
The Simplest Query Language That Could Possibly Work

Richard A. O’Keefe
Department of Computer Science

University of Otago
Dunedin, New Zealand

ok@cs.otago.ac.nz

Andrew Trotman
Department of Computer Science

University of Otago
Dunedin, New Zealand

andrew@cs.otago.ac.nz

ABSTRACT
The INEX’03 query language proved to be much too compli-
cated for the INEX participants to use well, let alone anyone
else. We need something simpler, but not too simple. Some-
thing which is basically a hybrid between Boolean IR queries
and a stripped down CSS will do the job.

1. INEX NEEDS A QUERY LANGUAGE.
In the INEX conferences, we are trying to develop a data
collection and a set of queries with known answers that can
provide a solid basis for research and experimentation with
XML information retrieval.

In order to communicate between researchers in the same
year, we need a common query language. For INEX’02 there
was such a language. In INEX’03 there was another. In
order to communicate between the researchers who produce
the queries in one year and the researchers who use them in
later years, we need a stable, well-defined language.

The designer(s) of the INEX’03 query language had every
reason to feel pleased. After the INEX’02 query language
proved to need revision, surely this was the simplest thing
that could possibly work: take an extremely well established
XML structural query language (XPath) and add to it a
minimal set of features for Information Retrieval.

It seems to be agreed that XPath is not a language for the
casual user. But this paper is not concerned with user query
languages. The query language we need is a query language
for use by researchers who are expert in information retrieval
and XML. What counts is whether the query language is
suitable for us, not users.

Unfortunately, the production of this year’s CAS queries
proved conclusively that the INEX’03 query language is far
too complicated for us:

• It proved too hard to use. Of the 30 CAS queries that
were selected, 19 (nearly 2

3
), were either syntactically

illegal or otherwise wrong. It took no fewer than 12
rounds of correction before we had a completed collec-
tion of queries.

• Like many W3C productions, XPath 1.0 is quirky, to
put it kindly. It is very powerful in some respects, but
there are queries that are very hard to express. For
example, //body//ip1//name | //body//ip2//name is

legal, but //body//(ip1|ip2)//name is not.

• It proved to be hard to implement. Presumably ev-
eryone who submitted a query for consideration had
already checked it with some XML IR engine; how
else could they have known that the query had about
the right number of relevant answers? Yet a large
number of queries were syntactically or semantically
wrong. That should have been noticed. At least one
implementor switched the semantics of the / and //
operators.

• It proved to be hard to implement for another rea-
son. XPath is quite powerful, in ways that are not
likely to be useful for information retrieval, and yet if
XPath was not implemented in full, were we really im-
plementing the INEX’03 query language? This year,
it turned out that most of the power of XPath was
not needed. It wasn’t the simplest thing that could
possibly have worked. For example, we[23] found that
there were 198,041 nodes in the index after ignoring
“noise” tags. Yet if ordinal position was also ignored,
there were only 10,522 distinct paths. Not one of this
year’s selected CAS queries used the ordinal position
([n]) feature of XPath.

• XPath has a clear definition of the “string value” of
a node; the definition is precise, but given the actual
XML markup in the document collection we are work-
ing with, it’s not the definition we want. For example,
if there is one mention of Joe Bloggs in the collection,
as 〈au〉〈fnm〉Joe〈/fnm〉〈snm〉Bloggs〈/snm〉〈/au〉, then
the string value is “JoeBloggs” and a search for the
word “Bloggs” is guaranteed to miss it.

Worse, markup that is supposed to enclose numbers
very commonly includes punctuation as well; the rules
of XPath say that trying to convert such a string value
to numeric form is an error. Yet we want to query it.

2. THE INEX’03 QUERY LANGUAGE WAS
TOO HARD TO USE.

Every group had to submit 3 CAS and 3 CO queries. These
submissions were supposed to have been tested, and known
to have a reasonable number (not too high, not too low) of
relevant answers. In fact, some answers were provided with
each submission. So each submitted query should have been
a legal INEX’03 query.

From this pool, 30 CAS and 36 CO queries were selected. Of
the 30 CAS queries, 19 had either syntax errors or serious
semantic errors. The most common semantic error was using
the “child” operator / when the “descendant” operator //
was intended.

This is a shocking error rate.

It wasn’t just hard to get the queries right in the first place;
it was hard to fix them. It took 12 rounds of corrections
before we had a workable set of queries, starting from what
were presumably the best queries in the first place.

Since a query language based on XPath 1.0 was too hard for
us to us, it is impossible to believe that a query language
based on the much more complicated XPath 2.0 could be
usable by us.

