cafe is

less than half the number of letters in restaurant. The

situation worsens when we use a proportional font to

represent the cluster labels. In a proportional font,

the space required to represent the letter “w” is larger

than that required for “i,” thereby resulting in wasted

space on the screen (Figure 1 (a)). In order to make

optimal use of the limited space on mobile terminals,

we propose a new clustering method. Our proposed

method generates a set of related-term clusters that fit

in a rectangular region (Figure 1 (b)). The related-term

clusters are based on the co-occurrence of related terms

and are supposed to be intuitively better understood by

users than randomized related terms. This is because

co-occurrent terms in documents are supposed to be

terms associated with each other. According to Meyer

Proceedings of the 14th Australasian Document Comput-

ing Symposium, Sydney, Australia, 4 December 2009.

Copyright for this article remains with the authors.

Figure 1: Comparison between clustering methods

Figure 2: Comparison between occupied areas

and Schvaneveldt[5], pairs of associated terms such

as (BREAD-BUTTER) and (NURSE-DOCTOR) are

more promptly recognized by users than pairs of

unassociated terms such as (BREAD-DOCTOR) and

(NURSE-BUTTER). Hence, the proposed clusters are

considered to be effective in the selection of preferable

terms on the display screen by users.

Further, users do not have to input each letter in

the terms when using related-terms clusters. Users may

simply select preferable terms on the screen. Moreover,

users have an option of selecting a number on the screen

for accessibility; for example, they can push button “2”

to indicate a set of terms “restaurant, sushi, tempura”

at once. As shown in Figure 2, clustering (b) can be

more informative than clustering (a) because the results

of the former occupy a larger area on the screen.

2 Proposed Method

Our proposed method is described as follows. We as-

sume that mobile users will enter a short query (typi-

cally just one term such as a location name) and will

seek suggested terms in response to the query; The sys-

tem should present a well-organized menu of various

suggestions in response to the query, and the user will

then select one of the suggestions in the menu as an ex-

panded requirement. After this, the system will present

a number of web pages related to that expanded re-

quirement. The proposed method is explained in the

following paragraphs.

In our proposed clustering method, we first generate

a set L(Q) of terms related to the short primary query

126



Q and determine the relationship between the elements

in L(Q). Specifically, we denote the i-th term selected

from L(Q) as ti(Q). For example, for Q = “Shinjuku,”

ti(Q) = “restaurant” may be a related term. Next,

we define a query consisting of Q and ti(Q) as qi =
〈Q, ti(Q)〉. From the web pages that are searched by

qi, we extract the adjacent terms of ti(Q). We call

these terms association terms of ti(Q). Let Ai(Q) be

the list of association terms of ti(Q). Note that Ai(Q)
may include another related term tj(Q). This is because

the term tj(Q) = “sushi” may be adjacent to ti(Q) =
“restaurant” in the web pages of Q = “Shinjuku.” In

order to determine the relationship between the terms

ti(Q) and tj(Q) with respect to the primary query Q,

we define their co-occurrence score, score ij , by

scoreij = (andij/orij) ∗ (1 + log(and ij)), (1)

where and ij denotes the number of lists of association

terms that include both ti(Q) and tj(Q) and or ij

denotes the number of lists of association terms

that include either ti(Q) or tj(Q). The equation is

defined empirically on the basis of our exploratory

experiments. We have observed that in order to

consider the co-occurrences of terms, the equation

should amplify and ij ; however, the amplification must

not be excessive.

In the algorithm, we set the minimum and maximum

acceptable lengths per line of the display screen to �min

and �max, respectively.

Algorithm—Rectangular Clustering

(Step 1) Read a list L(Q) of terms related to every

query Q. Determine the length of each term in the

list L(Q). Here, the length is the actual length of

the term on the screen.

(Step 2) For every pair ti(Q) and tj(Q) of terms in

L(Q), calculate score ij using equation (1).

(Step 3) For every term ti(Q) in L(Q), select the two

highest co-occurrence terms tk1(Q) and tk2(Q).
Then, merge the selected terms to generate a prim-

itive cluster ci = 〈ti(Q), tk1(Q), tk2(Q)〉. Note

that terms may overlap in the primitive clusters.

Before proceeding to Step 4, calculate the score of

ci as the sum of scoreik1 and scoreik2 .

(Step 4) Remove overlapping terms from clusters. If

there are overlapping terms among multiple clus-

ters, retain only those terms that are in the cluster

with the highest co-occurrence score. Eliminate

all terms that are repeated in other clusters.

(Step 5) Determine the total length of each cluster to

alter the cluster. If the total length of a cluster

is less than �min, merge the cluster with another

cluster. If two clusters ci and cj had common

terms when they were primitive clusters, they can

be merged.

(Step 6) Determine the total length of each cluster to

decide whether to select or reject the cluster. If

the total length is adequate, select the cluster for a

cluster label. If the total length is less than �min,

reject the cluster. If the total length is greater than

�max, select terms from the cluster as many as pos-

sible until the total length is in the range between

�min and �max.

(Step 7) Remove the terms used for the cluster labels

from the list L(Q). If L(Q) is empty or if no more

cluster labels are generated, write out the cluster

labels, and end the algorithm. Otherwise, return to

Step 3 and continue.

3 Implementation

In order to measure the actual length of a term on the

screen, we use Graphviz1 and IPA font2. With this

software and font, we can generate the text image of the

term. Then, we measure the lengths of terms by using

the generated images. In order to calculate score ij ,

we used a tool called GETA3 for large-scale text re-

trieval. We used Search API of Yahoo!JAPAN4 to col-

lect search results of (1) related terms; (2) URLs, titles,

and summaries; and (3) web pages. An actual appli-

cation of the proposed method in a mobile web search

system has been demonstrated in [6].

Figure 3: Length of terms on the screen

4 Experiment

We compare the proposed algorithm with two other

clustering algorithms— complete-link clustering

(CLINK) and single-link clustering (SLINK). These

algorithms are widely used conventional algorithms

and have been described in detail in [7]. While our

algorithm considers both lengths and co-occurrences

of terms, these conventional algorithms consider only

co-occurrences of terms.

1http://www.graphviz.org/
2http://ossipedia.ipa.go.jp/ipafont/
3http://geta.ex.nii.ac.jp/e/
4http://developer.yahoo.co.jp/

127



Figure 4: Accessible web pages for different terms on screen

The names of major places in Tokyo were used as

queries in the experiment. For each query, 100 related

terms and 10,000 web pages were obtained. Term clus-

ters that fit in a rectangular region of 160 × 160 pixels

were generated using the 16-pixel proportional font. In

the experiment, the parameters of CLINK and SLINK

were adjusted to generate as many clusters as possible

with each cluster having two or more terms.

4.1 Area Occupied on Screen

One of the key features of the proposed method is that

it takes into consideration the term lengths, thereby op-

timizing the use of screen space. We investigated the

total length �s of the clusters for each query and then

calculated the ratio of the total length �s of the clusters

to the total length �r of the lines in the rectangular re-

gion. In Figure 3, we can observe that the term clusters

generated by using the proposed algorithm occupy a

larger area on the screen as compared to SLINK and

CLINK. Hence, the proposed algorithm is considered

to provide more information than others.

4.2 Efficiency of Web Search

Another key feature of the proposed method is its high

search efficiency. In Figure 4, “AND” indicates the

condition that the web pages include two or more terms

in the clusters, e.g., ((restaurant AND sushi) or (sushi

AND tempura) or (tempura AND restaurant)). Further,

“OR” indicates the condition that the web pages include

one or more terms in the clusters, e.g., (restaurant OR

sushi OR tempura). The proposed algorithm enables

users to obtain desired pages more efficiently than con-

ventional algorithms.

5 Conclusion

We have proposed a new clustering method that en-

ables efficient term clustering in a mobile web search.

In the proposed method, a set of primitive clusters are

generated on the basis of the co-occurrences of terms.

Then, the clusters are altered on the basis of the co-

occurrences and lengths of terms. Finally, the clusters

are evaluated and adjusted on the basis of the lengths of

terms. Term clusters obtained by the proposed method

effectively use a small rectangular region on the screen.

Hence, the clusters are informative and can aid mobile

users to search documents efficiently. In the future, we

intend to apply the proposed method to various infor-

mation retrieval systems.

References

[1] O. Zamir and O. Etzioni. Web document clustering: A

feasibility demonstration. In SIGIR, pages 46–54, 1998.

[2] D. Beeferman and A. L. Berger. Agglomerative cluster-

ing of a search engine query log. In KDD, pages 407–416,

2000.

[3] S. Osinski. Improving quality of search results clustering

with approximate matrix factorisations. In ECIR, pages

167–178, 2006.

[4] M. Yasukawa and H. Yokoo. Related terms clustering for

enhancing the comprehensibility of web search results. In

DEXA, pages 359–368, 2007.

