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Preface 

These proceedings contain the papers of the SIGIR 2012 Workshop on Open Source 
Information Retrieval held in held in Portland, Oregon, USA, on the 16th of August 2012.  
Six full papers and six short papers were selected by the program committee from thirteen 
submissions (92% acceptance rate). Each paper was reviewed by three members of the 
international program committee. In addition to these selected papers, invited talks were 
given by Grant Ingersoll “OpenSearchLab and the Lucene Ecosystem” and Jamie Callan 
“The Lemur Project and its ClueWeb12 Dataset”. We thank them for their special 
contributions. 

When reading this volume it is necessary to keep in mind that these papers represent the 
opinions of the authors (who are trying to stimulate debate). It is the combination of these 
papers and the debate that will make the workshop a success. We would like to thank the 
ACM and SIGIR for hosting us. Thanks also go to the program committee, the paper authors, 
and the participants, for without these people there would be no workshop. 
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ABSTRACT 

Boolean Conjunctive Normal Form (CNF) expansion can effec-

tively address the vocabulary mismatch problem, a problem that 

current retrieval techniques have very limited ability to solve.  

Meanwhile, expert searchers are found to spend large amounts of 

time carefully creating manual CNF queries.  These CNF queries 

are highly effective, and can outperform bag of word queries by a 

large margin.  However, not many effective tools exist that can 

facilitate the efficient manual creation of effective CNF queries. 

We describe such a publicly available search tool, WikiQuery, 

which can efficiently assist the users to create CNF queries 

through easy query editing and immediate access to search results.  

Experiments show that ordinary search users, with limited prior 

knowledge of Boolean queries, can use this intuitive tool to create 

effective CNF queries.  We argue that tools like WikiQuery can 

attract and retain certain users from the commercial Web search 

engines, and may be a good starting point to build a research Web 

search engine. 

Categories and Subject Descriptors 

H.3.3 [Information Search and Retrieval]:  

General Terms 

Theory, Experimentation, Measurement 

Keywords 

Wiki for queries, conjunctive normal form (CNF) queries, query 

refinement, user interactions 

1. INTRODUCTION 
One particular goal of the Open Source Information Retrieval 

workshop is to build „an open source, live and functioning, online 

web search engine for research purposes‟.  A key factor necessary 

for the success of such an effort is to attract and retain users. 

In order to attract users, the search engine needs to have a dis-

tinct and useful feature that is not offered by the current search 

engines.  As a somewhat negative example, the Lemur community 

query log project did not collect enough query log data perhaps 

due to the lack of any additional benefit provided by the query log 

toolbar1.  Compared to the toolbar, a full scale open source search 

engine is even more likely to fail, as the quality of the results from 

such an academic search engine is likely to be much worse than 

that from the commercial Web search engines. 

In order to retain users, it is perhaps necessary that the distinct 

                                                                 

1 http://lemurstudy.cs.umass.edu/ 

feature is unlikely to be copied by the competitors (the commer-

cial Web search engines). 

This paper describes one such publicly available open source 

search tool, WikiQuery (http://www.wikiquery.org), which both 

engages ordinary searchers in effective search interactions, and is 

unlikely to be adopted by the commercial Web search engines.  

WikiQuery can provide more effective search interactions than 

what the current search engines can offer, and is flexible enough 

to be applied on top of virtually any Web search engine. 

Prior research showed that the current retrieval techniques are 

still very limited in their ability to solve the vocabulary mismatch 

problem [13].  Users are still frequently frustrated by the current 

search engines when performing informational searches [5].  Prior 

research also indicated that high quality manually created Con-

junctive Normal Form (CNF) queries offer the opportunity to 

address this limitation and significantly improve retrieval beyond 

the traditional bag of word queries [14].  A huge potential of im-

provement is possible in the scale of 50-300% with carefully 

manually created CNF queries [14]. 

The WikiQuery interface is designed to guide and facilitate us-

ers to create highly effective CNF queries efficiently through 1) a 

simple CNF input interface, 2) immediate inspection and interac-

tion with search results from multiple commercial search engines, 

and 3) collaboration with other users who share related infor-

mation needs.  The created queries are stored, and readily availa-

ble for future re-finding or refining.  The queries are also shared 

online so that other users may benefit from the queries or query 

parts.  Being a Wiki website, different users can collaborate and 

improve queries together.  This interface is implemented based on 

the MediaWiki source code, which allows the users to search for 

pages or information stored on the website, so that it is easy to 

lookup, share or collaborate on the website. 

User studies in this work show that ordinary search users with 

limited knowledge of Boolean queries have the potential to use 

the WikiQuery interface to create effective CNF queries. 

WikiQuery has the potential to attract and retain users for two 

reasons.  Firstly, the CNF query interface is effective and intuitive, 

and can appeal to the ordinary search users -- at least the early 

adopters who are willing to learn a new and effective way to for-

mulate search queries, or the more serious users who care about 

their searches.  Secondly, the commercial Web search engines are 

very unlikely to adopt the CNF interface, because the change in 

user experience is large enough to scare away the change-averse 

users, making it very risky to use for a large Web search engine. 

In addition to the added benefit of facilitating search interac-

tions, the resulting crowdsourced CNF queries stored on the Wik-

iQuery website also constitute a detailed context dependent the-

saurus for retrieval and other vocabulary tasks. 

The rest of the paper is organized as follows.  Section 2 intro-

duces related work.  Section 3 describes the WikiQuery website 

together with its CNF query interface.  Section 4 reports the stud-

ies showing that ordinary users can create effective CNF queries 

with the proper tool and guidance.  Section 5 concludes the paper. 
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2. RELATED WORK 
This section reviews prior work related to three aspects of this 

work, the uses of Boolean CNF queries, Boolean user interfaces, 

and the use of the user generated Boolean queries as a resource for 

thesaurus building.  We also discuss how this research is different 

from prior efforts. 

2.1 Uses of CNF Queries 
Prior research on effective uses and formulations of Boolean CNF 

queries motivates this research.  The use of Conjunctive Normal 

Form (CNF) queries is widespread among librarians [9,6], lawyers 

[3,2], and other expert searchers [7,4,11]. 

For example, the query below from TREC 2006 Legal Track [2] 

“sales of tobacco to children” 

is expanded manually into the Boolean CNF query 

(sales OR sell OR sold) AND 

(tobacco OR cigar OR cigarettes) AND 

(children OR child OR teen OR juvenile OR kid OR adolescent) 

In the above case, each query term is expanded into one con-

junct of the Conjunctive Normal Form query. 

Earlier research on Boolean queries examined unranked Boole-

an retrieval, and showed that ranked keyword retrieval is more 

effective, mainly because presenting retrieval results as a set is 

both difficult to control and inefficient to examine.  Later research 

compared ranked Boolean with keyword retrieval, showing that 

user created CNF queries can significantly improve over keyword 

retrieval by simply grouping the query terms of the verbose key-

word queries into Conjunctive Normal Form [7,11]. 

More recent research showed that lawyers and search experts 

can create highly effective CNF queries that extensively expand 

the original keyword queries, solving mismatch and improving 

retrieval 50-300% [14].  These CNF queries with high quality 

expansion terms were shown to outperform bag of word expan-

sion with the same set of high quality expansion terms. 

2.2 Boolean Search Interfaces 
Even though carefully created CNF queries are effective, recent 

research has focused on bag of word queries, and has not seen 

much development in interfaces that help users create effective 

CNF queries.  Research on Boolean user interfaces happened 

mostly before mid 1990s.  Hearst [1, Chapter 10] cited several 

textual as well as graphical Boolean interfaces.  Hearst referred to 

CNF queries as faceted queries, and described a possible textual 

input interface for CNF queries, though without a concrete exam-

ple.  In a newer book, Hearst [8] cited the advanced search inter-

face of the Educational Resources Information Center (ERIC)2, 

which allows the entry of CNF queries in a one-conjunct-per-line 

format.  This is similar to the CNF interface of WikiQuery except 

for two differences.  Firstly, the ERIC interface is not specifically 

designed for CNF queries, and allows the user to enter a query in 

Disjunctive Normal Form.  Secondly, the ERIC interface gives no 

guidance or useful examples to the user on how to create effective 

Boolean queries. 

The lack of research on Boolean interfaces is coupled with a 

long list of negative results [8, Section 4.4] showing that ordinary 

users have a difficult time formulating effective Boolean queries.  

This work, on the contrary, shows that ordinary search users with 

                                                                 

2 http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp 

accessed on June 1st, 2012. 

limited knowledge of Boolean queries have the potential to create 

effective Boolean CNF queries using the WikiQuery interface.  

This apparent contradiction is likely because the prior studies did 

not focus on Boolean CNF queries, and gave novice users the full 

freedom of free form Boolean queries without proper guidance.  

This choice leaves the creation of effective Boolean queries to the 

chances, and is likely to lead to ineffective Boolean queries.  Our 

results point at a promising direction of designing search interfac-

es that guide and facilitate users to formulate effective Boolean 

queries in CNF form. 

2.3 Online Thesaurus Building 
The resulting CNF queries created by users and stored in Wiki-

Query can serve as a thesaurus for future users.  In particular, each 

conjunct in the CNF queries contains synonyms or related terms 

that are dependent on the context of the query.  Compared to ex-

isting thesauri like WordNet, the WikiQuery synonyms depend on 

the specific uses of a term in a query, while WordNet is still a 

static semantic resource without regard to word use. 

The thesaurus building aspect of the WikiQuery website is simi-

lar to an earlier system that builds a growing thesaurus based on 

users‟ Boolean retrieval interactions [12].  The main difference is 

the emphasis on CNF queries by WikiQuery.  WikiQuery also 

treats individual queries as valuable resources, and as units for 

storage and retrieval.  This is a fairly lazy and ad hoc treatment for 

a thesaurus.  Later more general treatments can build on top of the 

queries stored on WikiQuery, when it becomes clear what kinds 

of general treatments are most appropriate. 

3. THE WIKIQUERY WEBSITE 
The search tool described in this work is a public Wiki website 

based on the same source code that supports Wikipedia etc. sites. 

On the WikiQuery website, each Wiki page stores all the infor-

mation about one particular user information need, including pos-

sibly a description of the information need, the corresponding 

CNF query (or several related CNF queries), possible relevant 

results (together with descriptions) identified through the search 

interactions, or other related information. 

An example WikiQuery page is shown in Figure 1.  The main 

CNF query of the page and the links to the search engine result 

pages from multiple search engines are circled out. 

The open source MediaWiki code (http://www.mediawiki.org) 

offers the standard set of features used in popular Wiki websites.  

One useful function allows the users to search for pages or infor-

mation stored on the website through entering a search query in 

the search box.  In addition, being based on MediaWiki version 

1.17, the Wiki website automatically suggests existing WikiQuery 

pages as the user types into the search box.  Other features include 

history tracking of all the user edits of pages and users, subscrib-

ing to a page to monitor changes made to the page, and opportuni-

ty of discussion among contributors of a Wiki page. 

Several simple customizations were made to accommodate the 

special user needs for the WikiQuery website, including 1) a sim-

ple textual interface for CNF query editing, 2) an automatic client 

side script to display the query and store it in the Wiki page, and 3) 

an automatic script that translates the CNF query into the formats 

accepted by common Web search engines, allowing immediate 

inspection of the retrieval results produced by the CNF queries.  

The rest of this section covers these customizations in more detail. 

3.1 Interface for CNF Query Editing 
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The CNF query interface is presented to the user when the user 

edits a Wiki page.  It guides the user and allows the user to easily 

and efficiently create or edit CNF queries.  As shown in Figure 2, 

this interface is consisted of several input bars, each correspond-

ing to one conjunct in the CNF query.  The user has to determine 

how many and what concepts (conjuncts) are necessary for the 

particular information need.  Then the user has to enter in each 

input bar the search terms that can be used to describe the concept, 

and join them with the Boolean OR operator.  Prior research [14] 

indicated that including more high quality expansion terms in 

each conjunct yields a higher likelihood for the conjunct to match 

the relevant documents of the query, and leads to a higher retriev-

al accuracy. 

The CNF queries are stored on the wiki to allow users to revisit 

existing queries, and to further improve the queries.  Because 

refinding tasks are fairly common in Web search, a user might 

frequently find the stored queries to be helpful at a future time. 

Whenever the user edits an existing WikiQuery page that al-

ready contains a full CNF query, the CNF input bars are automati-

cally populated with the content of the CNF query, so that the user 

does not have to enter the query into the input bars again. 

The collaborative nature of the Wiki website also allows differ-

ent users to collaborate and edit the same WikiQuery page of 

common interest to these users.  For popular information needs, 

collaborations across multiple users are likely to improve the 

quality of the CNF queries beyond what a single user may achieve.  

Because high quality CNF queries can take lots of effort to create, 

collaboration offers the possibility to break down the difficulty 

through sharing it among a group of users. 

This Boolean CNF interface is different from the typical inter-

faces used in advanced searches in libraries or by lawyers in legal 

discovery.  The advanced search interfaces in libraries (e.g. Li-

brary of Congress) allow a restricted Boolean query of the form: 

Term1 Op1 Term2 Op2 …, where a Term can be a word or a 

phrase, but cannot be a Boolean clause, and an Op is a Boolean 

operator (e.g. AND, OR, XOR, and NOT).  The WikiQuery CNF 

interface is more powerful than the library Boolean interfaces 

because any Boolean query can be expressed as a CNF query. 

The Boolean interface used by lawyers is usually just one large 

text box.  They are flexible and allow free form Boolean queries 

to be entered into a, typically large, text box.  However, the law-

yers typically create CNF-like queries [2], and have to enter the 

whole query by themselves, having to make sure that the paren-

theses match and the form is correct.  The WikiQuery CNF inter-

face facilitates simpler and more efficient manual creation of 

CNF-like queries.  It breaks down each query by allowing the user 

to enter each conjunct into one input box.  This way, the user does 

not need to enter the CNF skeleton, nor the conjunct level paren-

theses.  Although this CNF interface suggests the use of CNF-like 

queries, it does not require that.  The user still has the freedom to 

 

Figure 1. An example Wiki page from the WikiQuery Website.  Circled out are the Conjunctive Normal Form (CNF) query of this Wiki 

page and the links to the search engine result pages for the CNF query. 

1. Conjunctive Normal Form query  

2. Links to search engine result pages  
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enter a free form Boolean query into one input bar in the Wiki-

Query interface, although this usage is generally discouraged. 

3.2 Query Storage and Display 
The query that the user enters into the CNF editing interface (Fig-

ure 2) is automatically translated into the full form CNF query 

that is stored and displayed on each Wiki page (as seen in Figure 

1).  Whenever the user makes a change in one of the input bars in 

the CNF edit interface, a short Javascript is automatically trig-

gered to translate the contents of the input bars into the full query 

as part of the content of the Wiki page to be stored. 

Because the editing interface uses the document content of the 

Wiki page to store and display CNF queries, all the benefits from 

MediaWiki for maintaining the Wiki contents automatically apply 

to the stored CNF queries, change tracking and searching. 

3.3 Querying Search Engines 
The WikiQuery website allows the user to access search engine 

result pages for the CNF queries very easily, during page viewing 

and editing.  Access to the result pages during page view allows 

viewers of the WikiQuery website to easily check the search en-

gine results for a CNF query.  Access to the result pages in the 

editing interface allows the user to monitor the quality of the 

search engine results after making changes to the CNF queries, 

ensuring the quality of the resulting CNF queries. 

Figure 1 shows the links displayed on the stored WikiQuery 

pages during page viewing.  Figure 2 shows the buttons that 

would open a new window to allow the user to navigate to the 

search engine result pages for the query that the user is editing. 

Multiple search engines are supported.  These CNF queries can 

work on any search engine that supports Boolean query operators.  

Currently it employs Google, Google Scholar, Google Patents and 

Yahoo (Altavista), but can be easily extended to use other search 

engines like Bing which uses a slightly different query language. 

4. USER STUDY 
Prior research already confirmed the effectiveness of the manual 

CNF queries, and that expert searchers can create effective CNF 

queries [14].  The study in this section aims to verify the hypothe-

sis that ordinary users with no or limited prior knowledge of 

Boolean queries can create effective Boolean CNF queries using 

the WikiQuery CNF interface. 

6 users participated in this preliminary user study, each respon-

sible for 2 information needs.  Users typically proposed a series of 

Boolean queries.  We report the retrieval performance of the 

Boolean queries against the baseline keyword queries. 

4.1 Experiment Setup 
This subsection describes the details of this experiment, including 

user selection, information needs, evaluation details, relevance 

judgments and evaluation methodology. 

4.1.1 Classroom Users 
Users for this study come from an IR class in an information 

school.  A total of 6 students participated in the study.  We pur-

posely launched the study at the beginning of the semester when 

students were not fully exposed to the professional CNF queries. 

As participants had little knowledge of Boolean queries or Wiki 

page editing, a 10-minute session was given before the study, 

 

Figure 2. The editing interface of WikiQuery.  It includes a Conjunctive Normal Form (CNF) query editing interface and buttons to access 

search engine result pages.  The full CNF query and the HTTP links to the search engine result pages for the query are automatically gener-

ated and stored in the page. 

 1. CNF query input interface 

 

 3. Automatically updated CNF query stored in Wiki 

 

 4. Links to search engine results 

 

 2. Search engine result page 
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which included an example information need with a walk through 

the CNF query creation and editing process on WikiQuery.  Be-

cause this study counts as one homework assignment for the stu-

dents, participants were highly motivated to spend time and do 

well in creating effective CNF queries.  Users were also asked to 

document the detailed query formulation and retrieval experience. 

4.1.2 Information Needs 
12 topics from TREC Ad hoc and Terabyte tracks were selected 

as candidate topics.  Topics were selected to be somewhat inter-

esting for the students, and reasonably difficult so that the key-

word queries were unlikely to return perfect results.  Each student 

was randomly assigned two topics, for which the student would 

assume the role of the searcher and create queries. 

Each TREC topic contains a short title and a long description of 

the information need.  The students used all the available infor-

mation of the topic to grasp the intent behind the topic.  They 

generated queries for each topic and were encouraged to interact 

with the search results to improve the proposed queries. 

One reason for using standard TREC topics is to use the existing 

relevance judgments on these datasets to evaluate the user queries. 

4.1.3 Baseline Keyword Queries 
The keyword queries were directly taken from the TREC topic 

titles and descriptions.  The topic titles are shorter, usually 2 to 4 

terms long, and the descriptions are much longer, around 5 to 10 

terms long.  These two types of keyword queries correspond to the 

two baselines: keyword title and keyword desc. 

4.1.4 User Created Boolean Queries 
Users were asked to create Boolean CNF queries using the Wiki-

Query interface, which allows them to enter the query, to examine 

the results returned by the search engines for the query, and to 

improve the query.  On average, a user spent around 40 minutes 

on each information need, based on the recorded history of chang-

es of the WikiQuery pages.  For each information need, the users 

created several queries or improved the CNF query many times. 

The users were asked to submit two versions of Boolean queries 

for each information need, an initial Boolean query and a final 

version of the Boolean query.  The initial Boolean query repre-

sents a very first try by the user, and the final Boolean query is 

usually the result of fine tuning the CNF query based on interac-

tions with the retrieval results of all the queries the user tested. 

4.1.5 Evaluating on TREC Datasets 
Since the information needs come from official TREC Ad hoc 

track and Terabyte track topics, existing relevance judgments 

from TREC can be used to evaluate the effectiveness of the user 

proposed queries.  The advantage of using the TREC relevance 

judgments is that these judgments are fairly reusable, and more 

complete than just evaluating several top results returned by a 

search engine.  Thus, one can evaluate the result lists returned on 

the TREC datasets to much deeper levels.  TREC standard evalua-

tion metrics report retrieval accuracy of the top 1000 results.  One 

may question why such deep level of assessment is necessary for 

Web search where users typically only look at top several results.  

We argue that the deeper level metrics are more sensitive to re-

trieval algorithm differences.  Certain retrieval algorithm changes 

may not surface as top rank result changes on a small set of test 

topics, but may change the rank list more dramatically at deeper 

levels for these topics.  These deeper level changes may show up 

at the top ranks on a small subset of topics of a much larger test 

topic set.  At the very least, the deeper level metrics provide an 

additional perspective to the effectiveness of the rank lists. 

The TREC relevance judgments only exist on the TREC docu-

ment collections, so the queries need to be run against the smaller 

TREC collections, instead of a Web search engine. 

We used the Indri search engine of the Lemur toolkit version 

4.10 to execute the Boolean queries on TREC document collec-

tions.  Indri supports a fairly comprehensive query language.  The 

backend model is language model with Dirichlet smoothing.  The 

Boolean OR operator is implemented as the Indri #syn operator.  

#syn counts term frequency and document frequency of the whole 

group of synonyms by treating all the synonyms in the group as 

the same term.  The Boolean AND operator is implemented as the 

Indri #combine operator which is the probabilistic AND operator.  

This Indri implementation of a Boolean query automatically re-

turns a rank list of documents, instead of an unranked set.  This is 

a more effective form of result presentation than an unranked set 

of documents, and is widely adopted by modern retrieval systems. 

Equations (1, 2) show how Indri scores document d with query 

(a OR b) AND (c OR e).  tf(a, d) is the number of times term a 

appears in document d.  μ is the parameter for Dirichlet smoothing, 

which is set at 900 for the Ad hoc track datasets and 1500 for the 

Terabyte track datasets. 

Score( (a OR b) AND (c OR e),  d)   (1) 

= P( (a OR b) AND (c OR e) | d) 

= P( (a OR b) | d) * P( (c OR e) | d) 

P( (a OR b) | d)     (2) 

= ( tf(a, d) + tf(b, d) + μ * (P(a | C) + P(b | C)) ) / (length(d) + μ) 

= P(a | d) + P(b | d)  (under Dirichlet smoothing) 

4.1.6 Evaluating on Commercial Search Engines 
The WikiQuery website allows the users to run the CNF queries 

they created on commercial Web search engines, which typically 

have a much larger collection of documents, and the retrieval 

algorithms are typically more effective than the experimental 

systems used by researchers.  This section tries to evaluate the 

effectiveness of the CNF queries by running them on commercial 

search engines. 

Given a Boolean CNF query as input, the Web search engines 

return ranked lists of documents as results.  The exact ranking 

formulae of these search engines are difficult to know.  Standard 

ways of producing ranked retrieval results from Boolean queries 

include probabilistic Boolean retrieval models, quorum-level 

ranking [8, Section 4.4.2], or simply using keyword retrieval to 

rank the documents that match the Boolean query.  An empirical 

comparison of some of them can be found in [14]. 

Relevance judgments are needed to evaluate the effectiveness of 

the results returned by the search engines.  Users who participated 

in the study did relevance judgments for each other for the top 5 

results returned by the Web search engines (Google and Yahoo).  

The assessors did not know what query, search engine or rank a 

particular result page comes from.  These user-provided judg-

ments were obtained at the time of the homework assignment 

(February to March 2011).  One of the authors of this paper veri-

fied these user provided relevance judgments for accuracy. 

4.1.7 Evaluation Metrics 
For TREC judgments, we report Mean Average Precision (MAP) 

for the top 1000 results.  It is a standard measure because it is 

sensitive to rank list changes and also fairly stable when compar-

ing between systems [10].  We also report Precision at top 5 and 

10 as measures of retrieval accuracy at top ranks.  For evaluation 

on the search engines, we report Precision at top 5, and MAP at 5, 

as deeper relevance judgments are not available. 
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4.2 Experiment Results 
This section reports the characteristics of the user generated CNF 

queries, and the effectiveness of these CNF queries compared 

against the keyword query baselines. 

4.2.1 Characteristics of the User CNF Queries 
Query characteristics varied a lot across different users: 2 to 6 

conjuncts for the initial Boolean queries, each conjunct containing 

1 to 5 synonyms.  The final Boolean queries were expanded a bit 

more, with 2 to 6 conjuncts, each containing 1 to 9 synonyms. 

Table 1 shows how the users modified the original short key-

word queries into the final Boolean CNF queries. 

Users did not always follow the instruction to include expansion 

terms when formulating CNF queries.  Only 5 of the 12 queries 

included some synonym expansion, while 9 out of the 12 queries 

were modified to be more restrictive than the keyword query.  

These queries are less well expanded than the queries created by 

expert searchers [2,14].  The sections below show how that affects 

retrieval performance. 

4.2.2 Effectiveness – TREC Evaluation 
Retrieving on the TREC datasets, the user created CNF queries 

are fairly effective overall (Table 2).  On average, the final Boole-

an CNF queries perform the best on all three evaluation metrics.  

These final CNF queries perform significantly better than the long 

keyword queries both at top ranks (P@5, 10) and at overall accu-

racy (MAP@1000), and outperform on average the short keyword 

queries.  This result is consistent with prior research, where short-

er keyword queries perform better than long queries [13]. 

Even though CNF queries are better than short keyword queries, 

the difference is not statistically significant.  We look at the indi-

vidual queries to understand which CNF queries are better and 

which are worse than the corresponding short keyword query. 

For expansion queries in Table 3 (topics 354, 751 and 758), top-

ic 354 is the only one that decreases performance.  The reason is 

that “reporter” is stemmed and matches the word “report”, which 

is a common word in the TREC newswire collection, causing the 

expanded query to match many false positives. 

For the restrictive Boolean queries, the performance gain is less 

stable.  5 (topics 752, 760, 764, 799, 805) out of the 9 restrictive 

Boolean queries perform worse than the short keyword query in 

MAP.  Even in top precision, which is usually the users‟ goal for 

using more restrictive queries, 4 out of the 9 restrictive Boolean 

queries perform worse than short keyword queries. 

This result on TREC datasets shows that many of the CNF ex-

pansion queries and a few of the restrictive Boolean queries creat-

ed through interacting with a larger dataset (the Web) and very 

different retrieval algorithms can still effectively retrieve relevant 

documents on a smaller dataset.  For expansion queries, this may 

be because on the one hand, accurate CNF expansions on larger 

collections are less likely to match false positives on smaller col-

lections, ensuring precision.  On the other hand, the mismatch 

problem is likely to get worse on the smaller collections with 

fewer relevant documents, thus, the CNF expansions are more 

likely to be useful in improving recall on the smaller collections.  

Overall, in both precision and recall, the CNF expansions created 

for larger collections may work well on the smaller collections.  

However, the more restrictive queries that perform well on large 

Web collections may not perform as well on smaller collections. 

4.2.3 Effectiveness – Evaluation on Search Engines 
The Boolean queries are clearly more effective than short key-

words on the commercial Web search engines at top ranks, as 

shown in Table 4 (overall) and Table 5 (per topic). 

Table 4 shows the evaluation on Google and Yahoo.  On 

Google, final CNF queries significantly outperformed the short 

keyword queries in retrieval performance at top ranks.  On Yahoo, 

CNF was on average better than short keyword, but the difference 

was not statistically significant, because 3 Boolean queries were 

worse than the short keyword baseline.  (For topic 352 on Yahoo, 

the expansion phrase “channel tunnel” is too general and matches 

many false positives.  For topic 354 on Yahoo, many false posi-

tives contain “Reporter”, “Journalist” and “Correspondent” as 

titles of publications or newspapers, instead of as a person.  For 

Table 1. The differences between short keyword and the final 

Boolean CNF query for each TREC topic.  The types of 

changes include restricting the query (by including more con-

juncts or using phrase operator to require query terms to occur 

close together) and expanding the query terms by including 

more synonyms (highlighted by shading the topic number). 

Topic 

No./ 

Type of 

Change 

Query with changes from short keyword to final 

Boolean, (bolded are insertions and slashed are re-

movals). 

352 

both 

#combine( #syn( #1(British Chunnel) #1(Channel 

Tunnel) ) #syn( #1(effect on) changes ) 

#syn( #1(#syn(British UK) economy) #1(economic 

#syn(implications changes evaluation)) ) impact) 

354 

expand 

#combine( #syn(reporter newswriter journalist 

correspondent) #syn(arrested hostage #1(physical 

attack) killed threatened kidnapped murdered 

attack shot) risks ) 

704 

restrict 

#combine( #1(green party) #syn(US #1(united 

states)) #syn( #1(political views) politics) ) 

751 

expand 

#combine( scrabble #syn(players group) #syn(social 

events) ) 

752 

restrict 

#combine( #syn(location places countries) dam 

removal Environmental impact reason ) 

753 

restrict 

#combine( bullying prevention programs in schools 

#syn(classes assemblies discipline mediation pro-

jects) #syn(Students staff) ) 

758 

expand 

#combine( embryonic stem cells #syn(restrictions 

law policy) ) 

760 

both 

#combine( statistics #1(in America) Muslims 

#syn( population demographics ) #syn(mosque 

#band(Islamic center)) school ) 

764 

restrict 

#combine( measures improve public transportation 

increase mass transit use ) 

769 

restrict 

#combine( #1(Kroll Associates) employee names ) 

799 

restrict 

#combine( type of animals Alzheimer research) ) 

805 

restrict 

#combine( identity theft passport help victims iden-

tify establish credit worthiness show 

#syn(creditors #band(law enforcement)) ) 

Note: #combine is Indri‟s probabilistic AND operator, #syn is Boolean 

OR, #1 is the phrase operator, and #band is the Boolean AND. 
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topic 799 on Yahoo, the CNF query is only slightly worse, return-

ing the only irrelevant result at rank 5.) 

The user created Boolean queries outperform short keyword 

queries consistently, but different Boolean queries improve over 

the keyword queries for different reasons.  The synonym expan-

sion queries are better than keyword because they can solve the 

mismatch problems of the individual query terms in the keyword 

query.  Topics 354, 751 and 758 are such examples.  The restric-

tive type of Boolean queries outperforms keyword queries be-

cause the short keyword queries may match many false positives 

on the Web.  A slightly more restrictive query can remove these 

false positives while still match enough relevant documents to fill 

up the top ranks.  Topics 704, 753 and 769 are examples. 

4.2.4 Discussion 
When comparing CNF queries with short keyword queries, on 

TREC datasets, the difference is not very significant, however, on 

the search engines, CNF queries are consistently better. 

This difference is likely because of two reasons.  Firstly, when 

the users created the CNF queries, they tuned the queries by ob-

serving their retrieval results returned from the search engines.  

Thus, as long as the user makes a serious effort, the tuned Boolean 

queries will be better performing than the keyword queries on the 

search engines that the users tuned their queries on.  Secondly, 

only top rank performance was observed and measured with the 

search engines.  Since results deeper down the rank list were not 

available to the users, they would tend to create highly restrictive 

queries that improve top precision.  This could explain why many 

of the Boolean queries were more restrictive versions of the short 

keyword queries.  These restrictive queries would likely increase 

top precision on the search engines (which searched against very 

large corpora), but would likely decrease lower rank performance 

as suggested by the deeper evaluations on the TREC datasets.  On 

the much smaller TREC corpora, these restrictive queries will 

match much fewer documents, thus could even hurt top precision.  

Overall, the more restrictive Boolean queries perform unstably at 

both top rank and lower rank levels on the smaller TREC datasets.   

This suggests that even though it may seem to the user that a re-

strictive query would be better, more often than not, synonym 

expansion is the more robust strategy of query formulation. 

5. CONCLUSIONS 
Boolean CNF expansion queries have the potential to significantly 

outperform keyword queries, leading to much more effective re-

trieval.  This paper investigates whether ordinary search users 

with limited knowledge of CNF queries can formulate effective 

CNF queries using the WikiQuery interface. 

Evaluations on TREC datasets show that versus lengthening the 

short keyword queries by adding more keywords, creating a Bool-

ean structured query can be significantly more effective at both 

top and deeper level retrieval accuracy.  These Boolean queries 

are also better performing than the short keyword queries on aver-

age.  However this difference is not statistically significant on the 

TREC datasets.  Evaluations of the user created Boolean queries 

Table 3. Per topic retrieval performance of final Boolean CNF 

query vs. short keyword query on TREC datasets.  Bold faced 

is the better result of keyword and CNF queries in the row. 

TREC 

Topic 

No. 

Keyword (short) CNF (final) (vs. short keyword) 

MAP P@5 MAP change P@5 change 

352 0.0462 0.8 0.1175 154.3% 0.6 -25.00% 

354 0.0542 0.4 0.0328 -39.48% 0.0 -100.0% 

704 0.2167 0.4 0.3928 81.26% 0.8 100.0% 

751 0.1746 1.0 0.2170 24.28% 1.0 0.000% 

752 0.2237 1.0 0.1574 -29.64% 0.8 -20.00% 

753 0.3472 0.6 0.4736 36.41% 1.0 66.67% 

758 0.3144 1.0 0.3187 1.368% 1.0 0.000% 

760 0.1609 0.8 0.1279 -20.51% 1.0 25.00% 

764 0.1999 0.6 0.0180 -91.00% 0.4 -33.33% 

769 0.0143 0.0 0.4588 3108% 0.6 +inf 

799 0.1850 0.4 0.0946 -48.87% 0.0 -100.0% 

805 0.0247 0.0 0.0108 -56.28% 0.0 0.000% 

 

Table 2. Retrieval performance on TREC datasets, averaged 

over the 12 topics.  Bold-faced is the best run in each row. 

   \Query type 

Metrics\ 

Keyword  

(short) 

Keyword  

(long) 

CNF  

(initial) 

CNF  

(final) 

MAP@1000 0.1635l
 0.1038 0.1815l 

0.2017
l 

P@5 0.5833l 0.3167 0.5333l 0.6000
l 

P@10 0.5333l 0.3000 0.5250l 0.5500
ln 

l means the run is significantly better than the long keyword baseline by a 

two tailed t-test at p < 0.05. 
n means significantly better than long keyword by sign test at p < 0.05. 

 

Table 4. Retrieval performance with search engine evaluation, 

averaged over the 12 topics.  Bold-faced are the better run(s) in 

each row. 

\Query type 

 \ & Metrics 

Search engine\ 

Keyword (short) CNF (final) 

MAP@5 P@5 MAP@5 P@5 

Google 0.1586 0.6333 0.2247
sn 

0.8500
sn 

Yahoo 0.1701 0.7167 0.2041 0.7167 

s means significantly better than the short keyword baseline by a two 

tailed t-test at p < 0.004. 
n means also significant by sign test at p < 0.004. 

Table 5. Per topic retrieval performance in MAP@5 for final 

Boolean query vs. short keyword query on Google and Yahoo.  

Bold faced is the better result of keyword and CNF queries. 

TREC 

Topic 

No. 