3. WHAT SHOULD WE LOOK FOR IN A
QUERY LANGUAGE?

3.1 We want something WE can use.
This paper is not about query interfaces or query languages
for end users. This paper is solely concerned with query
languages for researchers producing or using INEX data.
Complexity is not necessarily a problem for us, as long as
it is useful complexity. Requiring an intimate knowledge
of XML or XML related technologies is not necessarily a
problem for us. Requiring lots of punctuation in just the
right places is not necessarily a problem for us.

While complexity need not be a problem, we need to take
a step back and start with something much simpler than
XPath, because it is an empirically established fact that it
was too complicated for us. It is not likely that the query
language we propose in this paper will serve for all time;
what does matter is that it should be possible to automat-
ically translate it into whatever richer language may be de-
vised in the future. Simplicity now means easier conversion
in the future. So one guiding rule is that nothing should be
included in the query language unless it was actually used
in this year’s or last year’s queries.

We do not want to limit INEX participation to experimenters
following an “orthodox line” in query languages. Keep-
ing the query language simple keeps the conference open
to approaches with as yet unimagined index structures and
retrieval techniques. XPath and XPath-like languages pe-
nalise such approaches.

3.2 Databases and information retrieval are
different.

It is useful to distinguish between database query languages
and information retrieval query languages. They have some
similarities, but the differences are fundamental, and mean
that an XML database query language is unlikely to be a
good foundation for an XML information retrieval query
language.

The CODASYL database language, “network” databases,
the relational algebra, the relational calculus, SQL, the Ob-
ject Query Language (OQL) in the ODMG Object Database
Standard[4], and various spatial and temporal extensions

of relational databases, even the Smalltalk dialect used in
Gemstone, all have these fundamental characteristics in com-
mon:

• To a large extent, as [9] puts it, this “data is primarily
intended for computer, not human, consumption.”

• A “database” is made up of elementary values (num-
bers, strings, dates, and so on) aggregated using a pre-
defined set of container types with precise data struc-
ture semantics and labelled with user defined labels
(column names, relation names, and so on).

• The user-defined labels have user-defined semantics
which the database is aware of only to the extent that
constraints are stated.

• Even when there are user-defined structures (classes
in ODMG, Gemstone, and SQL3, for example), these
may be seen as instances of one of a fixed set of meta-
structures. For example, the ODMG standard pro-
vides an Object Interchange Format by means of which
any object database may be dumped as a text stream;
instances of classes all have a fixed format here and it
is clear that “class” is a single meta-structure.

• There is a structured query language with a (more-or-
less) formal definition which relates any legal query to
a precise semantics, by appealing to the data structure
semantics of the container types and meta-structures
and to any stated constraints.

• A query processor is expected to obey the semantics
of any query it accepts precisely ; it may exploit known
properties of the query language to transform a query
into one with better performance, typically by using
indexes.

• If a query has more than one answer, all of the answers
are relevant. Someone who doesn’t want all of the
answers is expected to write a more specific query.

Database query languages are just like programming lan-
guages. (Very bad programming languages, some of them,
notably SQL.) The person formulating the query is expected
to understand the relevant user-defined labels and constraints
and to “program” a query which expresses his or her needs.
A database query engine is required to obey the query liter-
ally, just as a C compiler is required to translate C faithfully,
even rubbish. If you ask an ODMG database the OQL query
select p from Persons p where p.address.city = “Dunedin”
and the answer includes a p for which p.address.city = “Mos-
giel”, you will be seriously unhappy, even though Mosgiel is
only 10 to 15 minutes’ drive from Dunedin.

Since SGML was designed, the SGML slogan has been “a
document is a database”. For many years there have been
SGML document database engines, notably SIM[16]. As
XML is a special case of SGML, it is natural to view an
XML document as a database.

• The elementary values are strings. The aggregates are
labelled attributed tree structures. The data structure

semantics is provided by GROVEs, or the DOM. El-
ement type names and attribute names are the user
defined labels.

• Constraints are stated by means of DTDs or XML
Schemas. XML Schemas in particular express the no-
tion “a database is a document”.

What you get, on that view, is a database query language
for tree-structured databases.

Information retrieval is very different. Instead of saying
“the programmer knows precisely what s/he wants and how
that’s represented, I must do exactly what s/he says”, in-
formation retrieval engines say “the user wants to find out
about something and has given me a hint about what it is, I
must be helpful”. If you ask an information retrieval system
“agricultural research Dunedin” and it comes back with a
web page about “Invermay Agricultural Centre, Mosgiel”,
you are not angry with it for disobeying you but impressed
with how clever it was to find something so helpful.

The fact that information retrieval systems regard the user’s
query as a clue about what the user wants instead of a pre-
cise specification has enormous consequences for the design
of information retrieval languages. So does the fact that the
text they search is itself not in a precisely defined language.