[5] D. E. Meyer and R. W. Schvaneveldt. Facilitation in

recognizing pairs of words: Evidence of a dependence

between retrieval operations. Journal of Experimental

Psychology, 90:227–234, 1971.

[6] M. Y. Yasukawa and H. Yokoo. Clustering search results

for mobile terminals. In SIGIR, pages 880–880, 2008.

[7] C. D. Manning and H. Schutze. Foundations of Statistical

Natural Language Processing. The MIT PRESS, 1999.

128



WriteProc: A Framework for Exploring Collaborative Writing Processes

Vilaythong Southavilay, Kalina Yacef
School of Information Technologies, The University of Sydney

NSW 2006, Australia
vstoto@it.usyd.edu.au, kalina@it.usyd.edu.au

Rafael A. Calvo
School of Electrical and Information Engineering, The University of Sydney

NSW 2006, Australia
rafa@ee.usyd.edu.au

Abstract Collaboration and particularly collabora-
tive writing is an increasingly essential skill needed in
the workplace and education. Until recently most of
the focus of research has been the final product of the
writing, rather than the process itself. In this paper,
we propose an innovative framework for investigating
collaborative writing processes. The WriteProc frame-
work utilizes both process and text mining tools to ana-
lyze the process that groups (or individual) writers fol-
low, and how the process correlates to the quality and
semantic features of the final product. Furthermore,
WriteProc is integrated with existing web 2.0 writing
tools, providing full support for writing, reviewing and
collaboration. We describe the architecture that inte-
grates tools for analyzing the process and semantics of
the writing. We also provide a case study on data col-
lected from a group of undergraduate students writing
collaboratively an essay, with peer reviewing and use
of an automatic feedback tool.

Keywords Document workflows, web documents,
process mining

1 Introduction
Computer-Supported Collaborative Work (CSCW),
particularly Collaborative Writing (CW), has received
attention since computers have been used for word
processing. Due to the availability of the Internet,
people increasingly write collaboratively by sharing
their documents in a number of ways. Writing
individually and collaboratively are considered
essential skills in most industries, academia, and
government. This has led to increased research on how
to support the production of better documents.

In Education, computer-supported writing has been
studied for decades. Goldberg et al. [6] collected a
decade of empirical data and in a meta-study found
“that when students write on computers, writing

Proceedings of the 14th Australasian Document Comput-
ing Symposium, Sydney, Australia, 4 December 2009.
Copyright for this article remains with the authors.

becomes a more social process in which students share
their works with each other”. They also noted that when
using computers, students prefer to make revisions
while producing, rather than after producing, text.
Between initial and final drafts, students also tend to
make more revisions when they write with computers.
In most cases, students also tend to produce longer
passages when writing with computers. In addition,
review feedback, especially peer review, has been
recognized as one effective way to learn writing [3, 4].
When students write with computers, they engage
in the revising of their work throughout the writing
process, more frequently share and receive feedback
from their peers, and benefit from teacher input earlier
in the writing process. Although these studies show
that computer-supported writing including automatic
feedback tools efficiently assists students in writing
and reviewing, understanding the writing process is
crucial for developing support technologies for CW.

Over the past two decades, there has been abun-
dant text-mining research for improving the support of
quality writing. But work such as automatic scoring
of essays [11], visualization [9], and document cluster-
ing [1] focus on the final product, not on the writing
process itself. Our vision is to investigate how ideas and
concepts are developed during the process of writing
could be used to improve not only the quality of the
documents but more importantly the writing skills of
those involved.

Improving the process of writing requires
understanding how certain sequence patterns (i.e.
the steps a group of writers follow) lead to quality
outcomes. We see the sequence pattern as comprised
both of time events (as used in other process mining
research) and of the semantics of the changes made
during that step.

We combine here two techniques: process mining,
which focuses on extracting process-related knowledge
from event logs recorded by an information system, and
semantic analysis, which focuses on extracting knowl-
edge about what the student wrote (or edited). The

129



field of process mining covers many areas, like perfor-
mance characteristics (e.g. throughput times), process
discovery (discovery of the control flow), process con-
formance (checking if the event log conform specifica-
tion), and social networks (e.g. cooperation) [2]. Par-
ticularly, process mining analysis is necessary to under-
stand group awareness, and writers’ participation and
coordination. Text mining combines indexing, cluster-
ing, latent semantic analysis and other techniques stud-
ied by the document computing community.

In this paper, a conceptual framework and tools for
supporting collaborative writing (CW) are introduced.
Our framework is based on a taxonomy of collaborative
writing proposed by Lowry et al. [8] and defines writing
activities, strategies, work modes and roles involved in
CW. With this taxonomy, the framework incorporates
process mining and text mining technologies in order
to gain insight of collaborative writing process.

The remainder of the paper is organized as follows.
In Section 2, WriteProc, a framework for supporting
CW and the analysis of its process and semantics is
presented. A case study of process mining for a re-
viewing tool, Glosser is then presented in Section 3.
Finally, Section 4 provides discussion of our case study
and future work planned in this area.

2 WriteProc
Let us describe WriteProc, a framework for analyzing
individual and collaborative writing process. It consists
of three tools: writing, reviewing and analysis tools.
The analysis tool utilizes both process and text mining
techniques.

Our aim of developing WriteProc is to assist in-
dividual or groups of writers during the writing pro-
cess. Particularly, WriteProc can advise writers with
reviewing feedback and visualization of the analyses of
writing activities and text changes during the process of
writing.

2.1 Overall conceptual description
The framework integrates a front-end writing tool
which not only supports collaborative writing
activities, but also stores all revisions of documents
created, shared and edited by groups of writers. Each
revision of particular documents must contain all
needed information such as edited text, timestamp of
committing change, and identification of the writer.
In order to perform analysis of writing process for
particular documents, all revisions of the documents
are retrieved and traced.

A reviewing tool is also embedded in the frame-
work. It assists writers in revising their own pieces
of writing and reviewing others works. After receiv-
ing feedback generated automatically by the reviewing
tool, writers can edit and change their documents’ con-
tent accordingly. The tool keeps records of writers’
reviewing activities in event logs. The event logs of the
tool are then extracted to gain an insight on how writers

use the reviewing tool and how review feedback affects
changes in reviewed documents.

Process and semantic analysis tools are used in the
framework. Based on both the information (such as
timestamp and writers’ identification) of all revisions
and event logs of reviewing activities, a process mining
tool is used to discover sequence patterns of writing
activities. The process analysis provides a way to ex-
tract knowledge about writers’ interaction and cooper-
ation. The analysis can identify interactions’ patterns
that lead to a positive outcome and indicate patterns
that may lead to problems. In addition, a text mining
technique is performed to analyze text-based changes
of all revisions of documents. The text-based analyses
can provide semantic meaning of changes in order to
gain insight into how writers develop idea and concept
during writing process.

2.2 Implementation

Figure 1: WriteProc: A framework supporting collabo-
rative writing.

Based on the overall concept described above, the
framework utilizes process and text mining technolo-
gies. It employs open-source utilities of those tech-
niques to conduct analysis of writers’ interaction and
text in order to assist writers in identifying and realizing
their writing process in collaborative manner. Figure 1
shows the framework for supporting collaborative writ-
ing (CW).

2.2.1 Writing environment: Google Docs

In order to use a process and semantic analysis tool
in real scenarios, the tool must be closely integrated
to the writing environment. Tools such as Microsoft
Word or OpenOffice do not keep traces of the writing
process. Web 2.0 tools such as Google Docs (and the
incipient Microsoft Word Live) allow users to write on
a web application (or offline and then synchronizing).
The service provider keeps the different versions of the
document. Therefore, we selected Google Docs in our
implementation of WriteProc.

In WriteProc, Google Docs (GD) is used as a front-
end writing tool of the CW. It is a web-based utility with
most needed functionalities for word processing and it
allows users to share their documents with other team

130



members and to write synchronously. Users can access
GD through their web browsers from anywhere and at
anytime they want. Each user needs a Gmail account to
access the tool that they can obtain from Google free of
charge.

At the center of the framework is Google Docu-
ment Lists Data API (GDAPI) used to integrate GD to
our CW system as shown in Figure 1 The API allows
WriteProc to retrieve and track all versions of docu-
ments created, shared and edited among groups mem-
bers. In GD, each document created is uniquely as-
signed a document identification number. The GD also
keeps track of all version numbers of each document
by incrementing its version numbers each time the doc-
ument is edited. Every time a writer makes changes
and edits a particular document, the identification of the
writer, the edited content of the document, timestamp
of committing changes and the version number of the
edited document can be retrieved and stored at the cen-
tral relational database of CW system by using the API.
This information extraction is executed seamlessly of-
fline and users as writers are not aware of it and are able
to perform their writing tasks seamlessly. The API also
provides us the ability to build an interface to create and
share documents in CW system. This can be very help-
ful for instructors or supervisors to create and assign
documents to groups of writers and reviewers without
accessing GD. An appointed owner of a document can
edit it, where as an assigned ’viewer’ can only review
it.