Keyword (short) CNF (final) 

Google Yahoo Google change Yahoo change 

352 0.1133 0.1300 0.2000 76.52% 0.0000 -100.0% 

354 0.1462 0.1538 0.1923 31.53% 0.0192 -87.52% 

704 0.3800 0.3800 0.5000 31.58% 0.4000 5.263% 

751 0.0467 0.1600 0.2000 328.3% 0.2000 25.00% 

752 0.1368 0.1693 0.1693 23.76% 0.2000 18.13% 

753 0.0883 0.0800 0.2500 183.1% 0.1900 137.5% 

758 0.2083 0.2083 0.2083 0.000% 0.2083 0.000% 

760 0.2923 0.2923 0.3846 31.58% 0.3077 5.269% 

764 0.0000 0.0200 0.0833 +inf 0.2750 1275% 

769 0.0000 0.0464 0.0179 +inf 0.1940 318.1% 

799 0.1786 0.1786 0.1786 0.000% 0.1429 -19.99% 

805 0.3125 0.2219 0.3125 0.000% 0.3125 40.83% 
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on commercial Web search engines show that these highly precise 

Boolean queries can consistently and significantly outperform the 

original short keyword queries in top precision. 

Both expansion and restriction query modifications were com-

mon when the users created the Boolean queries from the short 

keyword queries.  Some of the expansion queries included many 

synonyms for each original query term, just like those created by 

experts [14].  These carefully expanded CNF queries have been 

shown to outperform keyword queries in precision at all recall 

levels, because CNF expansion can effectively solve term mis-

match, a common problem in retrieval with a large potential [14].  

However, even with instructions and the guidance from Wiki-

Query, users still tended to create less well expanded queries.  

Users also tended to restrict the original keyword query by intro-

ducing phrases or more conjuncts, causing more mismatches be-

tween the query and the relevant documents.  These restrictive 

queries might improve top precision, but deeper level evaluation 

on TREC datasets showed that these restrictive queries do not 

result in stable improvements at lower rank levels.  This tendency 

to create the less effective restrictive-queries is perhaps one of the 

reasons why novice users have difficulty creating effective Boole-

an queries or structured queries. 

Use in Text Retrieval 

Our results suggest that to improve users‟ interactions with the 

search engine, and to facilitate them in creating effective queries, 

users need to be carefully guided to create CNF expansion queries, 

and to be explicitly warned against the risky restrictive queries. 

Classroom Use 

This work used WikiQuery as an educational tool for students 

with limited knowledge about Boolean queries to learn to create 

effective Boolean queries in a short time.  We observe that most 

students spent about 40 minutes per topic, trying out new queries 

and interacting with the search results to find effective formula-

tions.  Trial and error using the interactive interface of WikiQuery 

helped the students quickly and effectively learn the subject. 

Open source search tools like WikiQuery and IR education can 

be mutually beneficial.  These tools may become the appropriate 

playground for educational uses, while classroom uses can also 

provide a steady stream of traffic for these search tools. 

Future Work 

The WikiQuery website is still in its early stage.  This work as a 

pilot study can be used to guide and prioritize the development of 

many new and helpful features for WikiQuery. 

Search result presentation needs to be improved to help users 

quickly grasp why a particular document is returned and what 

terms in each conjunct of the CNF query are present in the docu-

ment.  Such understandings will allow users to efficiently identify 

further refinements of the CNF query to improve the results.  On a 

commercial search engine, such user interface changes would be 

deemed too risky.  A research oriented search engine might be the 

best place to lead the effort. 

To further facilitate users in their CNF query creation, syno-

nyms or other related words of each conjunct could be automati-

cally suggested to the user, so that the user only needs to select the 

highly precise expansion terms out of the suggestions. 

To better facilitate users in query refinement, novel interfaces 

that can automatically extract or highlight candidate expansion 

terms in result snippets or documents can be useful. 

To help users decide whether to include one particular expan-

sion term into a conjunct or not, tools that can compare rank list 

changes before and after a query change will be useful.  In partic-

ular, tools that can present deeper rank level changes will enable 

the user to more accurately gauge the overall retrieval accuracy. 

The WikiQuery website may also allow users to subscribe to the 

result pages of each CNF query, so that whenever a new relevant 

page appears on the Web, the user will be notified.  This is the 

equivalent of a traditional routing task, and can be easy imple-

mented given that search engines like Google already support user 

subscription to search engine result pages. 
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ABSTRACT
The open-source system ezDL is presented. It is an interac-
tive search tool, a development platform for interactive IR
systems, and an evaluation system. ezDL can be used as a
meta-search system for heterogeneous sources or digital li-
braries, allows organizing and filtering of merged results, of-
fers support for search sessions as well as a personal library
for storing different document types. The ezDL framework
is easy to extend and is based on a service-oriented architec-
ture. In addition, support for performing user studies and
eye tracking is provided. ezDL has been used as a system in
several funded research projects.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems
and Software

General Terms
Human Factors, Experimentation

Keywords
interactive search system, framework

1. INTRODUCTION
In this paper we present ezDL, an open-source1 software
for building highly interactive search user interfaces with

1ezDL is licensed under GPL v3. Other licenses can be used
on request. The main web site for developers and further in-
formation can be found here: http://ezdl.de/developers

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR 2012 Workshop on Open Source Information Retrieval (OSIR 2012)
Portland, Oregon, USA

strategic support. It builds on the ideas developed and im-
plemented within the Daffodil project from 2000 to 2009 [11,
16, 13], but uses more modern software technologies and in-
terface design methods.

The ezDL framework can be characterized by three main
purposes. It is foremost i) a working interactive tool for
searching a heterogeneous collection of digital libraries. In
addition to that, it is ii) a flexible software platform provid-
ing a solid base for writing customized applications as well
as iii) a system that can be used for many different types of
user evaluations.

Today many systems covering one or more aspects of ezDL
exist but to the best of our knowledge the concept of unifying
them into one single framework is unique. In the following
paragraphs similar systems related to the different aspects
of ezDL are presented.

Interactive Search Tools
Querium [9] is an interactive search system featuring a con-
cept that focuses on complex recall oriented searches. It
aims at preserving the context of searches and allows rele-
vance feedback to generate alternative result sets. At the
moment, the system is limited to two data sources.

Numerous tools exist that focus on storing and managing
a personal library or citations. A popular example is Mende-
ley2 which also offers different front ends and collaborative
features. Other citation tools include CiteULike3 and Con-
notea4

CoSearch [1] is a collaborative web search tool. It offers
a user interface that can simultaneously take input from
different users sharing a single machine. Mobile devices can
be used to contribute to a collaborative search session. Data
is acquired by using a popular web search engine.

Development Platforms
SpidersRUs Digital Library Toolkit [8] is a search engine de-
velopment tool. The developers strove for a balance between
easiness of use and customizability. The toolkit also features

2http://www.mendeley.com/
3http://www.citeulike.org/
4http://www.connotea.org/
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a GUI for the process of search engine creation. Results pre-
sentation follows common standards of popular web search
engines. Support for complex search sessions, e.g. a tray or
citation management tool are not included.

Evaluation Systems
The Lemur project5 includes a query log tool bar that can
be used to capture usage data. It can collect queries as well
as user interaction such as mouse activity and is available
as open source.

Bierig et al [7] presented an evaluation and logging frame-
work for user-centered and task-based experiments in in-
teractive information retrieval that focuses on “multidimen-
sional logging to obtain rich behavioural data” of searchers.

2. CONCEPTS
As a re-implementation of the Daffodil project [11], ezDL
builds on many of the same concepts and principles as Daf-
fodil. Like Daffodil it is a “search system for digital libraries
aiming at strategic support during the information search
process” [16]. Its primary target group is not that of ca-
sual users using a search system for short ad-hoc queries.
Instead the software aims to support searchers during com-
plex information tasks by addressing all the steps in the Dig-
ital Library Life Cycle, as well as integrating search models
originally proposed by Marcia Bates [2, 3, 4].

The Digital Library Life Cycle divides the information
workflow into five phases [18], beginning with the discov-
ery of information resources, which in ezDL is supported
through the Library Choice view. This is followed by the
retrieval phase of information search, the collating of found
information using the personal library and tagging, inter-
preting the information, and finally the re-presenting phase
where new information is generated. In all phases, different
so-called tactics or stratagems can be employed by searchers
or information workers, which we try to support through
ezDL.

The notion of tactics and stratagems as higher-level search
activities was introduced by Bates [2, 3, 4]. Based on search
tactics used by librarians and expert searchers, Bates de-
scribes basic moves, as well as higher-level tactics, stratagems,
and finally strategies that build on lower-level activities.

ezDL already offers direct support for some of those higher-
level activities, e.g. through the use of sharing functionali-
ties to support collaborative idea generation, through term
suggestions of synonyms or spelling variants, extraction of
common results terms, or through icons in the result items
that allow easy monitoring of performed activities.

During query formulation, ezDL provides term sugges-
tions to the user (e.g. synonyms and related terms). These
are an example for the concept of proactive system support.
Bates describes “five levels of system involvement (SI) in
searching” [4]. The proactive support of ezDL belongs to
the third level, where a search system (through monitoring
of user activities) can react to the search situation with-
out prompting by the user. Users are informed of improve-
ment options for their current move. Jansen and Pooch [12]
demonstrated that proactive software agents assisting users
during their search can result in improved performance of
users. The effectiveness of such suggestions has also been
shown for the Daffodil system [20].

5http://www.lemurproject.org/

Tran [21] implemented a prototype of a support tool for
the pearl growing stratagem. The tool shows citation rela-
tionships between documents in a graph and allows the user
to follow these relationships and keep track of the search
progress using document annotations. Figure 1 shows a
screenshot of a pearl growing session with some documents
marked as relevant. It is planned to include this tool in ezDL
in the near future.

Figure 1: A close-up of the pearl growing tool

Proactive support of higher-level activities, such as sug-
gestion of tactics and stratagems for improvable search situa-
tions [14, 15] or suggestion of search strategies with scaffold-
ing support, is currently planned and will likely be available
for ezDL within the next nine months.

3. ARCHITECTURE
ezDL is a continuation of the Daffodil project and therefore
shares its main ideas: meta-search in digital libraries and
strategic support for users. Its overall architecture likewise
has inherited many features from Daffodil. Figure 2 provides
a high-level overview of the system.

The system architecture makes extensive use of separa-
tion of concerns to keep interdependencies to a minimum
and make the system more stable. This is true on the sys-
tem level where a clear separation exists between clients and
backend, but also within the backend itself, where individ-
ual “agent” processes handle specific parts of the functional-
ity, and even within these agents. The desktop client, too,
is separated into multiple independent components called
“tools”. ezDL is completely written in Java using common
frameworks and libraries.

3.1 The Backend
The backend provides a large part of the core functional-

ity of ezDL: the meta-search facility, user authorization, a
knowledge base about collected documents, as well as wrap-
pers and services that connect to external services. Func-
tionality that provides collaboration support and allows stor-
ing of documents and queries in a personal library is also
located here.

The right part of Figure 2 shows the structure of the
backend. The components of the backend are agents: in-
dependent processes that provide a specific functionality to
the system. Agents use a common communication bus for
transferring messages between each other.
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Figure 2: Overall architecture of ezDL

The Service-based Agent Infrastructure
Since every kind of functionality is taken care of by different
agents, the crash of one agent generally only disrupts this
particular functionality. For example, if the search agent
crashes, detail requests and the personal library are still
working. Also, it is possible to run multiple agents of each
kind for load balancing and as a fail-safe mechanism.

Agents are subdivided into the main agent behaviour (reg-
istering with the Directory, sending and receiving messages,
managing resources) and components that deal with specific
requests. These components—the request handlers—are in-
dependent and process requests concurrently.

Beginning on the left, an MTA (Message Transfer Agent)
is an agent that provides clients with a connection point to
the backend. MTAs are responsible for authenticating users
and translating requests from clients into messages to cer-
tain agents. E.g., if a client requests a search for a given
query, the query from the client is translated into a message
to the Search Agent. This mechanism creates a clear separa-
tion between the client view of the system and the internal
workings: the client doesn’t have to know how many agents
are serving search queries and new search agents could be
instantiated as the system load demands. Currently there is
only one MTA implementation, which uses a binary protocol
over a TCP connection, but it is possible to provide other
protocols—e.g. SOAP—by using separate MTA implemen-
tations.

The Directory is a special agent that keeps a list of agents
and the services they provide. Upon start, each agent reg-
isters with the Directory and announces the services it pro-
vides.

The connection to remote (or local) search services (e.g.,
digital libraries or information retrieval systems) is managed
by wrapper agents—in Figure 2 the four agents on the right
hand side. They translate the internal query representation
of ezDL into one that the remote service can parse and trans-
lates the response of the remote service into an appropriate
document representations to be handled by ezDL.

Example: Running Search Queries
If a client requests a search, it sends a request to the MTA
with a query in ezDL notation and a list of remote services
that the query should be run on. The request is handled
by the MTA which forwards it to the Search agent. The
Search agent asks the Directory for the name of agents that
provide a connection to the remote services requested by the
client. After receiving that list, the Search agent forwards
the query to each of these agents. The agents then trans-
late the query into something that the remote service under-
stands and sends the answer of the remote service back to
the search agent. The search agent collects all answers from
all the remote services, merges duplicates and reranks them.
Reranking is either performed by using the original RSVs or
by using standard Lucene6 functionality. The answer set is
then sent back to the MTA that requested the search. The
MTA sends the answer to the client. The search agent also
forwards the collected documents to the repository agent
which is responsible for serving requests for details on doc-
uments (e.g., if the user wants to see the full text).

3.2 The Frontend
There are multiple frontends for ezDL: among them the

basic desktop client and a web client. Specialized fron-
tends exist for various applications (see Use Cases). Clients
for iOS and Android tablets are currently being developed.
This subsection details the architecture of the desktop client,
since this is the main client for ezDL.

Tools and Perspectives
A tool comprises a set of logically connected functionalities.
Each tool has one or more tool views, interactive display
components that can be placed somewhere on the desktop.
A configuration of available tools and the specific layout of
their tool views on the desktop is called a perspective. Users
can modify existing predefined perspectives as well as create
custom perspectives. The desktop client already has many

6http://lucene.apache.org/core/
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Figure 4: The Desktop client during a search session

Figure 3: Architecture of the desktop client

built-in tools and functionalities and can be easily extended
(see Figure 4):

• The Search Tool (A) offers a variety of query forms for
different purposes and views to present the results in
list or grid form, as well as a Library Choice view for
selecting information sources. Results can be sorted
or grouped by different criteria, filtered, and exported.
An extraction function (F) can be used to extract fre-
quent terms, authors, or other features from the result
and visualize them in form of a list, a bar chart or a
term cloud. Grouping criteria or extraction strategies

are encapsulated and new ones can easily be added, as
can be new renderers for result surrogates.

• The Personal Library (B) allows to store documents
or queries persistently for authenticated users. Within
their personal collection, users can filter, group and
sort (e.g. by date of addition), organize the documents
with personal tags, and share them with other users.
Additional documents can be imported into the per-
sonal library as long as their metadata is available in
BibTeX format.

• The Search History (C) lists past queries for re-use and
allows grouping by date and filtering.

• The Detail View (D) shows additional details on indi-
vidual documents, such as thumbnails or short sum-
maries where available, or additional metadata not in-
cluded in the surrogate that is shown in the result list.
A detail link can be provided to retrieve the fulltext.

• A Tray (E) can be used to temporarily collect relevant
documents within a search session.

Communication with the Backend
Like the backend, the desktop client uses a messaging in-
frastructure for communication between otherwise indepen-
dent components. In Figure 3 a diagram of the components
is shown. On the left, four of the available tools can be
seen with their connection to the internal communication
infrastructure (search, personal library, details, and query
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Figure 5: The search form with suggestions

history). On the right hand side, a few subsystems are pre-
sented, one of which is the external communication facility
that connects the client to the backend.

As an example, if the user enters a query in the search
tool and presses the “search” button, an internal message
is sent to the communication facility, which transmits the
query to the backend. When the answer is received, the
communication facility routes the message back to the search
tool.

Since from the client’s point of the view the backend is
hidden behind the MTA, further details are omitted in the
backend part of Figure 3.

Query Processing and Proactive Support
The queries that users enter are expressed in a grammar spe-
cific to ezDL that is quite flexible and allows simple queries
like term1 term2 term3 as well as more complicated ones
like Title=term1 AND (term2 NEAR/2 term3). Internally,
the query is represented as a tree structure that can also
keep images as comparison values so ezDL can be used to
specify image search queries.7

During query formulation, the user’s interaction is ob-
served by the system. If the system notices a break in
the user’s typing, the query is processed by modules of the
proactive support subsystem that can either ask the backend
for suggestions or calculate them directly in the frontend.
The suggestions can replace query terms e.g. by spelling
corrections, insert new terms (e.g., for synonym expansion),
or tag terms with concepts from an ontology. The ontology
items become part of the query so that a query can contain
both plain text terms and ontology terms. When suggestions
are found for a term, the term is marked by an underline in
the query text field and a popup list is shown that presents
the suggestions (see Figure 5).

3.3 Extending and Customizing ezDL
Each agent and the desktop client are extensible using a

plugin system. Plugins are registered at a central component
that can later be asked to return plugin objects of a specific
type. As an example, it is possible to add a new proactive
suggestion module to the system that implements a new way
of retrieving suggestions. Also the popup list that shows the
suggestions can be replaced by an alternative. Further uses
of the plugin system are export and import modules and
modules that extract information from the result list.

Adding a new service is usually done by implementing a
new agent. There is an abstract class that takes care of

7This mechanism is used in the Khresmoi project (see Sec-
tion 5) to allow general physician and radiologists to search
for medical images.

most issues but the actual functionality. This is usually im-
plemented using specialized classes (request handlers) for
which there are abstract implementations, too. Thus, devel-
opers can concentrate on the business logic.

Connecting to a new collection for searching (a digital
library, a local IR system, a BibTeX file, etc.) is accom-
plished by implementing a wrapper agent. These are agents
specialized in translating between ezDL and a remote sys-
tem. Remote systems can be those that provide a stable
API like SOAP or SQL but also those that only have a
web site and a search form. ezDL has built-in support for
most common fields (e.g. title, author, publication year, ab-
stract) and data types (e.g. text, numbers, images). There
are abstract wrappers available to quickly connect to a Solr8

server. If required, web pages can be scraped using an elab-
orate tool kit that is configured by an XML file. Because of
this, even digital libraries without a proper API can be con-
nected. Sometimes, digital libraries change their web page
layout, breaking scripts that parse their HTML. Configuring
the page scraping using an XML file makes automatic repairs
of the configuration possible. See [10] for an example imple-
mentation based on Daffodil, The approach outlined in this
work uses repeated queries to infer the template elements
of the web pages and step-wise generalisation to find the
location of known information on the page.

There is also a library of code for translating the ezDL
query representation into other languages.

Agents—and, thus, wrapper agents—announce themselves
to the Directory agent when started. The client can ask
the backend for a list of known wrapper agents, so there
is no need to change any code or configuration outside of
the agent. This also enables developers to store the code
and put it under version control independent from the main
ezDL code.

Often, services in the back end are used in the client in an
individual tool. One example for this is the search facility,
which consists of the search tool in the Swing client and the
search agent in the back end. Writing a new tool for the
Swing client can be done by implementing an OSGi plugin.
The tool code itself is fairly simple since there is an abstract
implementation for the glue code. The remaining task is
implementing a Swing GUI and communicating with the
back end by firing events and listening for an answer.

4. EVALUATING SEARCH SYSTEMS
To support user-centred evaluations, ezDL has a builtin eval-
uation mode that addresses many of the major challenges
inherent in setting up evaluation tasks and tracking user
activity during the experiments. The following is a brief
overview of those functionalities within ezDL directly de-
signed to support evaluations.

Logging user actions
For evaluations with actual users all user actions performed
with the system should be logged for later inspection and
analysis. ezDL has a built-in logging facility that stores all
the interaction data of the user in a relational database (cur-
rently mysql is used). A log session comprises all log events
that a user or the system has triggered. A log event has i) a
unique name identifying this type of event, ii) timestamps
from the frontend and the backend, iii) a sequence number

8http://lucene.apache.org/solr/
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to ensure the correct order, and iv) parameters as multiple
key/value pairs. For example, when a user performs a search
for information retrieval in the DBLP and ACM digital
library the corresponding log event may look like this:

event:

name: "search"

clientTimestamp: 1/4/2012 15:26:32,1234

timestamp: 1/4/2012 15:26:32,3456

sequenceNumber: 10

parameters:

query: "information retrieval"

sources: dblp, acm

The logging facility takes care about allocating activities to
sessions and users. If it is required to log some previously
unlogged action, this can be simply integrated by sending a
corresponding logging message to the backend.

Tracking AOIs
Gaze tracking is a method for user-centred evaluation that
has recently gained popularity within the IR field [5, 7]. A
challenge for logging highly interactive systems with chang-
ing interfaces and moving components is keeping track of
their position, so that gaze points or fixation data of users
can be aggregated across so-called Areas of Interest (AOIs,
see Figure 6). This feature has been integrated into ezDL
with the help of the AOILog framework [6].

Fixed layout on screen
The layout of the desktop can be locked to keep UI-related
variance low. With a fixed layout it is no longer possible for
a test subject to open additional tool views or change the
layout of the desktop.

Loading predefined perspectives
Predefined perspectives can be loaded immediately after the
system has been started. This allows the evaluator to cre-
ate custom perspectives that can be used for an evaluation
without selecting them manually.

Splash screen for choosing evaluation settings
A splash screen can be enabled that is shown before starting
the system. It can be used to choose and set settings for
the evaluation session, e.g. a search task description or the
system variant when doing a comparison of different UIs or
system features.

Several user studies have been performed and experimen-
tal systems implemented using ezDL as a base system. The
next section will present some of them in more detail.

5. USE CASES
ezDL is currently running as a live system, and is being used
and extended in a number of projects of various sizes.

The live system9 features all core functionalities that part
of a more specific project. These include a simple and an ad-
vanced search function, various result manipulation options,
a temporary document store, and exporting of meta infor-
mation (e.g. in BibTeX format). Registered users can also
use a personal library to store, annotate and share found
or imported documents. Currently, nine different digital li-
braries are connected to the system focusing on computer

9http://www.ezdl.de/

Figure 6: An ezDL client overlayed with AOIs for
eye tracking (from the HIIR project)

science libraries, but including others like Pubmed and the
Amazon catalogue. The system is publicly available, still
under constant development and updated regularly.

Khresmoi10 is a four year project funded by the EC, which
aims at building a multilingual and multimodal search sys-
tem for biomedical documents. The ezDL framework is used
for all user interfaces developed within the project. These
include variations of the stand-alone Swing client, such as an
interface for search medical images, including 3D data. An-
other version of the interface will be customized to the needs
of general practitioners. For casual users with health related
information needs, an easy to use web based interface (see
Figure 7) is under development. From a functional point of
view numerous new data sources were made available. The
set of searchable data types was extended to cover the spe-
cific demands of the medical domain. The system allows the
user to specify an image as a query to perform a similarity
search. Additional collaborative and social functions will be
added to the full client in later versions.

Within the INEX 2010 Interactive Track ezDL was used
to observe how users act during their search sessions [19].
Valuable insights on user behaviour were gained. An appli-
cation for viewing the logged data and a questionnaire tool
controlling the experiment flow have been implemented.

For the ongoing CAIR11 project an advanced 2010 INEX
ezDL version is used. To answer the question whether clus-
tering of results can improve efficiency of searches with vague
information needs ezDL was expanded by a clustering ser-
vice and visualization [17] (see Figure 8). New data sources
and a browser were added to the system. For the evaluation
a task selection and a questionnaire tool were developed.
Log data generated by ezDL can be analysed automatically.

The AOI logging framework mentioned in Section 4 was
implemented as part of the HIIR (Highly Interactive IR)
project12. The project’s goal is improving interaction with
the system by considering the users cognitive efforts [23, 22].

6. CONCLUSION AND OUTLOOK
10http://www.khresmoi.eu/
11http://www.uni-weimar.de/cms/index.php?id=17632
12http://www.is.inf.uni-due.de/projects/hiir/index.
html.en
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Figure 7: The web client used in the Khresmoi project

We presented ezDL, which is a framework system for inter-
active retrieval and its evaluation. Building upon state-of-
the art interface technology and usability results, ezDL can
provide an advanced user interface for many IR applications.
The system can also be easily extended, at the functionality
level as well as at the presentation level; thus, new concepts
for the design of IR user interfaces can be integrated into
ezDL with little effort. Furthermore, the system provides
extensive support for performing user-oriented evaluations.
In the same way as there are various experimental IR back-
end systems, there is now an IR frontend system that allows
for easy experimentation and application of interactive re-
trieval.
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ABSTRACT 
Apache Lucene is a modern, open source search library designed 
to provide both relevant results as well as high performance.  
Furthermore, Lucene has undergone significant change over the 
years, starting as a one-person project to one of the leading search 
solutions available.  Lucene is used in a vast range of applications 
from mobile devices and desktops through Internet scale 
solutions.  The evolution of Lucene has been quite dramatic at 
times, none more so than in the current release of Lucene 4.0.  
This paper presents both an overview of Lucene’s features as well 
as details on its community development model, architecture and 
implementation, including coverage of its indexing and scoring 
capabilities.   

Categories and Subject Descriptors 
H.3.3 [Information Search and Retrieval]: Information Search 
and Retrieval 

General Terms 
Algorithms, Performance, Design, Experimentation 

Keywords 
Information Retrieval, Open Source, Apache Lucene. 

1. INTRODUCTION 
Apache Lucene is an open source Java-based search library 
providing Application Programming Interfaces for performing 
common search and search related tasks like indexing, querying, 
highlighting, language analysis and many others.  Lucene is 
written and maintained by a group of contributors and committers 
of the Apache Software Foundation (ASF) [1] and is licensed 
under the Apache Software License v2 [2].  It is built by a loosely 
knit community of “volunteers” (as the ASF views them, most 
contributors are paid to work on Lucene by their respective 
employers) following a set of principles collectively known as the 
“Apache Way” [3]. 

Today, Lucene enjoys widespread adoption, powering search on 
many of today’s most popular websites, applications and devices, 
such as Twitter, Netflix and Instagram [20, 4, 5] as well as many 

other search-based applications [6].  Lucene has also spawned 
several search-based services such as Apache Solr [7] that provide 
extensions, configuration and infrastructure around Lucene as 
well as native bindings for programming languages other than 
Java.  As of this writing, Lucene 4.0 is on the verge of being 
officially released (it likely will be released by the time of 
publication) and represents a significant milestone in the 
development of Lucene due to a number of new features and 
efficiency improvements as compared to previous versions of 
Lucene.  This paper’s focus will primarily be on Lucene 4.0. 

The main capabilities of Lucene are centered on the creation, 
maintenance and accessibility of the Lucene inverted index [31].  
After reviewing Lucene’s background in section 2 and related 
work in section 3, the remainder of this paper will focus on the 
features, architecture and open source development methodology 
used in building Lucene 4.0.  In Section 4 we’ll provide a broad 
overview of Lucene’s features.  In section 5, we’ll examine 
Lucene’s architecture and functionality in greater detail by 
looking at how Lucene implements its indexing and querying 
capabilities.  Section 6 will detail Lucene’s open source 
development model and how it directly contributes to the success 
of the project.  Section 7 will provide a meta-analysis of Lucene’s 
performance in various search evaluations such as TREC, while 
section 8 and 9 will round out the paper with a look at the future 
of Lucene and the conclusions that can be drawn from this paper, 
the project and the broader Lucene community. 

2. BACKGROUND 
Originally started in 1997 by Doug Cutting as a means to learning 
Java [8] and subsequently donated to The Apache Software 
Foundation (ASF) in 2001 [9], Lucene has had 32 official releases 
encompassing major, minor and patch releases [10, 11].  The most 
current of those releases, at the time of writing is Lucene 3.6.0.  

From its earliest days, Lucene has implemented a modified vector 
space model that supports incremental modifications to the index 
[12, 19, 37].  For querying, Lucene has developed extensively 
from the first official ASF release of 1.2.  However even from the 
1.2 release, Lucene supported a variety of query types, including: 
fielded term with boosts, wildcards, fuzzy (using Levenshtein 
Distance [13]), proximity searches and boolean operators (AND, 
OR, NOT) [14].  Lucene 3.6.0 continues to support all of these 
queries and the many more that have been added throughout the 
lifespan of the project, including support for regular expressions, 
complex phrases, spatial distances and arbitrary scoring functions 
based on the values in a field (e.g. using a timestamp or a price as 
a scoring factor) [10].  For more information on these features and 
Lucene 3 in general, see [15]. 

Three years in the making, Lucene 4.0 builds on the work of a 
number of previous systems and ideas, not just Lucene itself.  
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Lucene incorporates a number of new models for calculating 
similarity, which will be described later.  Others have also 
modified Lucene over the years as well: [16] modified Lucene to 
add BM25 and BM25F;  [17] added “sweet spot similarity” and 
ILPS at the U. of Amsterdam has incorporated language modeling 
into Lucene [18]. Lucene also includes a number of new 
abstractions for logically separating out the index format and 
related data structures (Lucene calls them Codecs and they are 
similar in theory to Xapian’s Backends [32]) from the storage 
layer - see the section Codec API for more details. 

3. RELATED WORK 
There are numerous open source search engines available today 
[30], with different feature sets, performance characteristics, and 
software licensing models. Xapian [32] is a portable IR library 
written in the C++ programming language that supports 
probabilistic retrieval models.  The Lemur Project [33] is a toolkit 
for language modeling and information retrieval. The Terrier IR 
platform [34] is an open-source toolkit for research and 
experimentation that supports a large variety of IR models. 
Managing Gigabytes For Java (MG4J) [35] is a free full-text 
search engine designed for large document collections. 

4. LUCENE 4 FEATURES 
Lucene 4.0 consists of a number of features that can be broken 
down into four main categories: analysis of incoming content and 
queries, indexing and storage, searching, and ancillary modules 
(everything else).  The first three items contribute to what is 
commonly referred to as the core of Lucene, while the last 
consists of code libraries that have proven to be useful in solving 
search-related problems (e.g. result highlighting.) 

4.1 Language Analysis 
The analysis capabilities in Lucene are responsible for taking in 
content in the form of documents to be indexed or queries to be 
searched and converting them into an appropriate internal 
representation that can then be used as needed.  At indexing time, 
analysis creates tokens that are ultimately inserted into Lucene’s 
inverted index, while at query time, tokens are created to help 
form appropriate query representations.  The analysis process 
consists of three tasks which are chained together to operate on 
incoming content: 1) optional character filtering and 
normalization (e.g. removing diacritics), 2) tokenization, and 3) 
token filtering (e.g. stemming, lemmatization, stopword removal, 
n-gram creation).  Analysis is described in greater detail in the 
section on Lucene’s document model below. 

4.2 Indexing and Storage 
Lucene’s indexing and storage layers consist of the following 

primary features, many of which will be discussed in greater 
detail in the Architecture and Implementation section: 

• Indexing of user defined documents, where documents 
can consist of one or more fields containing the content 
to be processed and each field may or may not be 
analyzed using the analysis features described earlier. 

• Storage of user defined documents. 

• Lock-free indexing [20] 

• Near Real Time indexing enabling documents to be 
searchable as soon as they are done indexing 

• Segmented indexing with merging and pluggable merge 
policies [19] 

• Abstractions to allow for different strategies for I/O, 
storage and postings list data structures [36] 

• Transactional support for additions and rollbacks 

• Support for a variety of term, document and corpus 
level statistics enabling a variety of scoring models [24]. 

4.3 Querying 
On the search side, Lucene supports a variety of query options, 
along with the ability to filter, page and sort results as well as 
perform pseudo relevance feedback.  For querying, Lucene 
provides over 50 different kinds of query representations, as well 
as several query parsers and a query parsing framework to assist 
developers in writing their own query parser [24].  More 
information on query capabilities will be provided later. 

Additionally, Lucene 4.0 now supports a completely pluggable 
scoring model [24] system that can be overridden by developers.  
It also ships with several pre-defined models such as Lucene’s 
traditional vector-space scoring model, Okapi BM25 [21], 
Language Modeling [25], Information Based [22] and Divergence 
from Randomness [23]. 

4.4 Ancillary Features 
Lucene’s ancillary modules contain a variety of capabilities 
commonly used in building search-based applications.  These 
libraries consist of code that is not seen as critical to the indexing 
and searching process for all people, but nevertheless useful for 
many applications.  They are packaged separately from the core 
Lucene library, but are released at the same time as the core and 
share the core’s version number.  There are currently 13 different 
modules and they include code for performing: result highlighting 
(snippet generation), faceting, spatial search, document grouping 
by key (e.g. group all documents with the same base URL 
together), document routing (via an optimized, in-memory, single 
document index), point-based spatial search and auto-suggest. 

5. ARCHITECTURE AND 
IMPLEMENTATION 
Lucene’s architecture and implementation has evolved and 
improved significantly over its lifetime, with much of the work 
focused around usability and performance, with the work often 
falling into the areas of memory efficiencies and the removal of 
synchronizations.  In this section, we’ll detail some of the 
commonly used foundation classes of Lucene and then look at 
how indexing and searching are built on top of these.  To get 
started, Figure 1 illustrates the high-level architecture of Lucene 
core.  

5.1 Foundations 
There are two main foundations of Lucene 4: text analysis and our 
use of finite state automata, both of which will be discussed in the 
subsections below. 

5.1.1 Text Analysis 
The text analysis chain produces a stream of tokens from the input 
data in a field (Figure 3). Tokens in the analysis chain are 
represented as a collection of “attributes”. In addition to the 
expected main “term” attribute that contains the token value there 
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can be many other attributes associated with a token, such as 
token position, starting and ending offsets, token type, arbitrary 
payload data (a byte array to be stored in the index at the current 
position), integer flags, and other custom application-defined 
attributes (e.g. part-of-speech tags). 

Analysis chains consist of character filters (useful for stripping 
diacritics, for instance), tokenizers (which are the sources of token 
streams) and series of token filters that modify the original token 
stream. Custom token attributes can be used for passing bits of 
per-token information between the elements of the chain. 

Lucene includes a total of five character filtering 
implementations, 18 tokenization strategies and 97 token filtering 
implementations and covers 32 different languages [24]. These 
token streams performing specific functions such as tokenization 
by patterns, rules and dictionaries (e.g. whitespace, regex, Chinese 
/ Japanese / Korean, ICU), specialized token filters for efficient 
indexing of numeric values and dates (to support trie-based 
numerical range searching), language-specific stemming and stop 
word removal, creation of character or word-level n-grams, 
tagging (UIMA), etc. Using these existing building blocks, or 
custom ones, it’s possible to express very complex text analysis 
pipelines. 

5.1.2 Finite State Automata 
Lucene 4.0 requires significantly less main memory than previous 
releases. The in-memory portion of the inverted index is 
implemented with a new finite state transducer (FST) package. 
Lucene’s FST package supports linear time construction of the 
minimal automaton [38], FST compression [39], reverse lookups, 
and weighted automata. Additionally, the API supports pluggable 
output algebras. Synonym processing, Japanese text analysis, spell 
correction, auto-suggest are now all based on Lucene’s automata 
package, with additional improvements planned for future 
releases. 