When you construct a DTD or Schema for a family of XML
documents, you describe how the XML parts fit together.
But if you have free text in some of the elements, it remains
just as informal as free text on its own.

At one end, we have data without a known precise seman-
tics. At the other end, we have queries that are regarded as
clues rather than commands. As Shlomo Geva[13] pointed
out in the INEX mailing list, even the Boolean operators
are not taken all that seriously by some retrieval engines. If
two relational or object database engines holding the same
information give different answers to a single query, at least
one of them is broken. If two information retrieval engines
holding the same document collection give different answers
to a query, one of them might be better, but each of them
might find something useful that the other doesn’t. It cer-
tainly doesn’t mean that either of them is wrong. All of
this makes it hard to design elaborate information retrieval
query languages. What earthly use is elaborate precise syn-
tax when you don’t have, can’t have, and wouldn’t want,
precise semantics?

Of course we can embed a database query language in an IR
query language (find precisely this set of documents and use
that as a clue combined with the other clues in the query
to find what I really want instead), and we can embed an
IR query language in a database query language (give me
precisely the answers satisfying a bunch of tests one of which
is this clue about what I have in mind). Confusion seems
unavoidable; at least we should be clear about which parts
are precise and which parts are fuzzy.

3.3 It’s all about indexes.
The great strength of Information Retrieval systems is their
indexes.

An information retrieval language for XML should exploit
this. It should avoid “structural” queries that are hard to
handle with plausible index structures. This suggests keep-
ing XML “structure” and IR “content” parts of queries sep-
arate, rather than mingling them indiscriminately as XPath
does.

This does not mean that we should always be limited to
queries that can be expressed in terms of currently known
index structures. On the contrary, if someone comes across
a reasonable query that is not expressible in the INEX’04
query language, that’s a good thing, because it suggests a
research topic: what kind of index could support this kind
of query?

3.4 “Descendant” is more useful than “child”.
An extremely common mistake in the INEX’03 queries was
using the “child” axis (/) when the “descendant” axis (//)
was intended.

The designers of CSS recognised that “descendant” queries
were more common when they used the invisible operator
to mean “descendant”, making “descendant” easier to say
than “child”.

Consider //article/bdy/sec/ip1. That may be what you
want, but you might have wanted //article/bdy/sec/bq/ip1
elements as well, had you known about them. The query
//article//bdy//sec/ip1 is more likely to be what you re-
ally mean.

It turns out that none of the INEX’03 queries needs “child”
at all; in each case “descendant” will do. This frees us to
use the simple spelling “/” for “descendant”, as many INEX
contributors expected.

4. SOME XML QUERY LANGUAGES
The world is awash in query languages for semistructured
data, ranging from the complicated (CSS) to the mindbog-
glingly complicated (XQuery).

4.1 HyTime
HyTime[15, 14, 21] introduced many important things to
SGML. One of them was a query language, HyQ[19].

However, the current standard says “HyTime recommends
the use of the Standard Document Query Language (SDQL),
defined in the DSSSL standard, ISO/IEC 10179:1996 Doc-
ument Style Semantics and Specification Language, for the
queryloc and nmquery element forms. The SDQL language
includes equivalents of all the HyTime location address forms.”

Early drafts of XPath looked like a stripped down HyQ.

HyQ is all about precise location of points and ranges both
in trees and in multimedia coördinate systems. It is quite
complicated. But it is worthy of note as one of the two an-
cestors of most XML query languages. (The other is SQL.)

Because the query language presented here is not seman-
tically like XPath, it would be highly undesirable for it to
resemble XPath too much in syntax.

4.2 DSSSL
DSSSL[17] is the SGML version of XSL and XSLT[6]. It con-
tains a Scheme-based query and transformation language. It
must be said that DSSSL is incomparably easier to read than
XSLT. The Standard Document Query language is basically
some datatypes for collections of nodes and some functions
that manipulate them. It’s a programming language, not an
IR query language.

4.3 CSS
A CSS[3] 〈selector〉 is a collection of 〈path〉s or-ed together.
In each 〈path〉, the focus is on the rightmost element; it is
that element which the following style will be applied to.
Working from right to left, an element must be a sibling
(‘+’), a child (‘>’), or a descendant (invisible operator) of
the element to its left.

An 〈element〉 test may check for an element 〈name〉 or not
(〈any〉 or omitted). It may check whether an element is
the ‘:first-child’ of its parent. This means that XPath’s
/*[3 and p] is expressible as *:first-child+*+p. But XPath’s
/p[3] is not quite expressible; p:first-child+p+p does not
allow other elements between the p elements.

A 〈filter〉may check whether an attribute is present, whether
it is present and has normalised value exactly equal to a
given text, whether it is present and contains a given white
space delimited word, or whether it is present, looks like an
xml:lang value, and has a given lang code as prefix. The
grammar is given in Table 1.