2.2.2 Reviewing tool: Glosser

Glosser is a web-based application providing support
for writing in English [16]. It was designed and im-
plemented to support a review feedback model. Figure
2 shows such a model. Glosser assists users to revise
their own document and review other documents. It
has the analysis and revision tracking system used for
reviewing. Writers can use Glosser in order to gain
insight into their essays’ structure and coherence. To re-
view particular documents, the system consists of sev-
eral functionalities, as shown in Table 1:

Figure 2: Automated writing feedback.

In the case study described in Section 3, students
used a reviewing tool, Glosser [16]. A document cre-
ated and shared among a group of writers can be re-
viewed in Glosser, which also accesses each revision
using the Google Document Lists Data API. Users can
access Google Docs from Glosser or vice versa.

Tool Description
Home Tool showing basic statistics such as
(HOT) numbers of words and revisions.
Topic Tool checking if content provides evi-
(TOT) dence to support its topic senten-

ces.
Flow Tool reviewing coherence and checking
(FLT) how paragraphs and sentences fol-

low from previous ones.
Keyword showing semantic flow.
Tool - HTML
(KTH)
Keyword depicting the visualization of se-
Tool - Graph mantic flow.
(KTG)
Group Tool showing participation of authors
(GRT) for different versions.

Table 1: Reviewing tools of Glosser

2.2.3 Process and text mining tools

The interesting components of WriteProc are the pro-
cess and text mining tools. The event log of Glosser
is stored at the central relational database. The event
log is used as a source to a process mining tool in or-
der to gain an insight on writing activities and writ-
ers’ interaction. The process mining tool utilized in the
WriteProc is ProM [15]. In the next section, ProM
will be used to demonstrate a process mining technique
for our case study. In addition, an independent mea-
sure is developed to analyze the changes in each ver-
sion of the documents in order to understand the na-
ture of changes and the level of these changes. The
analysis uses a text mining technique to find semantics
changes among all versions of documents. This tech-
nique uses information from all the versions of docu-
ments performed by groups of writers. The text infor-
mation of each version stored in the central database
is indexed using Lucene [7] so that text produced by a
group of writers can be systematically searched, sorted,
filtered, and highlighted. After indexing all versions of
documents, the system then analyzes the relationship
between them and their terms using Text Mining Li-
brary (TML) in order to produce a set of concepts and
nature of text changes in all versions of the documents.

3 Case study
As a way of evaluating the architecture and implemen-
tation of WriteProc and illustrating how it can be used,
we discuss a case study where the tool is used to study
writing processes in a software engineering unit con-
ducted during the first semester of 2009 at the Uni-
versity of Sydney. It is important to note that Human
Research Ethics Clearance has been completely granted
from the university for this study. All students involving
in the study signed an informed consent.

There were 58 students in the course, which
was E-business Analysis and Design. They were

131



organized in groups of two and asked to write Project
Specification Documents (PSD) for their proposed
e-business projects. Each group had to submit one
PSD of between 1,500 and 2,000 words (equivalent
to 4-5 pages). Students were required to write their
PSD on Google Docs and share the documents with
the course instructor. They were asked to submit their
PSD using Glosser, a reviewing tool mentioned in
Section 2.2.2. The submitted PSD was reviewed by
other two students who were members of different
groups. Students had one week to review each others’
documents and submit their feedback. After getting
feedback on their documents from their peers, students
could revise and improve their writing if necessary
before submitting the final version one week later.
The submission of the final version of PSD also used
Glosser. The total event log file of the system consisted
of usage data of Google Docs and Glosser for three
weeks. In addition to this log file, the marks of the
final submissions of the PSD together with a very good
understanding of the quality of each group through
the semester was used to correlate behaviour patterns
to quality outcomes. In particular, to be able to give
insight into how students used the reviewing tool for
revising their own documents and reviewing others and
to give recommendation to improve the system, we
performed a process diagnostics method to give a broad
overview of students’ interaction and collaboration.

3.1 Log Preparation
Unlike data preprocessing for workflow mining [5], our
approach used a data preprocessing method for behav-
ior pattern mining [12]. This method was used with a
process mining tool like ProM [15]. Glosser’s event log
was a typical Web server log which was a text file. The
first step of data preprocessing was to filter and clean
up the data. The next step of data preprocessing was to
define process instances (cases). Our approached used
a document as a notion of process instance. We utilized
the concept of perspective, proposed by Song et al. [13]
to partition event sequences. Our perspective of the
event data log was based on documents. Particularly,
we wanted to find out how users interact and coordinate
for writing and reviewing documents. The final step
in data preparation was to transform the log file to a
standard format for process mining. Process mining
tools such as ProM use MXML (as in Mining XML)
files as sources [15]. The transformed MXML file was
then used as a source for a process mining tool like
ProM.

3.2 Log inspection
After preprocessing, the resulting event log consisted
of 29 documents with a total of 4,677 events. Each
process case represented one document. There were
8 different types of events (Section 3.4 described the
process model and event types). The bar chart of Fig-
ure 3 shows the number of events for each of the 29

Figure 3: Comparing number of events of 29 docu-
ments ranked by their final marks.

documents, represented by the length of the bar (DocXX
denotes the document of Group XX). The documents
are ranked based on their final mark ranging from 4/10
to 10/10. For example, Doc07, Doc08, Doc09, Doc10,
Doc14, Doc17, Doc21, Doc27 and Doc29 all obtained
the highest mark, i.e. 10/10, while Doc11 obtained
the lowest mark of 4/10. On average there are 161
events per document. The maximum number of events
is 369, with Doc12. Doc10 has the smallest number of
45 events associated with it.

Based on the number of events presented in
Figure 3, we could not distinguish the better from the
weaker groups. Although Group 12 has the maximum
number of interaction events, it was ranked in the
6th place. In contrast, the document of Group 10
with the least number of interactions was given the
highest mark. In addition, simple statistics drawn from
the figure could not clearly provide understanding of
students’ interaction. Therefore, further analysis was
made in order to distinguish group performance and
cooperation. We will describe it next.

3.3 Historical snapshot of reviewing activ-
ities

The Dotted Chart Analysis utility of ProM [10] was
used to analyze students’ reviewing activities. The dot-

132



Figure 4: Dotted chart of 29 reviewed documents ordered by their first events’ timestamps (from ProM tool [10]).
Grey denoted events generated by by authors; white by reviewers, black by reviewers’ group member (indicated
by ovals) and brown by others (indicated by rectangles).

ted chart is similar to a Gantt chart [14], showing the
spread of events over time by plotting a dot for each
event in the log. Figure 4 illustrates the output of
the dotted chart analysis of students’ interaction for re-
viewing their PSD documents. All instances (one per
document) are sorted by start time (the first event ever
happening for a particular document during the three-
week usage of the system). As shown in the figure,
there are three important dates due to the three compul-
sory submissions: PSD for peer review on 27th March
2009; feedback of peer review on 3rd April 2009, and
final PSD on 10th April 2009. In the figure, points
represent events occurring at certain time. For particu-
lar documents, different color denotes events generated
by different roles of users: grey events generated by
authors, white events by reviewers assigned for peer re-
view, black events (circled in the figure) by team mem-
bers of assigned reviewers, and brown events (shown
in rectangles) by non-author users who were neither
assigned reviewers nor assigned reviewers’ team mem-
bers.

We can clearly see from the figure that 22 docu-
ments have been revised using Glosser in the first week
before the submission for peer review. Obviously, those
documents were only used in the system by the authors
as indicated by grey events. There were 7 documents
starting in the second week. They belonged to groups:
7, 9, 10 (received the same marks of 10/10); 15, 19, 25
(9/10); and 3 (8/10). This means that these documents
have never been revised by their authors using Glosser

before submitting for peer review. Nevertheless, these
seven documents received high marks in the final as-
sessment.

In addition, we observed that all activities of peer
review happened in the second week before the sub-
mission of feedback. Most of the reviewing activities
were performed by the assigned reviewers as indicated
by white dotted events. This met the intention of the
course of using Glosser for peer review. There are two
interesting types of events in Figure 4. Firstly, 4 doc-
uments have events originated by students who were
not the authors nor the assigned reviewers, as can be
seen by black dots of documents of groups: 9 (received
a mark of 10/10); 26 (9/10); and 1, 3 (8/10). Those
events suggest that students either assisted their team
members to review their assigned documents or per-
formed the peer review task together with their group
members sitting side-by-side using only one account.
We discussed this matter with the course instructor who
was also aware of this problem and will try to find a
solution to prevent this problem happening in the next
semester. Secondly, there are a small number of events
where students reviewed others’ documents which were
not assigned to them nor to their team members for peer
review, as indicated by brown dotted events for docu-
ments of groups: 3, 13, 22, and 26. These documents
received good marks ranging from 8/10 to 9/10. We
believe this happened when students shared their own
PSD to their friends to assist them using Glosser. We

133



will perform further investigation to prevent this case
from happening next year.