5.2 Indexing 
 Lucene uses the well-known inverted index representation, with 
additional functionality for keeping adjacent non-inverted data on 
a per-document basis. Both in-flight and persistent data uses 
variety of encoding schemas that affect the size of the index data 
and the cost of the data compression. Lucene uses pluggable 
mechanisms for data coding (see the section on Codec API below) 
and for the actual storage of index data (Directory API). 
Incremental updates are supported and stored in index extents 

(referred to as “segments”) that are periodically merged into 
larger segments to minimize the total number of index parts [19]. 

5.2.1 Document Model 
Documents are modeled in Lucene as a flat ordered list of fields 
with content. Fields have name, content data, float weight (used 
later for scoring), and other attributes, depending on their type, 
which together determine how the content is processed and 
represented in the index. There can be multiple fields with the 
same name in a document, in which case they will be processed 
sequentially. Documents are not required to have a unique 
identifier (though they often carry a field with this role for 
application-level unique key lookup) - in the process of indexing 
documents are assigned internal integer identifiers. 

5.2.2 Field Types 
There are two broad categories of fields in Lucene documents - 
those that carry content to be inverted (indexed fields) and those 
with content to be stored as-is (stored fields). Fields may belong 
to either or both categories (e.g. with content both to be stored and 
inverted). Both indexed and stored fields can be submitted for 
storing / indexing, but only stored fields can be retrieved - the 
inverted data can be accessed and traversed using a specialized 
API. 
Indexed fields can be provided in plain text, in which case it will 
be first passed through text analysis pipeline, or in its final form 
of a sequence of tokens with attributes (so called “token stream”). 
Token streams are then inverted and added to in-memory 
segments, which are periodically flushed and merged. Depending 
on the field options, various token attributes (such as positions, 
starting / ending offsets and per-position payloads) are also stored 
with the inverted data. It’s possible e.g. to omit positional 
information while still storing the in-document term frequencies, 
on a per-field basis [36]. 

A variant of an indexed field is a field where the creation and 
storage of term frequency vectors was requested. In this case the 
token stream is used also for building a small inverted index 
consisting of data from the current field only, and this inverted 
data is then stored on a per-document and per-field basis. Term 
frequency vectors are particularly useful when performing 
document highlighting, relevance feedback or when generating 
search result snippets (region of text that best matches the query 
terms). 
Stored fields are typically used for storing auxiliary per-document 
data that is not searchable but would be cumbersome to obtain 
otherwise (e.g. it would require retrieval from a separate system). 
This data is stored as byte arrays, but can be manipulated through 
a more convenient API that presents it as UTF-8 strings, numbers, 

Figure 1 Lucene's Architecture 

Figure 2 Structure of a Lucene segment. 
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arrays etc., or optionally it can be stored using strongly typed API 
(so called “doc values”) that can use a more optimized storage 
format. This kind of strongly typed storage is used for example to 
store per-document and per-field weights (so called “norms”, as 
they typically correspond to field length normalization factor that 
affects scoring). 

5.2.3 Indexing Chain 
The resulting token stream is finally processed by the indexing 
chain and the supported attributes (term value, position, offsets 
and payload data) are added to the respective posting lists for each 
term (Figure 3). Term values don’t have to be UTF-8 strings as in 
previous versions of Lucene - version 4.0 fully supports arbitrary 
byte array values as terms, and can use custom comparators to 
define the sorting order of such terms. 

Also at this stage documents are assigned their internal document 

identifiers, which are small sequential integers (for efficient delta 
compression). These identifiers are ephemeral - they are used for 
identifying document data within a particular segment, so they 
naturally change after two or more segments are merged (during 
index compaction). 

5.3 Incremental Index Updates 
Indexes can be updated incrementally on-line, simultaneously 
with searching, by adding new documents and/or deleting existing 
ones (sub-document updates are a work in progress). Index 
extents are a common way to implement incremental index 
updates that don’t require modifying the existing parts of the 
index [19]. 
When new documents are submitted for indexing, their fields 
undergo the process described in the previous section, and the 
resulting inverted and non-inverted data is accumulated in new in-
memory index extents called “segments” (Figure 2), using a 
compact in-memory representation (a variant of Codec - see 
below). Periodically these in-memory segments are flushed to a 
persistent storage (using the Codec and Directory abstractions), 
whenever they reach a configurable threshold - for example, the 
total number of documents, or the size in bytes of the segment. 

5.3.1 The IndexWriter Class 
The IndexWriter is a high-level class responsible for processing 
index updates (additions and deletions), recording them in new 
segments and creating new commit points, and occasionally 
triggering the index compaction (segment merging). It uses a pool 
of DocumentWriter-s that create new in-memory segments. 

As new documents are being added and in-memory segments are 
being flushed to storage, periodically an index compaction 
(merging) is executed in the background that reduces the total 
number of segments that comprise the whole index. 

Document deletions are expressed as queries that select (using 
boolean match) the documents to be deleted. Deletions are also 
accumulated, applied to the in-memory segments before flushing 
(while they are still mutable) and also recorded in a commit point 
so that they can be resolved when reading the already flushed 
immutable segments. 

Each flush operation or index compaction creates a new commit 
point, recorded in a global index structure using a two-phase 
commit. The commit point is a list of segments and deletions 
comprising the whole index at the point in time when the commit 
operation was successfully completed. Segment data that is being 
flushed from in-memory segments is encoded using the 
configured Codec implementation (see the section below). 

In Lucene 3.x and earlier some segment data was mutable (for 
example, the parts containing deletions or field normalization 
weights), which negatively affected the concurrency of writes and 
reads - to apply any modifications the index had to be locked and 
it was not possible to open the index for reading until the update 
operation completed and the lock was released. 
In Lucene 4.0 the segments are fully immutable (write-once), and 
any changes are expressed either as new segments or new lists of 
deletions, both of which create new commit points, and the 
updated view of the latest version of the index becomes visible 
when a commit point is recorded using a two-phase commit. This 
enables lock-free reading operations concurrently with updates, 
and point-in-time travel by opening the index for reading using 
some existing past commit point. 

5.3.2 The IndexReader Class 
The IndexReader provides high-level methods to retrieve stored 
fields, term vectors and to traverse the inverted index data. Behind 
the scenes it uses the Codec API to retrieve and decode the index 
data (Figure 1). 

The IndexReader represents the view of an index at a specific 
point in time. Typically a user obtains an IndexReader from either 
a commit point (where all data has been written to disk), or 
directly from IndexWriter (a “near-realtime” snapshot that 
includes both the flushed and the in-memory segments). 

As mentioned in the previous section, segments are immutable so 
the deletions don’t actually remove data from existing segments. 
Instead the delete operations are resolved when existing segments 
are open, so that the deletions are represented as a bitset of live 
(not deleted) documents. This bitset is then used when 
enumerating postings and stored fields and during search to hide 
deleted documents. Global index statistics are not recalculated, so 
they are slightly wrong (they include the term statistics of postings 
that belong to deleted documents). For performance reasons the 
data of deleted documents is actually removed only during 
segment merging, and then also the global statistics are 
recalculated. 

The IndexReader API follows the composite pattern: an 
IndexReader representing a specific commit point is actually a list 
of sub-Readers for each segment. Composed IndexReaders at 
different points in time share underlying subreaders with each 
other when possible: this allows for efficient representation of 
multiple point-in-time views. An extreme example of this is the 

Figure 3 Indexing Process 
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Twitter search engine, where each search operation obtains a new 
IndexReader [20]. 

5.4 Codec API 
While Lucene 3.x used a few predefined data coding algorithms (a 
combination of delta and variable-length byte coding), in Lucene 
4.0 all parts of the code that dealt with coding and compression of 
data have been separated and grouped into a Codec API. 

This major re-design of Lucene architecture has opened up the 
library for many improvements, customizations and for 
experimentation with recent advances in inverted index 
compression algorithms. The Codec API allows for complete 
customization of how index data is encoded and written out to the 
underlying storage: the inverted and non-inverted parts, how it’s 
decoded for reading and how segment data is merged. The 
following section explains in more detail how inverted data is 
represented using this API. 

5.4.1 A 4-D View of the Inverted Index 
The Codec API presents inverted index data as a logical four-
dimensional table that can be traversed using enumerators. The 
dimensions are: field, term, document, and position - that is, an 
imaginary cursor can be advanced along rows and columns of this 
table in each dimension, and it supports both “next item” and 
“seek to item” operations, as well as retrieving row and cell data 
at the current position. For example, given a cursor at field f1 and 
term t1 the cursor can be advanced along this posting list to the 
data for document d1, where the in-document frequency for this 
term (TF) can be retrieved, and then positional data can be iterated 
to retrieve consecutive positions, offsets and payload data at each 
position within this document. 

This level of abstraction is sufficient to not only support many 
types of query evaluation strategies, but to also clearly separate 
how the underlying data structures should be organized and 
encoded and to encapsulate this concern in Codec 
implementations. 

5.4.2 Lucene 4.0 Codecs 
The default codec implementation (aptly named “Lucene40”) uses 
a combination of well-known compression algorithms and 
strategies selected to provide a good tradeoff between index size 
(and related costs of I/O seeks) and coding costs. Byte-aligned 
coding is preferred for its decompression speed - for example, 
posting lists data uses variable-byte coding of delta values, with 
multi-level skip lists, using the natural ordering of document 
identifiers, and interleaving of document ID-s and position data 
[36]. For frequently occurring very short lists (according to the 
Zipf’s law) the codec switches to using the “pulsing” strategy that 
inlines postings with the term dictionary [19]. The term dictionary 
is encoded using a “block tree” schema that uses shared prefix 
deltas per block of terms (fixed-size or variable-size) and skip 
lists. The non-inverted data is coded using various strategies, for 
example per-document strongly typed values are encoded using 
fixed-length bit-aligned compression (similar to Frame-of-
Reference coding), while the regular stored field data uses no 
compression at all (applications may of course compress 
individual values before storing). 

The Lucene40 codec offers, in practice, a good balance between 
high performance indexing and fast execution of queries. Since 
the Codec API offers a clear separation between the functionality 
of the inverted index and the details of its data formats, it’s very 
easy in Lucene 4.0 to customize these formats if the default codec 
is not sufficient.  The Lucene community is already working on 

several modern codecs, including PForDelta, Simple9/16/64 (both 
likely to be included in Lucene 4.0) and VSEncoding [26], and 
experimenting with other representations for the term dictionary 
(e.g. using Finite State Transducers). 

The Codec API opens up many possibilities for runtime 
manipulation of postings during writing or reading (e.g. online 
pruning and sharding, adding Bloom filters for fail-fast lookups 
etc.), or to accommodate specific limitations of the underlying 
storage (e.g. Appending codec that can work with append-only 
filesystems such as Hadoop DFS). 

5.4.3 Directory API 
Finally, the physical I/O access is abstracted using the Directory 
API that offers a very simple file system-like view of persistent 
storage.  The Lucene Directory is basically a flat list of “files”. 
Files are write-once, and abstractions are provided for sequential 
and random access for writing and reading of files. 

This abstraction is general enough and limited enough that 
implementations exist both using java.io.File, NIO buffers, in 
memory, distributed file systems (e.g. Amazon S3 or Hadoop 
HDFS), NoSQL key-value stores and even traditional SQL 
databases. 

5.5 SEARCHING 
Lucene’s primary searching concerns can be broken down into a 
few key areas, which will be discussed in the following 
subsections: Lucene’s query model, query evaluation, scoring and 
common search extensions.  We’ll begin by looking at how 
Lucene models queries. 

5.5.1 Query Model and Types 
Lucene does not enforce a particular query language: instead it 
uses Query objects to perform searches. Several Queries are 
provided as building blocks to express complex queries, and 
developers can construct their own programmatically or via a 
Query Parser. 

Query types provided in Lucene 4.0 include: term queries that 
evaluate a single term in a specific field; boolean queries 
(supporting AND, OR and NOT) where clauses can be any other 
Query; proximity queries (strict phrase, sloppy phrase that allows 
for up to N intervening terms) [40, 41]; position-based queries 
(called “spans” in Lucene parlance) that allow to express more 
complex rules for proximity and relative positions of terms; 
wildcard, fuzzy and regular expression queries that use automata 
for evaluating matching terms; disjunction-max query that assigns 
scores based on the best match for a document across several 
fields; payload query that processes per-position payload data, etc.  
Lucene also supports the incorporation of field values into 
scoring.  Named “function queries”, these queries can be used to 
add useful scoring factors like time and distance into the scoring 
model. 

This large collection of predefined queries allows developers to 
express complex criteria for matching and scoring of documents, 
in a well-structured tree of query clauses. 

Typically a search is parsed by a Query Parser into a Query tree, 
but this is not mandatory: queries can also be generated and 
combined programmatically.   Lucene ships with a number of 
different query parsers out of the box.  Some are based on JavaCC 
grammars while others are XML based.  Details on these query 
parsers and the framework is beyond the scope of this paper. 
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5.5.2 Query Evaluation 
When a Query is executed, each inverted index segment is 
processed sequentially for efficiency: it is not necessary to operate 
on a merged view of the postings lists. For each index segment, 
the Query generates a Scorer: essentially an enumerator over the 
matching documents with an additional score() method. 

Scorers typically score documents with a document-at-a-time 
(DAAT) strategy, although the commonly used BooleanScorer 
sometimes uses a TAAT (term-at-a-time)-like strategy when the 
number of terms is low [27]. 

Scorers that are “leaf” nodes in the Query tree typically compute 
the score by passing raw index statistics (such as term frequency) 
to the Similarity, which is a configurable policy for term ranking. 
Scorers higher-up in the tree usually operate on sub-scorers, e.g. a 
Disjunction scorer might compute the sum of its children’s scores. 
Finally, a Collector is responsible for actually consuming these 
Scorers and doing something with the results: for example 
populating a priority queue of the top-N documents [42]. 
Developers can also implement custom Collectors for advanced 
use cases such as early termination of queries, faceting, and 
grouping of similar results. 

5.5.3 Similarity 
The Similarity class implements a policy for scoring terms and 
query clauses, taking into account term and global index statistics 
as well as specifics of a query (e.g. distance between terms of a 
phrase, number of matching terms in a multi-term query, 
Levenshtein edit distance of fuzzy terms, etc). Lucene 4 now 
maintains several per-segment statistics (e.g. total term frequency, 
unique term count, total document frequency of all terms, etc) to 
support additional scoring models. 
As a part of the indexing chain this class is responsible for 
calculating the field normalization factors (weights) that usually 
depend on the field length and arbitrary user-specified field 
boosts. However, the main role of this class is to specify the 
details of query scoring during query evaluation. 

As mentioned earlier, Lucene 4 provides several Similarity 
implementations that offer well-known scoring models: TF/IDF 
with several different normalizations, BM25, Information-based, 
Divergence from Randomness, and Language Modeling. 

5.5.4 Common Search Extensions 
Keyword search is only a part of query execution for many 
modern search systems. Lucene provides extended query 
processing capabilities to support easier navigation of search 
results. The faceting module allows for browsing/drilldown 
capabilities, which is common in many e-commerce applications. 
Result grouping supports folding related documents (such as those 
appearing on the same website) into a single combined result. 
Additional search modules provide support for nested documents, 
query expansion, and geospatial search. 

6. Open Source Engineering 
Lucene’s development is a collaboration of a broad set of 
contributors along with a core set of committers who have 
permission to actually change the source code hosted at the ASF.  
At the heart of this approach is a meritocratic model whereby 
permissions to the code and documentation are granted based on 
contributions (both code-based and non-code based) to the 
community over a sustained period of time and after being voted 
in by Lucene’s Project Management Committee (PMC) in 
recognition of these contributions [3]. 

Development is undertaken as a loose federation of programmers 
coordinating development through the use of mailing lists, issue 
tracking software, IRC channels and the occasional face-to-face 
meeting.  While all committers may veto someone else’s changes, 
these rarely happen in practice due to coordination via the 
communication mechanisms mentioned.  Project planning is very 
lightweight and is almost always coordinated by patches to the 
code that demonstrate the desired feature to some level more than 
abstract discussions about potential implementations.  Releases 
are the coordinated effort of a community-selected (someone 
usually volunteers) release manager and a grouping of other 
people who validate release candidates and vote to release the 
necessary libraries.  Lucene developers also strive to make sure 
that backwards compatibility (breakages, when known, are 
explicitly documented) is maintained between minor versions and 
that all major version upgrades are able to consume the index of 
the last minor version of the previous release, thereby reducing 
the cost of upgrades.   

Lucene developers are often faced with the need to make tradeoffs 
between speed, index size and memory consumption, since 
Lucene is used in many demanding environments (Twitter, for 
example, processes, as of Fall 2011, 250 million tweets and 
billions of queries per day, all with an average query latency of 50 
milliseconds or less [20].)  For instance, the default Lucene40 
codec uses relatively simple compression algorithms that trade 
index size for speed; field normalization factors use encoding that 
fits a floating point weight in a single byte, with a significant loss 
of precision but with great savings in storage space; large data 
structures (such as term dictionary and posting lists) are often 
accompanied by skip lists that are cached in memory, while the 
main data is retrieved in chunks and not buffered in the process’ 
memory, relying instead on disk buffers of the operating system 
for efficient LRU caching. 
Lucene 2, 3 and Lucene 4 have seen a significant effort to employ 
engineering best practices across the code base.  At the center of 
these best practices is a test-driven development approach 
designed to insure correctness and performance.  For instance, 
Lucene has an extensive suite of tests (for example, as of 
7/1/2012, Lucene has 79% test coverage on 1 sample run at 
https://builds.apache.org/job/Lucene-trunk/clover/) and bench-
marking capabilities that are designed to push Lucene to its limits.  
These tests are all driven by a test framework that supports the de 
facto industry standard notion of unit tests, but also the emerging 
focus on randomization of tests.  The former approach is primarily 
used to test “normal” operation, while the latter, when run 
regularly (this happens many times throughout the day on 
Lucene’s continuous integration system), is designed to catch 
edge cases beyond the scope of developers.   

Since many things in Lucene are pluggable, randomly assembling 
these parts and then running the test suite uncovers many edge 
cases that are simply too cumbersome for developers to code up 
manually.  For instance, a given test run may randomize the 
Codec used, the query types, the Locale, the character encoding of 
documents, the amount of memory given to certain subsystems 
and much, much more.  The same test run again later (with a 
different random seed) would likely utilize a different 
combination of implementations.  Finally, Lucene also has a suite 
of tests for doing large scale indexing and searching tasks.  The 
results of these tests are tracked over time to provide better 
context for making decisions about incorporating new features or 
modifying existing implementations [24]. 
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7. RETRIEVAL EVALUATION 
At the time of this writing, the authors are not aware of any 
TREC-style evaluations of Lucene 4 (which is not unexpected, as 
it isn’t officially released as of this writing), but Lucene has been 
used in the past by participants of TREC.   Moreover, due to 
copyright restrictions on the data used in many TREC-style 
retrieval evaluations, it is difficult for a widespread open source 
community like Lucene’s to effectively and openly evaluate itself 
using these approaches due to the fact that the community cannot 
reliably and openly obtain the content to reproduce the results.  
This is a somewhat subtle point in that it isn’t that we as a 
community don’t technically know how to run TREC-style 
evaluations (many have privately), but that we have decided not to 
take it on as a community due to the fact that there is no reliable 
way to distribute the content to anyone in the community who 
wishes to participate (e.g. who would sign and fill out the 
organizational agreement such as 
http://lemurproject.org/clueweb09/organization_agreement.cluew
eb09.worder.Jun28-12.pdf for the community?) and therefore it is 
not an open process on par with the community’s open 
development process.  For instance, assume contributor A has 
access to a paid TREC collection and makes an improvement to 
Lucene that improves precision in a statistically significant way 
and posts a patch.  How does contributor B, who doesn’t have 
access to the same content, reproduce the results and 
validate/refute the contribution?     See [28] for a deeper 
discussion of the issues involved.  Some in the community have 
tried to overcome this by starting the Open Relevance Project 
(http:lucene.apache.org/openrelevance) but this has yet to gain 
traction.  Thus, it is up to individuals within the community who 
work at institutions with access to the content to perform 
evaluations and share the results with the community.  Since most 
in the community are developers focused on implementation of 
search in applications, this does not happen publicly very often.  
The authors recognize this is a fairly large gap for Lucene in terms 
of IR research and is a gap these authors hope can be remedied by 
working more closely with the research community in the future.   

In the past, some individuals have taken on TREC-style 
evaluations.  In [17], a modified Lucene 2.3.0 was used in the 
1 Million Queries Track.  In [29], an unmodified Lucene 3.0, in 
combination with query expansion techniques, was used in the 
TREC 2011 Medical Track.  In [30], Lucene 1.9.1 was compared 
against a wide variety of open source implementations using out 
of the box defaults. The impact of Lucene’s boost and coordinate 
level match on tf / idf ranking is studied in [43]. Many researchers 
use Lucene as a baseline (e.g. [44]), a platform for 
experimentation or an example of implementation of standard IR 
algorithms.  For example, [45] used Lucene 2.4.0 in an “out of the 
box” configuration, although it is not clear to these authors what 
an out of the box Lucene configuration is, since the community 
doesn’t specify such a thing. 

8. FUTURE WORK 
While the nature of open source is such that one never knows 
exactly what will be worked on in the future (“patches welcome” 
is not just a slogan, but a way of development -- the community 
often jumps on promising ideas that save time or improve quality 
and these ideas often seemingly appear from nowhere.)  In 
general, however, the community focus at the time of this writing 
is on: 1) finalizing the 4.0 APIs and open issues for release, 2) 
additional inverted index compression algorithms (e.g. PFOR) 3) 
field-level updates (or at least updates for certain kinds of fields 
like doc-values and metadata fields) and 4) continued growth of 

higher order search functionality like more complex joins, 
grouping, faceting, auto-suggest and spatial search capabilities.  
Naturally, there is always work to be done in cleaning up and 
refactoring existing code as it becomes better understood.   

As important as the future of the code is to Lucene, so is the 
community that surrounds it.  Building and maintaining 
community is and always will be a vital component of Lucene, 
just as keeping up with the latest algorithms and data structures is 
to the codebase itself. 

9. CONCLUSIONS 
In this paper, we presented both a historical view of Lucene as 
well as details on the components that make Lucene one of the 
key pieces of modern, search-based applications in industry today.  
These components extend well beyond the code and include an 
“Always Be Testing” development approach along with a large, 
open community collectively working to better Lucene under the 
umbrella that is known as The Apache Software Foundation. 

At a deeper level, Lucene 4 marks yet another inflection point in 
the life of Lucene.  By overhauling the underpinnings of Lucene 
to be more flexible and pluggable as well as greatly improving the 
efficiency and performance, Lucene is well suited for continued 
commercial success as well as better positioned for experimental 
research work. 
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ABSTRACT
The open source IR community must address the new needs of the
current search engine landscape. While it is still possible for an
individual to perform effective research or run a small to moderate-
sized search engine on a single machine, the scope of search engine
applications has moved far beyond these parameters. The exciting
new frontiers of information retrieval lie now at the extremes: either
the system and available resources are far more constrained than a
desktop (as in mobile phones and tablets), or resources are expected
to be available in quantities orders of magnitude larger (as in web-
scale systems).

To inform the decisions in designing the next-generation of open
source search engines (OSSEs), we present a retrospective assess-
ment of the Galago search engine, an open source retrieval sys-
tem developed at the University of Massachusetts Amherst. We
have successfully deployed Galago over large clusters for both in-
dexing and retrieval. At the other end of the spectrum, we have
also successfully installed Galago on Android-based smart-phones
and tablets, providing search capabilities over the personal data —
tweets, social media posts, blog-feeds, emails, texts, browsing his-
tory, etc.— stored on one’s cell phone.

These experiences have provided us with information that we
feel is essential to communicate to all potential designers of open
source search engines. In this paper, we discuss the aspects of
Galago that we believe are worthy of carrying forward into the next
generation of open source retrieval systems. Conversely, we also
discuss the roadblocks encountered, both in terms of adoption by
the larger research community and the difficulties in learning to use
the system effectively. We hope that this retrospective will inform
the architects of the next generation of open source retrieval sys-
tems.
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1. INTRODUCTION
The Galago1 search engine is currently being developed at Uni-

versity of Massachusetts Amherst as a generational successor to
Indri.2 Indri emphasized two important factors: 1) the union of
language models and inference networks and 2) processing speed.
This model worked extremely well for its contemporary genera-
tion of research, and many groups used the software to produce a
large body of published research. Galago has been designed with
different goals in mind, to react to the next generation of research
needs: 1) interoperation with a distributed processing environment,
and 2) a modular, flexible processing model that allows drop-in
components in virtually every step of the score calculation during
retrieval. While we believe Galago has met these goals, to date
Galago has not received the widespread adoption that Indri has. In
this paper we take a look back at our own experiences with Galago
in an attempt to learn as much as we can about the good, the bad,
and the hopeful aspects of Galago.

We present our assessment as follows. When discussing positive
aspects of Galago that we believe should be carried forward to the
next generation of OSSEs, we present it as an affordance3. We then
discuss issues we encountered when using Galago, as two-part as-
sessments. We begin with a problem statement, which describes
the specific issue we encountered with the system. We conclude
the issue with the lesson that is the general rule or observation we
hypothesize from our specific instance. We hope that this informa-
tion will aid future system implementors by helping them to evolve
the nascent affordances we found, and avoid the pitfalls we encoun-
tered.

1http://www.lemurproject.org/galago.php
2http://www.lemurproject.org/indri/
3Wikipedia states an affordance as a quality of an object, or envi-
ronment, which allows an individual to perform an action. We use
that definition here.

25

http://www.lemurproject.org/galago.php
http://www.lemurproject.org/indri/


2. AFFORDANCES OF GALAGO
Despite the lack of widespread adoption, we believe Galago is a

powerful retrieval system that emphasizes several elements that all
future systems would do well to have. We focus on these elements
here, and provide evidence in support of each claim.

2.1 Scoring Model Representation
Galago continues the use of a tree-based model from Indri, how-

ever several important changes make Galago’s implementation much
more powerful than Indri’s. The Inference Network model de-
scribed by Turtle and Croft [15] and implemented in Indri, provides
a clean graphical way of describing a retrieval model. Addition-
ally, it does so in a purely declarative way—the nodes in a query
tree describe what they represent, but not how to materialize that
information at retrieval time. Indri implemented this framework in
a more formalized way by combining the Inference Network with
Language Models. This proved to be a successful combination, as
Indri is still in use as an active research system today, over 8 years
after its initial development.

However, several issues limit the capabilities of Indri. The query
language is difficult to update dynamically, therefore end users are
limited to the constructs already defined in the language. Addition-
ally, using the Inference Network requires adherence to a proba-
bilistic interpretation of scoring documents. Many retrieval mod-
els do not produce values that can be considered probabilistic (the
vector space model is an obvious example of this situation). Imple-
menting these functions is not feasible without significant change to
the code base and a thorough understanding of the scoring pipeline
in Indri.

Galago solves these issues by generalizing away from a spe-
cific philosophy to a more general notion of a query tree. The
only restriction in this model is that upon evaluation for a partic-
ular document, the tree reduces to a final value that is produced at
the root node of the tree. Figure 1 shows the simple query hubble
telescope achievements in the query tree representation. The
#combine node at the top, when evaluated, produces a scalar value
based on its parameters and the current document. We now dis-
cuss two powerful ideas that form the core of the query tree model:
operators and traversals.

#combine

hubble telescope achievements

#feature:dirichlet:mu=1500

Figure 1: A simple query, represented as a tree. The middle
layer of feature nodes in this query tree each convert frequency
information about a term into a Dirichlet-smoothed probabil-
ity.

Operators
An operator is a function over child nodes in the query tree that

can produce a scalar upon evaluation of a document. In Figure 1,

the only operator shown is #combine, which performs a linear
combination of the child nodes of the operator. This may seem
like a simple act, however, when generalized, the use of operators
in this recursive manner means that given the proper operators, we
can represent any arbitrarily complex function. In practice, we use
operators to implement smoothing and scoring functions over raw
terms, combine scores, and implement boolean match operations
(and filtering and negated filtering operations). As we will see in
the next section, operators can also work in conjunction with traver-
sals to perform transformations across the entire tree to represent
larger operations.

Traversals
A traversal is an operation over the query tree that transforms

the tree in some way. Galago internally uses traversals extensively
to annotate its query tree to prepare it for processing, check the
correctness of submitted queries, optimize query execution [2], and
rewrite the query tree, to name a few functions.

Operators and traversals are useful in isolation, but when you
combine them together, you can implement highly expressive lan-
guage constructs in a simple way. As a straightforward example,
Figure 2 depicts the transformation of a small query tree under the
#sdm operator. In this case the operator serves as a placeholder
to indicate that the SDM-Traversal to expand the contained query
using the Sequential Dependence Model described by Metzler and
Croft [9]. The decomposed view of retrieval models afforded by
query trees, in conjunction with operators and traversals, creates a
powerful mechanism for implementing retrieval models very effi-
ciently. We have additionally used combinations of operators and
traversals to implement the Relevance Model [8], the field-based
PRMS model [7], BM25 scoring [11] and it’s field-based variant
[10], to name a few of the implemented models. Each model was
simple to implement and test in Galago, and is now part of the stan-
dard distribution of the system.

In this way, we can encapsulate a well-defined model in a short-
hand form in the query language. A similar idea, known as options,
has been a popular notion in the reinforcement learning community
for over a decade [14]. An option is created to encapsulate a chain
of actions that the system has deemed useful enough to treat as a
primitive action. This allows increasing abstraction as the system
progresses. In a similar fashion, as new operators and traversals are
added to Galago, the query language can grow to include higher-
level concepts as they are deemed useful enough to add.

2.2 Generalization of Distributed Processing
Galago comes packaged with its own distributed processing sys-

tem, called TupleFlow. TupleFlow can be thought of as a MapRe-
duce system, in that every process can consist of a map or reduce
operation. The most well-known open-source implementation of
MapReduce is Hadoop, maintained now by the Apache Software
Foundation4. Hadoop has grown to be a field-tested implementa-
tion that has been scaled to clusters of several thousand machines
to simultaneously support dozens of online users 5. However, one
place that we considered TupleFlow to far surpass Hadoop MapRe-
duce was the option of multiple inputs and outputs for a processing
stage. Hadoop has excellent support for single-stream input and
outputs to processing stages, but adding even a single extra stream
as input to the system can prove to be a test of patience. Conse-
quently, implementing an ordered join of two or more streams, a
popular operation in data processing, is an onerous task even for
experienced Hadoop users.
4http://hadoop.apache.org/mapreduce/
5http://research.yahoo.com/news/3374
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Figure 2: The expansion of the Sequential Dependence Model using a traversal.The layer of feature nodes in this query tree each
convert frequency information about a term or a window into a Jelinek-Mercer-smoothed probability.
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Figure 3.15. A TupleFlow computation graph for building a traditional, positions-
based text index. Small boxes are steps, large boxes are stages, and gray boxes
indicate stages that can be replicated.

either an error checkpoint file or no checkpoint at all. This can result in a substan-

tial time savings, especially when developing a new kind of stage. When using this

feature, users do need to be careful that code changes do not alter the results of the

computation that has already been completed.

81

Figure 3: An example of indexing a collection using TupleFlow (generated by Trevor Strohman [12]).

Conversely, using multiple streams in TupleFlow requires indi-
cating the extra connections in the configuration, and opening the
stream in the processing stage, which requires only a single func-
tion call with the pipe name. Figure 3 shows the original indexing
pipeline of Galago. The innermost boxes are steps, which are en-
closed in stages. A single stage is run on a single machine. Shaded
stages are replicated, meaning many instances of the same stage,
with different input, are executed at the same time. A full explana-
tion of the pipeline is beyond the scope of this paper. However, one
can immediately see that several distinct stages can execute inde-
pendently provided the prior input stage has completed. TupleFlow
can analyze this dependence graph and execute these stages as soon

as they are ready. A standard Hadoop implementation would re-
quire manual ordering of these stages, which would typically run
serially without programmer intervention. After several years of
experience with TupleFlow, we all agree that moving towards a
general data processing model is beneficial for code reuse, higher-
level reasoning, and processing. Trends in industry seem to agree
— these ideas are being implemented as well in large-scale data
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processing systems, such as MR26, Spark7 and Flume8. Although
TupleFlow has not been widely adopted to date, we are fully aware
of its capabilities, and it is clear to us that the idea of a higher-order
distributed processing paradigm is essential to efficient research in
the future of IR.

2.3 Pluggable Components
As mentioned previously, one of the original goals while build-

ing Galago was to allow users to easily extend the functionality.
While not all components can be easily extended, many can, in-
cluding parsing new corpus formats, query operators, query tree
traversals, scoring regimes, and stream processing steps with Tu-
pleFlow. Using Java, developing pluggable components is easy
since extensions can be packaged in completely separate archive
(JAR) files. For example, to run Galago with a user defined query
operator, the extension’s JAR file is placed on the Java class path
and the user tells Galago which class to associate with the operator
at run time—and that’s it. As all of the code is developed in Java,
we have a guarantee that an external component developed else-
where will run as intended on any system. In our own experience,
external development has often provided an excellent development
path for new components that we did not yet want to include in the
main distribution. New components are developed and tested dur-
ing research, when code is often not at its best. After the research
is complete, we can assess the utility of the new components, and
decide if we want to include them in the trunk of the source code.
Often times integration into the main trunk provides a good oppor-
tunity to refactor the code into a more suitable form as well.

Finally, pluggable components allow users to contribute stan-
dalone extensions—not patches that need to be applied to the core
code base—that can then be made publicly available and used with
other extensions. Likewise, entire distributed processing programs
can be made without the need to modify any of the core TupleFlow
code, just as with Hadoop.

3. PROBLEMS ENCOUNTERED
In this section, we reflect on some of the issues we encountered

while developing Galago and the lessons that we learned from the
experience. Our hope is that these lessons apply not just to Galago,
but OSSEs in general.

3.1 Steep Learning Curve
Problem: Learning to use Galago was often difficult and con-

fusing. Several members of the CIIR have used both TupleFlow
and Galago extensively in their research [1, 2, 3, 4, 5, 6, 13]. All
users find the system useful and can effectively implement new
components to add to the system in a short amount of time, of-
ten times within an afternoon. Unfortunately, the road to reach this
point of expertise was long and complicated. The first two users
spent almost a year learning the nuances of the system before they
could effectively use it in research. Later adopters required less
time as the early adopters were able to communicate the important
aspects of the system effectively, saving new users several months
of fumbling through a labyrinth of code. Had the system been better
documented, we believe that would have led to the early adopters
saving weeks, if not months, of time learning the details of Galago
and TupleFlow.