There is no negation anywhere in CSS. You cannot test
whether an attribute is present and not equal to a string.
Paths cannot be negated. Within its limits, CSS seems quite
usable.

4.4 XPath
This year’s query language was based on XPath 1.0. XPath
1.0 has several uses in W3C standards. One of them is
XPointer. XPointer provides a means of pointing precisely
to a location or range in a document. That is, XPointer,
and the underlying XPath, are database query languages for
XML.

We can get an idea of the complexity of various extensions
and relatives of XPath by looking at the sizes of the defining
reports; to master any of them requires reading at least this
much material. Since the reports are provided in HTML,
the page count depends on how you display it. Therefore we
normalise the number of screens by the number of screens
for XPath 1.0 in Table 2.

The “all up” entries include the Data Model and Func-
tions and Operators documents, which are essential parts of
XPath 2.0, XSLT 2.0, and XQuery 1.0. To get page counts
for the browser and paper size we used, multiply by left
column by about 28.

If XPath 1.0 was too complex for us to master, can any of
the other W3C query languages be easier? XML-QL looks
as though it might be, but it is not a W3C recommendation,
and [9] explicitly says that “. . . we take a database view, as

Table 2: Length of Specification (Normalised)
0.5 CSS 2.0 selectors[3]
1.0 XPath 1.0[7]
0.7 XML-QL[10]
1.5 XQL[22]
3.2 XSLT 1.0[6]
4.2 XSLT 1.0 + XPath 1.0 (XSLT includes XPath)
2.4 XQuery 1.0 and XPath 2.0 Data Model[11]
5.8 XQuery 1.0 and XPath 2.0 Functions&Operators[20]
3.1 XPath 2.0[1]

11.3 XPath 2.0 all up
9.0 XQuery 1.0[2]

17.3 XQuery 1.0 all up
10.1 XSLT 2.0[18]
18.3 XSLT 2.0 all up

opposed to document view, of XML. We consider an XML
document to be a database . . . ”.

In fact all of these languages take a database view, making
them unsuitable as foundations for an information retrieval
query language. Space does not permit thorough discus-
sion of YATL[8], XQL[22], Quilt[5] (Quilt and XPath 1.0
are closely related), YATL[8], or others.

4.5 XIRQL
XIRQL[12] was designed as an “information retrieval” query
language, not a “database” query language. However, it ex-
tends XQL, so parts of it resemble XPath, including the dis-
tinction between “child” and “descendant” which we failed
to master. In the INEX collection, it was not clear to most
of us what the root actually was, so the ability to refer to
the root is not useful to us either.

The abstract of [12] tells us that XIRQL integrates “weight-
ing and ranking, relevance-oriented search, datatypes with
vague predicates, and semantic relativism ... by using ideas
from logic-based probabilistic IR models.” This means that
important and attractive as XIRQL is, it is too closely tied
to one particular approach to be suitable for INEX.

We propose a much simpler and less capable language, which
can be seen as a very small sublanguage of XIRQL, and also
of other query languages.

5. THE STRING-VALUE PROBLEM
Practically everything in XPath 1.0 that involves strings is
defined in terms of the “string-value” of a node. The rules
are spelled out in section 5 of the XPath 1.0 specification.
Roughly speaking,

1. The string-value of a text item (parsed character data
or CDATA) is the obvious text value.

2. The string-value of an element or of the entire doc-
ument is the concatenation of the string-values of its
text descendants in document order.

3. The string-value of an attribute is its normalised value
as spelled out in the XML 1.0 specification. (An XML
processor that does not validate cannot be used as the
basis for an XPath implementation.)

Table 1: CSS grammar
〈selector〉 ::= 〈path〉 (〈or〉 〈path〉)∗
〈or〉 ::= ‘,’
〈path〉 ::= (〈siblings〉 〈down〉)∗ 〈siblings〉
〈down〉 ::= ‘>’ | empty
〈siblings〉 ::= (〈element〉 〈followed-by〉)∗ 〈element〉
〈followed-by〉 ::= ‘+’
〈element〉 ::= (〈name〉 | 〈any〉 | 〈filter〉) 〈filter〉∗
〈any〉 ::= ‘*’
〈filter〉 ::= 〈exists〉|〈equals〉|〈word〉|〈prefix〉|〈first〉|〈lang〉
〈exists〉 ::= ‘[’ 〈name〉 ‘]’
〈equals〉 ::= ‘[’ 〈name〉 ‘=’ 〈value〉 ‘]’
〈word〉 ::= ‘[’ 〈name〉 ‘∼=’ 〈value〉 ‘]’
〈prefix〉 ::= ‘[’ 〈name〉 ‘|=’ 〈value〉 ‘]’
〈first〉 ::= ‘:first-child’
〈lang〉 ::= ‘:lang(’〈value〉‘)’

So 〈au〉〈fnm〉Joe〈/fnm〉〈snm〉Bloggs〈/snm〉〈/au〉 has string-
value “JoeBloggs”.