In addition, from Figure 4 we can notice that eight
different documents were not revised by their authors
using Glosser before the final submission. These docu-
ments were 8, 9 (10/10); 15, 16, 19, 25 (9/10); 3 (8/10);
and 5 (5/10). Except document of group 5, all doc-
uments received the top three highest marks. In fact,
three of them (9, 15 and 25) have never been revised by
their authors using Glosser at all. This implies that the
better groups used feedback received from peer review
and the instructor as main source for revising their PSD.
They did not spent much time using Glosser for revising
their own documents. It is also interesting to note that
reviewing activities did not evenly spread out for the
three-week period of running the system. In fact, the
system has only been used extensively for peer review
in the second week as we can see in the figure. There
were not many interactions in the third week. However,
a number of activities happened a few days before the
final submission.

To sum up, the dotted chart tool in ProM allows
us to analyze reviewing activities in order to seek in-
formation on how each of 29 documents was reviewed
by groups of students with different roles. We further
investigated patterns of students’ interaction for review-
ing those documents, as described in the next subsec-
tion.

3.4 Process discovery and sequence
analysis

From the event log of our case study data, we extracted
the process model shown in Figure 5, which represents
the process common to all the groups. Groups began
with events of opening a particular document (ROD).
Then, the reviewing tool was requested (TOR). After
that, different reviewing activities were performed and
the resulting feedbacks were displayed. The process re-
iterated until users logged off or closed their browsers.
As discussed in Section 2.2.2, the reviewing activities
involve these tools: HOT, FLT, KTG, GRT, TOT, and
KTH.

Figure 5: Process model of usage of the reviewing tool,
Glosser.

We were naturally interested in finding out more
about individual group activity and the path each group
was following in this process. ProM provides a Per-
formance Sequence Analysis plug-in to find the most
frequent paths in the event log [2]. Figure 6 illus-
trates the interaction for documents of two groups in the
course, with Group 1 (received a mark of 8/10) at the
top and Group 29 (10/10) at the bottom. All eight events
represented on horizontal axis are according to events
discovered by the process model mentioned above. We
examined sequence patterns for all documents of 29
groups. We discovered that only one document (doc10)
was not used with all reviewing tools. In fact, the au-
thors and reviewers of the document only utilized the
HOT tool.

Figure 6: Sequence analysis of documents of Group 1
(above) and Group 29.

We have also used the same plug-in to extract all
reviewing interactions for each document. This further
investigation gives an insight on how different users
reviewed documents using Glosser. For instance, Fig-
ure 7 depicts the users’ interactions of two documents
(doc01 on the right and doc29 on the left). Each col-
umn represents a user, where G29-1 is user 1 of Group
29 and so on. We analyzed all documents and found
that more than half of them were revised by only one
author using Glosser. In other words, although students
worked in groups, only one member actually performed
the reviewing task using the system.

Figure 7: Users’ interaction of Group 1 (right) and
Group29.

In this section, we illustrated the potential of process
mining techniques in understanding how writers react
to peer review feedback and to the use of an automatic
feedback tool like Glosser. In the log preparation, our

134



notion of process instance is based on documents be-
cause we would like to analyze user interactions on a
same document. Dotted chart and sequence analyses
were used to gain insights on how students reviewed
their documents.

4 Discussion and conclusion
The work described here is a work in progress. While
the case study presented here illustrates how our frame-
work, WriteProc can be used, the data we used did not
allow us to discover sequence patterns correlated to bet-
ter outcomes. Although a pattern of users’ interaction
can be extracted for a particular group, there are differ-
ent patterns for different groups. Indeed, we could not
draw a significant pattern among groups in order to dis-
tinguish the better from the weaker groups. However,
this gave us direction for the next step of our work.
One way to improve our understanding of what writ-
ing processes lead to better outcomes so software tools
can be used to provide advice during the writing pro-
cess, is to use text mining techniques. For collaborative
writing, we would like to have insights on how each
version of documents changes in order to understand
the writing process of each document. Although we
are able to track all versions of documents that were
reviewed in the system, this tracking analysis does not
yet give us meaningful insights about the purpose of the
text changes between each version. One possibility to
systematically capture and interpret writing activities in
collaborative writing is to understand changes in text
written in each version of the document. Currently,
we are working on extracting changes in concepts and
ideas during the writing of documents. The text mining
algorithms use vector representations of the documents
accounting for the temporal nature of the data and the
character of writing interaction. The result of the text
mining tool will be analyzed and combined with the
outcome of process mining (like the one described in
the current case study).

Based on the process mining tool illustrated
in the case study and text mining techniques as
described above, we are developing WriteProc to
provide visualization depicting users’ interaction and
collaboration in order to support writing activities. For
example, a user interface can be built to assist a group
of writers in identifying a plan for their writing process.
This plan is created at the beginning of writing process
representing a master plan of all writing activities and
tasks. At particular point in time, writers can specify
which stage they are on their writing process. During a
time of writing, the system monitors if current writing
activities are according to the writer’s specification.
For instance, a leader of a group of writers assigns
all writing tasks to his or her members. The group
leader specifies that the group is currently drafting its
documents. WriteProc will track the group’s writing
activities and perform semantic analysis of the written
texts. If it finds out, for example, that the members are

actually outlining the documents (instead of drafting),
it will provide information about their writing activities
as feedback to the group. In this case, the writers
can either adjust and modify their writing process
specification, or investigate and change their written
content according to the feedback given by the system.

In conclusion, we contribute here the description of
WriteProc a framework that combines process and text
mining techniques. The architecture of the system is
described together with its integration to Google Docs
as an environment for users to do the actual writing,
and to the Google API that allows the tool to collect the
revision information. A case study with a real teaching
scenario is described and used to show how the tool can
be used to analyze the process component of a collabo-
rative writing task.

Acknowledgements This project has been funded
by Australian Research Council DP0986873. The
authors would like to thank Jorge Villalon and Stephen
O’Rourke for their help with Glosser and TML.

References
[1] N. O. Andrews and E. A. Fox. Recent Developments

in Document Clustering. Technical Report TR-07-35,
Computer Science, Virginia Tech, 2007.

[2] M. Bozkaya, J. Gabriel and J. M. van der Werf. Process
diagnostics: A mothod based on process mining. In
International Conference on Information, Process, and
Knowledge Management, February 2009.

[3] P. A. Carlson and F. C. Berry. Using computer-
mediated peer review in an engineering design course.
IEEE Transactions on Professional Communication,
Volume 51, Number 3, pages 264–279, Sept. 2008.

[4] K. Cho and C.D. Schunn. Scaffolded writing and
rewriting in the discipline: A web-based reciprocal peer
review system. Computers & Education, Volume 48,
Number 3, pages 409–426, 2007.

[5] C. A. Ellis, K. Kim and A. J. Rembert. Workflow
mining: Definition, techniques, and future directions.
Workflow Handbook, pages 213–226, 2006.

[6] A. Goldberg, M. Russell and A. Cook. The effect
of computers on student writing: A meta-analysis of
studies from 1992 to 2002. Journal of Technology,
Learning, and Assessment, Volume 2, 2003.

[7] E. Hatcher and O. Gospodnetic. Lucene in Action.
Manning Publications Co., 2004.

[8] P. B. Lowry, A. Curtis and M. R. Lowry. Building a
taxonomy and nomenclature of collaborative writing to
improve interdisciplinary research and practice. Journal
of Business Communication, Volume 41, pages 66–99,
2003.

[9] S. O’Rourke and R. A. Calvo. Semantic visualisations
for academic writing support. In Vania Dimitrova, Ri-
ichiro Mizoguchi, Benedict du Boulay and Art Graesser
(editors), 14th Conference on Artificial Intelligence in
Education, pages 173–180. IOS Press, July 2009.

[10] ProM. Version 5.2. http://prom.win.tue.nl/

tools/prom/, 2009.

135



[11] M.D. Shermis and J. Burstein. Automated essay scor-
ing: A cross-disciplinary perspective, Volume 16. MIT
Press, 2003.

[12] J. Song, T. Luo and S. Chen. Behavior pattern mining:
Apply process mining technology to common event
logs of information systems. In IEEE International
Conference on Networking, Sensing and Control, Sanya,
April 2008.

[13] J. Song, T. Luo, S. Chen and Feng Gao. The data
preprocessing of behavior pattern discovering in col-
laboration environment. In IEEE/WIC/ACM Interna-
tional Conferrence on Web Intellengence and Intenllent
Agent Technology, pages 521–525, Silicon Valley, USA,
November 2007.

[14] M. Song and W. M. P. van der Aalst. Supporting process
mining by showing events at a glance. In 7th Annual
Workshop on Information Technologies and Systems,
pages 139–145, 2007.

[15] B. F. van Dongen, H.M.W. Verbeek A. K. A. de
Medeiros, A. J. M. M. Weijsters and W. M. P. van der
Aalst. The ProM framework: A new era in process min-
ing tool support. Lecture Notes in Computer Science:
Application and Theory of Petri Nets, pages 444–454,
2005.