6http://www.cloudera.com/blog/2012/02/mapreduce-2-0-in-
hadoop-0-23/
7http://www.spark-project.org/
8https://cwiki.apache.org/FLUME/

Lesson: Thorough documentation of the system is crucial to
success of future systems. Successful systems are often accompa-
nied with copious amounts of documentation. A prime example of
this model is the Hadoop MapReduce open-source implementation.
Hadoop MapReduce is a complex system, however numerous indi-
viduals and organizations spent significant effort in documenting
the system, both in providing code examples and reference texts
explaining the important parts of the system. Without this docu-
mentation, it is unclear how many people would have had the spare
time to learn to use such a sophisticated framework.

3.2 System Performance Analysis Problems
Problem: A VM complicates system performance analysis.

Indri is written in C++. The system fully compiles from source
to machine code, making runtime execution very fast, and allowing
for direct management of allocated memory. These are clear ad-
vantages when a researcher is concerned with system performance.
However Galago was designed for modularity and extension. C++
is powerful, but it is also a difficult language to master, and may
even have different behaviors on different machines depending on
the architecture and compiler used.

To avoid these problems, Java is the language of choice for Galago.
In many ways, it proved to be the right choice. At the time C++03
was in sore need of an update, and any modification of Indri proved
to be torturous for any individual not intimate with most of the
code base. Java removed the need for header files and moved the
focus away from managing explicit pointers to implementing re-
trieval models and better design of processing algorithms.

However, several researchers at CIIR have shown interest in ef-
ficiency of retrieval systems, and Galago has proven to be a diffi-
cult system to deal with in this regard. Several procedures in Java,
such as auto-boxing of primitives, and automatic garbage collec-
tion, have significant impact on wall-clock measurement and mea-
surement of memory usage. In several instances, we have encoun-
tered large ‘bumps’ in timing data that we later realized was due to
the virtual machine (VM)’s garbage collector performing a sweep.
This kind of systemic incontinence is unacceptable from a systems
measurement perspective.

In TupleFlow, the situation is not much better. Shuffling and
sorting of large streams of data also suffer from overhead incurred
in using the Java VM. For example the immutability of Strings,
and then placement in the permGen memory pool required us to use
our own string pooling mechanism to avoid exhausting memory too
quickly. In a similar example, Hadoop MapReduce provides their
own implementation of most of the boxed Java primitives in order
to increase serialization and deserialization efficiency.
Lesson: Implementation language may inadvertently define a
system’s emphasis. The case of Galago shows two competing
tensions in the research arena; efficiency and systems researchers
prefer the low-level control afforded by a language such as C++,
whereas researchers concerned with retrieval models (including learning-
to-rank and users of external data sources) tend to prefer work-
ing in higher-level languages, where they can ignore issues such
as memory-management or compression, and instead focus on the
formulation of their respective scoring functions.

The choice of Java was relevant at the time due to limitations
inherent in C++, and it seemed to provide a release from the purga-
tory of managing pointers and complicated inline functions in In-
dri. However this has also come at the price of control over several
components of the system, and has made optimization of Galago
more difficult. Ultimately, the choice of implementation language
should be weighed against the main priority of the system. If you
intend to support extensibility and portability, Java is still an obvi-
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ous choice, as many projects have shown. However if your focus is
on compression algorithms and indexing strategies, C++ provides
a better platform for development.

Additionally, new languages, such as Scala9 and Go10, should be
considered in future implementations. Although this may cause a
“yet-another-language” issue, new languages are often developed
to address the shortcomings of their predecessors. For example,
Scala compiles to JVM bytecode, allowing it to use Java compo-
nents. Additionally, the syntax of Scala is much less verbose than
Java, and it even allows for rapid development of domain-specific
languages. Future implementations of OSSEs may greatly benefit
from the added capabilities of newer languages, however the choice
of language, in many ways, defines the emphasis of the system be-
ing built.

3.3 Software Fragility
Problem: Backwards incompatibility. Right now systems such

as Indri and Galago have several backward compatibility issues at
the index and internal API levels. The standard update cycle for In-
dri and Galago currently suggests you rebuild any index you want
to use with the new version, as the old indexes are simply con-
sidered defunct. When TREC collections or corporate collections
numbered in the hundreds of thousands, or even into the low mil-
lions of documents, this was merely a tedious inconvenience. How-
ever, asking an end-user to rebuild a CLUE-sized index as a matter
of process may well be unreasonable to many, and may even be
impossible for those without the necessary resources. Additionally,
changes to the internal API, which mostly affect plug-and-play sys-
tems like Galago, often impact any extensions users have created
and renders them useless until they update to the new API.

Lesson: Design assuming that change is imminent. The in-
ternal mechanisms that interact with indexes should be capable
of handling some amount of backwards compatibility. Lucene,11

for example, guarantees that all index file formats are backwards
compatible, preventing users from being forced to re-index collec-
tions. In an even larger scale example, protocol buffers, the data
interchange format used most heavily at Google12, was specifically
designed for changes to occur to the definitions of the generated
classes. As long as the changes are only additive, protocol buffers
are guaranteed to be backwards compatible as well. Concerning
the internal API, the best solution is to establish a standard that is
sufficiently general such that the details behind the API can change
without the need to adjust the API itself, while specific enough to
allow users the necessary level of control within their extensions.
While changes to the API cannot always be avoided, this will at
least minimize the impact of small changes.

Problem: Difficult to extend. A major drawback of a system
like Indri is the difficulty one encounters when attempting to add
new functionality, such as a state of the art retrieval model. While
Indri’s C++ implementation allows for tight memory control and
fast single-processor retrieval, adding additional functionality re-
quires rooting around the internals, getting your hands dirty, and
likely hitting many dead ends. What should take an hour can take
days or weeks to the user unfamiliar with Indri’s implementation.
This is especially unpleasant given the necessity to explore new
models in the fast paced world of information retrieval research. As
we have already mentioned, one of the goals of Galago was to of-
fer extensibility. However, in many of the earlier forms of Galago,

9http://www.scala-lang.org/
10http://golang.org/
11http://lucene.apache.org/
12http://code.google.com/p/protobuf/

extensibility was not always as prevalent as we hoped. Many func-
tionalities were difficult to add in a clean and modular way, such as
certain types of operators and index traversals such as passage or
extent retrieval.

Lesson: Make modular extensibility a stronger focus. Retro-
spect also shows that some capabilities involve several axes, each
of which should be designed for extension. Our canonical example
is a user wanting to perform phrase-based retrieval over document
passages. Passage-scoring requires a change in the semantics of
what a “document” is, while phrases require knowing the positions
of terms in documents. The interaction of these two concepts pro-
vides an interesting implementation challenge; one that would have
influenced the design of the original system.

When a user wants to add functionality to a retrieval system, it
should be possible to do so easily and without modifying the core
system. That way the core can be updated independently of the
extension. Part of the issue we encountered with Galago was not
having the foresight to make certain components easily extendable.
The key is to listen to what users want to extend but cannot. Rather
than implement the desired functionality into the core, refactor the
targeted component to be more modular and easily extended by
users.

Problem: Different environments cause different problems.
This problem plagued us in two different scenarios: at the dis-
tributed processing, “web-scale” level, and at the highly constrained,
“mobile-device” level. We discuss each instance in turn, both of
which lead us to a larger verdict.

Distributed indexing and retrieval. There is a large area of re-
search that is emerging around distributed indexing and informa-
tion retrieval. Information retrieval has long been focused on the
problem of sorting and storing huge amounts of textual data, there-
fore parallel scalability is becoming one of the most important con-
cerns in an IR system. A key problem in developing a distributed
OSSE is that distributed processing environments each make dif-
ferent assumptions about the resources available to a distributed
process. This means that each assumption that a system makes will
reduce the number of clusters that can run the software.

High-level systems, such as Spark,13 Pig, 14 and Hadoop, to
name a few, provide high level interfaces for processing data. They
require that the data is read and streamed through a series of func-
tions provided by the distributed system and user defined functions
are called for each data element. These systems generally take over
the job generation, submission and control aspects of distributed
programming. However, the assumptions made in these general
processing systems may not be optimal for an IR system. A sec-
ondary concern is the measurement of parallel performance within
systems like these cannot be tightly controlled.

Low-level systems, such as Grid Engine15 and Mesos,16 provide
low level interfaces for running a set of programs on nodes within a
cluster. In these systems, users must write code for job generation
and control. The effect of node failure is a vital consideration when
programming for these low-level systems. The storage of the data
is also a major consideration for any distributed process. A central-
ized network attached storage can easily become a bottleneck for
large clusters. A distributed file system is more scalable, but can
lead to up to a network bottleneck, with up to O(n2) simultaneous
communication channels between n running jobs.

13http://www.spark-project.org/
14http://pig.apache.org/
15http://gridscheduler.sourceforge.net/
16http://incubator.apache.org/mesos/

29

http://www.scala-lang.org/
http://golang.org/
http://lucene.apache.org/
http://code.google.com/p/protobuf/
http://www.spark-project.org/
http://pig.apache.org/
http://gridscheduler.sourceforge.net/
http://incubator.apache.org/mesos/


In Galago we use the Tupleflow framework to generate jobs and
provide submission control. A key problem of this system is that
it assumes a centralized network attached storage system, which
avoids the O(n2) blowout of a distributed file system, but can cause
a bottleneck when performing many parallel disk operations. It is
also important to note that Tupleflow’s assumption of job control
makes implementing an interface or job translation layer to high
level distributed systems, such as Spark, Pig, or Hadoop, almost
impossible. However, this same assumption allows TupleFlow to
be easily extended to run on any cluster management software that
allows direct submission of a series of binary or scripted jobs to be
run in parallel.

Mobile phone deployment. When deploying Galago on an An-
droid mobile phone platform, we encountered difficulty in even get-
ting the system to operate correctly. Due to limitations in resources,
mobile phones may only offer a subset of the standard API. In prac-
tice this meant that Galago did not have access to the full Java API
when installed and executed on the Android JVM. Memory man-
agement and monitoring interfaces were not implemented in many
early versions of the Android JVM. A crucial problem was that the
Android environment replaces these unsupported API calls with
no-op commands – this meant that compilation was possible, but
execution would often produce errors from seemingly random, but
dependent, sections of code.

Lesson: Be mindful of environmental assumptions. An OSSE
must be careful about the assumptions it makes about the environ-
ment it will execute in. Tupleflow’s assumption of a networked
attached storage system directly limits several key parameters of
the distributed processing space, such as 1) the number of parallel
jobs, as the creation of too many jobs can overload the file server,
and 2) the maximum number of concurrent open files, to name a
couple. We believe that the best solution needs to appropriately ab-
stract job control, data storage and transfer, and failure protection,
to allow for maximum efficient scalability.

Conversely, when considering environments with limited resources,
many of the decisions that aid the large-scale case are useless, or
even detrimental, when resources are limited. Libraries and rou-
tines must be heavily optimized to squeeze every cycle and byte
possible out of the scarce resources. While we offer no grand-
unifying solution to this scale problem, we know OSSE designers
must always be aware of the possible substrates their system may
be planted in.

4. LOOKING FORWARD
Now that we have discussed the perceived advantages and disad-

vantages of using Galago, we turn towards “wishlist” items for the
next-generation of OSSEs.

4.1 Unified Query Language
Each research retrieval system uses its own custom query lan-

guage. For example, Indri supports a subset of INQUERY 17 queries
in addition to several of its own, while Galago borrows from In-
dri, but differs in syntax and allows a more extensible formulation.
Lucene and Terrier 18 each have their own query syntax (although
their syntax is quite similar to each other). Table 1 shows some
examples of the syntax used across these OSSEs. The difference in
syntax means that a query formatted for Galago will not work with
Indri, Lucene, or Terrier, causing issues if a user wants to move
from one retrieval system to another. One way around the incom-
patibility of query languages is to settle on a standard, unified query

17http://www.ushmm.org/helpdocs/inquerylang.htm
18http://terrier.org/

System Proximity Boolean not
Galago #uw10(a b) #reject(#any(a) b)
Indri #uw10(a b) #not(a) b
Lucene “a b”∼10 -a b
Terrier “a b”∼10 -a b

Table 1: An example of the query syntax for finding terms
within a given proximity and using boolean negation under dif-
ferent retrieval systems.

syntax for the common operators across retrieval systems, e.g., for
the operation of searching for a set of ordered terms. However,
since each system has its own unique capabilities, it is also neces-
sary to allow any unified query language to be extensible.

While we do not presume to have a solution to this issue now, we
believe the issue warrants discussion among the participants of the
OSSE community. Many other communities have greatly benefited
from standardization of the expression of their common concepts,
surely the information retrieval community would stand to also gain
by making a similar move.

4.2 External Data Services
A common theme in recent research is the use of external data

sources in retrieval models. Sites like DBPedia,19 Freebase,20 and
the Open Directory Project21 provide free access to semi-structured
data that provides information beyond a solitary indexed collec-
tion. In the upcoming wave of next-generation OSSEs, these data
sources should be viewed as a persistent service, accessible by any
researcher or client organization. There are obvious advantages to
establishing common APIs to make use of these sites as services,
including:

Less experimental variation. If all researchers had equal ac-
cess to a set of static data services, then we can exclude potential
sources of variance such as differences in data preparation that can
often significantly impact results.

Less repeated work. Currently multiple organizations have to
perform their own data acquisition and preparation for different
data services. These processes are often labor intensive, and pre-
clude any research involving these data sources. A single point of
access and curation for these services could keep everyone from
repeatedly “reinventing the wheel”.

Reduced maintenance burden. Maintaining the API to a sin-
gle data source is not itself difficult, but having to keep each of the
systems up and running presents a large maintenance overhead for
any organization. In the case of a smaller research group or a start
up trying to break into a specific vertical of research, this over-
head may be prohibitive. Spreading the maintenance work over
several sites reduces the load on any single site, and certainly re-
duces wasted load due to unnecessary replication of maintenance.

4.3 Persistent Web-Scale Index
The ClueWeb project22 is a considerable step towards bringing

modern-day web-scale collections to information retrieval researchers.
Unfortunately, not all information retrieval researchers can make
use of the dataset, as compressed storage alone requires over 7 TB

19http://dbpedia.org/About
20http://www.freebase.com/
21http://www.dmoz.org/
22http://lemurproject.org/clueweb09.php/
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of space. On top of storage costs, it is simply not feasible to index
a collection of that magnitude using a single machine. Even with
enough resources available to process the collection, indexing the
ClueWeb collection is not a trivial task, and future collections will
only require more time and resources to manage.

As an alternative solution, we hope that the OSSE community
would be willing to consider a crowdsourced-style solution, where
instead of the same enormous monolithic collection being managed
by each organization individually, instead each organization can be
responsible for making the some portion of the collection available
to other organizations as a callable API or service. This would
provide the same benefits listed above, and each organization can
instead focus on providing high reliability to a manageable set of
documents, versus trying to simply complete the indexing process
for themselves.

5. CONCLUSIONS
The open source IR community needs to reach some level of

agreement in several key areas in order to move into the next phase
of relevant research. In the past it was sufficient to perform experi-
ments in an isolated environment, using either a single machine or a
small cluster of machines specially purposed for the indexing task.
However, if the next generation of open source search systems are
to be relevant to clients and researchers alike, we must consolidate
effort towards agreed standards. Towards this effort, we hope our
experiences with Galago will provide valuable insight in the design
of the next generation of open source search engines.

Galago provides three components that we believe should be
standard elements of any next-generation open-source retrieval sys-
tem: 1) A query tree representation of the query language, with op-
erators and traversals that can be applied to the tree and composed
in order to produce more complex higher-level functions; 2) inte-
gration with a distributed processing environment, preferably one
that allows for high-level operations; and 3) extensibility to the core
system. We believe the core of the system should serve as a skele-
ton for plugging in components that can be used during indexing
and retrieval. It should be simple for an external user, with mini-
mal knowledge of the internals, to extend the functionality of the
core system.

Over the course of using and developing Galago, we also noted
several issues with the system that, if possible, should be avoided
in future OSSE implementations. While the effort to make Galago
“everything to everyone” is admirable, it resulted in many difficul-
ties that required redesigns of several components of the system,
with still more improvements that could be made. We hope im-
plementors of future systems can learn from our experiences, and
design a software system that addresses each of these issues well
before they are forced to deal with them.

Finally, we provide a “wish list” of ideas for the OSSE com-
munity. While these ideas are lofty, they would work towards the
benefit of all involved parties, steering the focus away from the ever
increasing, but necessary engineering and procedural overhead, and
back towards developing cutting-edge search products and seminal
research.
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ABSTRACT
Building a search engine that can scale to billions of docu-
ments while satisfying the needs of the users presents serious
challenges. Few successful stories have been reported so far
[37]. Here, we report our experience in building YouSeer, a
complete open source search engine tool that includes both
an open source crawler and an open source indexer. Our
approach takes other open source components that have
been proven to scale and combines them to create a compre-
hensive search engine. YouSeer employs Heritrix as a web
crawler, and Apache Lucene/Solr for indexing. We describe
the design and architecture, as well as additional compo-
nents that need to be implemented to build such a search
engine. The results of experimenting with our framework in
building vertical search engines are competitive when com-
pared against complete open source search engines. Our
approach is not specific to the components we use, but in-
stead it can be used as generic method for integrating search
engine components together.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval - search process; H.3.4 [Information

Storage and Retrieval]: Systems and Software

General Terms
Design, Documentation, Performance

Keywords
Search Engines, Software Architecture, Open Source

1. INTRODUCTION
In the past fifteen years, many search engines have emerged
out of both industry and academia. However, very few have
been successful [37]. Those are a number of challenges [28].
Firstly, the documents need to be collected before they are
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searchable. These documents may be found on the local in-
tranet, a local machine, or on the Web. In addition, these
documents range in format and type from textual files to
multimedia files that incorporate video and audio. Expe-
diently ranking the millions of results found for a query in
a way that satisfies the end-user need is still an unresolved
problem. Patterson [37] provides a detailed discussion of
these hurdles.

As such, researchers and developers have spent much time
and effort designing separate pieces of the search engine sys-
tem. This lead to the introduction of many popular search
engine tools including crawlers, ingestion systems, and in-
dexers. Examples of such popular tools include: Apache
Lucene/Solr, Indri, Terrier, Sphinx, Nutch, Lemur, Heritrix,
and many others. The creators of each tool have introduced
software with multiple features and advantages, but each one
of them has its own limitations. Since the problems faced by
designing a crawler are quite different from what an indexer
developer would face, researchers have dedicated projects to
tackling certain parts of the search engine. Furthermore, the
same unit within the search engine (such as indexer) may in-
troduce different challenges based on the application need.
Working on scaling an indexer to support billions of docu-
ments is different than creating a real time indexer, therefore
each use case has lead to a respective solution.

Few projects aim at building a complete open source search
engine that includes a web crawler, ingestion module, in-
dexer, and search interface. While complete search engine
tools provide all the different pieces to run a search engine,
these pieces tend to be outperformed by task specific open
source search tools when compared against each other based
on the specific task only. For example, while Apache Nutch
provides an entire search engine solution, Heritrix, which
is just a web crawler, is more powerful and versatile when
compared solely against the Nutch crawler. This observa-
tion has lead us to consider building a unified framework
where search engine components can be plugged in and out
to form a complete search engine.

New projects are started everyday to solve a specific prob-
lem for search engines, or to to introduce new features. Like-
wise, many projects have been out of support and develop-
ment after being abandoned by the community. The level
of support and the richness of the features are what usually
determines how prevalent an open source project is. We
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propose building a search engine framework that is modular
and component agnostic where different crawlers or indices
can be interchanged as long as they conform to a set of
standards. This modularity facilitates plugging components
that satisfies the users need with minimal to no changes of
the framework’s code base. Under such framework, powerful
components can be included as they mature, and the com-
munity can focus on advancing specific parts of the search
engine without worrying about building a complete search
engine.

In this paper, we demonstrate how to exploit these freely
available tools to build a comprehensive search framework
for building vertical and enterprise search engines. We out-
line the architecture of the framework, and describe how
each component contributes to building a search engine, and
the standards and communication mechanisms between the
different components. We rely on agreed upon standards to
control the communication mechanisms between the differ-
ent parts of the search engine in order to allow maximum
flexibility and reduce coupling between the components. For
the crawler, we assume that crawlers will save the crawled
documents in WARC format, which became the standard
for web archiving in 2009 [1]. Warc files are compressed files
that contain records about the metadata of the crawled doc-
ument along with the documents itself. We implement the
middleware which is responsible for ingesting the crawled
files, and pass them to the indexer over a REST API [26].
REST has become the defacto standard for accessing web
services, and in this case we assume that indices are provid-
ing a REST API to communicate with the ingestion module
and with the query interface. This assumption is rational as
most indices end up providing some access mechanism over
HTTP to support distribution.

The framework we are introducing here, YouSeer, not only
can be used for building niche search engines but also for
educational purposes. For the last three years YouSeer has
been piloted in an advanced undergraduate/graduate class
at Penn State designed to give students the ability to build
high end search engines as well as properly reason around the
various parts and metrics used to evaluate search engines.
Students in this class were tasked with finding a customer
within the Penn State community, usually a professor or
graduate student, who is in need of a search engine. Students
then were required to build a complete search engine from
concept to delivery. This included crawling, indexing and
query tuning if necessary. This class has yielded many niche
based search engines of varying levels of complexity all using
YouSeer as a software package. The level of technical know
how in the class ranges from beginners with UNIX/Java to
PhD level students in Computer Science/Engineering and
Information Sciences and Technology.

The rest of this paper is organized as follows. Section 2 dis-
cusses related work and describes other open source search
engines. Section 3 provides an overview of the architecture
of YouSeer, while Section 4 discusses the workflow inside
the framework. In Section 5 we describe the experiments.
Finally, we conclude and identify areas of future work in
Section 6.

2. RELATED WORK
The use of search engines to find content goes back to the
days of library search, where librarians have used and devel-
oped the techniques of information retrieval to find content
within books. These techniques have been carried out to
the domain of web search, and enterprise search. Though
web search added the concept of web crawler, or spider, to
download the documents from the web, which can be used
to discriminate the web search era from the previous era of
librarian search.

The open source community felt the urge for an alternative
to the commercial search engines that are dominating the
market. Part of the need was to provide transparent solu-
tions where users control the ranking of results and made
sure they have not been manipulated. In addition, licensing
the search services from these commercial search engines can
be expensive.

ht://Dig [7] is one of the early open source search tools which
was created back in 1995 at San Diego State University.
The project is not designed to scale for the needs of entire
web indexing. Instead it’s designed to index content of few
websites, or intranet. ht://Dig supported boolean and fuzzy
queries, and had the ability to strip text out of HTML tags.
Currently the project is out of support, as the latest release
was back in 2004.

Apache Luecene [3] is considered one of the very popular
search libraries which has been ported to multiple languages.
It was originally written in Java by Doug Cutting back in
2000, and later it became part of the Apache Software Foun-
dation. Though Lucene is not a search engine itself, but it’s
an indexing library which can be used to perform all the
indexing operations on text files. It can be plugged into any
search application to provide the indexing functionality.

Numerous search engines were developed on top of the Lucene
library, including commercial and open source solutions. Nutch
[29, 24] was among the early search engines developed on top
of lucene. It added a web crawler and a search interface and
used the lucene indexing library to build a comprehensive
search engine. Nutch was later added to the Apache Soft-
ware Foundation as a sub-project of Lucene. In develop-
ing Nutch, the developers have aimed at creating a scalable
tool that can index the entire web. However, the largest
crawl ever reported on Nutch was 100 million documents
[29, 34] despite supporting parallel crawling on different ma-
chines. In addition, Nutch added link analysis algorithms to
its ranking function to take into account the importance of
the pages along with the relevancy.

Although Nutch provides rich set of crawling features, many
other open source crawlers, i.e. Heritrix [5], provide far more
complex and advanced features. For examples, the deciding
rules for accepting a file or rejecting it in the crawling process
are much powerful in Heritrix than Nutch. The ability to
take check points, pause and resume crawling, and restore
the crawling process in case of failure are also advantages
of Heritrix that Nutch lacks. In addition, Nutch obeys the
robots exclusion protocol, Robots.txt, and force the users to
obey it without giving them the option ignore it totally or
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partially. Along with forcing minimum waiting time between
fetching attempts for files on the same domain, the crawling
process using Nutch may end up being slow.

Another popular distribution of Lucene is Apache Solr [4]
which provides enterprise search solution on top of Lucene.
Solr provides a RESTful like API on top of Lucene, so that
all communication with the index is done over HTTP re-
quests which makes Solr embed-able into any application
without worrying about the implementation. On top of that,
Solr provides distributed searching, query caching, spell cor-
rections, and faceted search capabilities. But as mentioned,
Solr is another search framework and not a complete search
engine solution. The main missing component is a web
crawler. Though it can be plugged into Nutch as the back-
ground indexer instead of Lucene. A query interface and
results page are also missing, as the shipped interface is for
testing purposes only. This is attributed to the fact that
Solr is not a standalone application, rather it’s a library or
framework which get plugged into another application.

NutchWAX [13] attempts to merge Nutch with the web
archive extensions such that the solution will search the
web archive. Currently it only supports ARC files, though
WARC [1] files (standard format for archiving web content)
are easily converted to ARC. NutchWAX requires Hadoop
platform [2] to run the jobs on it, as the tasks are imple-
mented using the Map/Reduce paradigm [25].

Since Lucene proved to be a scalable indexing framework,
many open source search engine adopted it and built so-
lutions on top of it. For example, Hounder [6] not only
capitalize on Lucene, but also on some modules of Nutch
to provide large scale distributed indexing and crawling ser-
vices. The crawling and the indexing processes are easily
configured, launched and monitored via GUI or shell script.
However, the options that can passed to the crawler are lim-
ited compared to large scale crawlers like Heritrix, as most of
the configurations are regular expressions only. These reg-
ular expressions are either entered into a simple java GUI,
or appended to the numerous configuration files. The ex-
tendibility of the system is not an easy task as well.

Another popular search framework is Xapian [21], which is
built with C++ and distributed under GPL license. The
framework is just an indexing library, but it ships with web
site search application called Omega [14] that can index files
of multiple formats. Though the Xapian framework doesn’t
contain a crawler, Omega can crawl files on the local files
system only.

Researchers at Carnegie Mellon University and University
of Massachusetts Amherst have developed Indri [40, 8] as a
part of the Lemur project [33, 10]. Indri is a language model
based search engine that can scale for 50 million documents
on a single machine and 500 million documents on a cluster
of machines. It supports indexing documents from differ-
ent languages, and multiple formats including PDF, Word,
PPT. In addition to traditional IR models, Indri combines
inference networks along with language models which makes
it a unique solution when compared to other frameworks.
However, Indri doesn’t contain a web crawler, and has to be
used along with a 3rd party crawler. Nevertheless, Indri can

ingest documents from the file system, TREC collections,
or archived files in a WARC format. So, the choices for a
crawler to use with Indri are large.

Besides indexing web content and intranet documents, some
search engines were developed to index SQL databases. Pro-
viding full text search for DBMS content is important for
enterprises with large databases, especially when the built
in full text search is not fast enough. Sphinx [15] provides a
full text search solution for SQL databases, as it comes with
connectors to many commercial databases. Besides connect-
ing to databases, Sphinx may be configured to index content
from XML files which were written in specific format. But,
since Sphinx is aimed at indexing SQL databases, it can’t be
considered as a complete search engine, and rather a SQL
indexing framework.

At RMIT university, researchers have developed Zettair [22],
an open source search engine which is written in C. Zettair’s
main feature is the ability to index large amounts of text files
[31]. It’s been used to index 426GB of TREC terabyte track
collection, according to the official documentation page. On
the flip side, Zettair can only deal with HTML and plain
text files, thus lacking the feature of indexing rich media
files. Besides, it assumes the user has already crawled the
files, and doesn’t provide any crawler out of the box.

Swish-e [16] is another open source search engine which is
suitable for indexing small content, less than 1 million doc-
uments. It can be used to crawl the web via a provided
perl script, and index files from various data-types: PDF,
PPT ...etc. But since it can only support up to one million
documents, scalability is not a feature of this search engine.

As academia continued to contribute to open source search
engines, researchers at the University of Glasgow have intro-
duced Terrier [17, 36, 35] as the “first serious answer in Eu-
rope to the dominance of the United States on research and
technological solutions in IR” [36]. Terrier provides a flex-
ible and scalable indexing system with implementations of
many state-of-the-art information retrieval algorithms and
models. Terrier has proven to compete with many other
academic open source search engines, like Indri and Zettair,
in TREC workshops [36]. To support large scale indexing,
Terrier uses MapReduce on Hadoop clusters to parallelize
the process. Interacting with Terrier is made easy for al-
most all users by providing both desktop and web interface.
Nevertheless, as the case with many other open source search
solutions, Terrier doesn’t ship with a web crawler, but it can
be integrated with a crawler that was also developed at the
University of Glasgow: labrador [9].

MG4J (Managing Gigabytes for Java) [23, 11] is a search
engine released under GNU lesser general public license.
It’s being developed at the University of Milan, where re-
searchers are plugging state-of-the-art algorithms and rank-
ing functions into it. The package lacks a fully-fledges web
crawler, and relies on the user to provide the files, but it can
crawl files on the file system. Despite the numerous advan-
tages of the system, ease of use seems to elude this search
engine.

WebGlimpse [20] is yet another search engine, though it has
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a different licensing model as it is free for students and open
source projects, but needs to be licensed for any other use.
It’s built on top of Glimpse indexer which generate indices
of very small size compared to the original text (2-4% of
the original text) [30]. WebGlimpse can index files on the
local filesystem, remote websites, or even crawl webpages
from the web and index them. But the crawler has limited
options which makes it incompetent to do a large scale web
crawl.

mnoGoSearch [12] is another open source search engine which
have versions for different platforms including Linux/Unix
and Windows. It’s a databases back ended search engine,
which implements its own crawler and indexer. Since it’s
dependent on the databases in the back end, the database
connectivity may become the bottleneck of the process in
case the number of running threads passed the limit of con-
current open connections to the database. The configuration
options of the crawler are also limited compared to Heritrix
and Nutch. Besides, indexing rich media files like PDF and
Doc is not supported internally, though external plugins can
be used to convert these files.

When comparing open source search engines, many aspects
are taken into consideration. These aspects include: com-
pleteness of the solution in terms of components (example:
some libraries don’t have crawlers), the scalability of the so-
lution, the extendibility of the search engine, the supported
file types, license restrictions, support of stemming, stop
words removal, fuzzy search, index language, character en-
coding, providing snippets for the results, ranking functions,
index size compared to the corpus size, and query response
time.

Many researchers had done work on comparing the perfor-
mance of multiple open source search engines. Middleton
and Baeza-Yates compared 29 popular open source search
engines in [31]. Their comparison considered many of the
aspects mentioned before, along with precision and recall
performance results on TREC [18] dataset. However, their
analysis is more focused on the indexing section of the search
engine without considering the crawling process at all. In
fact, many of the libraries that they compare are only index-
ing libraries, and not complete search engines (i.e. Lucene).
Another experiment on indexing with open source search
libraries was performed in 2009 on data from Twitter [39].
This experiment was conducted on small data which doesn’t
test the scalability of the indexer. Similar to the study by
Middleton and Baeza-Yates [31], [39] doesn ot take into con-
sideration the crawling task of the search engine.

3. ARCHITECTURE AND IMPLEMENTA-
TION

Our design must include the most important parts of a
search engine, a crawler and the index engine. YouSeer’s ar-
chitecture is presented in Figure 1. While most of YouSeer’s
components can be substituted with equivalent open source
components, we describe the architecture and the implemen-
tation using the components we deploy, without loss of gen-
erality of the approach.

Figure 1: YouSeer Architecture.

The framework is implemented in Java and the interfaces
are in JSP.

3.1 Crawler
A web crawler is a software that downloads documents from
the web and stores them locally. The process of downloading
is sequential where the crawler will extract the outgoing links
from every downloaded document and schedule these links
to be fetched later according to the crawling policy.

The Internet Archive’s crawler, named Heritrix [32], was
chosen as a web crawler for YouSeer. Heritrix serves as good
example of embedding any web crawler into a search engine
since it dumps the downloaded documents to the hard disk
in the Warc format, which in 2009 became the standard for
archiving web content[1]. By default, Heritrix writes the
downloaded documents into compressed ARC files, where
each file aggregates thousands of files. Compressing and ag-
gregating the files is essential to keeping the number of files
in the file system manageable, and sustaining lower access
time.

Heritrix expects the seed list of the crawl job to be entered
as a text file along with another file that defines the crawling
policy. Then the crawler will proceed by fetching the URLs
in the seed list and write them to ARC/Warc files. This
process can be assumed to be the standard workflow of any
web crawler, thus the integration of Heritrix can be used as
example on how to integrate almost any web crawler into a
search engine.

Heritrix provides flexible and powerful crawling options that
make it ideal for multiple focused crawling jobs. These fea-
tures include the ability to filter documents based on many
deciding rules such as regular expressions, file types, file
size, and override the policies per domain. The ability to
tune the parameters of connection delay, and control the
max wait time along with number of concurrent connections
are advantageous when crawling for a vertical search engine.
Despite the lack of support for parallel crawling on multiple
instances, Heritrix is continuously being used at the Internet
Archive to crawl and archive the web which can be argued
to be the largest crawl ever to be conducted using an open
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source crawler. While teaching a search engine class, stu-
dents have preferred using heritrix over other open source
crawlers such as Nutch because Heritrix provides an easy to
use web interface to run crawling jobs, and for the richness
of the features and the detailed control of the parameters
which the students can specify. This helped the students
grasp the challenges of crawling the web, while at the same
time gave them the chance to monitor how the crawl job is
progressing and what parameters they need to change.

Besides the web crawler, YouSeer implements its own local
hard drive harvester. This allows it to function as a desktop
search engine as well. The crawler runs in a breadth-first
manner, starting at a certain directory or network location
iterating over the the files and folders inside that folder. This
would complement our assumption in the framework that
crawlers should produce Warc files, as the local file harvester
would enable YouSeer to index documents mirrored onto the
file system by different crawlers that do not produce Warc
files.

3.2 Indexer
YouSeer adopts Apache Solr for indexing, which provides a
REST-like API to access the underlying Lucene index. Deal-
ing with an indexing interface with a RESTful API [26] over
HTTP gives a layer of abstraction to the underlying index-
ing engine, and provides YouSeer with the ability to employ
any indexing engine as long as it provides a REST API [26].
Such an API may be built as a wrapper on top of the ex-
isting non-web API. Thus, the indexing engine in YouSeer
is just a URL with the operations that the index provides.
These operations are typically: index, search, delete, and
optimize.