If you go looking for “Bloggs” in 〈au〉, XPath 1.0 guarantees
you won’t find it.

Of course, we don’t have to follow XPath’s definition of
string-value. But if we don’t do that, there isn’t much point
in following XPath’s complex and limiting syntax either.

This definition of string value goes back to HyTime; ev-
ery XML-related standard we’ve checked uses essentially the
same definition. CSS and XSLT provide means for trans-
forming a document by adding material at the beginning or
end of an element’s contents; the string value can be quite
different in the transformed document. XPath was too hard;
bringing XSLT into it would clearly be inadvisable.

There are three plausible ways around this problem.

• Add an extra space at the end of each text item. This
gives the answer “Joe Bloggs ”, which will work. In
rare cases like “〈u〉A〈/u〉ccelerator” this may break
words up, but it will almost always help.

• For items which should be treated as having word
breaks, add an attribute in the DTD:

<!ATTLIST snm INEXword #FIXED "break">

Ensure that there is at least one white space char-
acter at the boundaries of every element with INEX-
word=”break”.

• Allow the indexing software to make the decision just
as it does for stemming. Attributes like INEXword offer
guidance, not rigid command.

The first approach is simpler. If we were seeking the preci-
sion of database queries, the second approach would be bet-
ter. Examples like T〈scp〉itle〈/scp〉 W〈scp〉ords〈/scp〉 may
make it essential even for us (although the INEXscan at-
tribute should solve this problem). But whichever approach
we take, we are divorcing ourselves from XPath.

5.1 Numbers
An XML document contains only strings. Many of this
year’s queries involved numeric comparisons. That requires
converting strings to numbers. XPath specifies precisely how
that is done. (The rules are somewhat different in XPath
2.0, but do not affect the present point.)

The problem is that the INEX’03 document collection is a
realistic collection of sloppily marked up text. There are el-
ements such as 〈yr〉 which are supposed to contain numbers,
but also contain punctuation marks and other junk. Trying
to convert such a string to a number is an error in XPath.
If we want to know whether yr > 1999, we do not want our
query to be derailed by 〈yr〉2000, 〈/yr〉, as it must be in
XPath.

Not only do we need rules for converting text to numbers
that are different from the rules in XPath, we need to inter-
pret comparisons fuzzily. If you ask a database for a record
with date > 1999 and it reports a record with date = 1999,
that’s an error. If you ask an information retrieval sys-
tem for documents with yr > 1999 and it returns one with
yr = 1999, that’s not an error, it’s just somewhat less rele-
vant than one that matches the clue precisely.

6. ARCHITECTURAL FORMS
HyTime was really several interesting standards packaged
together. One of the key features presented was the idea of
“architectural forms” and of architectural form processing.

Basically, the idea is that a document may be marked up
(and validated) according to one DTD, yet processed ac-
cording to another (traditionally but confusingly called a)
meta-DTD. Attributes in the source DTD say how to map
the elements and attributes physically present to the ones
that ought to be present according to the target DTD. A
processing instruction with a special form is used to tell an
architectural-form-aware processor which attributes to use
for this purpose.

This may sound like XSLT, or, if you are into arcana, like
linkage declarations in SGML. In fact it is something much
simpler. Elements and attributes may be dropped, renamed,
or copied as they are.

Why would you parse in one DTD and process according to
another? You might have a formatter that can handle many
structures, and a specialised DTD that is only intended to
use some of the features. You might have a meta-DTD writ-
ten using English words for markup, and Swedish users who
would like to use Swedish words, so they validate against
a DTD which uses Swedish words, but which uses architec-
tural form processing to map to the English version. You
might wish to make fine distinctions; for example you might
want to use 〈species〉 and 〈foreign〉 tags in your markup, but
they might both be simply mapped to 〈italic〉.

With the INEX collection, we have a collection of documents
marked up for printing. Some of the distinctions made in the
DTD are not important for information retrieval purposes.
The INEX’03 rules took this into account. For example,
〈ip1〉, 〈ip2〉, 〈ip3〉, 〈ip4〉 were all to be treated by the query
engine as equivalent to 〈p〉.

That’s the wrong time to do it. It had the unpleasant con-
sequence that you asked for p[n] the element you got could
be p[m] with m 6= n.

It is not the queries which determine which tags are equiv-
alent, but the DTD designer and document collector. The
replacement of tags by equivalents should be done before
the documents are indexed, so that the index and the query
agree about what elements are which. That is just what
architectural form processing can do for you.