[16] J. Villalon, P. Kearney, R.A. Calvo and P. Reimann.
Glosser: Enhanced feedback for student writing tasks.
In The 8th IEEE International Conference on Advanced
Learning Technologies, Santander, Spain, July 2008.

136



 
An Analysis of Lyrics Questions on Yahoo! Answers:  

Implications for Lyric / Music Retrieval Systems 
 

Sally Jo Cunningham, Simon Laing 
Computer Science Department 

University of Waikato 
Hamilton 3240 New Zealand 

{sallyjo, simonl} @cs.waikato.ac.nz 
 

Abstract  This paper analyzes 237 questions posted 
to Yahoo! Answers, a popular community-driven 
question and answer service. The questions are all 
natural language and are self-categorized by their 
poster as being related to music lyrics, and as such 
they provide a rich context for understanding lyrics-
related information behavior outside the constraints 
imposed by specific lyrics retrieval systems. We 
categorize the details provided in the queries by the 
types of music information need and the types of 
music details provided, and consider the implications 
of these findings for the design of music/lyric 
systems and for music retrieval research. 
 
Keywords User studies, multimedia document 
retrieval, music digital libraries 

1 Introduction 
Creating a useful and usable music retrieval system 
is a notoriously difficult task. A music document 
may consist of a symbolic representation of a work 
(eg, a score or MIDI encoding), an audio file (eg, 
MP3), an image (eg, a CD cover), textual metadata 
(a work’s title, artist, composer, etc.), lyrics, a video 
of a performance—or a combination of any or all of 
the above [4].   Significant problems have yet to be 
resolved with document / query representation 
schemes, retrieval algorithms, and interface support 
in this challenging research area. 

This paper focuses on identifying problems in 
developing systems for supporting lyrics-based 
information needs. At first glance it would appear 
that creating a lyrics-based music digital library 
would be one of the more straightforward 
development efforts in music retrieval, given that 
text-based retrieval is a better understood endeavor 
than image, video, and audio retrieval. This paper is 
a preliminary investigation into whether or not 
existing music retrieval research can address (or is 
addressing) support for lyrics retrieval systems.  

Our approach is based on developing an 
understanding of what people want to find, and how 
they describe what they want, when they are trying 
to satisfy a lyrics information need. To that end, we 

analyze a set of lyrics related questions posted on 
Yahoo! Answers, an open Web-based question and 
answer forum.  Once this understanding emerges of 
what lyrics seeking behavior ‘in the wild’ (that is, 
outside the constraints of a retrieval system, and as 
expressed in natural language) then we can identify 
remaining problems in supporting lyrics retrieval. 

2 Previous work 
At present music retrieval research is only lightly 

informed by an understanding of user needs. For a 
variety of reasons—including intellectual property 
law, limited access to a significant and standard 
music testbed, and lack of access to usage records 
for emerging commercial music systems—it has 
been difficult for researchers in music retrieval to 
develop or exploit data concerning the music 
information behavior of target users. This situation is 
particularly problematic in that the common 
assumptions of ‘typical’ music behavior made by 
retrieval researchers and music system developers 
have been found to differ markedly from actual 
music behavior in the real world [4]. 

Query log analysis of music related interactions 
on Web search engines (eg, [12]) yield extremely 
coarse-grained information on music behavior; 
sessions are generally short, queries are generally 
brief, and the log provides no insight into the 
searchers’ motivations, intended use of retrieved 
music documents, or satisfaction with the search 
results. Few usage studies exist of music digital 
libraries or specific music collections (eg, [5], [8]). 
These types of investigations are necessarily limited 
to providing insights into the usability of features 
implemented in the system studied; log data cannot 
suggest additional functionality or document types 
appropriate for the users. For both search engines 
and digital libraries, the user’s information need is 
obscured by the requirement of complying with the 
query formats of a specific system. 

What is required, then, is a source of authentic  
music information behavior and needs. Earlier 
examinations of music behavior are based on 
information requests harvested from music-related 

137



newsgroups [3], question-answer services [7], and 
archives of mailing lists [2].  These resources are 
seeing use to the extent of providing immense 
quantities of raw data on a scale similar to web logs; 
however, manual analysis methods limit in practice 
the size of a harvested dataset to at most a few 
hundred requests. This type of investigation 
complements log analysis with a finer-grained 
understanding of music behavior. 

 Most technical music retrieval research focuses 
on integrating lyrics with audio:  for example, 
aligning lyrics to audio signals (eg, [9]); or using 
lyrics as a basis for thematic or genre clustering and 
classification of related audio files (eg, [10]). Lyric 
retrieval has proved to be a special case of text 
retrieval, inspiring additional research into problems 
such as identifying and matching multiple (non-
identical) lyrics for a single song [6] and supporting 
search over lyrics that are syllabicated as 
performance instructions [13]. 

3 Data gathering and analysis 
Yahoo! Answers is an internet based reference site 
that allows users to both submit and answer 
questions. Unlike some earlier ‘ask an expert 
systems’ (eg, Google Answers), there is no charge to 
post a question and no financial reward to answer 
questions. Instead, the system is driven by a ‘points’ 
and ‘levels’ arrangement that rewards posters of 
correct answers with status within the Yahoo! 
Answers  community. 

When posting a question to Yahoo! Answers, the 
user is required to specify one or more categories for 
it. We focus in this paper exclusively on 
Entertainment & Music > Music > Lyrics posts. 
Yahoo! Answers sees heavy use; as of September 
2009, the Lyrics subcategory alone contained over 
226,000 questions that had been ‘resolved’ (that is, 
had received at least one acceptable response). 

We harvested 250 questions posed on a single 
day in September 2009, from the newly posted 
(‘open’) section of the Lyrics category. Twelve were 
discarded as duplicates and one discarded as off 
topic, leaving 237 questions for analysis. The 
average question length was approximately 58 
words; the longest question contained 291 words (a 
request for an explanation of a song’s meaning, 
including the full lyrics), and the shortest a mere 7 
(‘What are some of.....? your favourite lyrics?’). By 
contrast, audio queries to conventional search 
engines are far more brief (eg,  [12] report an 
average of 3.1 terms in a 2006 study of the 
metasearch engine Dogpile).  

Grounded theory ([11]) was used to develop 
categories to elicit characterizations of the desired 
outcome for the queries (Section 4) and the  
information features provided by the poster (Section 
5).  Initial categories were established by bringing 
together features from previous studies of natural 

language music–related questions (eg, [1], [3], [7]). 
These categories were regarded as tentative and were 
revised based on examination of the Yahoo! 
Answers Lyrics queries. An iterative coding process 
was employed, continuing until the two researchers 
agreed on both the coding categories and the codes 
assigned to each question.  

4 Characterizing the desired outcome 
At this point, we examine the types of music 
information that the posters have specified that they 
would like to receive as a response to their 
question—that is, the types of music document or 
details that they are seeking (Table 1).  
 
Category No. of queries % (of  237) 

Lyrics 51 21.6% 

Metadata 95 40.3% 

Identification 36 15.3% 

Copy 6 2.5% 

Example of type 16 6.8% 

Explanation 16 6.8% 

Feedback 18 7.6% 

Creative Practice 7 3.0% 

Other 7 3.0% 

Table 1. Desired responses to questions  
 
• Lyrics: requests for the complete lyrics to a 

song, or for specific lines (sometimes in a 
specific performance of a song) 

• Metadata: requests for the title of a song and/or 
its artist / composer (‘who it’s by’).  

• Identification: questions asking some variation 
on ‘what is this song?’ without further 
specification of the desired result. 

• Copy: requests to obtain a copy of an audio or 
video version of a song (by downloading or 
streaming). 

• Example of type: requests for a song that fits into 
a specified category or genre (eg, a ‘love song’). 

• Explanation: requests for ‘the meaning’ of a 
song and/or portions of the lyrics 

• Feedback: the question solicits feedback on 
original song lyrics. 

• Creative Practice: requests for technical or 
creative process information to be used in 
creating new songs.  

• Other: questions that fall outside the above 
categories. 

 
A close examination of the questions and their 

posted answers indicates Metadata and Identification 
can be collapsed into a single category; the desired 
result in both is a single song matching the given 

138



criteria, with title and/or artist provided as a 
response. The Copy category is obviously closely 
related; a link to a song’s audio will allow the poster 
to verify whether that song is indeed the requested 
music, and further the site hosting the audio (eg, 
YouTube) commonly includes music metadata such 
as title and author. A further breakdown of the 95 
Metadata requests indicates that the title is the 
primary identifier for a song:  91 questions request a 
title, 25 ask for both title and artist, and 4 request the 
artist only.  

The next largest category is that of requests for 
full or partial Lyrics for a specific song—the only 
surprise being that this is not the largest category, 
given that the poster has explicitly tagged the 
question as Lyrics focused. Most Lyrics requests 
appear to assume that there is only one set of lyrics 
for a song—they ask for ‘the words’ or ‘the lyrics’.  