Besides the native features of Lucene, Solr provides addi-
tional features like faceted search, distributed search, and
index replication. All these features combined with the flex-
ibility to modify the ranking function makes a good case for
adopting Solr as indexer. In addition, Solr is reported to be
able to index 3 billion documents [38].

YouSeer distribution deploys two instances of Solr, one for
web documents and another one for files crawled from the
desktop. The separation between the instances can be achieved
either by having two standalone Solr instances, or two cores
deployed on the same instance. Cores are methods for run-
ning multiple indices with different configuration in the same
Solr instance. By default one core is configured to index
content from the web, and the other core is used to index
documents on the file system. In the case of multi-core solr,
users maintain a single Solr instance, while having the abil-
ity to tune each index independently. This becomes a need
as field numbers for web content differs from file-system con-
tent. More importantly, the ranking of web documents may
be far more complicated than ranking file-system content.
Since YouSeer is only aware of the URL of the core (a core is
treated just like a dedicated index), it can be easily modified
to use a dedicated index instead of a core in case the number
of documents scales beyond what a single core can handle.
Furthermore, Solr distributed search techniques can be used
to replace a core when the number of documents grows be-
yond the capabilities of a single machine. This seamless

transition is made possible because all the different distri-
butions of the index (cores, standalone, distributed) provide
the same RESTful API, and the ingestion module along with
the query interface only care about the server URL without
knowing the specific implementation of the server.

3.3 Database
A search engine occasionally needs to store some information
in a database. Such information can be for reporting pur-
poses, or needed for performing certain operations. YouSeer
uses a database for three reasons: (1) keep track of success-
fully processed Warc/Arc files in order to avoid processing
them again, (2) for storing metadata about cached docu-
ments, and (3) to log errors during ingestion. YouSeer uses
MySQL as DBMS server, however SQLite was proved to be
suitable for small to medium level datasets. YouSeer inter-
acts with the database through JDBC, hence it can adopt
any DBMS that has a JDBC driver.

3.4 Extractor
Search engines need to handle files in multiple formats rang-
ing from simple html pages to files with rich content like
Word and PDF along with audio and video. Apache TIKA
[19] empowers YouSeer with the ability to extract metadata
and textual content from various file formats such as PDF,
WORD, Power Point, Excel Sheets, MP3, ZIP, and multi-
ple image formats. Tika is currently a standalone Apache
project that supports standard interface for converting and
extracting metadata from popular document formats. While
YouSeer ships coupled with Tika, it’s still fairly straightfor-
ward to replace it with other converters as needed.

3.5 Ingestion Module
The ingestion module is where the crawled documents get
processed and are held to be indexed. The Warc/Arc files
are processed to extract the records containing individual
documents and the corresponding metadata. Documents of
predefined media types are passed to multiple extraction
modules such as PDFBox to extract their textual content
and metadata. The user specifies the mime types she is
interested in indexing by editing a configuration file that
lists the accepted mime types. The extracted information
is later processed and submitted to the index. This module
also stores the document’s metadata into the database and
keeps track of where the cached copy is stored.

The ingestion module is designed in a such a way that differ-
ent extractors operate on the document, after that each ex-
tractor emits extracted fields, if any, to be sent to the index.
By default the Extractor class provides all the out of the box
extraction and population for the standard fields of the index
such as title, url, crawl date and others, while CustomEx-
tractor is left for the end user to implement. CustomEx-
tractor is called after Extractor giving the user the ability
to override the extracted fields, and extract new fields. This
approach makes it easy for the users to implement their own
information extractors. For example, while building a search
engine for a newspaper website, the customer asked for pro-
viding search capability based on the publication date. The
publication date could be extracted from the URL as the
newspaper formats its URL as follows:
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www.example.com/YYYY/MM/DD/article.html

To achieve this, we implemented the CustomExtractor class
of the ingestion module so that it would extract the infor-
mation from the URL and append the extracted date to the
xml file which is to be sent to the indexer.

3.6 Query Interface
YouSeer has two search interfaces basic and advanced that
provide access to the underlying Lucene index. The basic
interface is similar to most search engines where users enter
a simple query term before the relevant links are returned.
The advanced search provides search fields for each search-
able field in the index and allows the users to set the ranking
criterion. Query suggestions, aka auto-complete, are dis-
played for the user while inputting the query terms. These
suggestions are generated offline by extracting the word-level
unigram, bigram, and trigram of terms in the index. When
enough query logs are accumulated, they can be used for
query suggestions instead of the index terms.

Furthermore, queries are checked for misspellings using the
terms in the index instead of a third party dictionary. This
would be suitable in the case of vertical search engines that
deal with special domains terminologies.

Since the index is accessed through a REST web service,
the query interface receives the query terms from the user
and send an HTTP request to the index. The REST API
provides a level of abstraction for the interface to communi-
cate with multiple types of indices as long as they provide a
similar API.

Along with the query interface, YouSeer provides an admin
interface from which users can launch new ingesting jobs and
track the progress of previously started jobs.

3.7 Documents Caching
Accessing older versions of some documents, or being able
to view them while their original host is down, is consid-
ered an advantage for a search engine. The caching module
keeps track of the different versions that have been crawled
and indexed of a document. As documents are stored into
Ward/Arc files, the relative location of the containing Warc
file is stored in the index along with the documents fields.
In addition to the surrogate file name, the index would con-
tain the offset of the file within the Warc file. The offset is
needed because Warc and Arc files can only be read sequen-
tially. The Warc/Arc files are mounted on virtual directory
on the web server, therefore they can be accessed over the
network allowing them to be located on a different location
than the server or the crawler.

When the user requests a cached version for an indexed doc-
ument, the caching module locates the containing Arc/Warc
file and seeks to the beginning of the document’s record read-
ing it and returning content to the user. If the requested file
is not an HTML document, the module can convert DOC,
PDF, PPT, XLS format and other formats into HTML.

YouSeer caching module provides integration with Google
Docs preview, so that cached documents can be viewed as a

Figure 2: Cache Architecture

Google document on the fly. The feature works on supported
formats only, like PDF, Doc, and PPT. This allows users
to quickly view rich media documents without the need to
download them. Figure 2 shows the workflow of the caching
module.

4. WORKFLOW
In this section we present an overview of how the whole
system works. A typical job starts by scheduling a crawl
task on Heritrix. First the seed URLs are provided and the
rest of the parameters are defined. These parameters include
the max-hop, max file size limit, max downloaded files limit,
and other crawl politeness and request-delay values. The
crawler proceeds by fetching the seed URLs, extracting their
outgoing links, and scheduling these links for an in breadth-
first crawl. As part of the parameter specification, the user
chooses the format by which the crawled results are written
into. The default is Arc, but other file formats such as Warc
or simply mirroring the fetched documents on a hard drive
are available. Converting the Arc files into Warc format
can be accomplished through command line tool. Should
the user keep the format as Arc, the downloaded documents
are combined and then written to a single compressed ARC
file [32], which is in this case limited to 100MB. Along with
every document, Heritrix stores a metadata record in the
compressed file.

The ingestion module, which is the middleware between the
crawler and the index, waits for the ARC/WARC files to be
written and then iterates on all the documents within the
ARC file processing them sequentially. The ingestion pro-
cess does not necessarily wait for the crawler to terminate,
rather it keeps polling for new files to be written so it can
process them. The middleware extracts the textual content
from the HTML pages and the corresponding metadata cre-
ated by Heitrix. For rich media formats such as Word, PDF,
Power Point, YouSeer converts the document into text us-
ing Apache TIKA. The output of the middleware is an XML
file containing the fields extracted from the documents. The
URL of each document serves as the document ID within
the index.

Each ingestion plug-in contributes to building this XML file
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by appending its result as an XML tag. The URL of the
ARC file, and the offset of the document within the ARC
file are appended to the XML file to expedite retrieval.

The resulting XML file from the processing is posted to the
index. After processing all the documents within a single
ARC file, the middleware commits the changes to the index
and marks the ARC file as processed. While indexing, the
word-level n-grams are extracted and added to the query
suggestion module.

5. EXPERIMENTS
We perform a number of experiments to measure the perfor-
mance of our proposed framework. The experiments entail
crawling the web by focusing on a set of seed URLs then
processing the crawled documents in the ingestion module
before they are indexed.

In the first experiment, we aim at creating a search engine
for the OpenCoursWare , OCW, 1 courses. We compile a
seed list of 50 English speaking universities and crawl the
seeds with Heritrix 1.14.4. We set a limit of 100,000 to the
maximum number of files that can be downloaded. The
job finished after reaching 100,000 documents in 4 hours
and 17 minutes running 50 threads. We used an out of the
box configuration for Heritrix, and only modified the max
number of documents to be fetched. The size of the data
crawled by Heritrix was 15 GB compressed into ARC files.
For comparison, we use Nutch 1.5 to crawl the same seed list.
Similar to Heritrix, we used 50 threads for crawling and keep
the rest of the configurations to their default values. We
limited the hops to 5 and specify the topN value at 20,000.
topN controls the maximum number of pages that can be
downloaded at each level of the crawl. This should limit the
entire crawl to roughly 100,000 pages. The job terminated
after 9 hours, and downloaded 42806 documents. The size of
the entire crawl files was 838 MB, including segments, linkdb,
and crawldb. We guess that Nutch prioritized crawling small
HTML documents over PDF and PPT files.

For both YouSeer and Nutch, we used Apache Solr 3.6 as an
indexing engine. We start by running Nutch solr indexer,
and monitor the process using Sysstat [27], which is a pop-
ular tool for monitoring system resources and utilization on
Linux. As Nutch does not allow specifying the number of
threads for ingestion, unlike YouSeer, we started the inges-
tion command and monitored the threads long with mem-
ory and CPU usage through Sysstat. We recorded 16 active
threads ran that under Nutch process during ingestion. The
entire ingestions and indexing process took 3.35 minutes,
that is 199 URLs/second and around 3.8 MBs/second. On
the other hand, since YouSeer allows controlling the number
of ingestion threads, we used the same number of threads as
reported by Sysstat. YouSeer middleware took 15 minutes
to process the 100,000 documents. That is 111 URL/second
and around 16 MBs/second. Table 1 summarizes the results
for OCW search engine experiment. The CPU and memory
usage represent the max usage as captured by Sysstat. The
machine on which the experiments was ran is Dell worksta-
tions with 2 dual core processors and 4 GB of memory. The
CPU usage is normalized by the total number of CPUs.

1http://www.ocwconsortium.org/

Table 1: Comparison of different parameters for in-

gesting and indexing OpenCourseWare content

Parameter YouSeer Nutch

# docs 100,000 42806
Size 15 GB 838 MB
CPU 0.81% 0.25%

Memory 37.44% 14.37%
Time in minutes 15 3.35
URL / Second 119 199

MB / Sec 16 3.8

This experiments shows how YouSeer framework can in-
gest larger amount of data per second. And since Heritrix
crawl jobs can run faster, plugging in different components
of search engines seems to yield faster turn around time and
larger processing power supporting our idea of utilizing dif-
ferent open source components rather than building all the
pieces of a search engine.

In another experiment, we crawled for 20 million documents
with 50 threads, this job took less than 40 wall clock hours.
One million documents of multiple formats (pdf, html, ppt,
doc, etc.) were indexed in less than 3 hours. These experi-
ments were conducted on a Dell server with 8 processors, 4
cores each and 32 GB RAM, running linux.

6. CONCLUSION AND FUTURE WORK
We described the architecture of YouSeer, a complete open
source search engine. The approach used for building YouSeer
can be extended to support constructing powerful search
tools by leveraging other open source components in such
a way that maximizes usability and minimizes redundancy.
YouSeer a natural fit for vertical search engines and to the
enterprise search domain. It also serves as pedagogical tool
for information retrieval and search engine classes. The ease
of use and flexibility of modification makes adoptable for
research experiments. Our experiments shows that YouSeer
can be more effective that other complete open source search
engines in certain scenarios.

We enumerated the list of open source libraries that the sys-
tem uses and introduced a middleware to coordinate these
modules. The current version of YouSeer is hosted on Source-
Forge and a virtual appliance box is available for download
to eliminate the installation overhead.

In the future, we plan to introduce modules to parallelize the
processing and take advantage of the MapReduce paradigm.
We also look forward to investigating security models that
would protect the data from being access by unauthorized
users. Currently we rely solely on the web server and the
operating system to provide security mechanisms.
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ABSTRACT
Building an efficient and effective search engine requires
both science and engineering. In this paper, we discuss the
ATIRE search engine developed in our research lab, and
both the engineering decisions and research questions that
have motivated building ATIRE.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing – Indexing methods; H.3.3 [Information
Storage and Retrieval]: Information Search and Retrieval
– Search process

General Terms
Algorithms, Performance

Keywords
Indexing, Storage, Efficiency, Pruning, Procrastination

1. INTRODUCTION
Information retrieval has been a hot research topic for decad-
es due to the need to quickly and accurately answer users’
queries across very large document collections, for example
the web. Building such an efficient and effective search en-
gine involves not only science but also engineering. Science
provides a range of algorithms for fast searching and better
ranking, and engineering is required so that systems can be
tuned to their optimal performance.

There are a number of existing search engines, both pro-
prietary and open-source, for example, Google, MG and
Apache Lucene. However, we have built a new search en-
gine called ATIRE from the ground up, to ensure we have a
fast robust baseline in order to compare new information re-
trieval technologies; and to conduct state-of-the-art informa-
tion retrieval research questions. The ATIRE search engine
is a cross-platform search engine — running on Windows,
Linux and Mac OSX — written in C/C++, with tradition-
ally non-interoperable sections hand-coded to avoid the use
of a third-party abstraction layer.

The questions we want to address are:

• How to build a fast indexer: It is very challenging
to build a fast indexer due to the complexity of how

The copyright of this article remains with the authors.
SIGIR 2012 Workshop on Open Source Information Retrieval.
August 16, 2012, Portland, Oregon, USA.

much work is involved. Our indexer is multi-threaded
with a unique pipeline methodology. We also imple-
mented a memory management subsystem in the in-
dexer for fast memory allocation. The indexer also
supports the merging of multiple indexes into a single
index.

• What is the most efficient structure for the in-
verted index? The full structure of the inverted in-
dex is rarely discussed in the literature, previous dis-
cussions have only discussed the techniques used for
index representation [34]. In this paper, we discuss
how we engineered our index structure.

• How to search efficiently without sacrificing ef-
fectiveness? We have been working on the optimisa-
tion of the term-at-a-time approach for query evalua-
tion and for future work this will be used as a baseline
for comparing various pruning algorithms; and com-
paring between term-at-a-time and document-at-at-a-
time processing.

• Does term proximity work? We question whether
term proximity and phrase searching are effective un-
der current evaluation methodologies.

• Other research questions? There are a number
of other research questions we intend to address in
future work: generalisation of our fusion of ranking
functions such as BM25 and PageRank; an exploration
into the juxtaposition between diversity and relevance
feedback; and fully distributed indexing and searching.

2. FAST INDEXING
The experiments and results shown were conducted on a col-
lection of standard collections from both INEX and TREC
forums, as described in Table 1. The experiments, with the
exception of ClueWeb09 collections, were conducted on a
dual quad-core Intel Xeon E5410 2.3GHz, DDR2 PC5300
9GB main memory, Seagate 7200RPM 500GB hard drive,
and running Linux with kernel version 2.6.30. The ClueWeb-
09 collection experiments were performed on an quad cpu
AMD Opteron 6276 2.3GHz 16-core, 512GB PC12800 main
memory, 6x 600GB 10000 RPM hard drives, and running
Linux with kernel version 2.6.32.

In order to produce an index quickly, the indexer in ATIRE
uses several optimisations and a unique pipeline procedure
based on the producer/consumer model.

The main optimisation that ATIRE uses when indexing
is the use of an internal memory management system that
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Size Words
Collection Collection Index % Documents Unique Total

Wall Street Journal [14] 517MB 64MB 12.4% 173,252 229,514 84,881,717
WT10g [4] 10GB 837MB 8.4% 1,692,096 5,512,114 1,348,119,626

2009 INEX Wikipedia [29] 50.7GB 1.6GB 3.2% 2,666,190 11,874,077 2,341,271,195
WT100g/VLC2 [16] 100GB 7.1GB 7.1% 20,616,457 25,250,355 12,690,145,498

.gov2 [9] 400GB 12GB 3% 25,205,179 40,641,599 32,573,784,848
ClueWeb09 Category B 1.5TB 32GB 2% 50,220,423 96,298,556 71,319,689,402
ClueWeb09 Category A 12.5TB 503,903,810

(excl. 70% spam) 3.8TB 76GB 2% 150,954,279 127,651,335 189,731,940,667

Table 1: Summary of Collections Used

Memory Manager Indexing Time (mm:ss)
System 14:18
ATIRE 10:37

Table 2: Indexing times for INEX 2009 Wikipedia
collection across four .tar.gz files with different
memory managers

requests large blocks of memory from the system and di-
vides this up as necessary, this overhead can be measured
by compiling without this intermediate manager and using
the system memory management. This optimisation alone
reduces the time taken to index the 2009 INEX Wikipedia
collection by one-third, as shown in Table 2, these times are
taken from a single run, with disk caches flushed between
runs, but are indicative of typical performance.

The indexing pipeline that ATIRE uses internally is unique
among open-source search engines. The pipeline consists of
a group of parallel producer/consumer inspired objects that
either deal with streams of data, or file-like objects that are
created from these streams. Each step in the pipeline is
focused on only performing one operation on the passed-
through data, minimising the amount of inspection per-
formed at each step.

These different stages in the pipeline can be combined
quickly and efficiently to allow new types of content to be
indexed. For instance, an existing object that un-tars, and
an object that un-gzips can be combined to allow the index-
ing of .tar.gz files.

Objects in the pipeline are allowed to perform secondary
functions, for instance, compressing the original document
and including it within the index (for post-processing such
as focused retrieval and snippet generation). The input
pipeline allows the indexer to filter out documents, such
as those identified as spam, and a best-effort attempt to
clean incoming data to negate any pre-processing of docu-
ment collections that might otherwise be necessary. This
is motivated by our underlying philosophy that the indexer
should be able to index any standard test collection out of
the box without any pre-processing.

At the end of the pipeline each document is indexed sep-
arately and folded into the overall index. This, combined
with the indexing pipeline, allow documents to be indexed
completely in parallel on a single computer.

The effect that parallel indexing has on the indexing time
is shown in Table 3. The times shown are from a single run,
with disk caches flushed between experiments, but are typi-
cal times experienced. This table shows that as the number

Number Input Files
(.tar.gz format) Indexing Time (mm:ss)

1 19:35
2 11:47
4 10:37

Table 3: Indexing times for INEX 2009 Wikipedia
collection with varying number of input files

Input Format Indexing Time (mm:ss)
.tar 10:35
.tar.gz 10:37
.tar.lzo 10:09
.tar.bz2 19:10
File count 5:40
Extracted line count 6:54
Individual files 64:30

Table 4: Indexing times for INEX 2009 Wikipedia
collection under various compression schemes across
four files

of files increases, and our ability to index these files in paral-
lel increases with it, that the total time to index is decreased.

This leads us to believe that our indexer is approaching
the point where indexing is bound by decompression time.
Indexing times for the INEX 2009 Wikipedia collection when
split across four files are shown in Table 4, with the time to
index the individual extracted files shown for comparison,
as a clearly input bound operation (probably by the ability
to open and close files). We are pleased to notice that we
have already crossed the point at which we take less than
twice the time as simply counting the number of files within
the tar file. We also show the total time taken to count the
number of lines in extracted files as a target to aim for. We
have not yet tuned the number of threads our indexer uses
against the number of cores in the machine.

The ATIRE search engine defines a word to be a sequence
of characters or numbers, where a character or number is de-
termined by the unicode specification. We currently assume
that input is in UTF-8 format, and can process encoding er-
rors that may be encountered such as missing continuation
bytes. The input is decomposed, normalised and lower-cased
following the unicode specifications. ATIRE supports CJK,
and includes chinese segmentation, and has been used in ex-
periments at NTCIR. Currently ATIRE does not support
entities such as &aacute; and ignores any processing direc-
tives contained within the document, except for comments.
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ATIRE Search Engine Index File\n\0\0

Compressed Collection (Optional)

PositionPrefix PositionPrefix PositionPrefix

...... ...... ......

Footer

Postings Lists

Vocabulary

Term Block

Term Root

Figure 1: The overall structure of the index file

ATIRE performs all indexing in memory on a single ma-
chine, although distributed indexing is being investigated.
To work around this limitation, ATIRE also includes a tool
to combine previously generated indexes with minimal mem-
ory overhead. By processing each indexed term separately
the merge tool only requires enough memory to contain the
merged postings list, and to maintain the first level of the
dictionary structure described below. This allows the in-
dexing of collections that otherwise could not be indexed on
commodity hardware, for example the ClueWeb09 Category
A collection.

3. INDEX STRUCTURE
The ATIRE search engine generates a single index file that
consists of multiple distinct sections. By restricting the in-
dex to a single file we minimise the likelihood of a user not
having all parts of the index at search time.

The first few bytes of the index file contain the string
ATIRE Search Engine Index File\n\0\0, so that the file
type can be identified by a person using the command head

-n 1. A diagrammatic overview of the index structure is
shown in Figure 1.

The first section of the index file is optional, and contains
the compressed original documents in the collection. This
feature allows for, among other things, focused retrieval and
snippet generation. The location of each compressed docu-
ment is stored in a special term inside the index.

The second section of the index file contains the postings
lists for each of the terms. Traditionally postings lists are
stored as a sequence of 〈docid, term frequency〉 pairs, or-
dered by docid. In the ATIRE search engine we instead sort
on term frequency first [26, 27], then for each term frequency
we store the docids in a difference encoded list, terminated
with a 0. This ordering on term frequencies first is referred
to as impact ordered.

The ATIRE search engine supports the use of precom-
puted quantised impact scores, where instead of storing the
term frequency values we instead precompute the RSV for
each term with respect to each document after indexing is
complete [1].

In order to better compress these numbers, they are quan-
tised into integers using the Uniform method [1], which pre-
serves the original distribution of numbers, so no additional
decoding is required at query time [23, 1]. In the ATIRE

Docid Docid ... 0Impact Docid 0 ...Impact

Compression Scheme

1 Postings

Comrepessed

Figure 2: The structure of a postings list

14 484 44 4

...

Terms in Block

Collection Frequency

Document Frequency

Position On Disk

Postings Length

Impacted Length

Max Impact

Suffix Position

Term SuffixTerm Suffix Term Suffix ...

Figure 3: The structure of a vocabulary leaf

search engine, these values are scaled to 1–255, so that they
may be stored in one byte.

Storing the postings lists in this impact ordered format
can be thought of as a form of compression, as fewer inte-
gers need be stored. In the worst case where every impact
value is used, then in an impact ordered format, D + 510
integers need to be stored (due to scaling, quantisation and
list termination), as opposed to 2D, where D is the number
of documents that contain the term.

We refer to each list of docids for each impact value as a
quantum. Each quantum is stored as a difference encoded
list, and the entire impact ordered list is then compressed.
The ATIRE search engine is capable of compressing postings
lists using different compression schemes (carryover 12, elias
delta, elias gamma, golomb, none, relative 10, sigma, simple
9, and variable byte) to minimise the disk space taken by the
index. By default, however, ATIRE uses variable byte com-
pression. A diagrammatic representation of this structure is
shown in Figure 2.

The third section of the index contains the vocabulary
structure that holds all the terms that have been indexed.
By default, the ATIRE search engine uses the embedfixed al-
gorithm [18] to store vocabulary terms since this algorithm
provides a good trade-off between storage space and lookup
time. The embedfixed algorithm stores the vocabulary in a
two level B-tree structure. The first level of which contains
the unique first four character prefixes of terms in the vo-
cabulary. Each leaf node in the second layer contains the
suffixes of those terms that share the common prefix of the
parent node. In essence, it is a form of front-encoding that
can be searched efficiently.

As well as storing terms in the vocabulary, a number of
variables are also required for each term; they are collection
and document frequencies used for ranking purposes, loca-
tion of the postings list stored on disk and the list length
used for retrieval of the postings from disk. These variables
are stored in the leaf nodes of the vocabulary B-tree.

Aside from these variables associated with each term, ex-
tra variables are introduced for each term: the postings length
holds the compressed length of the postings list; the im-
pacted length variable stores the number of integers in the
decompressed postings list. These values allow our decom-
pression routines to take the form “decompress n integers
from this pointer”, and by identifying the longest decom-
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pressed postings lists (which is stored in the file footer), al-
locate a single buffer for decompression purposes at search
time.

The suffixes for each term inside the leaf node are stored
as a null terminated set of strings at the end of the leaf node
block. For this reason the suffix position variable identifies
where in this block of suffixes the suffix for this individual
term begins. The local max impact holds the maximum im-
pact value for the term, and is used for early termination
and pruning of query evaluation [26, 27]. Figure 3 shows a
diagrammatic layout of these variables and the number of
bytes assigned to them.

As a further space saving we can store the postings lists
directly in the vocabulary structure for terms that occur ei-
ther once or twice in the collection. This can be done by
re-purposing some of the variables in the vocabulary leaves,
much like a union in the C programming language. How
to process these lists can be determined at run time by ex-
amining the document frequency for the term. It not only
saves the storage space for the postings, but also eliminates
the extra storage needed for the impact header and postings
list header.

The ATIRE search engine has the option of loading in-
dexes completely into memory at search time. In the case
that the index is not loaded completely into memory, the
vocabulary root is loaded into memory, and during query
evaluation is binary searched. The relevant term leaf is
then loaded into memory and binary searched to find the
term details, then the document frequency is checked. This
technique is a form of pre-fetching [20], and saves an extra
disk seek and read. Further details of this method are to be
published at a later date.

Lastly, the index file contains a footer that contains vari-
ables that describe the index, and are used to minimise
the number of memory allocations needed when performing
query evaluations, such as the length of the longest postings
list. These variables are designed to allow the ATIRE search
engine to perform no dynamic memory allocation at search
time. Certain variables that are associated with the index
that are known at indexing time, such as whether the im-
pact values are pre-calculated RSV scores, are stored within
the index itself as special terms.

As shown in Table 1, the ATIRE search engine is capa-
ble of producing compact indexes that are a fraction of the
size of the original collection, the rate of which depends
largely on the ratio between indexable and non-indexable
content. The ClueWeb09 Category A index was constructed
with spam filtering set to discard the 70% most spammiest
documents, as suggested by Cormack et. al. [10], with the
number of documents included in the index shown in brack-
ets in Table 1.

Table 5 shows some comparisons for indexing and search-
ing times across the ClueWeb09 Category A and B collec-
tions. Each index was constructed without quantisation and
searching was performed using a single thread, with none of
the optimisations discussed below, across queries 101–150.

4. QUERY EVALUATION
There are two main query evaluation methods used in infor-
mation retrieval systems, document-at-a-time and term-at-
a-time processing. The document-at-a-time approach com-
pletely evaluates one document at a time before moving
to the next, while the term-at-a-time approach process one

Index Search
Collection Time Time MAP

(hh:mm:ss) Per Query

ClueWeb09 Cat. B 4:10:20 11.9s 0.1216
ClueWeb09 Cat. A 20:30:38 30.7s 0.1028
(excl. 70% spam)

Table 5: Comparison of timings for indexing and
searching across the ClueWeb09 collection

query term at a time.
There are advantages and disadvantages to the two ap-

proaches; (1) term-at-a-time requires an array of interme-
diate accumulators (one for each document) to hold the
accumulated results between the evaluation of each term,
while document-at-a-time only needs to hold the top n doc-
uments (where n is the number of documents to return).
Turtle & Flood [33] state that document-at-a-time is more
cost efficient than term-at-a-time based on the assumption
that the intermediate accumulators are stored on disk. They
state that the performance of the two methods would be
equivalent if the accumulators could be stored in memory.
(2) Document-at-a-time requires a random scan of post-
ings lists for all the query terms in order to fully evaluate
a document. This scan takes time especially if all post-
ings lists cannot be held in memory. Skipping [21] and
blocking [22] were introduced to allow pseudo-random ac-
cess into postings lists. However, there is an extra overhead
to build skipping and blocking, and the index size increases.
Broder et al. [6] addressed this random scan problem by
introducing a new document-at-a-time query processing al-
gorithm called WAND which can smartly skip some unnec-
essary postings for fast scanning. Ding & Suel [12] further
extended the WAND algorithm and introduced Block-Max
WAND which can further skip more unnecessary postings.
The skipping criteria for both of the algorithms are based
on the runtime calculation of current thresholds of the max-
imum impacts for all query terms. (3) Postings lists for
document-at-a-time must be longer because the postings
lists are sorted on doc id and are not impact ordered. (4)
Intuitively, document-at-a-time is more suitable for conjunc-
tive search while term-at-a-time for disjunctive search.

Most criticisms aimed at term-at-a-time approach are to-
wards the requirement of the intermediate accumulators and
the need to sort the accumulators to return the top docu-
ments. However, we believe that it is more difficult to man-
age the memory for all postings lists and efficiently random
scan the postings lists for document-at-a-time. We are not
concluding that term-at-a-time is better than document-at-
a-time, or vice versa. Instead we have built a baseline using
the term-at-a-time approach in the ATIRE search engine
and will use this baseline to compare and investigate the
document-at-a-time approach in future work.

The rest of this section discusses how the issues associate
with the term-at-a-time approach are addressed in ATIRE
for query evaluation.

4.1 Ranking Functions
By default, ATIRE uses a modified BM25 ranking function.
This variant does not result in negative IDF values 1 and is

1We thank Shlomo Geva for this contribution.
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defined as:

RSVd =
∑
t∈q

log

(
N

dft

)
·

(k1 + 1) tftd

k1

(
(1 − b) + b ×

(
Ld

Lavg

))
+ tftd

Here, N is the total number of documents, and dft and
tftd are the number of documents containing the term t and
the frequency of the term in document d, and Ld and Lavg

are the length of document d and the average length of all
documents. The empirical parameters k1 and b have been
set to 0.9 and 0.4 respectively by training on the INEX 2008
Wikipedia collection.

There are a number of other ranking functions supported
in ATIRE as well, for example: Bose-Einstein GL2, Diver-
gence from randomness, Terrier DPH and DFRee, Language
Models, and Pregen [30].

4.2 Pruning
The processing (decompression and similarity ranking) of
postings and subsequent sorting of accumulators can be com-
putationally expensive, especially when queries contain fre-
quent terms. Processing of these frequent terms not only
takes time, but also has little impact on the final ranking
results. Postings pruning is a method to eliminate unnec-
essary processing of postings and provide partial scores for
top-k documents. Postings pruning can be done at either
index time or query time. Pruning at index time reduces
the physical size of the index file [8, 25, 5]. However it is a
lossy compression; pruned postings are not kept for access
at query time.

Pruning at query time does not modify the index, but
prunes postings at run-time during query evaluation. It al-
lows different criteria at query time to be applied to keep
track of top k documents. A number of pruning methods
have been developed and proved to be efficient [7, 15, 24,
21, 32, 27, 1, 31, 17, 19]. ATIRE supports both pruning at
index time and at query time, and pruning at query time is
discussed in this section.

In ATIRE, the heapk pruning algorithm [17, 19] is used
to keep track of the top-k documents. There are two stages
in the algorithm. The first stage is the initialisation stage,
as shown in Algorithm 1. N is the number of documents
in the collection. top k is the number of top documents
(specified as a command-line parameter) to be returned.
result list keeps track of the number of current top can-
didate documents during evaluation. acc is the accumulator
array which hold the intermediate similarity scores for each
document. heapk is an array of pointers which will be used
by the minimum heap to keep track of current top docu-
ments. top bitstring is an array of bits (one bit for each
document) to track if the document is marked as one of the
top candidate documents.

Algorithm 1 Heapk Initialisation

Require: N > 0 and lower k > 0
1: N ← total documents in collection
2: top k = lower k
3: result list = 0
4: acc← new array[N ]
5: heapk ← new array[N ]
6: top bitstring ← new array[N ]

The second stage is the update stage, shown in Algo-
rithm 2. There are four steps. First (lines 1 to 3), the score

is updated for the accumulator. Second (lines 4 to 12), if
the number of the current top candidate documents is less
than the required (result list < top k), it means the heap is
not full. A new document (if old value = 0) can be simply
added to the heap and the corresponding bit is set. When
the heap is full (result list = top k), it is required to build
the minimum heap on the heapk array. Third (lines 13 to
14), if result list is no less than top k and the current doc-
ument is marked as set (top bitstring[index]), it means the
document which is already in the top gets updated. Updat-
ing one of the top document could violate the properties of
the minimum heap. It is necessary to call min update() to
partially fix the heap. Last (lines 15 to 18), if result list is
no less than top k and the score is greater than the smallest
score in the heap (which is heapk[0]), it means the docu-
ment, which was not in the top, should now be inserted into
the top to replace the smallest score. The bit of the smallest
document in heap should be unset. The new document is
inserted into the heap by calling min insert.

Instead of repeatedly re-building the minimum heap for
update and insertion operations, two special functions are
implemented for efficiency optimisation. Every time one of
the top candidate documents gets updated, the min update()
function is called. It first linearly scans the heapk array to
locate the right pointer and then partially traverses down
the subtree of the pointer for proper update of the mini-
mum heap. The linear scan is required because the mini-
mum heap is not a binary search tree. Every time a new
document is going to be inserted into the minimum heap,
the min insert() function is called. It first replaces the doc-
ument with the smallest score and then partially traverses
down the tree for proper update of the minimum heap.

Algorithm 2 Heapk Update

Require: index ≥ 0 and score > 0
1: old value← get the current value of acc[index]
2: acc[index]← acc[index] + score
3: new value← get the current value of acc[index]
4: if result list < top k then
5: if old value = 0 then
6: heapk[result list]← address of acc[index]
7: result list← result list + 1
8: set the bit of top bitstring[index]
9: end if

10: if result list = top k then
11: build the minimum heap on heapk
12: end if
13: else if top bitstring[index] is set then
14: min update() to update the heapk
15: else if new value > the value of heapk[0] then
16: unset the bit of top bitstring[heapk[0]]
17: min insert(acc[index])
18: set the bit of top bitstring[index]
19: end if

The value of lower k can be specified from command-
line, used to tell the heapk pruning algorithm how many top
documents to keep track of.