We may not want to index some elements, either because
they do not contain text or because the text is never use-
ful. (We yearned mightily for some way to get rid of 〈ref〉
elements during evaluation. They should never have been
returned in the first place.)

Some elements may be presentation markup which it is use-
ful to ignore (see Table 2 in [23]). This is especially useful
because these are the tags which spoil the simple “add a
space after each element” rule for modified string-value. For
example, given 〈st〉V〈scp〉OICE〈/scp〉 XML〈/st〉 we would
like this to be treated as 〈st〉VOICE XML〈/st〉. We want to
ignore the tags of these elements, but not their contents.

In the spirit of architectural form processing, we can ad-
dress these issues by adding attribute declarations in the
DTD. XML allows us to add attribute declarations without
changing the original ones, so xmlarticle.dtd could become

<!ENTITY old-dtd PUBLIC "..." "oldarticle.dtd">

%old-dtd;

<!ATTLIST ...>

...

<!ATTLIST ...>

with the original xmlarticle.dtd renamed to oldarticle.dtd.
It is important that this can be done without touching the
original DTD or the original XML files in any way.

The three attributes we want to add are

• INEXscan

nothing do not index this tag or its descendants

content do not index this tag; index its content

element index this tag; do not index its content

all index this tag and its content

The evaluation tool should heed this attribute; it would
materially reduce the labour of judging.

• INEXname

if present, the name that is to be used in the index,
and in queries, instead of the original element type.

• INEXatts

a list of pairs of names: attr - means “do not index
@attr, attr alt means “index @attr under the name
@alt instead”. If an attribute is not in the list, it is
indexed as itself.

For example, we might have

<!ATTLIST ip1 INEXname NMTOKEN #FIXED "p">

<!ATTLIST ip2 INEXname NMTOKEN #FIXED "p">

<!ATTLIST ip3 INEXname NMTOKEN #FIXED "p">

<!ATTLIST ip4 INEXname NMTOKEN #FIXED "p">

<!ATTLIST scp INEXscan NMTOKEN #FIXED "content">

<!ATTLIST ref INEXscan NMTOKEN #FIXED "nothing">

The mapping can be handled by a trivial post-parser.

7. THE SIMPLEST THING THAT COULD
POSSIBLY WORK

The following query language was constructed to be just
powerful enough to handle the queries people actually wrote.
It clearly separates paths and text queries, allowing Boolean
combinations of text queries but not of paths.

〈topic〉 ::= 〈about〉
| 〈filtered-path〉 〈star〉? 〈about〉
| 〈filtered-path〉 〈about〉?
〈filtered-path〉 〈star〉? 〈about〉

An 〈about〉 is basically a Boolean query plus context for
the terms. A 〈filtered-path〉 describes a path in an XML
document; the attributes of elements may be checked. There
is no way of marking the “child” relation anywhere, or of
specifying ordinal position.

If P and Q match 〈filtered-path〉 and A and B match 〈about〉,
then A means “answer any elements that are about A”; PA
means “answer any instances of P that are about A”; PAQB
means “for instances of P that are about A return instances
of Q under that P which are about B”; and a missing A
imposes no constraint.

〈star〉 ::= ‘/’ ‘*’

A 〈star〉 may precede the final 〈about〉. This is to handle
the queries which used //* in XPath. It means that once
an instance of the preceding P or Q has been found, any
descendant of that instance which fits the last 〈about〉 may

be reported. Such descendants are of course subject to rank-
ing in the same way as any others, elements which are too
“dilute” should not be a problem.

〈filtered-path〉 ::= 〈filtered-elem〉 (‘/’ 〈filtered-elem〉)∗
〈filtered-elem〉 ::= XML-name 〈filter〉∗

An XML-name is any XML identifier, possibly including
colons. The time to deal with namespaces will be when
we have to. The ‘/’ operator means “descendant”, not
“child”. This is what most people expected ‘/’ to mean
in the INEX’03 query language.

〈filter〉 ::= ‘[’ 〈attr-path〉 〈range-list〉 ‘]’
〈range-list〉 ::= 〈range〉 (‘,’ 〈range〉)∗
〈range〉 ::= number (‘..’ number?)?

| ‘..’ number
〈attr-path〉 ::= 〈attr〉|〈simple-path〉

| 〈simple-path〉 〈attr〉
〈attr〉 ::= ‘@’ XML-name
〈simple-path〉 ::= XML-name (‘/’ XML-name)∗

A filter compares text with a range of numbers. An 〈attr-
path〉 is followed to find some text; the text may be the
(modified) string value of an attribute or the (modified)
string value of an element. Spaces and punctuation are
trimmed from that modified string value; if the result can
be converted to a number, the filter is satisfied to the degree
that the number is in one of the ranges.