For a minority of the Lyrics requests, the lyrics 
desired are to a specific performance or version of a 
song and so may not necessarily be the authoritative 
lyrics (eg, one question presents an audio link and 
asks, ‘Can anyone decipher the lyrics up to the 25th 
second? plz? i am a nice guy?’).  There may not 
even exist an authoritative version for some songs, or 
portions of a song: for example, a ‘freestyle’ 
improvisation (‘the song is called "close my eyes" by 
Matisyahu. I can not find the lyrics for the freestyle 
he does in the middles of the song’). Some queries 
explicitly request non-authoritative versions of the 
lyrics: for example, ‘what's the lyrics of the song 
paradise by the kpop group "the melody"? the 
english translation, hangul and romanization 
please!’  The goal of existing work on identifying 
multiple  sets of lyrics for a single song [6] is to 
identify the authoritative version and eliminate 
‘mistakes’ in other lyrics; these queries suggest that 
alternative lyrics should not necessarily be rejected, 
and that the identification of different versions may 
be more difficult than previously anticipated (for 
example, in matching translations to the original). 

Example of type questions are not answered by a 
specific song (a ‘known item search’), but instead 
seek to elicit one or more songs that match a type 
description. Picking out an answer from a set of 
potential matches is problematic; the standard 
default for a music retrieval system is to present 
textual metadata (eg, song title and artist), which is 
unlikely to convey the point of similarity between a 
song and the type description (eg, ‘A Happy 
optomistic, catchy song’). Providing appropriate 
support for browsing remains an open problem in 
music retrieval; coming to a deeper understanding of 
the song facets that are used to judge a match is 
required to drive interface development (eg, tempo? 
lyrics? affect?). 

Explanation questions (‘What Is This Song 
About?’) require a deep understanding of the 
semantics of the lyrics, and are unlikely to be 
addressable by automated retrieval systems. 

Similarly, requests for Feedback and critique of 
original lyrics written by the poster and assistance in 
the Creative Practice of creating audio are well 
beyond the capacities of existing digital libraries.  
However, these questions highlight that a great deal 
of music behavior is embedded in a social context—
we listen to music at social gatherings, talk about the 
latest hits in casual conversation, and play songs on 
the radio or a CD as we drive. It seems appropriate  
that a music retrieval system should support music 
experts, aficionados, and keen novices in discussion 
and in community-based reference services—that the 
vision of a music digital library could include people 
as well documents and software. 

5 Characterizing the information 
features provided 

The features or characteristics used to describe the 
204 Lyrics, Bibliographic Details, Copy, Identify, 
Explanation, and Example queries are as follows: 

Category No. of queries % (of  204) 

Lyric fragments 113 47.9% 

Storyline 24 10.2% 

Video references 18 7.6% 

Metadata 95 40.3% 

Genre/Style 42 17.8% 

Orchestration 30 12.7% 

Similarity 11 4.7% 

Where heard 50 21.2% 

Undesired result 7 3.4% 

Other 2 0.8% 

Table 1.  How the information needs are described  
 
• Lyric fragments: the remembered portions of a 

desired song. 
• Storyline or message: a description of ‘what 

happens’ in a song, or a message conveyed by 
the song (eg, ‘I love her and miss her’). 

• Video references: details about a video including 
the desired song (most frequently a music video 
for the song itself), provided either as a link to a 
video file or as a text description of the action 
occurring in the video. 

• Metadata: bibliographic details, further broken 
down into Title, Artist, Collection Title, Date, 
Remix, and Tempo. 

• Genre or style: can be a standard genre such as 
R&B, or a genre constructed by the poster (eg, 
‘contemporary, modern’). 

• Orchestration: an indication of the instruments 
and vocal parts in a recording. 

• Similarity: another song or an artist that is 
similar to the desired song(s). 

139



• Undesired result: another song, artist, or 
performance that is not the desired result. 

• Where heard: the circumstances in which the 
poster heard a song performance or broadcast. 

Finding a song based on the lyrics can be 
surprisingly difficult. Frustratingly, a person may 
remember the Storyline or gist of the song but not 
recall any of the lyrics themselves (‘the the song 
talks about hating someone so much they wish they 
would some how die’).  The lyrics for a song can be 
difficult to understand as sung, making it difficult to 
construct a text search based on the known partial 
lyrics (‘I have NO CLUE what ANY of the lyrics are 
except two words because I saw someone mouth 
them while the song was playing behind me… All I 
know is in the chorus it's "something something 
git'cha git'cha"’). A related difficulty is the 
mondegreen—a misheard lyric that may seem 
plausible but is incorrect (‘someone in the 
backmground singing fly high or sky high or 
something like that’). It can be difficult to decide 
how to enter lyrics as search terms;  should “git'cha 
git'cha” be entered written? As Get Ya Get Ya? Get 
You Get You? Gitcha Gitcha? Moreover, some lyrics 
are not dictionary words (‘Cannot remember any of 
the lyrics for the life of me besides the chorus lyics 
which simple go: ooo ooo OOoo ooo ooo, ooo ooo 
OOoo ooo ooo (repeat)’). These problems push 
conventional IR matching techniques such as latent 
semantic analysis to their limits and beyond.  

A word or phrase in the lyrics may be too 
common to be helpful in constructing a search, but 
the manner in which it is sung can be distinctive 
enough to be useful ("Free-ee-e-e-ee"). Combining 
facilities for text and ‘sung’ audio in a query would 
neatly solve this problem (eg, [9]).  

Posters are sometimes able to point to songs 
Similar to the desired result, or conversely to 
indicate songs that are known to not be an answer to 
the question (‘its definitely not Land of 1000 
dances’). Facilities for indicating closeness/distance 
of results to an exemplar would be useful for these 
queries and also to represent a song’s degree of 
membership in a Genre.  

Metadata provided is frequently tentatively 
presented as likely to contain errors (‘im not sure of 
the name of it i believe it's called "spirit"’; ‘i think it 
is by nirvana or rhcp or something like that’)—
understandably, since if the person had the correct 
metadata then they could answer their question 
themselves. The challenge for a retrieval system is to 
gracefully identify similar values to those suggested, 
for query refinement or ranking of results (eg, terms 
related to spirit, groups whose music is similar to 
that of Nirvana or the Red Hot Chili Peppers). 

Where the poster heard the song might be useful 
in answering the question (‘What was the song 
played at the end of GH on 9/22/09?’)—or it might 
not (‘What's the name of a song I heard at Red 
Lobster?’). Again, this type of detail suggests the 

value of a community-based answering service to 
work with heavily context dependent questions. 

6 Conclusions 
This paper analyzes a set of Lyrics-related questions 
to tease out the types of details presented to describe 
the information need (Section 5) and the expected 
responses (Section 4); the findings can inform 
further music retrieval research and development by 
suggesting new directions in search facilities, 
browsing structures and interfaces, and document 
representation.  

References 
[1] D. Bainbridge, S.J. Cunningham, and J.S. Downie. How 

people describe their music information needs: a grounded 
theory analysis of music queries. In 4th International 
Conference on Music Information Retrieval (ISMIR), 
Baltimore, Maryland, 2003. 

[2] Cunningham, S.J., Bainbridge, D., Falconer, A.  More of an 
art than a science:  playlist and mix construction. In 
International Conference on Music Information Retrieval 
(ISMIR ’06), Vancouver. 

[3] J.S. Downie and S.J. Cunningham. Towards a theory of 
music information retrieval queries: system design 
implications. In 3rd International Conference on Music 
Information Retrieval (ISMIR), Paris, France, 2002. 

[4] J.S. Downie. Music Information Retrieval. Annual review of 
information science and technology, Volume 37, pages 295-
340, 2003. 

[5] M. Itoh. Subject search for music: quantitative analysis of 
access point selection. In 1st Annual International 
Symposium on Music Information Retrieval, Amherst MA, 
2000. 

[6] P. Knees, M. Schedl, and W. Gerhard. Multiple lyrics 
alignment: automatic retrieval of song lyrics. In 6th 
International Conference on Music Information Retrieval 
(ISMIR ’05), pages 564-569, London, UK, 2005. 

[7] J.H. Lee, J.S. Downie, and S.J. Cunningham. Challenges in 
cross-cultural / multilingual music information seeking. In 
6th International Conference on Music Information Retrieval 
(ISMIR ‘05), London, UK, 2005. 

[8] J.R. MCPherson and D. Bainbridge. Usage of the MELDEX 
digital music library. In 2nd Annual International Symposium 
on Music Information Retrieval, Bloomington IN, pages 19-
20, 2001.  

[9] M. Muller, F. Kurth, D. Damm, C. Fremery, and M. 
Clausen. Lyrics-based audio retrieval and multimodal 
navigation in music collections. In European Conference on 
Digital Libraries 2007, pages 112-123, Berlin, 2007. 