The performance of the heapk pruning algorithm was in-
vestigated in INEX 2010 and the results showed that the
algorithm is not only CPU cost efficient but also effective.
For details of the experiments and results, see our previous
work [17].
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4.3 Accumulator Initialisation
The term-at-a-time approach uses a number of accumula-
tors, usually as a static array, to hold the intermediate ac-
cumulated results for each document. For large collections,
there can be a large number of accumulators and it takes
time to initialise them. One way to avoid this problem is to
use few accumulators allocated using dynamic search struc-
tures [24, 21]. However, dynamic structures require more
memory space for each accumulator. For example, a bal-
anced Red-Black tree structure [11] uses about 20 and 32
bytes for each accumulator on 32- and 64-bit architectures
respectively. Compared with only 4 bytes required in a static
array, only 20% for 32-bit (12.5% for 64-bit) or less of the
total number of accumulators should be allocated, other-
wise the Red-Black tree structure uses more memory than
a static array.

For ATIRE, a new efficient accumulator method has been
developed. It not only keeps tracks of the top candidates
(using the heapk algorithm) but also updates the less im-
portant accumulators. This allows initially low scoring can-
didates be to among the top ones at the final stage. The
method uses two static arrays. One array is used to hold
all accumulators (one for each document) and the other to
hold a number of flags. Every flag is associated with a par-
ticular subset of the accumulators, indicating the initialisa-
tion status for that set of accumulators (either initialised
or not). Essentially, we turn the one dimensional array of
accumulators into a logical two dimensional table as shown
in Figure 4. The dimension of the table is defined by height
and width, and the number of the flags is the same as the
height of the table.

0
1
1
0

Height

Width

Accumulators

Flags

Figure 4: The representation of the accumulators in
a logical two dimensional table

As shown in Algorithm 3, the width of the table has to
be a whole number (at least 2), and the height can be cal-
culated dynamically by referencing the width and the size
of the document collection. Extra accumulators (shown as
padding in the algorithm) are used to fill the gaps when the
number of accumulators is not evenly divisible by the height.
The allocation of the extra accumulators are so that we can
perform block operation on whole rows. The number of ex-
tra accumulators required is usually small (the worst case is
width− 1).

The update operation for the accumulators is shown in

Algorithm 4. First, the index of an accumulator is divided to
locate the logical row of the accumulator. Second, the status
of the row flag is checked and two outcomes can happen; (1)
If the flag has a value of 0, the associated accumulators in
the row are initialised and the new value is then added to
the accumulator. (2) If the flag has a value of 1, the new
value can be simply added to the accumulator.

Algorithm 3 Accumulator Initialisation

Require: width ≥ 2
1: N ← total documents in collection
2: height← (N/width) + 1
3: init flags← new array[height]
4: initialise init flags
5: padding ← (width ∗ height)−N
6: acc← new array[N + padding]

Algorithm 4 Accumulator Update

Require: doc id ≥ 0 and doc id < N
1: row ← doc id/width
2: if init flags[row] == 0 then
3: init flags[row]← 1
4: initialise the row of the accumulators in acc
5: end if
6: acc[doc id]← acc[doc id] + new rsv

In order to find the optimal solution for the width of the
table, a mathematical model for the algorithm was described
and a simulation was performed. For a detailed discussion of
the mathematical model, the experiments and results, please
see Jia et al. [19].

4.4 Quantum At a Time
Instead of the traditional approaches of term-at-a-time and
document-at-a-time, we propose a new query evaluation ap-
proach called quantum-at-a-time. Before the start of a query
evaluation, all the quanta of the query terms are sorted on
their impact values so that the highest impact quanta can
be evaluated first and then the next highest, and so on until
some of the remaining quanta cannot cause a change to the
top-k documents.

The quantum-at-a-time approach is a mixture between
term-at-a-time and document-at-a-time. This new approach
is similar to score-at-time [2, 3] and Block-Max WAND [12].
The differences are that term ranks are used in score-at-a-
time instead of the impact values to sort the quanta, and a
block in Block-Max WAND can have postings with different
impact values and Block-Max WAND is for document-at-a-
time processing.

The quantum-at-a-time approach is targeted for efficient
and effective pruning of postings, and better parallel pro-
cessing of postings lists on multi-core architectures. We will
discuss this work in future publications once we have com-
pleted it.

5. TERM PROXIMITY
ATIRE does not currently support positional indexes. We
have built several search engines in the past and our ex-
periences suggest that positional indexes are not effective
under current academic IR evaluation methods that use a
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binary relevance model. If the precision improvement of a
positional index cannot yet be demonstrated in a recognized
forum such as TREC or INEX then it is difficult to justify
having one.

Our informal reasoning for this is as follows. If the user
enters a two word phrase then for a document to contain that
phrase it must also contain both words. For a document to
contain that phrase many times it must also contain both
those words many times. That is, a document that would
rank highly for the phrase would also rank highly for both
words not as a phrase – and typically they do.

Further, examining the precision-at-1 (P@1) score for both
approaches; if phrase searching is more effective than term
searching then a specific set of conditions must be met: (1)
the term search must not put a relevant document at po-
sition 1, and (2) the phrase search must do so. Simply re-
placing one relevant document with another has no effect on
precision; and nor does replacing a non-relevant document
with another non-relevant document.

The circumstances necessary for an improvement are hard
to meet; but we accept that they can be so. If both words
in the phrase are seen frequently in a document, but never
as a phrase, then phrase searching should increase precision
– in this case the phrase acts as a noise filter. An example
of such a query is “The Who”. A second example is when
all the words are seen but not as the phrase. Again the
phrase acts as a filter. An example of this can be seen when
searching for the musician “Lisa Lisa” on the Apple iTunes
Store.

We believe these examples are pathological and can be
handled by storing n-grams in the vocabulary and welcome
an evaluation forum running a phrase search track. Such an
experiment was conducted at INEX 2009 but was inconclu-
sive (“competitive, but not superior” [13]).

6. RELEVANCE FEEDBACK AND DIVER-
SIFICATION

The ATIRE search engine currently supports the use of
pseudo-relevance feedback. Pseudo-relevance feedback makes
the assumption that the top n returned documents are rele-
vant to the query and inspects those documents to identify
new and relevant keywords.

In ATIRE we use the KL-divergence for terms inside these
top documents to identify the terms which are more likely to
be used inside these top documents than would be expected
by examining the entire collection. These identified terms
are then added to the original query according to Rocchio’s
algorithm [28]. Terms that were added to the query with
this method are given an equal weighting with, and may
duplicate, the original terms. The ATIRE search engine al-
lows for other methods for term selection to be incorporated,
although currently only KL-divergence is supported.

Although we perform relevance feedback by identifying
those terms that are used more frequently in relevant doc-
uments than one would expect, it can be thought of as a
result of clustering the documents on topic. Relevance feed-
back promotes those documents that belong to clusters that
contain documents that have been identified as relevant.

When a search engine is presented with an ambiguous
query, such as “apple”, then it can employ diversification
in order to help maximise the usefulness of the returned re-
sults to the user. Diversification aims to select documents

that are related to different possible interpretations of the
original query (continuing the above example: the computer
company, fruit, record company, etc.) so that each interpre-
tation is given weight according to its likelihood.

One such method for diversification is to cluster the doc-
uments by topic, and then select documents from clusters
that contain no previously selected documents. Currently
the ATIRE search engine does not explicitly diversify re-
sults lists, but this is an active research area for us.

When presented as results of clustering documents, rel-
evance feedback and diversification are juxtaposed against
each other. Each method uses an opposing criteria to se-
lect documents, with diversification exploring cluster-space,
and relevance feedback exploiting it. However, both of these
ideas seem to improve the results.

7. BUT WAIT THERE’S MORE!
In addition to all the above discussed features, the ATIRE
search engine also supports: stemming including Krovetz
and Porter as well as soundex and metaphone; topsig; snip-
pet generation and focused retrieval.

The ATIRE search engine can natively read assessment
formats, evaluate queries against a large number of metrics,
and produce runs for evaluation forums.

8. CONCLUSION AND FUTURE WORK
In future work we aim to change the storage format of post-
ings lists in order to allow quantum-at-a-time processing dis-
cussed earlier in Section 4.4. In order to do this, we need to
identify where each quantum is stored within a postings list,
which will require the use of an impact header. This header
structure is in development and we aim to also include sup-
port for incremental index updates.

With the ATIRE search engine, we have tackled optimi-
sation of the term-at-a-time processing approach in several
areas; (1) The index structure has been optimised. An im-
pact header is created for each postings list for easy ma-
nipulation of those lists (sorted on impact values). (2) The
heapk pruning algorithm is used to keep track of the top-k
documents, thus eliminating the need to sort accumulators.
(3) The cost of the accumulator initialisation has been min-
imised by using the logical two dimensional table.

In future work, we will use this baseline to compare with
the document-at-a-time and quantum-at-a-time approaches.
We will also continue our experiments in relevance feedback,
diversification, focused and snippet retrieval in INEX. We
hope one of the evaluation forums will run term proximity
in the near future.
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ABSTRACT
User queries are becoming increasingly local where people
are interested in what their friends are up to or what is hap-
pening in their local area. Sensors can assist in localised
information retrieval by giving the search engine direct ac-
cess to events happening in the local world. In this paper,
we describe an open source framework to search in real-
time multimedia and social streams. The SMART frame-
work offers a platform to retrieve information from both
the physical world and from people interactions on social
media. Examples where this framework can be useful in-
clude“smart cities”where people can have information needs
such as ‘what parts of the city has live music on and what
do people think about those music events?’. We identify
the challenges of building such a framework and the mo-
tivations behind releasing it as open source software. The
open architecture of the framework brings about possibili-
ties for extending it and deploying it in a wide variety of
novel applications.

Keywords
Social search, real-time search, sensor search, smart cities

1. INTRODUCTION
The internet has grown in the last decade to connect a

large number of sensing devices that can monitor the phys-
ical world such as cameras, microphone arrays, or light sen-
sors. The number of sensors connected to the internet is
magnitudes higher than the number of its users [8]. The
availability of such connected sensors open opportunities to
collect in real-time the status of the physical world and pro-
cess this information to develop novel applications in the
areas of ‘smart’ cities, social networking, surveillance and
security. This has triggered the development of tools and
techniques for searching sensor data [5, 6]. However, these
methods are still largely based on the indexing and search-
ing of previously defined (and usually textual) metadata.
Indeed, while those methods exploit recent advances in sen-
sor ontologies [10] in order to decouple the queries from the
low-level details of the underlying sensors, they cannot pro-
vide effective search over arbitrary large and diverse sources
of multimedia data derived from the physical world.

Moreover, with the emergence of social networks such as
Twitter and Facebook, one can envisage situations where

The copyright of this article remains with the authors.
SIGIR 2012 Workshop on Open Source Information Retrieval.
August 16, 2012, Portland, Oregon, USA.

information stemming from both social and sensor networks
can be combined. In fact, there is a mutual benefit from the
convergence of both sensor networks and social networks.
Social networks can benefit from the fact that human activ-
ity and intent can be directly derived from sensors, which
obviates the needs for explicit user input. For example,
Foursquare1 uses smart phone-based GPS and mapping ser-
vices to enable users to track their friends on the social net-
work platforms. On the other hand, sensor networks could
start their cooperation in a social way (i.e. based on in-
formation derived from social networks) [4]. For example,
think of the query “I want a good restaurant in a place that
is lively now”. To answer this query, we need a system that
can process information about: (i) How lively a location is
right now. Audiovisual crowd analysis can answer that by
providing metadata from processing the signals of the con-
nected sensors. These signals should be processed in real-
time to provide timely information about the status of the
environment in various locations. (ii) How good the vari-
ous restaurants in different areas are. This needs data from
social networks (user-generated content by tagging or “lik-
ing” good places) and/or from the Linked Data cloud (e.g.
restaurant critics) [7].

In this paper, we present our vision for an open source
framework where information stemming from large-scale
inter-connected sensors and social network streams can be
indexed in real-time to facilitate searching the physical world.

2. THE SMART FRAMEWORK
The SMART2 (Search engine for MultimediA enviRon-

ment generated contenT) framework aims to provide an in-
frastructure where multimedia sensing devices in the phys-
ical world can be easily used to provide information about
the status of their environments and make it available in
real-time for search in combination with information from
social networks. The name SMART acknowledges the vi-
sion of “smart cities”.

The architecture of the SMART framework is illustrated
in Figure 1, where four layers are identified. At the lowest
level (physical) we have the sensing devices that provide the
physical world data. The edge node represents the software
layer that processes the raw sensor data to produce meta-
data about the environment, which is streamed in real-time
to the search engine using an appropriate representation
(e.g. RDF). Examples of processing algorithms can include

1https://foursquare.com/
2http://www.smartfp7.eu
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Figure 1: Architecture of the SMART framework

crowd data analysis for video streams and speech recogni-
tion in audio streams. The search layer collects the streams
from the various edge nodes and indexes them in real-time
using an efficient distributed index structure. It also em-
ploys an event detection and ranking retrieval model that
uses features identified in the sensor and social streams to
rank events that are relevant to the user queries. Queries can
be directly specified or anticipated by the search layer using
contextual information about the user, e.g. the user’s loca-
tion or their social profile. Finally, the uppermost applica-
tion/visualisation layer offers reusable APIs to develop ap-
plications that can issue queries to the SMART search engine
and process or visualise the results.

In the next sections, we will discuss in detail the top three
software layers of Figure 1 and the challenges for building
each layer. We then describe our vision of the open source
SMART framework.

3. EDGE NODE LAYER
The edge node is introduced in this section. First, its aims

and challenges are discussed, followed by an example using
crowd analysis for metadata extraction.

3.1 Infrastructure Aims
The edge node is the interface of SMART with the phys-

ical world. Each edge node can cover sensors from a single
geographic area, e.g. a city block or a public square in the
city centre. At the edge node, the signal streams, either from
physical sensors (e.g. audio/visual streams or environmen-
tal measurements), or from social networks, are processed to
extract events of interest. To achieve this, the design of the
edge node is influenced by: (a) state-of-the-art Internet-of-
Things platforms, which typically filter, fuse, combine and
reason over multiple data streams and (b) Linked Data tech-
nologies. The edge node’s architecture is shown in Figure 2.

3.2 Challenges and Research Aims
The data streams collection and processing component

provides a uniform way for interfacing to virtually any type
of sensor and processing. These include perceptual com-
ponents (i.e. the algorithms that attempt to interpret the
streams’ meaning and extract context) running on physi-
cal sensors’ feeds (such as crowd analysis running on video
feeds), as well as social networks filters implemented within
the Social Networks Manager (e.g. sentiment analysis of
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Figure 2: Edge node components

Tweets in the local area of the sensors [1]). This com-
ponent is empowered by a common unified model for the
metadata of the various feeds, which alleviates their het-
erogeneity while also facilitating their management within
the edge node. The approach is similar to that adopted
by the Pachube.com3 platform [3], yet SMART edge nodes
provide support for much richer metadata. The develop-
ment and adoption of a common unified metadata model
for all SMART feeds ensures the openness and extensibility
of the platform in terms of new sensors, perceptual com-
ponents and social networking feeds. The output of this
component is in the form of continuous metadata streams,
which will then need to be processed in real-time. By thresh-
olding a single continuous metadata stream, low-level events
are extracted. The moment the threshold is exceeded, the
low-level event is signalled as active, while the moment the
stream receives a smaller value, the low-level event is sig-
nalled as inactive. The Intelligent Fusion Manager subse-
quently undertakes the rule-driven combination of multiple
low-level events (possibly stemming from different sensors or
perceptual components). This component integrates sophis-
ticated rule engines that facilitate high-level event recogni-
tion on the basis of complex rules over multiple low-level
event streams. A rule engine that leverages event calculus
techniques [2] is being integrated. The reasoning component
leads to a semantic description of the events (i.e. based on
the RDF format), which is in line with work undertaken
in the scope of semantic sensor networks [15]. The Linked
Data component [7] collects data relevant to the edge node
that are available as part of the Linked Data cloud. Hence,
the information available to the search engine is enriched.
For example, it can provide the means for identifying geo-
locations [13] associated with the target events.

The edge node stores all types of metadata (the continuous
metadata streams, the low-level and the high-level events)
in its Knowledge Base using an XML/JSON interface that
complies with the aforementioned unified data model. The
edge node also provides a web service API (RESTful API)
to deliver events to the search engine

3.3 Example Based on Crowd Analysis
Crowds are a main source of events for SMART, especially

in a “smart city” setting where citizens are empowered with

3Pachube.com is now Cosm.com
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Figure 3: SMART continuous metadata and low-

level crowd events as a function of time. Some typ-

ically processed frames are also shown.

knowledge about their environment. At a first level of anal-
ysis, we are interested in quantifying their density, which is
based on an adaptive foreground segmentation. This seg-
mentation is based on a variant of the Stauffer’s algorithm
[14]. Each pixel in the image is modelled as a Gaussian mix-
ture (GMM), which is updated using a spatio-temporally
adapted learning rate [12]. The GMM is then used to de-
cide if the pixel belongs to the foreground by adaptively
thresholding the accumulated sorted weight of the Gaus-
sians. Therefore, the foreground mask is formed and is then
cleaned-up by shadow removal and a morphological clean-
up. The weighted density of foreground pixels gives the
crowd density a continuous metadata stream. Using this
stream, the low-level events related to crowd appearance
or disappearance are easily obtained via thresholding. An
example is illustrated in Figure 3, which shows the crowd
density metric as a function of time. This has three large
peaks, for which the corresponding processed frames indi-
cating the foreground blobs are given. Another frame is an
example of minor activity. The extracted low level metadata
indicating crowded intervals are also shown as labelled hor-
izontal lines. A sample video demonstrating how the crowd
analysis works is available online.4

4. SEARCH ENGINE LAYER
The search engine layer is discussed in more detail in this

section, where we identify its aims and the main challenges
of developing this layer.

4.1 Infrastructure Aims
The SMART search layer indexes in real-time streams of

updates from edge nodes and social networks. It is built
using the Terrier5 open source search engine [11] with en-
hanced real-time indexing and a scalable distributed archi-
tecture to handle the large amount of streams. The SMART
search layer offers an interface to services and end users to
retrieve ‘interesting’ events and associated relevant posts in
the social networks for a given query. While an interest-
ing event is a subjective notion that likely depends on the
application, the search layer can make inferences on inter-
estingness, based on how unusual an event is, and learning
from training examples of interesting events. In other words,
the search engine layer uses the short-term event detection
that is performed in the edge node, e.g. the low-level events

4http://www.youtube.com/watch?v=akkyRu68rqE
5http://terrier.org

detected by the crowd analysis algorithms discussed in Sec-
tion 3.2, to perform unusual event detection across multiple
streams of metadata. The search layer should be capable
of anticipating user queries depending on their context, e.g.
their location or the time of day. The search layer also offers
a web service API (RESTful API) to issue queries and view
results as real-time mashups aggregated from the various
types of processed streams.

4.2 Challenges and Research Aims
One of the main challenges for building the search layer is

the efficient and scalable indexing of continuous metadata
streams. The search layer is built using the open source
Storm6 framework which provides a distributed processing
paradigm, similar to MapReduce, that can handle streams
of data in real-time. We use this architecture to distribute
the workload of indexing the streams using Terrier across
multiple processing nodes in a cluster. The index is dis-
tributed across various shards and an accumulator keeps
track of the global index statistics. Moreover, Terrier has
been enhanced to use real-time, in-memory indices, such
that as soon as an update from the edge node is received, it
is indexed, and made available for search. A demonstrator
that uses this infrastructure to search Twitter in real-time is
available online.7

Another main challenge in the search layer is developing
an event retrieval model that can rank ‘interesting’
events based on a long-term pattern identification of
metadata streams. The event retrieval model can make in-
ferences on interestingness, based on how unusual an event
is by comparing metadata features, such as the crowd level,
observed at a specific location in a specific time to global
features observed in similar areas at similar times. For ex-
ample, a crowded square in a city on a Friday evening is less
interesting than a crowded narrow street on a Sunday morn-
ing as this will be reflected in the background statistics of the
model. Moreover, learning-to-rank retrieval approaches [9]
that use features from the sensor metadata (e.g. the crowd
level locally and globally) are applied to facilitate the rank-
ing of all events happening in different locations. In addition
to features extracted from the sensor metadata streams, tex-
tual evidence from the social networks can be associated to
events. The event retrieval model can associate keywords
to those events. For example, people who tweet about live
music in a city’s main square may mention the band’s name
or the song that is being performed.

5. APPLICATION LAYER
The uppermost layer of the SMART platform (see Fig-

ure 1) contains the software applications that can deliver
the real benefits of the framework to end users. The appli-
cation layer mainly supports developers who want to create
Web 2.0 services or smart phone applications that exploit the
framework capabilities. For example, the application layer
includes open source web applications that offer user inter-
faces to issue queries explicitly, or implicitly using the user
context, to the search engine API and receive in real-time
up-to-date results (events). In addition, it includes open
source mashups that use the search layer visualisation APIs

6https://github.com/nathanmarz/storm/
7http://www.smartfp7.eu/content/twitter-indexing-
demo
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to display for example newly-breaking events as real-time
balloon pop-ups on a map.

6. OPEN SOURCE VISION
SMART is designed as an open source framework, exten-

sible in terms of sensors, multimedia processing components
and event retrieval models. As described in Section 4, the
main components of the SMART search engine are built
upon the existing Terrier open source information retrieval
platform, allowing for the real-time indexing and retrieval
of multiple and massive-scale sensor and social networks
streams. The SMART open source framework is designed
to benefit from the power of the open source development
philosophy, by enabling application developers and organi-
sations to build new tailored services and products on top
of the SMART open source infrastructure.

In particular, SMART will form an open source commu-
nity for sustaining and evolving its components. It adopts
a crowd-sourcing approach to the deployment of physical
sensors, social networking feeds and associated repositories,
which will become searchable through SMART. Thanks to
an open specification for describing data streams, the open
source framework facilitates prospective information providers
(including sensor infrastructure providers) to connect and
contribute edge nodes and data feeds (as described in Sec-
tion 3) to the SMART search engine. Hence, SMART is
designed to integrate a variety of community-based sensor
feeds contributed by third parties such as smart cities, sen-
sor deployers and individuals. For example, algorithms that
analyse the level of water pollution can be implemented for
the corresponding sensors and made available for the fishing
industry. Likewise, the SMART open source infrastructure
supports virtual sensors streams such as data feeds stem-
ming from social networks (including filters over social net-
works such as Twitter). In this case, SMART allows social
sensors (e.g. gender analysis or sentiment analysis filters on
Twitter) to be used while developing applications for smart
cities. Finally, SMART adopts the business friendly MPL
2.0 (Mozilla Public License) in order to facilitate service in-
tegrators to build custom search applications in response
to specific business requirements of their customers (e.g.
surveillance applications). The open source application layer
makes it easier for such services to be rapidly implemented.
In this way, SMART intends to support both a public crowd-
sourcing paradigm and a private enterprise-related one. The
first release of SMART is planned for the end of 2012.

7. CONCLUSIONS
We introduced an open source unified framework that al-

lows the real-time indexing and retrieval of sensor and so-
cial streams. The framework bridges the gap between so-
cial and sensor networks and brings them closer together.
The framework is currently being developed as part of the
EC co-funded project SMART. We presented the research
challenges for implementing the various components of the
framework. In particular, the main challenges reside in de-
veloping a uniform interface to the processing algorithms of
the sensor streams, the effective real-time indexing of so-
cial and sensor metadata streams and the development of
efficient and effective event retrieval models. Releasing the
framework as open source software and sustaining an open
source community to support it is a strategical decision for

a wider spread of this new technology and a wider partici-
pation from the industrial and research communities.

Acknowledgments
Part of this work has been carried out in the scope of the
EC co-funded project SMART (FP7-287583). The authors
acknowledge contributions from all partners of the project.

8. REFERENCES
[1] A. Agarwal, B. Xie, I. Vovsha, O. Rambow, and

R. Passonneau. Sentiment Analysis of Twitter Data.
In Proceedings of LSM’11, 2011.

[2] A. Artikis, M. Sergot, and G. Paliouras. Run-Time
Composite Event Recognition. In Proceedings of
DEBS’12, 2012.

[3] E. Borden. Pachube Internet of Things “Bill of
Rights”. http://blog.cosm.com/2011/03/pachube-
internet-of-things-bill-of.html.

[4] J. G. Breslin, S. Decker, M. Hauswirth, G. Hynes,
D. Le Phuoc, A. Passant, A. Polleres, C. Rabsch, and
V. Reynolds. Integrating Social Networks and Sensor
Networks. In Proceedings of W3C-FSN’09, 2009.

[5] J. Camp, J. Robinson, C. Steger, and E. Knightly.
Measurement Driven Deployment of a Two-tier Urban
Mesh Access Network. In Proceedings of MobiSys’06,
2006.

[6] D. Guinard and V. Trifa. Towards the Web of Things:
Web Mashups for Embedded Devices. In Proceedings
of WWW’09, 2009.

[7] T. Heath and C. Bizer. Linked Data: Evolving the Web
into a Global Data Space. Morgan & Claypool, 2011.

[8] A. Jeffries. A Sensor In Every Chicken: Cisco Bets on
the Internet of Things. ReadWriteWeb, 2009.

[9] Tie-Yan Liu. Learning to Rank for Information
Retrieval. Foundations and Trends in Information
Retrieval, 3(3):225–331, 2009.

[10] D. O’Byrne, R. Brennan, and D. O’Sullivan.
Implementing the Draft W3C Semantic Sensor
Network Ontology. In Proceedings of PERCOM
Workshops, 2010.

[11] I. Ounis, G. Amati, V. Plachouras, B. He,
C. Macdonald, and C. Lioma. Terrier: A High
Performance and Scalable Information Retrieval
Platform. In Proceedings of ACM SIGIR-OSIR’06,
2006.

[12] A. Pnevmatikakis and L. Polymenakos. Robust
Estimation of Background for Fixed Cameras. In
Proceedings of CIC’06, 2006.

[13] C. Stadler, J. Lehmann, K. Höffner, and S. Auer.
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ABSTRACT
The verifiability and comparability of computational experiments is
a major shortcoming in scientific publications, even at top confer-
ences. In recent years, various services emerged that try to address
this problem by providing a global platform where researchers can
upload programs along with experiment results. However, these
platforms are not well accepted, partly due to their inherent top-
down character: a single institution prescribes the formats and tech-
nologies to be used. We argue that a community-wide evaluation
platform can evolve only from an ongoing bottom-up effort.

For the field of information retrieval we have been undertaking
concrete steps to launch and foster this idea with TIRA [4]. Here,
we present the concept and an implementation of a web-based ex-
perimentation environment that greatly simplifies maintenance and
publishing of executable experiments for a research group. TIRA’s
system architecture retains researcher’s full control over their re-
search assets; moreover, no constraints with respect to data formats
or programming technologies are prescribed. We see several rea-
sons for researchers to publish their experiments as a web service
with TIRA, namely, to simplify their experiment design and execu-
tion, to gain credibility, and to easily disseminate results.

This paper reports on experiences from developing TIRA to-
wards our goal. Design goals are reviewed, existing evaluation
platforms are analyzed, and the architecture of our current imple-
mentation is presented. In particular, we present insights from the
first widespread use of TIRA at the PAN series of international pla-
giarism detection competitions in 2012. Altogether, our review is
promising: the design decisions underlying TIRA are both power-
ful and flexible enough to cope with the widely varying program-
ming preferences of the researchers.

Categories and Subject Descriptors: H.5.3 [Information Sys-
tems]: Information Interfaces and Presentation—Group and Orga-
nization Interfaces
Keywords: Open Evaluation, Experiment Management, Result
Dissemination

1. MOTIVATION
John Ioannidis attracted considerable attention in 2005 with his

essay “Why Most Published Research Findings Are False” [5].
Ioannidis argues that research findings published in papers are
likely to be biased towards the approaches of the authors, com-
monly because of selective result reporting and unequal parameter
tuning efforts. To improve upon this situation, he concludes that
official evaluation initiatives are needed where researchers regis-
ter their approaches for an objective assessment. In addition, the
The copyright of this article remains with the authors.
SIGIR 2012 Workshop on Open Source Information Retrieval.
August 16, 2012, Portland, Oregon, USA.

SWIRL 2012 meeting of 45 information retrieval researchers con-
sidered evaluation as a “perennial issue in information retrieval”,
and that a “community evaluation service” is of specific interest [1].
With initiatives such as TREC1, CLEF2, and PAN3, the informa-
tion retrieval research community has established evaluation cam-
paigns with great success, with datasets of past campaigns being
frequently used for current research.

We see two major limitations of these initiatives that we want
to overcome with our open source evaluation platform TIRA (the
“Testbed for Information Retrieval Algorithms”). First, it is obvi-
ous that the scale of these initiatives cannot address all interesting
research questions that arise. To cover the bulk of remaining re-
search questions, a community wide evaluation campaign is needed
that is supported by convenient open software. Any researcher must
be empowered to easily set up and conduct an evaluation initia-
tive for a specific task of interest. Second, the annual schedule
of renowned evaluation initiatives is problematic. In this respect,
Armstrong et al. [2] analyzed the performance results achieved out-
side the official TREC initiative on various TREC collections as
published in SIGIR and CIKM papers from 1998 to 2008. The find-
ings showed that the vast majority of these papers are not stream-
lined with the official TREC results, which in turn leads to a series
of false conclusions in the papers and “improvements that don’t
add up”. To avoid the ignorance of existing results, ongoing evalu-
ation initiatives are needed that continuously integrate new results
submitted over the Web.

With TIRA, we are developing an open source evaluation plat-
form where we aim to overcome the limitations stated above [3, 4].
The decisive feature of TIRA is that the software can be down-
loaded by any research group to organize and conduct an evaluation
initiative on their local computing infrastructure. For every experi-
ment, TIRA provides a web service through which participants can
submit their algorithms or results at any time. TIRA evaluates new
submissions automatically by executing the experiment evaluation
software provided by the evaluation organizers from the command
line of the underlying operating system. All experiment results are
stored and indexed in a database, which is queried by the web ser-
vice to display the current results.

In the remaining sections of the paper, the design goals for TIRA
are presented and compared to existing experiment platforms in
Section 2, whereas in Section 3 we explain the system architec-
ture of TIRA in detail. In Section 4, we give an experience report
of our first significant deployment of TIRA at the PAN plagiarism
detection competition, and we provide lessons learned and future
recommendations. We then summarize our work in Section 5.
1
http://trec.nist.gov

2
http://www.clef-initiative.eu

3
http://pan.webis.de
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2. DESIGN GOALS AND RELATED WORK
Our efforts to make the deployment of TIRA as simple and con-

venient as possible led to a set of five design goals that we consider
as crucial for its widespread use. The design goals are based on
the needs for local instantiation, web dissemination, platform in-
dependence, result retrieval, and peer to peer collaboration. Our
assessment of existing experimentation frameworks with respect to
these goals is depicted in Table 1, which shows that none of these
systems fully comply.

Table 1: Assessment of existing experimentation frameworks with re-
spect to our five proposed design goals.

Tool URL Domain 1 2 3 4 5

evaluatIR 1 IR ✕ X X X ✕

expDB 2 ML ✕ ✕ ✕ X ✕

MLComp 3 ML ✕ X ✕ X ✕

myExperiment 4 any ✕ X X X ✕

NEMA 5 IR ✕ X ✕ X ✕

TunedIT 6 ML, DM X X ✕ X ✕

Yahoo Pipes 7 Web ✕ X ✕ ✕ ✕

1http://www.evaluatir.org/ 5http://www.music-ir.org/
2http://expdb.cs.kuleuven.be/expdb/6http://www.tunedit.org/
3http://www.mlcomp.org/ 7http://pipes.yahoo.com/
4http://www.myexperiment.org/

1. Local Instantiation. In case data must be kept confidential,
the platform must be able to reside with the data, hence the plat-
form must be locally installable. Unlike centralized experiment
platforms like MLComp and myExperiment, local instantiation al-
lows experiments on sensitive data to be published as a service from
a local host. External researchers can then use the service for com-
parison and evaluation of their own research hypotheses, whilst the
experiment provider is in full control of the experiment resources.

2. Web Dissemination.URLs are definitive identifiers for digital
resources. If all runs of an experiment are accessible over a unique
URL, researchers can conveniently link the results in a paper with
the experiment service used to produce them. Especially for stan-
dard pre-processing tasks or evaluations on private data, such a web
service can become a frequently cited resource. In addition, at-
tention can be attracted to one’s work through integration of the
service into home pages and blog articles. To address the issue of
digital preservation, URLs should encode all information needed to
recompute a resource, such as program and input parameter speci-
fications, in case stored data is lost.

3. Platform Independence.The sophisticated and varying soft-
ware and hardware requirements of information retrieval experi-
ments as well as individual coding preferences of software devel-
opers render any development constraints imposed by the experi-
mentation framework critical for its success. Ideally, software de-
velopers can deploy experiments as a service unconstrained by the
utilized operating system, parallelization paradigm, programming
language, or data formats. Local instantiation is one key to real-
ize this goal. Furthermore, the experimentation framework must
operate as a layer strictly on top of the experiment software and
should use, instead of close intra-process communication such as
in TunedIT, standard inter-process communication on the POSIX
level and the file system to exchange information. This way, any
running software can be deployed as a web service without internal
modifications.

4. Result Retrieval. Especially for computationally expensive
retrieval tasks, the maintenance of a public result repository can
become a valuable asset of a research group. For example, exper-

iment services that can index datasets with state-of-the-art natural
language processing technology have the potential to raise the com-
parability of retrieval model research to a higher level. For cluster-
ing and result diversification research, comparability is enhanced
by establishing static snapshots of the search results from major
search engines regularly. The persistent storage of experiment re-
sults by the experimentation framework is key to achieve this goal.
Even if the public release of an experiment service is not desired,
the framework is still useful if it assumes responsibility for manag-
ing the raw experiment results and making them available across a
research team.

5. Peer to Peer Collaboration.Consider a scenario where a con-
sortium of service providers become renownedgatekeepers for var-
ious streams of research, and maintain the community-wide reposi-
tory of state-of-the-art algorithms, datasets, and experiment results
on their web site. The gatekeepers drive the standardization of data
formats and can, by utilizing the retrieval facility, stage competi-
tions in a semi-automated fashion. A mechanism for connecting the
local framework instances to a network of experimentation nodes
has to be provided to achieve this scenario. Note that currently none
of the experimentation platforms implements peer to peer collabo-
ration.

3. SYSTEM ARCHITECTURE
The basic functionality of TIRA is to take a locally executable

program and turn it into a web service. To use TIRA for this pur-
pose, the software is first downloaded and instantiated on the lo-
cal computing infrastructure. System compatibility should not be-
come an issue here, since we distribute TIRA as an executable Java
JAR file.4 For the deployment of new programs, TIRA requires a
program specification file in JSON format: theProgramRecord, as
shown in Figure 1. In its minimal form, theProgramRecordcom-
prises (1) a unique name for the program, (2) the generic structure
of the program execution command, and (3) the value range of each
input parameter that affects the output of the program. An example
of a generic program execution command and its respective input
parameter specification is given in Figure 2. In general, more com-
plex commands are possible that concatenate multiple programs
via UNIX-pipes or define parameter substitutions that produce non-
terminals (further parameters).