In a range x..y, x is the lower bound and y is the upper
bound. It is an error if x > y. Missing x means −∞;
missing y means +∞.

This query language does not use conventional notation like
< or =. There are two reasons for that. One is that these
queries are supposed to be easy to express in XML, and XML
makes it hard to use <. The second is that < and = are
associated with precise meanings. But this is an informa-
tion retrieval query language; a value which is not precisely
in range may still be somewhat relevant. Since we don’t
intend the standard meaning of the mathematical signs, we
shouldn’t use them; it is important not to lie to the user.

〈about〉 ::= ‘(’ 〈or-query〉 ‘)’
〈or-query〉 ::= 〈and-query〉 (‘|’ 〈and-query〉)∗
〈and-query〉 ::= 〈not-query〉 (‘&’ 〈not-query〉)∗
〈not-query〉 ::= 〈text-query〉 | ‘∼’ 〈text-query〉

An IR engine may interpret these Boolean operators the way
it would normally interpret any Boolean operators. The con-
ventional precedence of the Boolean operators is followed.
They need not be “precise”, and although it is tempting to
define algebraic identities for this query language, it would
be inappropriate. The ampersand is also awkward to express
in XML; some other spelling such as ‘;’ could be allowed.

〈text-query〉 ::= 〈basic-query〉
| 〈basic-query〉 ‘:’ 〈simple-path-list〉

〈basic-query〉 ::= (〈restriction〉 〈term〉)+ | 〈about〉
〈term〉 ::= word | ‘"’ word+ ‘"’ | ‘’’ word+ ‘’’
〈restriction〉 ::= empty | ‘+’ | ‘-’
〈simple-path-list〉 ::= 〈simple-path〉(‘,’〈simple-path-list〉)∗

A text query may ask whether a basic query matches the
current element, or whether it matches some descendant el-
ement. The commas in a simple path list mean “or” just as
they do in CSS.

A word is an XML-name that doesn’t include any dots,
colons, or underscores, or is a pair of such names with an
apostrophe in between, or is a number. A sequence of words
between matching quotation marks is a phrase. The ‘+’ and
‘-’ restrictions have the same meaning as in the INEX’03
query language.

That’s all there is to it. A parser for this language has been
built using Lex and Yacc.

Several features that were considered but deliberately ex-
cluded:

• Filtering on anything other than a numeric range. In
simple cases, this can be handled by the PAQB pat-
tern. Complex cases haven’t arisen. When they do, it
will be important to be clear about whether we want
precise matches, so that XHTML documents making
extensive use of the “class” attribute could be han-
dled, or information retrieval matches, in which case
we could simply have [〈attr-path〉 〈about〉].

• Any kind of language sensitivity. This is what the
CSS ‘| =’ predicate is for, and its ‘:lang” predicate.
When the INEX collection includes mixed-language
documents, we could perhaps use [:lang word].

• Any kind of position checks. It is easy enough to
add syntax for this, just copy XPath. What’s hard
is to interpret it. For example, as the XPath specifica-
tion points out, “The location path //para[1] does not
mean the same as the location path /descendant::para[1].”
Adapting [:first-child] from CSS would make more
sense.

• Allowing any number of 〈path〉〈about〉 pairs. There’s
no difficulty in adding this, it just isn’t needed.

• Allowing an axis other than “descendant”. From a
DTD, it is possible to compute a binary relation “can
have child”, the transitive closure of which is “can have
proper descendant”. This can be used to check the
plausibility of queries. CSS also allows “child” and
“sibling”, which are similarly checkable. The complex
mixing of axes in XPath makes it hard to check; we
don’t want to go there.

8. SOME SAMPLE INEX’03 QUERIES
Query 61 //article[about(.,’clustering +distributed’) and

about(.//sec,’java’)]

⇒ article(clustering +distributed & java:sec)

Query 64 //article[about(./, ’hollerith’)] //sec[
about(./, ’DEHOMAG’)]

⇒ article(hollerith) sec(DEHOMAG)

Query 66 /article[./fm//yr < ’2000’]//sec[
about(.,’”search engines”’)]

⇒ article[fm/yr ..1999] sec(”search engines”)

Query 68 //article[about(., ’+Smalltalk’) or about(.,
’+Lisp’) or about(.,’+Erlang’) or about(., ’+Java’)]//
bdy//sec[about(., ’+”garbage collection” +algorithm’)]

⇒ article(+Smalltalk|+Lisp|+Erlang|+Java) bdy/sec(
+”garbage collection” +algorithm)

Query 71 //article[about(.,’formal methods verify correct-
ness aviation systems’)]/bdy//*[about(.,’case study ap-
plication model checking theorem proving’)]

⇒ article(formal methods verify correctness aviation
systems) bdy/*(case study application model checking
theorem proving)

Query 76 //article[(./fm//yr=’2000’ OR ./fm//yr=’1999’)
AND about(., ’”intelligent transportation system”’)]//
sec[about(., ’automation +vehicle’)]

⇒ article[fm/yr 1999..2000](”intelligent transportation
system”) sec(automation +vehicle)

Query 91 Internet traffic

⇒ (Internet traffic)

9. REFERENCES
[1] A. Berglund, S. Boag, D. Chamberlin, M. F.

Fernández, M. Kay, J. Robie, and J. Siméon. XML
Path Language (XPath) Version 2.0. W3C Working
Draft, The World Wide Web Consortium, August
2003.