[10] R. Neumayer and A. Rauber. Integration of text and audio 
features for genre classification in music retrieval. In 29th 
European Conference on Information Retrieval, pages 724-
727, Rome, Italy, 2007.  

[11] A. Strauss and J. Corbin. Basics of Qualitative Research: 
Grounded Theory Procedures and Techniques.  Sage, 1990.  

[12] D. Tjondronegoro, A. Spink, and B.J. Jansen. Multimedia 
web searching on a meta-search engine. In 12th Australasian 
Document Computing Symposium, pages 80 – 83, 
Melbourne, Australia, 2007. 

[13] B. Wingenroth, M. Patton, T. DiLauro. In ACM/IEEE 
Joint Conference on Digital Libraries ’02, pages 308-309, 
Portland, Oregon, 2002. 

140



Positive, Negative, or Mixed? Mining Blogs for Opinions

Xiuzhen Zhang, Zhixin Zhou, Mingfang Wu
School of CS & IT, RMIT University

GPO Box 2476v, Melbourne 3001, Australia
{xiuzhen.zhang, zhixin.zhou, mingfang.wu}@rmit.edu.au

Abstract The rich non-factual information on the
blogosphere presents interesting research questions.
In this paper, we present a study on analysis of
blog posts for their sentiment by using a generic
sentiment lexicon. In particular, we applied Support
Vector Machine to classify blog posts into three
categories of opinions: positive, negative and mixed.
We investigated the performance difference between
global topic-independent and local topic-dependent
opinion classification on a collection of blogs. Our
experiment shows that topic-dependent classification
performs significantly better than topic-independent
classification, and this result indicates high interaction
between sentiment words and topic.

Keywords blog, sentiment analysis, opinion classifi-
cation, opinion words, information retrieval

1 Introduction
With the wide availability of broadband network fa-
cilities, internet has become an indispensable channel
for people to communicate. More and more people are
publishing their own experience and opinions, as well
as seeking other people’s opinions. With the explo-
sive amount of information generated daily, it is almost
impossible for people to read through all the informa-
tion even on a narrow topic. This demands for new
techniques to help track sentiment trends and search
for various opinions, a task that is very different from
factual information task as in traditional information
retrieval; and sentiment analysis is a key component of
such techniques.

Sentiment analysis is the technology to evaluate a
text and predicate the text’s subjectivity (subjective ver-
sus objective) and/or sentiment (positive versus nega-
tive). A general approach is to find out those keywords
from the text that are of evaluative feature or sentiment
orientation to represent the text, and to use a classi-
fication method to predicate the text’s probability of
belonging into pre-defined categories; the classifier is
usually trained on a set of labeled texts.

The above approach has shown success in some
earlier work where sentiment analysis was used to

Proceedings of the 14th Australasian Document Comput-
ing Symposium, Sydney, Australia, 4 December 2009.
Copyright for this article remains with the authors.

reviews from a certain domain, such as a movie
review or a product review [8], while less success
was seen in those studies conducted within the TREC
(Text REtrieval Conference) Blog Track on polarity
search task [6]. On the other hand, existing studies
have also shown that mixed sentiment is especially
challenging [5] given its uncertainty in nature.

The TREC Blog Track’s polarity task is to identify
the polarity of the opinions in the retrieved documents
(blogs) in respond to a search topic. A problem with
the evaluation of this task is that sentiment analysis is
mingled with topic search and rank task, as a result, it is
hard to ascertain the effectiveness of a certain sentiment
analysis method.

This paper presents a study on analysis of blog posts
for their sentiments, or opinions. Specifically a blog
post is analyzed and classified into three categories:
positive sentiment, negative sentiment or mixed
sentiment. We adopt a dictionary-based approach
by using a generic sentiment lexicon developed by
a linguistic study [12]. We propose to represent
blog posts as bags of sentiment words and use the
Support Vector Machine (SVM) [3] learning model
to classify blog posts. Given that both the sentiment
lexicon and the classification model are generic, our
research question is: if a global classification of blog
posts accross topic genres would achieve a similar
performance as a local classification of blog posts of a
certain topic genre.

The remainder of this paper is organised as follows.
We review some related work in Section 2 and describe
the sentiment lexicon used in this study in Section 3.
We present our classification approach in Section 4, and
experiment setup and evaluations in 5. We discuss the
experiment result and conclude the paper in Section 6.

2 Related Work
Sentiment analysis was initially applied to a corpus of
documents that are from the same genre, such as a cor-
pus of movie reviews or a corpus of product review. The
task of sentiment analysis is to specify if a document
(or a review) expresses a positive or negative opinion.
Naturally most studies adopted machine learning clas-
sification approaches [1, 8, 11]. Pang et al [8] applied
and compared three machine learning methods, naive
bayes, maximum entropy and support vector machines,

141



on a corpus of movie reviews with uniform class dis-
tribution. Their results showed that the support vector
machine model generally performed the best.

While most sentiment analyses classify comments
or documents into two categories: positive versus nega-
tive, Koppel and Schler [5] argued that there were other
comments that might express a mixed or neutral senti-
ment. Their study showed that by incorporating neutral
category can lead to significant improvement in overall
classification accuracy, and this is achieved by properly
combining pairwise classifiers.

With so many opinionated documents available on
the Web, people are actively seeking other people’s
opinion toward a certain topic. In this case, we need
to do more than sentiment analysis: we need first to
retrieve a set of documents that are about the topic,
then judge if a document indeed contains any opinion
at all - so called subjectivity analysis, then analyse if
a subjective opinion or sentiment is positive, negative,
or mixed. Such an opinion polarity finding task was
introduced in TREC 2007 conference [6]. A commonly
adopted approach by participants is to use baseline
search engines to search topic-relevant documents
first, and then use polarity-finding heuristics to re-rank
documents for polarity. Machine learning models
have not been widely used to improve the polarity
classification accuracy.

3 A Generic Sentiment Lexicon
Identification of sentiment words is fundamental to sen-
timent analysis and classification. There are two broad
methods to identify sentiment words and build senti-
ment lexicon. One method is through manual construc-
tion in which annotators manually annotate a list of
words or phrases [9] or find and annotate sentiment
words from a given corpus [8, 12].

Another method is to build a lexicon from a small
number of seed words with pre-determined sentimental
polarity, and then populate the seed list through learning
or other relationships. For example, Hatzivassiloglou
and McKeown [2] expanded a seed list by adding those
words that are linked to seed words through conjunc-
tion such as and, or, but, either-or, or neither-or; while
Kim and Hovey made use of WordNet to populate seed
words through synonym and antonym relationships [4].

In our study, we use the sentiment lexicon devel-
oped by Wiebe et al. [12]. This lexicon list has 8221
annotated words resulted from manual annotation of a
10,000-sentence corpus of news articles of various top-
ics. The following is an example of such an annotation:

type=strongsubj len=1 word1=admire
pos1=verb stemmed1=y priorpolar-
ity=positive

The property prior polarity indicates the attitude be-
ing expressed by the word admire and has three values:
positive, negative and neutral. The neutral tag are those

subjective expressions that do not have positive or nega-
tive polarity. The property type indicates the expression
intensity and here it has binary values: strong or weak.
As annotation was done within context of a sentence,
the grammar function of a word is also annotated, for
example, the word admire here is a verb. Thus a word
may occur twice or more in the list depending on which
grammar function a word acts in the original text for
annotation, for example, the word “cooperation” is an-
notated as adjective and none. This list also includes
words with multiple morphemes, for example, cooper-
ate, cooperation, cooperative, and cooperatively.

4 Opinion Classification
This section presents our classification method.

4.1 Support Vector Machine
Support Vector Machine (SVM) has been widely used
in text categorisation, and with reported success [3]. In
an SVM model, objects are represented as vectors. In
learning a model to classify two classes, the basic idea
of SVM is to find a hyperplane, represented by a vec-
tor, that separates objects of one class from objects of
other classes at a maximal margin. When using a linear
kernel, SVM learns a linear threshold function. With
polynomial and radial basis kernels, SVM can also be
used to learn polynomial and radial basis classifiers.

SVMmulticlass
1 is an implementation of the multi-

class SVM, and is based on Structural SVMs [10]. Un-
like regular SVMs, structural SVMs can predict com-
plex objects like trees, sequences, or sets. SVMstruct

can be used for linear-time training of binary and multi-
class SVMs under the linear kernel. Features extracted
jointly from inputs and outputs are used to form an
optimal separation plane.

4.2 Opinion Word Extraction
To apply a classification model effectively, a key issue
is feature selection, i.e. what input will be given to a
classification model. The feature selection is applica-
tion dependent - how do we want to classify a set of
documents, and what are prominent features from a set
of documents that can separate them from each other.
For the sentiment classification task, it is intuitive that
we identify those opinion words from a set of docu-
ments as classification features.

In this study, we simply treated opinion words as
tokens and do not apply natural language processing
methods such as Part-Of-Speech tagging to analyse
the grammatical function of those words. We applied
Porter stem method to the list and group different forms
of the same word, and this leaves us 4919 “words”.