Provided with the information in theProgramRecord, TIRA in-
stantiates and updates all system components that are needed to
establish a web service for the new program. All system com-
ponents are shown in Figure 1. The operating principle of TIRA
can be described as two major processes: the front-end process
dealing with user interaction, and the back-end process dealing
with program execution. As indicated in the component dia-
gram, theProgramDatabasetakes on a special role in TIRA’s sys-
tem architecture, since it links the two processes together. The
ProgramDatabaseis instantiated for eachProgramRecordindivid-
ually, it stores past and pending program runs, and it indexes the
input parameters of the runs to provide basic retrieval functionality.
Note that besides the default local database, TIRA can also connect
to a database on a foreign TIRA instance to accomplish peer-to-
peer collaboration. The front-end and back-end processes are un-
affected by this distinction. In the remainder of this section, the
components of these two processes are described beginning with
the back-end process first, followed by the front-end process lastly.

The TIRA back-end process involves theProgramWrapperand
ProgramSchedulersystem components. For eachProgramRecord,
an individual ProgramWrapperis instantiated to query its asso-
4Seehttp://tira.webis.de for latest TIRA release information.
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Figure 1: Component diagram of TIRA. Towards the left, the front-end process dealing with the user-interaction is illustrated. To the right, the
back-end program execution process is shown. Requests are illustrated by arrows and imply a response from the requested component.

python myexp . py $param1 $param2 > r e s u l t . t x t
$param1 −> a | b | c
$param2−> [0−9]+

Figure 2: BNF grammar for a Python program “myexp” with two inp ut
parameters for execution in TIRA.

ciatedProgramDatabasecontinuously for pending program runs.
Given that TIRA instances might be equipped with different re-
sources in a collaborative environment, the lookup request sent may
contain constraints with respect to accepted input parameter values.
When a matching program run is received, theProgramWrapper
registers this at theProgramSchedulerfor addition to an execution
queue. TheProgramSchedulerkeeps a pool of system threads,
which continuously take the next run in the queue and request
its execution. To start the program, the generic command in the
ProgramRecordis substituted with the run-specific values and is
called inside a run-specific working directory. During execution,
the ProgramWrapperlistens on the error output stream and up-
dates the database with notifications and results, which then be-
come available to the front-end process.

The TIRA front-end process involves the remainingTiraServer
and HttpClient system components. TheHttpClient is usually
a web browser controlled by a TIRA user, but also a TIRA in-
stance may fill this role to communicate with other TIRA in-
stances. For eachProgramRecord, the HttpClient can access a
web page on theTiraServervia a program-specific URL (e.g.
http://<domain>/program/myexp). A screenshot of a TIRA web
page is given in Figure 3. The TIRA web page features the pro-
gram input parameters as HTML form elements, and offers func-
tionality for retrieving program runs with specific parameter values
(Search) and for executing new runs (Execute). The result table at
the bottom contains the current execution status, and the results of
all executed program runs are displayed. If the value range of an in-
put parameter is specified in theProgramRecordas an enumeration
(cf. $param1 in Figure 2), the input values are listed in a selection
box. Otherwise in the case of an intrinsic definition (cf.$param2

in Figure 2), a text input field is given instead. As a third option,
TIRA allows submission files as input parameters, in which case a
file upload element is shown to the user.

To retrieve specific program runs, the TIRA user can specify
a subset of the input parameters and submit the HTML form by
clicking the Search button. TheTiraServerlooks up the database
and returns a web page with the matching results. For retrieval re-
quests, the form is submitted using the HTTP GET method, which
means that all form values are encoded into the URL. This URL can
thus be used for the dissemination of results as discussed in Sec-
tion 2. In case all input parameters are populated with valid values,
the execution of the program can also be requested. Note that the
TiraServerhandles multiple values for parameters by generating an
independent program run for each possible combination of values.

Figure 3: Screenshot of a TIRA web page for the PAN competition
2012. On the web page, PAN participants specify a dataset and upload
their plagiarism detection results. On execute, TIRA runs an evalua-
tion script and displays the performance assessment for the submission.

This gives TIRA users a convenient means to execute a series of
runs with a single parameter specification. In case a combination
of parameter values has not been seen before, a new program run is
created with a pending status and stored in the database. Responsi-
bility for the pending run is handed to and executed by the back-end
process.

4. ANALYSIS OF TIRA AT PAN
In this section we report on the first deployment of TIRA in an

official evaluation campaign. TIRA has been used as the train-
ing and evaluation platform for the “detailed comparison” task of
the 2012 international PAN plagiarism detection competition.5 The
competition started with the release of training data in March 2012,
and officially ended after the evaluation of the participant submis-
sions in July 2012. For TIRA, its successful deployment in the
challenge constitutes an important milestone and was an excellent
opportunity to analyze the software under realistic conditions.

The participants of the PAN “detailed comparison” challenge
were asked to develop software capable of solving the following
task: Given a suspicious document and a potential source document
pair, extract and record all plagiarized passages from the suspicious
document and the corresponding source passages from the source
document. Unlike the previous PAN competitions, the participants
of 2012 did not submit their detection results on an unlabeled test
set, but instead submitted their software. This strategy allowed a
set of real plagiarism cases subject to non-disclosure to be incorpo-
rated into the test set to improve the authenticity of the evaluation.
In addition, the organizers could evaluate the runtime characteris-
tics of the submitted approaches for the first time.
5
http://pan.webis.de/
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Two TIRA services were deployed to support the running of the
competition: (1) A service to compute performance scores on the
training data, and (2) A service for the evaluation of the software
submissions on the private test set. We now describe how TIRA has
been used in each of these settings in the remainder of this section.

4.1 Training Phase Evaluation Service
For the training phase, the organizers released a dataset with

ground truth to be used by the participants to train their approaches.
A TIRA service was provided to evaluate the performance of an
approach using the training set. On the TIRA service web page,
participants were able to upload their compressed detection results
and receive the “PlagDet” performance score in return (cf. Fig-
ure 3), which combines aspects of precision, recall, and granular-
ity. To compute PlagDet, the compressed submissions were ex-
tracted and evaluated with a Python implementation of PlagDet.
The generic execution command used by TIRA for the eval-
uation was hence: “unzip -qq -o $det -d det && python

perfmeasures.py -p $truth -d det > scores.txt”. The
parameters starting with a$-symbol were substituted according to
the data provided in the web page input fields similar to the exam-
ple described in Section 3 and Figure 2.

For the organizers of PAN, the evaluation service provided some
feedback about the progress of the participants. In the past com-
petitions, the organizers observed that the majority of participants
started working seriously only in the few days before the sub-
mission deadline. With the public evaluation service, we hoped
to create an atmosphere where participants were motivated by the
recorded PlagDet scores to date acting as a leader board. One week
prior to the submission deadline, the evaluation service received 12
submissions from two of the eleven final participants. Three further
participants started making submissions in the final week, resulting
in 38 computed PlagDet scores altogether. The remaining six par-
ticipants did not use the training phase evaluation service, and may
have simply elected to evaluate their training results offline. Al-
though the TIRA service was a useful tool for the participants, we
learned that further incentives for its usage must be provided to ef-
fectively foster the early tinkering within the competition.

4.2 Test Phase Evaluation Service
In the test phase, TIRA was used to organize and conduct the

evaluation of the submitted programs. In total, we received eleven
plagiarism detection programs for evaluation on the hidden test set.
Coincidentally, eleven “external detection” result sets were submit-
ted in 2011 [6], suggesting that the submission of software was an
acceptable demand of the participants. The software received var-
ied greatly with respect to its size, runtime performance, and pro-
gramming language used, and we received submissions for both
Windows and Linux operating systems. In this respect, the system
independence of TIRA has been successfully demonstrated. We
managed to get all submitted software running, and with the excep-
tion of one submission, the output files produced were valid. For
each of the submissions, we created aProgramRecordbased on the
installation manual provided by the participants. Although the pro-
grams sometimes demanded inconvenient input specifications for
processing the test data, the powerful parameter substitution mech-
anism of TIRA made the task achievable. To evaluate each sub-
mission against the test set, we implemented an additional TIRA
service that sends an execution request for every document pair in
the test set to the TIRA service of the submission. Here, the web
dissemination capability of TIRA is highly convenient.

In the near future we plan to give the PAN 2012 participants the
opportunity to opt-in for a public release of their plagiarism detec-

tion software as a TIRA service on our computing infrastructure.
For future evaluation initiatives, we aim to develop an automated
program deployment mechanism for TIRA: Participants download
the evaluation resources for a competition and deploy them on a lo-
cal TIRA instance. Once developing and testing on the local TIRA
instance is done, TIRA sends the finalProgramRecordand software
to the official TIRA evaluation instance, where it is automatically
deployed and evaluated.

5. SUMMARY
Creating fully reproducible and comparable experiments in in-

formation retrieval is highly desirable, and various researchers have
pointed out that advances in the state of the art in this field are dif-
ficult to account without such an achievement. A software service
that meets this challenge and that is accepted within the research
community must provide features such as local instantiation, web
dissemination, platform independence, result retrieval, and peer
to peer collaboration. The TIRA platform addresses these goals
as a new web service to organize and operationalize specific pro-
grammable tasks runnable on the command line. Recently, TIRA
has been deployed “in the wild” for the PAN series of international
plagiarism detection competitions. Our preliminary findings are
positive: even complex evaluations of software submissions can be
easily managed, compared, and published. Based on this experi-
ence we aim to further develop TIRA towards a convenient tool for
the information retrieval community to conduct evaluation initia-
tives.
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ABSTRACT
We describe a novel, “focusable”, scalable, distributed web
crawler based on GNU/Linux and PostgreSQL that we de-
signed to be easily extendible and which we have released
under a GNU public licence. We also report a first use case
related to an analysis of Twitter’s streams about the french
2012 presidential elections and the URL’s it contains.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Algorithms ; Design ; Experimentation

Keywords
Web Crawler; Web Robot; Web Spider; PostgreSQL ; Twit-
ter ; Web ; Social Networks

1. INTRODUCTION
Where scalability is concerned, Apache Nutch R©1 and Her-
itrix2 are probably the best-known and the most-accomplished
open-source web crawlers. They both are sensible choice
for Information Retrieval (IR) researchers who intend to
build large web corpora. They can be configured to spe-
cific needs and can be extended and modified. However, the

1http://nutch.apache.org/
2https://webarchive.jira.com/browse/HER

The copyright of this article remains with the authors. SIGIR 2012 Work-
shop on Open Source Information Retrieval. August 16, 2012, Portland,
Oregon, USA.

Java-language source code3 of these two software toolkits
are rather large and complex: 29349 lines of source code for
Apache Nutch (v1.4) and 107377 for Heritrix (v3.1.0). An-
other possible drawback from the researcher’s perspective is
that they both access the data using unconventional systems
: Nutch relies on HadoopTMand Heritrix relies on its own
code for handling Internet Archive ARC files.

These systems belong to the“NoSQL”or“UnQL”approaches,
supported by the assumption that the widely used SQL re-
lational database standard is a inherent cause of scalabil-
ity issues. However, this assumption is contested by several
database experts. For instance, recent developments around
the PostgreSQL project allow it to perform as well as- and
sometimes outperform some - NoSQL databases[3]. This al-
ternative approach has been named YesQL.

By taking profit of the capabilities of a PostgreSQL server,
we implemented our web crawler in a total of only 911 lines
of C-language code and 200 lines of SQL and PL/pgSQL. At
the time this article was written and as far as we know, this is
the only available web crawler that is based on PostgreSQL.
The tests we performed have shown that instances of the
crawler could process over 20 millions of URLs in a few days
without beeing noticeably slowed by database operations.
We thus believe this web crawler is well worth considering
by IR researchers and programmers.

2. SOFTWARE DESCRIPTION
The source code repository is located at GitHub4 under a
GNU public license. Everyone can therefore easily download
an up-to-date version of the toolkit, provide user’s feedback,
or join the developer’s team. The crawling system can be
briefly summarized as follows:

3There are alternatives written in Python, e.g. : Mechanize
(36419 lines of code) and Scrapy (23096 lines of code)
4https://github.com/jourlin/WebCrawler
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Figure 1: Web crawler organisation

• Links and URLs’ data are stored in a PostgreSQL5

database.

• The user can launch several crawler’s instances on sev-
eral, possibly distant machines.

• Each instance of the crawler iteratively:

1. fetches a list of URLs to be explored by sending
a simple SQL query to the database;

2. downloads the web pages;

3. extracts new hypertext links to possibly new URLs;

4. sends the new data back to the server.

Figure 1 shows how the communication between internet,
web crawler’s instances and the PostgreSQL server.

The choice of URLs to be fetched is made by one SQL
query and two PL/pgSQL additive scoring functions: one
scores the URL according to its content, the other scores
the URL according to the textual context in which they
are linked. The programmer can thus easily implement any
focused crawling strategy by modifying a single SQL fetch
query and two scoring functions. The user can write them in
PL/pgSQL in order to take advantage for instance, of Post-
greSQL regular expressions. In order to achieve even better
performance, he might also write them in C-language and
take benefit of PostgreSQL’s dynamic loadable objects capa-
bility. Figures 2 and 3 show a scoring function in PL/pgSQL
that calculates a weighted count of keywords occuring in the
URL itself (Figure 2) or in the anchor text that links to it
(Figure 3).

Each crawler instance is only responsible for downloading
and processing web pages. The downloading stage is per-

5http://www.postgresql.org/

CREATE OR REPLACE FUNCTION
ScoreURL(url url) RETURNS bigint AS
$$
DECLARE
score INT;
normurl TEXT;
BEGIN
normurl=normalize(CAST(url AS text));
IF CAST(url_top(url) AS TEXT) =’fr’ THEN
score=1;
ELSE
score=0;
END IF;
IF substring(normurl, ’keyword1’) IS NOT NULL THEN
score=score+2;
END IF;
IF substring(normurl, ’keyword2’) IS NOT NULL THEN
score=score+1;
END IF;
RETURN score;
END;
$$ LANGUAGE plpgsql;

Figure 2: A Webcrawler strategy written in
PL/PGSQL : scoring URLs

CREATE OR REPLACE FUNCTION
ScoreLink(context text) RETURNS int AS
$$
DECLARE
score INT;
normcontext TEXT;
BEGIN
normcontext=normalize(context);
score=0;
IF (substring(normcontext, ’keyword1’) IS NOT NULL) THEN
score = score +1;
END IF;
IF (substring(normcontext, ’keyword2’) IS NOT NULL) THEN
score = score +1;
END IF;
RETURN score;
END;
$$ LANGUAGE plpgsql;

Figure 3: A Webcrawler strategy written in
PL/PGSQL : scoring links
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formed by the very matureGNU/Wget utility6. The database
system is responsible for the coordination of multiple crawlers
(thanks to SQL transactions), uniqueness of stored URLs
and links (thanks to SQL constraints), crawling strategy
(thanks to PL/pgSQL or C functions), etc. Insertions into
a single SQL view triggers insertions into the more complex
internal table structure.

3. USE CASE: COVERAGE OF "TWEETED"
URLS

3.1 Context
Recent open free network visualisation tools have made eas-
ier the qualitative analysis of large social networks[1]. Based
on these tools, scientists in humanities can visualize large re-
lational data which lead to new hypothesis that will require
further network crawling and data extraction. We show an
example of such interaction between humanities and com-
puter scientists made possible by our YeSQL crawler.

Political scientists have formulated the hypothesis that for
the 2012 French presidential elections, candidates’ commu-
nication departments accepted Twitter as a target media
and integrated it to their communication system.

Their strategy was to better control their communication
and to improve the dissemination of political messages they
convey, in order to influence public opinion. What was at
stake ? The saturation and the meshing of the media sphere,
with coherent messages whatever the channel of dissemina-
tion they choose.

The empowerment of their communication during the cam-
paign was linked to their capacity :

• to consolidate their network of opinion leaders thanks
to Twitter,

• to be more reactive and to communicate “just in time”
if unexpected events occur,

• to strengthen the efficiency of their activists network.

As a consequence, the relationships between their different
communication devices has to be analysed.

3.2 Experiment
In order to evaluate this hypothesis, we conducted a cap-
ture of Twitter’s messages and a parallel though indepen-
dent web crawl of candidate web sites and newspaper’s po-
litical pages. We then attempted to compare the two data
sources. Twitter’s markers (e.g. ’#’ and ’@’) facilitates the
production of statistics on a given collection. Regarding the
web, drawing statistics require a very well structured crawl,
with good identification of identical URL and page contents.
The YeSQL web crawler proved to be well suited to this task.

By filtering tweets from candidates, to candidates or men-
tioning a candidate (e.g. @fhollande, @bayrou, @melan-
chon2012, @SARKOZY 2012, etc.), we recorded 93592 tweets
from february 6th at 00:00am to february 13th 2012 at 00:00am.

6http://www.gnu.org/software/wget/

Depth # crawled % URLs % URLs
URLs covered (a) covered (b)

0 2 0.00 0.00
1 34 0.08 1.00
2 1026 0.73 4.00
3 8543 1.84 8.00
4 56883 3.06 12.00
5 368247 7.33 27.00
6 2756671 15.28 40.00

Table 1: Tweeted URLs’ coverage. (a): for all 4777

tweeted URLs ; (b): for the top 100 most frequently

tweeted URLs. “Depth” is the minimum number of hy-

perlinks that one has to follow to reach an URL from the

initial set.

26638 of those tweets contained a shortened URL (28.4%)
from a set of 10447 unique shortened URL corresponding to
4777 unique effective URLs.

This filtering produced a homogeneous corpus based on a
usage logic and identical annunciation rules. The reference
to candidates’ addresses produces a multi-voiced discourse
folded up on the proper space of Twitter. Each “tweeted”
URL is functioning as an interface with the outside of this
space and brings back external information from the media
space. Their identification is important as a marker of dis-
course evolution and also for its anchorage in the media and
political topicality .

Independently from this collection, we started a web crawler
instance that was allowed to download 20 pages in parallel,
from february 20th at 00:00am to february 26th at 10:55pm.
It was initiated on 32 initial URLs from newspapers’ polit-
ical pages and candidates’ web sites and collected over 2.7
millions of URLs. In the following tables, we call ”depth”
the minimum number of links needed to navigate from an
initial URL (depth=0) to a crawled URL.

Table 1 shows the proportion of tweeted effective URLs that
were crawled during this period. The fourth column shows
that most frequently tweeted URLs are more likely to be
covered by the crawl. These results show that most popular
URLs have a significant probability to be directly retrieved
by the crawler after millions of URLs have been crawled.

Figure 4 shows the proportion of tweeted URLs found in the
crawling per tweeted frequency (number of times that the
URL was tweeted). This gives an estimation of the crawling
coverage with regard to URL’s visibility.

Table 2 shows that the similar problem of tweeted domains
instead of tweeted URLs is substantially easier. Indeed, the
coverage is noticeably higher when only the URL’s domains
are considered. In particular, 100 most tweeted domains are
almost totally (97.73%) covered by the web crawl.

More generally, we can observe that high “domain” coverage
figures are obtained for relatively low “depth” levels. This
suggests that the most popular URLs originates from sites
that are the nearest neighbours of the 32 initial newspapers’
political pages and candidates’ web sites.
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Figure 4: Crawler coverage per tweeted URL fre-
quency.

Depth # crawled % domains % domains
domains covered (a) covered (b)

0 1 0.00 0.00
1 31 2.50 18.18
2 95 4.43 29.55
3 312 11.93 50.00
4 1596 27.73 81.82
5 8137 49.66 95.45
6 45992 72.50 97.73

Table 2: Tweeted URLs’ domain coverage. (a): for

all 4777 tweeted URLs ; (b): for the top 100 most fre-

quently tweeted URLs. “Depth” is the minimum number

of hyperlinks that one has to follow to reach an URL from

the initial set.

This is not surprising considering that the web of political
blogs is stable along month periods [2]. Moreover, all main
French newspaper offer a blog service to their readers. The
readers contributions to their websites allow them to capture
most of the queries on the web dealing with politics.

Results in Table 2 also allow us to expect much better cover-
age of URLs by simply launching more crawler’s instances,
on a single or on multiple machines.

4. CONCLUSION
The web crawler we presented does not have all the func-
tionalities that offer older and more ambitious projects such
as Nutch and Heritrix. However, we have shown that recent
functionalities introduced in PostGreSQL about data struc-
tures, triggers and language programming allow to develop
powerful web mining tools that can deal with highly redun-
dant data as well as less frequent signals. We illustrated
this with a scalable crawler that can explore web networks
at a fine grained level. In particular, this crawler can help
in comparing the web to social networks like Twitter.

In this particular configuration and for this domain, current
events about the french electoral campaign irrigates the two
information spaces, the web and Twitter. The practice of
“tweeting” URLs becomes usual in the context of modern
approaches of information reporting and monitoring.

As we entered this field of investigation by studying the po-
litical “actors”, we saw that a significant part of original

informations are produced, published and tweeted by these
actors.

We could also question the existence of significant reporting
practices outside the control of political apparatus’ dissemi-
nation strategies. If our results are confirmed in finer grain
analysis, we will be able to reconsider the self-organising
hypothesis that people tend to associate to social networks.
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ABSTRACT

The Terrier information retrieval (IR) platform, maintained
by the University of Glasgow, has been open sourced since
2004. Open source IR platforms are vital to the research
community, as they provide state-of-the-art baselines and
structures, thereby alleviating the need to ‘reinvent the wheel’.
Moreover, the open source nature of Terrier is critical, since
it enables researchers to build their own unique research on
top of it rather than treating it as a black box. In this
position paper, we describe our experiences in developing
the Terrier platform for the community. Furthermore, we
discuss the vision for Terrier over the next few years and
provide a roadmap for the future.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

1. INTRODUCTION
The origins of the Terrier open source information re-

trieval (IR) platform1 within the University of Glasgow can
be traced back to 2001, when it was first created in Java
to provide a common basis for research students to use for
their PhD research. Since then, the platform has grown to
be a scalable and mature open source platform released un-
der the Mozilla Public License (MPL)2, aimed at researchers
and practitioners, permitting the rapid and effective research
and development of information retrieval technologies.

Two of the key goals of Terrier are to be flexible and ex-
tensible, such that the platform can act as a corner-stone
upon which both the academic community and practition-
ers can build. To this end, Terrier follows a modular design,
whereby different components of the indexing and retrieval
process can be customised. For instance, when working with
Twitter, it can be advantageous to use a dedicated tokeniser
that removes URLs and mentions from the text. By combin-
ing a modular design with an open source nature, Terrier can
be adapted for a potentially unlimited number of use-cases.

However, it is also important to provide as much func-
tionality out-of-the-box as possible. Indeed, Terrier strives

1http://terrier.org
2http://www.mozilla.org/MPL/

Copyright is held by the author/owner(s).

SIGIR 2012Workshop on Open Source Information Retrieval.

ACM August 16, 2012, Portland, Oregon, USA.

to provide state-of-the-art efficient indexing and effective re-
trieval mechanisms. For example, due to its modularity,
Terrier allows various ways of changing the ranking of doc-
uments, providing a huge variety of weighting models, in-
cluding Okapi BM25 [17], language modelling [10, 23] and a
vast number of models from the Divergence from Random-
ness framework [2]. It also includes field-based document
weighting models for tackling more structured documents,
such as BM25F [22] or PL2F [13]. As a result, Terrier is
well known within IR evaluation forums such as TREC and
FIRE as the basis of many effective systems.

Over the last decade, the Terrier platform has been devel-
oped and enhanced by a wide range of academics world-wide.
Indeed, contributions made to Terrier have been driven by
the desire to explore new research directions, and will remain
so in the future. For instance, Terrier is currently being ex-
tended to tackle the new challenges of real-time search tasks,
e.g. incremental indexing, live search and reproducibility of
experimentation in such dynamic search scenarios. However,
open source platforms require significant investments in time
and manpower to develop and maintain. While such invest-
ments may not directly lead to research outcomes, they are
of utmost importance for the research community. For this
reason, in this paper, we detail our experiences in devel-
oping Terrier and provide a roadmap for future releases of
the platform. In this way, the contributions of this position
paper are two-fold: we describe the growth of the Terrier
platform along the past decade and its latest developments,
followed by a roadmap for the next generation of the open
source search platform.

This paper is structured as follows. Section 2 discusses the
philosophy that guides the development of Terrier. Section 3
describes recent developments of the platform, whereas Sec-
tion 4 provides a roadmap for future developments. Finally,
Section 5 provides our concluding remarks.

2. BUILDING FOR SUCCESS
Our overriding belief behind Terrier is that an information

retrieval (IR) system ‘should just work... out-of-the-box.’
Many users will come to Terrier, and their first experience
using the platform is key—we want to ensure that the crucial
first experience facilitates the aim that they have for using
the platform. In particular, we identify four dimensions that
are key to the user experience, namely:

• Effectiveness: The platform should be effective by de-
fault. Moreover, it should provide easy access to the
accepted state-of-the-art techniques, permitting exper-
iments to be conducted with minimal development cost.
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• Efficiency: Scientific experiments in information re-
trieval have advantages over other scientific fields, in
that experimental ground truths (i.e. relevance assess-
ments) are generally reusable. While the efficiency of
an IR research platform is not paramount, we believe
that the system should be generally efficient so as to
facilitate fast experiment iterations.

• Scalability: The size of IR test corpora has grown
500-fold since the first open source release of Terrier,
as illustrated in Figure 1. Regardless of the scale of
hardware resources available to a researcher, we be-
lieve that the IR system should be able to index and
retrieve without challenging configuration.

• Adaptability: It must be possible to adapt the system
to new requirements, whether this encompasses new
retrieval strategies, new corpora, or different experi-
mental paradigms.

These dimensions (which we collectively denote EESA)
underlie the decisions behind the development of the Terrier
platform, and the plans for its future. In particular, with
Terrier, we aim to ensure that indexing and retrieval can
be effectively performed by making efficient use of whatever
resource is available, be it a single machine or a large cluster.

An important choice in Terrier has centred around the
effectiveness/efficiency/adaptability tradeoff. In particular,
IR researchers may not know a priori which particular weight-
ing model they intend to use during retrieval time. Indeed,
some retrieval approaches decide on the choice of weighting
model on a per-query basis (e.g. [8]). For this reason, we
do not believe that efficient retrieval approaches (e.g. score-
at-a-time [3]) that tie the index to a particular retrieval ap-
proach are suitable for an experimental IR platform, even if
they can produce marked efficiency improvements.

On the other hand, there are software engineering chal-
lenges in maintaining and improving a large platform such
as Terrier. For instance, since Terrier 3.0 we have been fol-
lowing a testing regime that ensures that changes do not im-
pact on correctness (unit tests) and effectiveness (end-to-end
tests). In the following, we identify some specific improve-
ments made to the Terrier over the last few years and how
these are related to the EESA dimensions, before going on
to identify a roadmap for further developments of Terrier.

3. RECENT IMPROVEMENTS
In this section, we highlight recent improvements in Ter-

rier, covering both its indexing and retrieval architectures.

3.1 Indexing
Since the inception of Terrier, the ability to quickly pro-

duce compressed index structures representing collections of
documents has been critical. However, over the last decade,
the scale of the document collections of interest, the speci-
fications of commodity hardware used for indexing and the
search tasks that are being investigated have dramatically
changed. For instance, Figure 1 illustrates how the size of
IR test collections has grown over a 17 year period. These
changes have and continue to introduce new indexing chal-
lenges that have driven the continual enhancement of Ter-
rier’s indexing processes.

The basis for much of the indexing functionality within
Terrier stems from the development of single-pass index-
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Figure 1: Evolution of the size of TREC corpora.

ing [9], which was released as part of Terrier 2.0. The idea
behind single-pass indexing is that a central index structure
can be built a document-at-a-time in a ‘single-pass’ over the
collection. Moreover, this index can be created under tight
memory constraints by compressing the inverted files and
periodically writing partial posting-lists to disk, facilitating
indexing on a single machine. Single-pass indexing is a fast
and efficient means to index smaller (by today’s standards)
collections, spanning 100 million documents or less.

However, for larger collections such as the TREC ClueWeb-
09 corpus that is comprised of 1.2 billion documents,3 single-
pass indexing is a slow process requiring weeks of processor
time to complete on a single machine. MapReduce is a pro-
gramming paradigm for the processing of large amounts of
data by distributing work tasks over multiple processing ma-
chines [6]. The central concept underpinning MapReduce is
that many data-intensive tasks are based around performing
a map operation with a simple function over each ‘record’ in
a large dataset. Terrier 2.2 became the first open source IR
platform to implement large-scale parallelised indexing us-
ing MapReduce [14] and its Java implementation Hadoop.4

This has enabled Terrier to scale its indexing process to ef-
ficiently tackle collections spanning billions of documents or
more, given a suitable cluster of machines.

Furthermore, it is not just the scaling of existing IR pro-
cesses that is of interest. To facilitate new search tasks,
the indexing process needs to be flexible and extensible. In-
deed, this is especially true as the focus of IR continues to
move from traditional web documents to more specialised
domains, such as the search of social media and other user-
generated content sources [21]. To this end, the open source
and modular nature of Terrier allows for the addition of in-
dexing capability for new collections with specialised struc-
tured documents, in addition to custom tokenisation, stop-
word removal and stemming. For example, we released a
custom package for Terrier 3.0 to support the processing
of JSON tweets outside the normal release cycle.5 More-
over, the entire indexing process can be extended to tackle
entirely new search tasks. For instance, the ImageTerrier6

project enhanced Terrier with image retrieval functionality.
Recent developments have focused on enhancing the de-

ployment and demonstration capabilities of Terrier. From
an indexing perspective, this involves efficiently storing doc-
ument metadata for later display to the user. Terrier 3.5
supports automated metadata extraction and snippet gen-

3http://boston.lti.cs.cmu.edu/Data/clueweb09
4http://hadoop.apache.org
5http://ir.dcs.gla.ac.uk/wiki/Terrier/Tweets11
6http://www.imageterrier.org
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Figure 2: Terrier user interface for Twitter search.

eration that can be saved within a specialist meta index
structure. This functionality can be paired with the Terrier
front-end search interface to facilitate custom search appli-
cations, such as Twitter search, as illustrated in Figure 2.

3.2 Retrieval
When retrieving from large corpora in constrained mem-

ory situations, it is possible that the system does not have
sufficient memory available to decompress the entire post-
ing list for common query terms. From Terrier 3.0, we re-
designed the retrieval mechanism such that the posting list
for each term is decompressed in a streaming fashion, using
an iterator design pattern. Moreover, this had an additional
benefit in permitting support for Document-at-a-Time re-
trieval (DAAT) strategies. Indeed, DAAT retrieval strate-
gies are advantageous in that the number of document score
accumulators is markedly reduced compared to Term-at-a-
Time (TAAT) scoring, ensuring an efficient retrieval process.

On the internationalisation front, we have been working
on extending Terrier to index and retrieve from East Asian
corpora. In particular, in Terrier 3.5, we refactored the way
documents are processed, such that text parsing and tokeni-
sation are now fully separated operations. As a result of
this refactoring, Terrier now supports pluggable tokenisers
for different languages, adding to the overall adaptability
of the platform. In a first test of the new tokenisation ar-
chitecture, Terrier delivered out-of-the-box state-of-the-art
retrieval performance on news and web corpora for both
Chinese and Japanese [20].

4. ROADMAP FOR TERRIER
In the following, we highlight new functionalities devel-

oped for Terrier, which we plan to release in future open
source versions. Each of these functionalities is key to im-
proving one or more dimensions of EESA within the Terrier
platform. In particular, the massive scale and heterogeneity
of current corpora and the increasingly complex informa-
tion needs of search users limits the effectiveness of tradi-
tional ranking approaches based on a single feature. Instead,
effective retrieval is increasingly moving towards machine-
learned ranking functions combining multiple features [11].

Feature-based retrieval (effectiveness and efficiency).
Terrier will support the extraction of query-independent

features at indexing time, as well as the efficient extraction

of query-dependent features with a single pass over the in-
verted index at retrieval time. The latter is enabled by an
improved matching mechanism that keeps track of the actual
postings for documents that might end up among the top re-
trieved. Another valuable source of evidence, which conveys
how a document is described by the rest of the Web, is the
anchor text of the incoming hyperlinks to this document.
Integrating anchor-text extraction to the indexing pipeline
of Terrier will provide a unified solution for leveraging this
rich evidence as an additional feature for effective retrieval.

Non-global configuration (adaptability).
An important direction for improving the adaptability of

Terrier is to enable multiple instances of its indexing and
retrieval pipelines to run concurrently. A crucial develop-
ment in this direction is a configuration system that admits
non-global, instance-specific setups. For instance, a typical
search scenario that may require multiple instances of a re-
trieval process is search result diversification. In particular,
effective diversification can be attained by ensuring that the
produced ranking covers multiple aspects of an ambiguous
query, represented as query reformulations [18, 19].

Dynamic pruning (scalability and adaptability).
Dynamic pruning strategies, such as WAND [4], can in-

crease efficiency by omitting the scoring of documents that
can be guaranteed not to make the top-k retrieved set—
a feature known as safeness. These pruning strategies rely
on maintaining a threshold score that documents must over-
come in order to be considered in the top-k documents. Each
term is associated with an upper bound stating the maxi-
mal contribution of the weighting model to any document’s
relevance score. By comparing upper bounds on the scores
of the terms that have not been scored to the threshold,
i.e. the current k-th document, the pruning strategy de-
cides on to whether to skip the scoring of documents during
retrieval. In addition, in WAND, skipping is also supported
by underlying posting list iterators in order to reduce disk
IO and further increase efficiency. However, traditionally in
the literature, the upper bounds are pre-calculated at index-
ing time and stored in the index. As a result, the generated
index is only suited for efficient retrieval using one partic-
ular weighting model, where all the returned search results
of queries are ranked using a single weighting model. In-
stead, in Terrier, we avoid tying up the generated index to a
particular weighting model, by deploying safe upper bound
approximations for various retrieval models, which can be
calculated on-the-fly at query execution time [12]. By doing
so, Terrier supports the recent trend of deploying selective
retrieval approaches, where the retrieval strategy varies from
a query to another [7, 19].