[2] S. Boag, D. Chamberlin, M. Fernández, D. Florescu,
and J. Robie. XQuery 1.0: An XML Query Language.
W3C Working Draft, The World Wide Web
Consortium, November 2003.

[3] B. Bos, H. W. Lie, C. Lilley, and I. Jacobs. Cascading
Style Sheets, level 2; CSS2 Specification. W3C
Recommendation, The World Wide Web Consortium,
May 1998.

[4] R. Cattell, D. Barry, M. Berler, J. Eastman,
D. Jordan, C. Russell, O. Schadow, T. Stanienda, and
F. Velez. The Object Data Standard: ODMG 3.0.
Morgan Kaufmann, January 2000.

[5] D. Chamberlin, J. Robie, and D. Florescu. Quilt: an
XML query language for heterogeneous data sources.
In The World Wide Web and Databases: Third
International Workshop WebDB 2000, Dallas, TX,
USA, May 2000. Selected Papers, number 1997 in
Lecture Notes in Computer Science. Springer-Verlag,
January 2001.

[6] J. Clark. XSL Transformations (XSLT) Version 1.0.
W3C Recommendation, The World Wide Web
Consortium, November 1999.

[7] J. Clark and S. DeRose. XML Path Language
(XPath) Version 1.0. W3C Recommendation, The
World Wide Web Consortium, November 1999.

[8] S. Cluet, S. Jacqmin, and J. Simeon. The New YATL:
Design and Specifications. Technical report, INRIA,
1999.

[9] A. Deutsch, M. Fernández, D. Florescu, A. Levy, and
D. Suciu. A Query Language for XML. Technical
report, AT&T Labs, 1998.

[10] A. Deutsch, M. Fernández, D. Florescu, A. Levy, and
D. Suciu. A query Language for XML. W3C
submission, The World Wide Web Consortium,
August 1998.

[11] M. Fernándex, A. Malhotra, J. Marsh, M. Nagy, and
N. Walsh. XQuery 1.0 and XPath 2.0 Data Model.
W3C Working Draft, The World Wide Web
Consortium, November 2003.

[12] N. Fuhr and K. Grosjohann. XIRQL: A Query
Language for Information Retrieval in XML
Documents. In Research and Development in
Information Retrieval, pages 172–180, 2001.

[13] S. Geva. Re: Semantics of CAS Topics for the SCAS
Task. E-mail to the INEX’03 participants, July 2003.

[14] C. F. Goldfarb. Hytime: A Standard for Structured
Hypermedia Interchange. IEEE Computer,
24(8):81–84, August 1991.

[15] C. F. Goldfarb, S. R. Newcomb, W. E. Kimber, and
P. J. Newcomb. Information
processing—Hypermedia/Time-based Structuring
Language (HyTime). Number 10744:1997 in ISO/IEC.
International Organization for Standardization (ISO),
second edition, 1997.

[16] T. R. M. D. S. Group. The Structured Information
Manager. Web Site, 2003. viewed in November 2003.

[17] ISO. Document Style Semantics and Specification
Language (DSSSL). Number 10179:1996 in ISO/IEC.
International Organization for Standardization (ISO),
1996.

[18] M. Kay. XSL Transformations (XSLT) Version 2.0.
W3C Working Draft, The World Wide Web
Consortium, November 2003.

[19] W. E. Kimber. HyTime and Sgml: Understanding the
HyTime HyQ Query Language. internal report, IBM,
August 1993. findable on the Web.

[20] A. Malhotra, J. Melton, and N. Walsh. XQuery 1.0
and XPath 2.0 Functions and Operators. W3C
Working Draft, The World Wide Web Consortium,
November 2003.

[21] S. R. Newcomb, N. A. Kipp, and V. T. Newcomb. The
HyTime Hypermedia/Time-Based Document
Structuring Language. Communications of the ACM,
November 1991.

[22] J. Robie, J. Lapp, and D. Schach. XML Query
Language (XQL). W3C submission, The World Wide
Web Consortium, 1998.

[23] A. Trotman and R. A. O’Keefe. Identifying and
Ranking Relevant Document Elements. In INEX ’03,
2003.