A closer look at the stemmed opinion words reveals
some interesting facts. There are 103 words that are
of contradictory polarities. After we removed these
words, we had 4816 words with unique sentiment

1Avaiable at http://svmlight.jochims.org/svm multiclass.html

142



polarity. However, there are also some words that have
mixed levels of strength. In lieu of this, we created
a new level of strength and named it “contextual
strength”; there are a total of 194 in this category. The
distribution of opinion words in term of polarity and
strength is summarised in Table 1.

Positive Negative Neutral Total
Strong 954 2061 107 3192
Contextual 81 98 14 194
Weak 544 783 163 1490
Total 1579 2942 284 4816

Table 1: Distribution of opinion words

4.3 Opinion Word Vectors
In information retrieval, each document is represented
by all word tokens from a collection. However, for
the purpose of opinion classification, we represent a
document as a vector of opinion word tokens and ignore
those words that do not express any sentiment. As in
retrieval models, we weight each feature (an opinion
word) of the document vector. The tf × idf weight of
an opinion word f in a document d is:

wfd = tffd × log
|D|

|Df |

where tffd is the frequency of f in d. |D|/|Df | is
inverse document frequency of f — |D| is the number
of documents in the collection, and |Df | is the number
of documents containing f . We expect that this model
is general enough to be applied to opinion classification.

5 Evaluation
5.1 Topic-independent versus Topic-

dependent Classification
Opinion classification is usually applied to a set of doc-
uments that are of same genre or about a similar topic
such as movie reviews and product reviews. With a
huge number of opinionated documents on the Web and
the nature of inexact match of a Web search engine, it is
unlikely that we can always get a set of documents from
the same genre to be classified. As a sentiment lexicon
is independent of semantic topic of a document, we
then investigate if there exists any difference between
classification of documents that are about mixed topics
and documents about a topic; we call these two types of
document classification topic-independent (or global)
classification and topic-dependent (or local) classifica-
tion respectively.

5.2 Experiment Set-up
The TREC Blog track 2006 collection Blog06 [7] is a
sample of the blogosphere crawled from 6 December
2005 to 21 February 2006. The collection is 148GB
in total, and comprises three components: XML feeds

Category TREC-2006 TREC-2007
Negative 3,707 (32.15%) 1,844 (26.34%)
Mixed 3,664 (31.78%) 2,196 (31.37%)

Positive 4,159 (36.07%) 2,960 (42.29%)
Total 11,530 7,000

Table 2: Distribution of document categories in TREC-
2006 and TREC-2007

of 38.6GB, which are the blogs, Permalink documents
of 88.8GB, which are the blog posts with associated
comments, and HTML homepages of 28.8GB, which
are the entries to blogs. The permalink documents are
the unit for the opinion finding task and polarity tasks.

The content of a blog post is defined as the content
of the blog post itself and the contents of all comments
to the post. A blog post is considered having subjective
content if “it contains an explicit expression of opin-
ion or sentiment about the target, showing a personal
attitude of the writer” [7]. Fifty topics were selected
by NIST from a collection of queries of a commercial
search engine for the opinion retrieval task. For a topic,
permalink documents are tagged with NIST relevance
judgement, with the following categories (or scales) [7]:
not judged(-1), not relevant(0), relevant(1), negative(2),
mixed(3) and positive(4).

The Blog06 collection was used for both TREC-
2006 and TREC-2007 Blog Track. Fifty (different)
topics were used for each conference. For each
topic, we selected documents with NIST assessor
relevance judgement scale of 2 (negative), 3 (mixed
- both positive and negative) and 4 (positive) for our
study. Table 2 shows the distribution of documents in
different categories in TREC-2006 and TREC-2007
respectively.

Zettair search engine 2 was used to index documents
with the sentiment lexicon. Each document was con-
verted into a vector of opinion words with the weighting
scheme as described in Section 4.3.

5.3 Topic-independent Opinion Classifi-
cation

To train the topic-independent opinion classification
model, we pooled and indexed all documents from 50
topics in TREC-2006. SVM model was then trained
on the converted opinion-word vectors with judgement
scale >=2. Ten-fold cross validation experiment
was conducted on all 10,737 documents of 50 topics.
It showed an overall accuracy of 52.90±3%, that
is 52.9% of documents correctly classified, with a
standard deviation of 3%.

5.4 Topic-dependent Opinion Classifica-
tion

To examine the interactions between topics and opinion
classification accuracy, topics of TREC-2006 that con-
tain at least 10 documents from each opinion category

2http:www.seg.rmit.edu.au/zettair/

141



Topic−independent Topic−dependent

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Figure 1: Classification accuracy: Topic-independent
vs. topic-independent

(recall that there are 3 categories positive, negative or
mixed) were extracted, this resulted in 36 topics and
9,771 documents in total.

To evaluate the accuracy of topic-dependent opinion
classification, we individually indexed documents from
the same topic, and applied ten-fold cross validation
experiment to each topic collection accordingly. On av-
erage, the topic-dependent model achieved an accuracy
of 63±13%, significantly higher than that achieved by
the topic-independent model.

5.5 Blind Test of the Classification Model
The topic-independent classification model trained on
documents with TREC-2006 judgments were blind
tested on documents with TREC-2007 judgements.
27 topics that contain at least 10 documents in each
category were used in our study. The model showed
an accuracy of 42% on the whole collection. The drop
in performance compared to that of 10-fold croass
validation (52.9±3%) may be attributed to the change
of topics between the two collections, which in turn
suggests that there is strong correlation between topics
and opinion words.

On the other hand, in the 10-fold cross validation
experiment on the TREC-2007 collection, the topic-
dependent model achieved an average accuracy of
55%. We extracted individual topic’s accuracy for the
topic-independent model, and used a paired Wilcoxon
test to compare the difference in classification accuracy
between the topic-independent model and the topic-
dependent model. The improvement in classification
accuracy of the topic-dependent model over that of
the topic-independent model is statistically significant
(p < 0.001). Figure 1 shows the summary of two
models. As we can see that the topic-dependent model
achieved higher accuracy than the topic-independent
model.

6 Conclusion
In this paper we have described our research on opinion
classification of blogs. We have investigated the differ-
ence of global classification of documents from mixed
topics and local classification of documents from the
same topic. Our experiment on the TREC Blog collec-
tions has shown that the local classification is signifi-
cantly more accurate than the global classification. This
might be because that documents from the same topic
tended to have a similar set of sentiment words. Our
future research will concentrate on developing topic-
specific opinion classification models, especially it is
anticipated that the annotation of opinion words tensity
can be used to further improve such models.

Acknowledgements The authors would like to thank
Steven Garcia for his various help with using Zettair.

References
[1] K. Dave, S. Lawrence and D. M. Pennock. Mining

the peanut gallery: opinion extraction and semantic
classification of product review. In Proceedings of
the 12th international conference on World Wide Web,
pages 519–528, 2003.

[2] V. Hatzivassiloglou and K.R.McKeown. Predicting the
semantic orientation of adjectives. In Proceedings of 8th
Conference on European chapter of the association for
computational linguistica, pages 174–181, 1997.

[3] T. Joachims. Text categorisation with support vector
machines: Learning with many relevant features. In
Proceedings of ECML-98, 1998.

[4] S. M. Kim and E. Hovy. Determining the sentiment of
opinions. In Proc. of the Coling Conference, 2004.

[5] M. Koppel and J. Schler. The importance of neutral
examples for learning sentiment. Computational Intel-
ligence, Volume 22, Number 2, 2006.

[6] C. MacDonald, I. Ounis and I. Soboroff. Overview of
TREC-2007 blog track. In Proceedings of TREC-2007,
Gaithersburg, USA, 2008.

[7] I. Ounis, M. de Rijke, C. MacDonald and I. Soboroff.
Overview of trec-2006 blog track. In Proceedings of
TREC-2006, Gaithersburg, USA, 2007.

[8] B. Pang, L. Lee and S. Vaithyanathan. Thumbs up? sen-
timent classification using machine learning techniques.
In Proceedings of EMNLP, pages 79–86, 2002.

[9] P. Subasic and A. Huettner. Affect analysis of text using
fuzzy semantic typing. IEEE Transactions on Fuzzy
systems, Volume 9, pages 483–496, 2001.

[10] I. Tsochantaridis, T. Hofmann, T. Joachims and Y. Al-
tun. Support vector learning for interdependent and
structured output spaces. In Proc.: of ICML-2004, 2004.

[11] P. Turney. Thumbs up or thumbs down? semantic orien-
tation applied to unsupervised classification of reviews.
In Proceedings of the ACL, 2002.

[12] J. Wiebe, T. Wilson and C. Cardie. Annotating expres-
sions of opinions and emotions in language. Language
Resources and Evaluation (formerly Computers and the
Humanities), Volume 1, Number 2, 2005.

142