Distributed and real-time search (scalability).
While a MapReduce indexing process can efficiently index

the 1.2B documents of the ClueWeb09 corpus, retrieval from
a monolithic single index shard is not efficient. Document-
partitioned distributed indexing [5] ensures that efficient re-
trieval can be attained regardless of the index size. Re-
cently, search in real-time scenarios such as live search over
tweets have become popular [21]. Real-time search poses dif-
ferent challenges to traditional retrospective retrieval tasks.
In particular, documents are not contained within a static
corpus, but rather arrive over time in a streaming fashion.
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Moreover, both indexing and retrieval operations occur in
parallel, hence index structures must always be searchable,
thread safe and up-to-date. Furthermore, from a research
perspective, there is a need to support the ‘replaying’ of a
stream, facilitating reproducible experimentation. The de-
velopment of real-time search within Terrier is well advanced
and is targeted for merging into the next major open source
release. Terrier’s real-time infastructure is also being further
developed as part of the SMART EC project to enable low
latency distributed indexing and retrieval [1].7

Crowdsourcing for relevance assessment (effectiveness).
Researchers rely on document relevance assessments for

queries to gauge the effectiveness of their systems. Eval-
uation forums such as TREC and CLEF play a key role
by providing relevance assessments for many common tasks.
However, these venues cannot cover all of the collections and
tasks currently investigated in IR, resulting in the burden of
relevance assessment generation falling upon individual re-
searchers. This is an important problem, as relevance assess-
ment generation is often a time-consuming, difficult and po-
tentially costly process. For many IR-related tasks, crowd-
sourcing has been shown to be a fast and cheap method
to generate relevance assessments in a semi-automatic man-
ner [16], by outsourcing to a large group of non-expert work-
ers. CrowdTerrier is a soon to be released open source ex-
tension to Terrier that leverages crowdsourcing to provide
researchers with an out-of-the-box tool to achieve fast and
cheap relevance assessment [15].

Plugin Expansions (adaptability).
The growth of the Terrier platform into exciting new areas

such as crowdsourcing entails increased functionality, but
also platform complexity. To avoid software bloat, we are
moving from a monolithic release structure, to a system of
periodic core releases and timely plugin expansions. This
will enable Terrier to continue to grow and evolve to tackle
future challenges in the dynamic field of IR in line with the
interests of the community.

5. CONCLUSIONS
In this paper, we described the philosophy that has guided

the development of the Terrier IR open source platform since
its first release in 2004. We described some recent develop-
ments in the Terrier IR platform, as well as a comprehensive
roadmap for its forthcoming releases, intended to ensure that
the platform remains extensible and effective, while provid-
ing a robust, modern and efficient grounding for building
next generation search engine technologies. The last decade
has witnessed a dramatic shift in the scale and nature of ex-
periments IR researchers are increasingly being required to
conduct to test and evaluate new search technologies. Our
vision for Terrier is to continue empowering researchers and
practitioners in IR with up-to-date, effective and scalable
tools, allowing them to build and evaluate the next gener-
ation IR applications. We hope that many will join us in
working together towards such an objective.
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ABSTRACT
We present results that compare the performance of Lucene
and Indri at two points in time (2009 and 2012) using data
from TREC 6 through 8. We compare indexing throughput,
index size, query evaluation throughput, and retrieval effec-
tiveness. We also examine the degree to which the results
produced by the two systems overlap with an eye toward
estimating the performance increase that might be expected
by combining the results of the two systems.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Search Pro-
cess; H.3 [Information Storage and Retrieval]: Content
Analysis and Indexing

General Terms
Open source search engines, information retrieval, perfor-
mance evaluation, fusion of search results

1. INTRODUCTION
We have used a number of open source and proprietary

search engines to support research at the Center for Natural
Language Processing often combining the results from mul-
tiple engines to good effect [2]. The two engines we most
often use are Lucene/Solr (http://lucene.apache.org/solr/)
and Indri [6].

Lucene/Solr is attractive because it is a relatively full fea-
ture package that makes it easy to field Web-based appli-
cations. Indri is attractive because it offers better search
results and because it offers a highly expressive query lan-
guage that allows very fine grained control of a search. The
engines are also natural choices because we are familiar with
them. One author (Rowe) is a Lucene contributor and chair
of the Lucene Project Management Committee. A second
author (Turtle) has contributed to the development of Indri
and Lemur.

In order to test the assertion that Indri produced bet-
ter rankings, to assess the likelihood that combining Lucene
and Indri results would improve overall performance, and
to improve our understanding of the relative performance
of the two engines we ran a series of experiments in 2009
to compare performance on TREC data. Both engines have
evolved since 2009 so we reran the tests this year to evaluate
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any change. We present the results of both sets of experi-
ments here.

2. PRIOR WORK
Lin [3] compared the performance of Lucene and Indri

as part of a study of the impact of retrieval quality on the
performance of question answering systems and concluded
that there was no significant difference between the ranking
quality of the two systems. Lin used relatively long queries,
which may account for the performance similarity as Indri
performance is known to degrade with query length. This
study also uses early versions of Indri and Lucene.

Middleton and Baeza-Yates [4] conducted an early survey
of the features of 17 search engines and conducted exten-
sive performance tests with 12 of those engines, including
Lucene and Indri. Their tests used TREC data (Disk 4,
WT10g) and reported indexing time, index size, query eval-
uation time (one and two word queries), and retrieval effec-
tiveness although not all engines participated in all of the
tests. The Middleton and Baeza-Yates study used early ver-
sions of Lucene (1.9.1) and Indri (2.4); both engines have
changed significantly since their study.

Perea-Ortega et al [5] compare the ranking performance of
three retrieval systems (Lucene, Lemur, and Terrier) when
used in a Geographical Information Retrieval (GIR) system.
They used the GeoCLEF 2007 data and ran both mono- and
bilingual queries. They conclude that Lemur works best
for monolingual queries and that Terrier works better for
bilingual queries.

Armstrong et al [1] compared the retrieval effectiveness of
five search engines, including Indri and Lucene (version 2.4),
using TREC data from 1994 to 2005. Queries were based
on title plus description fields, similar to the long query ex-
periments described in Section 3. They found a somewhat
smaller difference between the two systems than reported
here – for TREC 6 and TREC 8 data they report that
Lucene’s Mean Average Precision (MAP) scores are 3% to
4.5% lower than Indri whereas our experiments show MAP
scores to be 5.6% lower. Differences in the Lucene version
used and details of the experimental setup (e.g., stopwords,
stemmer) likely account for the difference.

3. EXPERIMENTS
Two sets of experiments were run to compare Indri with

Lucene/Solr performance at two points in time. The first
set, originally run in October of 2009 but repeated on more
modern hardware, compares the versions of Indri and Lucene
that were current at the time. The second set compares the
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TREC TREC
Disk 4 Disk 5 Total

Number of documents 293,710 262,367 556,077
Collection size (Mb) 1,194 945 1,344
Number of queries 150 150

Table 1: Collection statistics

versions of Indri and Lucene that were current in June of
2012. Out-of-the-box settings were used for both systems
with no tuning or special query formulation.

While our focus is on the performance of the Indri and
Lucene search engines, the experiments are run using their
respective wrappers, Lemur and Solr. In 2009, the current
version of Lemur was 4.10 which used Indri version 2.10.
The current version of Solr was 1.4 which used Lucene ver-
sion 2.9.1. By June 2012, the Lemur software had been
repackaged so that the wrapper software and search engine
were combined in a single distribution, Indri 5.3. In 2012,
Solr and Lucene remained separate packages but the version
numbers had been aligned so the current version of Solr was
3.6 which used Lucene version 3.6.

We collected performance information on indexing speed,
index size, query evaluation times for two query sets, ranking
performance for those queries (using trec eval), and overlap
between the results produced by the two systems. All ex-
periments were run on an Intel(R) Xeon(R) CPU E5335 @
2.00GHz (four cores) running Debian Squeeze v6.0.4 and
Java 1.6 (Oracle). While the test system was a four core
system, all tests were single threaded. The test system is
equipped with 16Gb of memory but both Indri and Solr
were only given 1Gb.

3.1 Data
We used a single data set consisting of TREC disks 4 and

5 for both sets of experiments. The Porter stemmer and the
default Solr stop word list (35 words) was used for both the
Indri and Lucene collections. Collection statistics are shown
in Table 1.

3.2 Queries
Two sets of queries were generated from TREC topics 301-

450 (TREC 6 through 8). The first query set (short queries)
consists of the text from the title element of the TREC top-
ics. The short queries average 2.6 words per query. The
second set (long queries) consists of the text from both the
title and description elements with an average length of 18.7
words per query. The queries were completely unstructured
and made no use of proximity or other special query lan-
guage features.

4. RESULTS

4.1 Indexing
The results of the indexing experiment are shown in Ta-

ble 2. The index sizes remained the same for both systems
between 2009 and 2012. Both systems produce indexes that
are roughly twice the size of the source file. Indri produced
a more compact index; the Solr index is roughly 17% larger
than the Indri index. The indexing time results are quite
different. Indri 5.3 indexing time increased from Indri 4.1
by about 10% whereas Solr indexing time decreased between

the two versions by about 24%. Indri indexing is faster than
Solr for both experiments but the difference is greatly re-
duced, Solr indexing was slower by a factor of 1.7 in 2009
but only by a factor of 1.2 in 2012.

4.2 Query evaluation
Query evaluation times are shown in Table 3. There is lit-

tle difference in the query throughput of the two engines for
short queries and no change in performance between 2009
and 2012 for short queries. For long queries there are sig-
nificant differences. Indri is significantly slower than Lucene
for long queries. The increase in time for evaluating long vs
short queries is between 20 and 25 for Indri (long queries are
roughly 7 times longer than short queries) and only a fac-
tor of 2 for Lucene. Indri query evaluation for long queries
slowed between 2009 and 2012.

Note that for these tests the entire index for each of the
systems was cached by the operating system as the test ma-
chine was equipped with 16Gb of memory and the combined
size of the two indexes is only 5.2 Gb. Each system was run
once to prime the OS cache then run 3 to 5 times to gather
timings. Comparing performance when the the collections
must be read from disk is for future work.

Indri is much more processor intensive than Lucene. Dur-
ing the experiments Indri used essentially 100% of a CPU
core whereas Lucene used roughly 50%. Indri generally used
less memory – for the 2012 versions running long queries In-
dri used up to 45Mb of memory whereas Lucene used 150
to 300Mb.

4.3 Retrieval effectiveness
Retrieval effectiveness results are shown in Tables 4 (2009)

and 5 (2012). For short queries, Indri produces a signifi-
cantly better ranking. Performance as measured by MAP is
44% less for Lucene. Using precision at fixed ranks of 10 and
20, Lucene performance is roughly 30% lower, using bpref
Lucene is 26% lower. For long queries, the differences are
smaller but Indri still produces noticeably better rankings –
Solr is 16% lower using MAP and 14% lower using bpref.

The change in retrieval effectiveness between 2009 and
2012 is shown in Tables 6 (Indri) and 7 (Solr). For both sys-
tems the change is small. Indri showed no change for short
queries and mixed results for long queries (slight increase in
P10 and P20). Solr showed small improvements for short
queries and mixed results for long queries.

4.4 Overlap

Short queries Long queries

Indri 5.3 Solr 3.6 Indri 5.3 Solr 3.6

P(in OL) 0.2076 0.4653
P(+|in OL) 0.4824 0.4688
P(-|in OL) 0.4363 0.4546
P(?|in OL) 0.0813 0.0767

P(+) 0.3721 0.2587 0.4167 0.3813
P(-) 0.5112 0.5967 0.5127 0.5547
P(?) 0.1167 0.1447 0.0707 0.0640
P(+|not OL) 0.3577 0.2057 0.3596 0.3040
P(-|not OL) 0.5253 0.6450 0.5697 0.6429
P(?|not OL) 0.1170 0.1493 0.0707 0.0531

Table 8: Overlap in top 10 ranks
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2009 2012

Lemur 4.1 Solr 1.4 Indri 5.3 Solr 3.6

Index size (gigabytes) 2.4 (1.8x) 2.8 (2.1x) 2.4 2.8
Indexing time (sec) 863 1,461 942 1,113
Throughput (Mb/sec) 1.6 0.9 1.4 1.2

Table 2: Indexing results

2009 2012

Lemur 4.1 Solr 1.4 Indri 5.3 Solr 3.6

Short queries (sec) 10 13 10 13
(sec/query) 0.07 0.09 0.07 0.09

Long queries (sec) 200 25 251 25
(sec/query) 1.33 0.16 1.67 0.16

Table 3: Query evaluation times

Short queries Long queries

Lemur 4.1 Solr 1.4 Change Lemuri 4.1 Solr 1.4 Change

MAP 0.1951 0.1092 −44.1 0.2235 0.1840 −17.7
Precision at 10 0.3713 0.2573 −30.7 0.4053 0.3827 −5.6
Precision at 20 0.3247 0.2173 −33.1 0.3500 0.3220 −8.0
bpref 0.2219 0.1645 −25.9 0.2449 0.2081 −15.0

Table 4: Indr vs. Solr retrieval effectiveness (2009)

Short queries Long queries

Indri 5.3 Solr 3.6 Change Indri 5.3 Solr 3.6 Change

MAP 0.1948 0.1098 −43.6 0.2224 0.1856 −16.1
Precision at 10 0.3707 0.2607 −29.7 0.4167 0.3813 −8.5
Precision at 20 0.3243 0.2207 −31.9 0.3590 0.3183 −11.3
bpref 0.2219 0.1645 −25.9 0.2433 0.2087 −14.2

Table 5: Indr vs. Solr retrieval effectiveness (2012)

Short queries Long queries

Lemur 4.1 Indri 5.3 Change Lemur 4.1 Indri 5.3 Change

MAP 0.1951 0.1948 −0.2 0.2235 0.2224 −0.5
Precision at 10 0.3713 0.3707 −0.2 0.4053 0.4167 +2.8
Precision at 20 0.3247 0.3243 −0.1 0.3500 0.3590 +2.6
bpref 0.2219 0.2219 0.0 0.2449 0.2433 −0.7

Table 6: Change in Indri retrieval effectiveness over time

Short queries Long queries

Solr 1.4 Solr 3.6 Change Solr 1.4 Solr 3.6 Change

MAP 0.1092 0.1098 +0.5 0.1840 0.1856 +0.9
Precision at 10 0.2573 0.2607 +1.3 0.3827 0.3813 −0.4
Precision at 20 0.2173 0.2207 +1.6 0.3220 0.3183 −1.1
bpref 0.1645 0.1645 0.0 0.2081 0.2087 +0.3

Table 7: Change in Solr retrieval effectiveness over time

The overlap between the results produced by both sys-
tems is shown in Tables 8 and 9 (+ means document judged
relevant, − means document judged not relevant, ? means
document not judged, OL means in overlap). These num-

bers are important for two reasons. First, effectiveness re-
sults can be biased in favor of a system that has been used
extensively in the TREC experiments if many of the docu-
ments retrieved by the other system have not been judged

66



Short queries Long queries

Indri 5.3 Solr 3.6 Indri 5.3 Solr 3.6

P(in OL) 0.2356 0.4973
P(+|in OL) 0.4042 0.4026
P(-|in OL) 0.5211 0.5325
P(?|in OL) 0.0747 0.0649

P(+) 0.3274 0.2207 0.3590 0.3183
P(-) 0.5562 0.5880 0.5763 0.6133
P(?) 0.1163 0.1913 0.0647 0.0683
P(+|not OL) 0.3026 0.1515 0.3093 0.2199
P(-|not OL) 0.5750 0.6334 0.6283 0.7119
P(?|not OL) 0.1224 0.2151 0.0624 0.0681

Table 9: Overlap in top 20 ranks

and will therefore be treated as not relevant. The results in
Table 8 suggest that this is not a factor in these experiments
– the number of unjudged documents is small for both sys-
tems with between 85% and 90% of all documents judged
for short queries and between 90% and 95% for long queries.

Second, they provide an indication of how much improve-
ment might be achieved by combining the results of the two
systems. If the overlap is large then the combined result
can have little increase in recall so the primary source of
improvement is the reordering of the documents based on
combined score. If the overlap is smaller then the probabil-
ity that a randomly selected document from the overlap is
relevant is an indication of how well a simple voting strat-
egy might work. For example, in Table 8 roughly 20% of the
documents retrieved by the two systems with short queries
were the same. The probability that a document retrieved
by both systems is relevant is 0.4824 which is significantly
higher than the probability of relevance achieved by either
system individually (0.3721 for Indri and 0.2587 for Solr).

5. CONCLUSIONS
The results presented here allow direct comparison of the

two search engines. It also allows comparison of the changes
in the two engines between 2009 and 2012.

Index size for the two engines did not change between
2009 and 2012. Indri produces a somewhat smaller index
(1.8 times as large as the source collection) than Lucene
(2.1 times). In terms of indexing throughput, Indri de-
clined between between 2009 and 2012 (from 1.6Mb/sec
to 1.4Mb/sec) whereas Lucene performance improved (from
0.9Mb/sec to 1.2Mb/sec). In 2012, Indri still enjoyed a slight
advantage over Lucene (1.4Mb/sec vs 1.2Mb/sec).

In terms of query throughput there is little difference be-
tween the two engines for short queries but Indri is signifi-
cantly slower than Lucene for long queries.

In terms of retrieval effectiveness, Indri results are signifi-
cantly better than Lucene results especially for short queries.
Using precision at rank 20, Lucene rankings are roughly
30% worse for short queries and roughly 10% worse for long
queries. Retrieval effectiveness did not change significantly
for either engine between 2009 and 2012, at least for the
simple queries used in these experiments.

The overlap results show that the documents retrieved
by the two engines are significantly different, especially for
short queries. Using the top ten documents retrieved, for
short queries roughly 80% of all documents retrieved appear

in only one of the two rankings. For long queries, about
half of the documents retrieved appear in only one ranking.
The overlap results also show that even simple strategies
for combining results can yield significant improvements in
retrieval effectiveness.
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ABSTRACT
This paper introduces a set of Japanese phonetic matching
functions for the open source relational database PostgreSQL.
Phonetic matching allows a search system to locate ap-
proximate strings according to the sound of a term. This
sort of approximate string matching is often referred to as
fuzzy string matching in the open source community. This
approach to string matching has been well studied in English
and other European languages, and open source packages
for these languages are readily available. To our knowledge,
there is no such module for the Japanese language. In this
paper, we present a set of string matching functions based
on the phonetic similarity for modern Japanese. We have
prototyped the proposed functions as an open source tool
in PostgreSQL, and evaluated these functions using the test
collection from the NTCIR-9 INTENT task. We report our
findings based on the evaluation results.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—query formulation, retrieval models,
search process; I.7.1 [Document and Text Processing]:
Document and Text Editing—languages, spelling; I.7.3
[Document and Text Processing]: Text Processing—
index generation

General Terms
Open Source RDBMS, Approximate String Matching, Fuzzy
String Matching, Phonetic Matching, Japanese Information
Retrieval

1. INTRODUCTION
One interesting but cumbersome problem in IR and NLP

research is mismatches between the spelling of words. A
simple question for this problem is: What if two words have
the same meaning but different spellings? This is the issue
explored in this paper. A related but more difficult problem
are homographs, or words with the same spelling. The latter
requires word sense disambiguation (WSD)[7], which is the
task of identifying the meaning of words in a context. In
this paper, we focus only on words with the same meaning

The copyright of this article remains with the authors.
SIGIR 2012 Workshop on Open Source Information Retrieval.
August 16, 2012, Portland, Oregon, USA.

and different spellings. These words are categorized into the
following two types.

• Synonyms – words with the same (or, nearly the same)
meaning, different spellings and different pronuncia-
tion.

• Spelling variation – words with the same meaning,
different spellings and the same (or, nearly the same)
pronunciation.

Synonyms are words that are similar in a semantic sense.
Approaches such as Latent Semantic Indexing (LSI) [2] and
word clustering[9] can be used to alleviate this problem.
Spelling variants are slightly more difficult to classify, and
present a difficult problem in ranked document retrieval
systems depending on keyword queries.

Recent efforts to improve the effectiveness of IR systems
have included web search result diversification [10]. In order
to increase search effectiveness in this task, an innovative
solution to spelling variants is needed. The goal of this paper
is take a first step towards providing an open source tool to
help with this problem in the Japanese language.

The rest of this paper is organized as follows: Section 2
presents string matching methods for English and Japanese;
Section 3 describes our proposed phonetic matching ap-
proach for Japanese; Section 4 reports our findings based
on a preliminary experimental study; and Section 5 presents
conclusions and future work.

2. RELATED WORK
Phonetic matching is a type of approximate string match-

ing. As with other approximate pattern matching methods,
edit distance[6] and character-based n-gram search[8] are
commonly used. The seminal approach to phonetic match-
ing is the Soundex Indexing System[5]. It can accurately
assign the same codeword to two different surnames that
sound the same, but are spelled differently, like SMITH
and SMYTH. The basic coding rules of Soundex are shown
in Figure 1. Both SMITH and SMYTH are encoded as
S530 by Soundex. In English and other languages, revised
versions and alternatives of Soundex have been proposed. A
set of these string matching functions, generally referred to
as “fuzzy string matching”, are deployed in an open source
programming language. These functions are assembled in
an open source relational database, PostgreSQL1 as well and
are applied to the objects in the database or combined with
other relational operations.
1http://www.postgresql.org/
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Step-1 Retain the first symbol and drop all vowels.
Step-2 Replace consonants with the following code.

b, f, p, v → 1 l → 4
c, g, j, k, q, s, x, z → 2 m, n → 5
d, t → 3 r → 6

Step-3 Remove the duplication of code numbers.
Step-4 Continue until you get three code numbers.

If you run out symbols, fill in 0’s
until there are three code numbers.

Figure 1: The Soundex Indexing System.

For English, phonetic matching for IR systems has been
studied extensively[1, 3, 11]. If Japanese documents are
transliterated into a Latin alphabet, English methods can
be applied. However, transliteration contains its inherent
problems. Some input characters are lost due to the lack
of correspondence between Japanese and Latin alphabets.
How to reduce the transliteration errors is an interesting
related problem, and will be considered in our future
research. The issue of effective transliteration was explored
by Karimi et al.[4]. Our research interest in this paper is
to develop native matching functions for Japanese search
engines without transliteration.

3. OUR METHODOLOGY
In this section, we present our approach to symbol

grouping and phonetic matching in Japanese.

3.1 Japanese writing system and syllabary
In the Japanese language, the number of phonetic sounds

is relatively small, and simply expressed in the 5×10 grid in
Table 1. It shows the Japanese syllabary, “五十音(Gojūon)”
meaning “Fifty Sounds” in English. In the table, both Hira-
gana symbols (the rounded syllabic symbols) and Katakana
symbols (the angular syllabic symbols) are displayed. Vowel
symbols, such as ア (a) and イ (i), do not have corresponding
consonants, and this is represented as φ in the leftmost
column. In the table, the gray cells are vacant because the
symbols become lost over time. In modern Japanese, there
is no symbol for Y+I (yi), Y+E (ye), W+U (wu), and the
pronunciation for them are the same as φ+I (i), φ+E (e),
φ+U (u), respectively. The symbols for W+I (wi) and W+E
(we) are outdated, but can still be used in modern Japanese.
They are normally replaced with symbols for φ+I (i) and
φ+E (e) because of the similarity of the pronunciation. In
addition to the symbols in the table, the Japanese writing
system takes an additional symbol, ン (n, a syllabic nasal),
symbols with a voiced/semi-voiced sound mark, such as ガ
(ga) or パ (pa), lower-case symbols, such as ッ (tsu, a double
consonant), or ャ (ya, a contracted sound), and a diacritical
mark for a prolonged sound, such as ー (a macron). For
web queries and documents, classical spellings, such as the
usage of obsolete symbols, ヱ (we) or an uncommon usage of
lower-case symbols, e.g, ヶ (ke) substituting for ケ (ke), may
appear in web queries and documents for stylistic reasons, or
simple mistakes. Japanese phonetic matching must account
for such anomalies.

Table 1: The Japanese Syllabary (Fifty Sounds).
Hiragana Symbol Katakana Symbol

A I U E O A I U E O
φ あ い う え お ア イ ウ エ オ 1

a i u e o a i u e o
K か き く け こ カ キ ク ケ コ 2

ka ki ku ke ko ka ki ku ke ko
S さ し す せ そ サ シ ス セ ソ 3

sa si su se so sa si su se so
T た ち つ て と タ チ ツ テ ト 4

ta ti tu te to ta ti tu te to
N な に ぬ ね の ナ ニ ヌ ネ ノ 5

na ni nu ne no na ni nu ne no
H は ひ ふ へ ほ ハ ヒ フ ヘ ホ 6

ha hi hu he ho ha hi hu he ho
M ま み む め も マ ミ ム メ モ 7

ma mi mu me mo ma mi mu me mo
Y や ゆ よ ヤ ユ ヨ 8

ya yu yo ya yu yo
R ら り る れ ろ ラ リ ル レ ロ 9

ra ri ru re ro ra ri ru re ro
W わ ゐ ゑ を ワ ヰ ヱ ヲ 10

wa wi we wo wa wi we wo
1 2 3 4 5 1 2 3 4 5

3.2 Symbol groups in Japanese
Table 2 shows symbol groups for our phonetic matching

functions. The symbol groups are assembled based on
the similarity of Japanese speech sounds. Each symbol
group is given a unique identifier (ID). In the table, text
in parentheses expresses a commentary on each group and
the corresponding consonant, e.g., K for カ (ka) and S for サ
(sa). Vowel symbols, such as ア (a) and イ (i), do not have
corresponding consonants, and hence φ is in the parentheses.

Table 2 composed of 3 distinct parts: “Fifty Sounds,”
“Voiced Sounds,” and “Additional Sounds.” As a whole,
the table covers all speech sounds in modern Japanese that
are writable with Katakana symbols in UTF-8 character
encoding. Different from English phonetic matching that
uses the Latin alphabet or Arabic numeral for input/output
strings, our matching functions take Katakana symbols for
input strings and use Hiragana symbols for output strings.
In UTF-8 character encoding, Katakana symbols are from
ァ (E382A1) to ヶ (E383B6), and the number of Katakana
symbols is 86. Hiragana symbols are from ぁ (E38181) to
ん (E38293), and the number of Hiragana symbols is 83.
The three symbols, ヴ (E383B4), ヵ (E383B5), ヶ (E383B6)
are special symbols. They are defined in the Katakana part
only, and there is no corresponding Hiragana symbol for
these symbols.

In Table 2, Katakana symbols for “Fifty Sounds” (F-01
to F-11) are mostly the same as those in Table 1 with the
exception of Katakana symbols for wi, we and wo because
the Katakana symbols, ヰ (wi), ヱ (we), and ヲ (wo) have the
same pronunciation as イ (i), エ (e), and オ (o), respectively,
in modern Japanese. Hence, F-02 are incorporated into
the same group as F-01 in Table 2. Similarly, V-03 are
separated from V-04, and incorporated into V-02 because
the Katakana symbols, ヂ (di) and ヅ (du) in modern
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Table 2: The Symbol Groups for Japanese Phonetic Matching.

ID Fifty Sounds [in] Code [out] ID Voiced Sounds [in] Code [out] ID Additional Sounds [in] Code [out]
F-01 アイウエオ (φ) → E38182 あ A-01 ァィゥェォ (lower-case, φ) → E38182 あ
F-02 ヰヱヲ (obs., φ) → E38182 あ A-02 ー (macron, φ) → E38182 あ
F-03 カキクケコ (K) → E3818B か V-01 ガギグゲゴ (G) → E3818C が A-03 ヵヶ (lower-case, K) → E3818B か
F-04 サシスセソ (S) → E38195 さ V-02 ザジズゼゾ (Z) → E38196 ざ

V-03 ヂヅ (obs., Z) → E38196 ざ
F-05 タチツテト (T) → E3819F た V-04 ダデド (D) → E381A0 だ A-04 ッ (lower-case, T) → E381A3 っ
F-06 ナニヌネノ (N) → E381AA な A-05 ン (syllabic nasal, N) → E38293 ん
F-07 ハヒフヘホ (H) → E381AF は V-05 バビブベボ (B) → E381B0 ば

V-06 ヴ (V) → E381B0 ば
V-07 パピプペポ (P) → E381B1 ぱ

F-08 マミムメモ (M) → E381BE ま
F-09 ヤユヨ (Y) → E38284 や A-06 ャュョ (lower-case, Y) → E38283 ゃ
F-10 ラリルレロ (R) → E38289 ら
F-11 ワ (W) → E3828F わ A-07 ヮ (lower-case, W) → E3828F わ

Japanese have the same pronunciation as ジ (zi) and ズ (zu),
respectively.

Each Katakana symbol for “Voiced Sounds” (V-01 to V-
07) is a symbol with a voiced/semi-voiced sound mark. In
the table, voiceless and voiced (e.g., K and G), voiced and
semi-voiced (e.g., B and P), and Japanese voiced and foreign
voiced (e.g., B and V) are all distinguished and separated
into different symbol groups. “Additional Sounds” (A-01 to
A-07) cover the rest of Katakana symbols and the diacritical
mark, ー (a macron).

3.3 Japanese Phonetic Matching
In the same way as the Soundex Coding System in

English, the matching function in Japanese also encodes
symbols according to symbol groups. Essential steps in the
matching function are described as follows:
Step-1 Encode all strings in text DB in advance.

Step-2 Encode a query string on arrival.

Step-3 Output a matching set of encoded symbols.
The greatest challenge in designing phonetic matching

functions is deciding how to group similar phonetic symbols.
Our approach accomplishes this challenge empirically rather
than theoretically by using the actual speech sound in
modern Japanese. Our first phonetic matching function
(Japanese phonetic matching; jppm) is as follows:
jppm1 Retain the first symbol, and encodes the rest as

encoded symbols according to Table 2. The encoded
symbols are a sequence of Hiragana symbols in UTF-
8 character encoding. While it categorizes Japanese
speech sounds in a rigorous manner, the output code-
words tend to be too verbose, and consequently cause
mismatches with similar strings.

In order to reduce the number of codewords used, we
derive three revised versions from jppm1. They are altered
from the initial version as follows:
jppm2 In order to simplify output code symbols, drop all

symbols if they are vowels (F-01 and F-02) or an
“Additional Sound” (A-01 to A-07) in Table 2. The
first symbol is always retained in this function.

jppm3 In order to simplify encoded symbols, merge groups
in the same line (the same row) in Table 2. To be
more specific, incorporate V-01 into F-03, incorporate
V-02 and V-03 into F-04, incorporate V-04 and A-04
into F-05, incorporate V-05, V-06 and V-07 into F-07,
incorporate A-06 into F-09. The first symbol is always
retained in this function.

jppm4 In order to simplify output codewords, drop A-01,
A-02, A-04 and A-06 in Table 2. The first symbol is
still retained as is.

3.4 Implementation
Our aim is to provide an open source component of

Japanese phonetic matching. We prototyped the phonetic
matching functions in Japanese as an extended version
of the fuzzystrmatch module in the open source rela-
tional database, PostgreSQL. We call the new module
jpfuzzystrmatch and provide its source code under an open
source license2. To help understanding, an example of the
each of the 4 functions (jppm[1,2,3,4]) and an example of
English phonetic encoding systems with a transliteration
system are attached with the source code. The module
contains user-defined C-Language functions, and is compiled
into dynamically loadable objects (shared libraries). It is
distinguished from PostgreSQL internal functions, and can
be loaded by the server on demand.

4. EXPERIMENTS
Evaluation of phonetic matching is an important problem

to consider. In contrast to ad hoc evaluation in IR systems,
there are no standard test collections for phonetic matching
functions. In our experiment, we adapted a standard
test collection for IR systems, the NTCIR-9 Japanese
Intent task, for evaluating phonetic matching functions
in Japanese. To build a text database to query, 84
million index terms were extracted from 67 million Japanese
documents in the ClueWeb09-JA collection. For document
processing, we employed MeCab3 as a morphological an-
2http://www.daisy.cs.gunma-u.ac.jp/jpfsm/
3http://mecab.sourceforge.net/
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Table 3: Experimental Results (Average).
CodeLen #Results EditDist Pscore

jppm1 8.2 6.0 1.88 3.06
jppm2 5.3 131.2 3.73 24.00
jppm3 8.2 9.2 2.06 4.29
jppm4 6.3 25.5 2.74 7.19

alyzer in Japanese, and Indri4 as an indexing module to
extract index terms from documents. In order to analyze
how well the new functions work, sufficiently long Katakana
words from topic words in the test collection were used as
query strings. Specifically, we used all Katakana words
which consists of 7 or more Katakana symbols; there were
10 such words in the test set.

Since the judgments in the test collection were not
developed to carry out phonetic matching, how to evaluate
the developed functions needs to be considered. Generally
speaking, it is difficult for human assessors to judge if
two strings are phonetically similar. For example, Zobel
and Dart[11] report a high level of inconsistency among
assessors in such a judgment proces. We therefore adopted
an automatic evaluation approach.

In order to evaluate phonetic matching in an automatic
manner, we make the following assumptions.

• If the discrepancy between two spellings is small,
phonetic similarity is naturally large.

• If many matching strings are returned, the shortened
sequence of symbols is sufficiently generic.

Based on the above assumptions, we define the following
score, Pscore to measure the performance of phonetic match-
ing functions.

Pscore =
#Results

1 + avg(EditDist)

Here, #Results is the number of strings returned by
a phonetic matching function, and avg(EditDist) is the
average edit distance between the query string and each
returned string. Table 3 shows the experimental results.
The average values are across all 10 test queries. In the
table, jppm2 has the highest Pscore. However, manual
inspection of the results showed that this function returned
many strings that are phonetically similar, but are not
spelling variants of the query strings. For example, jppm2
obtained “matui ryousuke” (a male’s name in Japanese) and
“mattress queen” (a product name) for the query “matoriyo-
sika” (“Matryoshka doll”). Since jppm[1,3] have different
grouping features from jppm2, some obtained strings are
different among these functions. The results of jppm4 are
a subset of those of jppm2 because the grouping features
are common. Putting together obtained strings, phonetic
matching can be a viable solution to find potential spelling
variants. However, the obtained strings still need to be
filtered using further semantic analysis. In future work, we
intend to evaluate these functions in the context of a full IR
task.

4http://sourceforge.net/apps/trac/lemur/

5. CONCLUSION
In this paper, we have presented a set of new Japanese

phonetic matching functions. We do not attempt to address
the bigger issue of “word sense disambiguation” (WSD) and
synonyms, but rather present a simple approach to captur-
ing similar Japanese terms for ad hoc queries. A phonetic
matching function takes an input sequence of symbols and
converts it into a generic shortened sequence of symbols in
order to find as many fuzzy matches as possible. Some of the
generic codewords may gather too many matches, including
correct ones (the same meaning) and wrong ones (different
meaning). However, this approach can be used as a first
pass filter to find potentially relevant documents in large
Japanese document collections. This subset of documents
can then be further refined using relevance feedback or more
computationally expensive ranking metrics in subsequent
retrieval steps. In future work, we intend to investigate
the broader issue of WSD and synonyms using phonetic
matching, and explore other applications of these simple
matching functions.
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