
Improvements to BM25 and Language Models Examined
Andrew Trotman

Department of Computer Science
University of Otago

Dunedin, New Zealand

Antti Puurula
Department of Computer Science

University of Waikato
Hamilton, New Zealand

Blake Burgess
Department of Computer Science

University of Otago
Dunedin, New Zealand

ABSTRACT
Recent work on search engine ranking functions report improve-
ments on BM25 and Language Models with Dirichlet Smoothing.
In this investigation 9 recent ranking functions (BM25, BM25+,
BM25T, BM25-adpt, BM25L, TFl◦◦pID, LM-DS, LM-PYP, and
LM-PYP-TFIDF) are compared by training on the INEX 2009
Wikipedia collection and testing on INEX 2010 and 9 TREC col-
lections. We find that once trained (using particle swarm optimi-
zation) there is very little difference in performance between these
functions, that relevance feedback is effective, that stemming is
effective, and that it remains unclear which function is best over-
all.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval – Search process.

General Terms
Algorithms, Measurement, Performance, Experimentation.

Keywords
Relevance Ranking, Document Retrieval, Procrastination

1. INTRODUCTION
Substantial precision improvements have been made in search
engines since their inception. Initially these improvements were
hard to quantify because each investigator used their own docu-
ment collection. NIST addressed many of the early problems with
the introduction of TREC [4]. For the TREC ad hoc experiments
all participants used the same documents and queries. Participants
were asked to submit, for each query, a ranked list of the most
relevant documents, a run. NIST pooled the top n results from
each run and asked information experts to assess which docu-
ments were relevant to which queries – a process known as pooled
assessment. The assessments were used to measure, using a stand-
ard metric, the performance of each run. Software to produce the
metric from a run and the assessments were made publicly availa-
ble, as were the documents and queries. TREC made it possible
for researchers to obtain all the necessary components to conduct
a repeatable laboratory experiment in relevance ranking, it was
soon followed by other evaluation forums including NTCIR [6],
INEX [3], and FIRE [14]. These collections continue to be used to
demonstrate improvements.

Armstrong et al. [1, 2] show that, although research continued,
there was no evidence to suggest that any improvements in rank-
ing had been made since the mid-1990s, the point at which the

BM25 [23] ranking function was introduced. Trotman & Keeler
[28] suggests that this is because BM25 performs at near human
levels on the TREC collections.

It is reasonable to believe that commercial search engines contin-
ue to improve in precision. But they are tackling a different prob-
lem. For TREC ad hoc retrieval the practitioner is given the doc-
uments and the queries, from which they are expected to produce
a run. Contrariwise, a commercial search engine has a query log, a
click log, and user profiles. Commercial search engines also have
a very different query profile from that at TREC. TREC queries
are unique and representative, whereas commercial search en-
gines see the same queries repeated and are able to optimize on a
query-by-query basis.

Both the commercial and academic search engines see new que-
ries and must produce a ranked results list. That list might become
the input to a pipeline that further re-orders the results – a process
known as result re-ranking. A typical re-ranking might be pro-
duced by a learning-to-rank algorithm. In this investigation we are
concerned with the first stage of this pipeline. Given the docu-
ments and the query, produce the initial ranked list of results; the
TREC run.

Many of the runs seen at TREC are not simply the result of a sim-
ple ranking function, but of a pipeline of other processes (such as
stemming, stopping, field weighting, relevance feedback, and so
on). We are not experimenting with this multitude of such possi-
bilities as doing so exhaustively is prohibitive. We are primarily
interested in choosing a default ranking function that can be ex-
pected to perform well everywhere and then allowing the practi-
tioner to further tune that by adding (or not) extra filters to the
pipeline. We are, however, interested in building on the results of
Armstrong et al. That is, we ask:

Has there been any improvement in ranking function precision?

We examine this question by implementing and testing several
recent ranking functions that claim improvements on BM25. We
test each function, add relevance feedback, stemming, and stop-
ping, and show that although improvements on BM25 appear to
have been made, those improvements are small and it is unclear
which ranking function is best overall.

2. EXPERIMENTAL CONDITIONS
The purpose of this investigation is to examine whether or not
improvements in ad hoc retrieval have been made in recent years.
As reproducibility is paramount, the experiments are conducted
using resources from TREC and INEX.

Specifically, we train on the INEX 2009 Wikipedia collection and
test on the INEX 2010 collection, as well as TREC 1 – TREC 8.
The title of the topics were used as the queries, except for TREC 4
where only description fields are present and so they were used.

We implemented the functions using the ATIRE search engine
[27], the source code of which is publicly available along with our
extensions. The baseline for comparison was chosen as BM25.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that cop-
ies bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permis-
sion and/or a fee. Request permissions from Permissions@acm.org.

ADCS '14, November 27 - 28 2014, Melbourne, VIC, Australia
Copyright 2014 ACM 978-1-4503-3000-8/14/11…$15.00
http://dx.doi.org/10.1145/2682862.2682863

Mean un-interpolated average precision (MAP) was used as the
metric. This was measured to document 1000 in the results lists. It
is common to cut the results list at some point earlier, but we cut
late because we are looking for any evidence of improvements,
not just evidence in the top few. We define MAP as the mean,
over all queries in the query set, of the average precision of each
query in the query set,

ܲܣܯ ൌ
∑ ܣ ௤ܲ௤∈ொ

ܳ

(1)

where

ܣ ௤ܲ ൌ
∑ ൜ ௤ܲ௡, ௡ܮ ݐ݊ܽݒ݈݁݁ݎ

0, ݁ݏ݅ݓݎ݄݁ݐ݋
௅
௡ୀଵ

௤ܰ௥

(2)

where Nqr is the number of known relevant documents for query
q, L is the length of the results list (at most 1000), Ln is the result
at position n in the results list, Pqn, is the precision at that position
(the number of relevant documents that have been found at point
n, divided by n).

We are not making claims about a particular system, we are mak-
ing claims about particular ranking functions within a particular
system. As such a comparison to the best scores seen at TREC
and INEX are immaterial – however we note that the Reference
Run at INEX was produced using ATIRE BM25, s-stemming, but
without feedback or stop words.

3. BM25
BM25 is often used as a baseline, and we do the same here. Prob-
lematically, many of the implementations of BM25 are different
and comparisons are to BM25-like functions. We use the variant
of BM25 as seen in ATIRE as our baseline.

3.1 ATIRE BM25
The ATIRE variant of BM25 was chosen to avoid negative num-
bers. The implementation is given by Trotman et al. [27] as:

௤ݒݏݎ ൌ෍log ൬
ܰ
݀ ௧݂

൰ .
ሺ݇ଵ ൅ 1ሻ. ݐ ௧݂ௗ

݇ଵ. ቆ1 െ ܾ ൅ ܾ	. ൬
ௗܮ
௔௩௚ܮ

൰ቇ ൅ ݐ ௧݂ௗ

	
௧∈௤

(3)

for a given query, q, the retrieval status value, rsvq, is the sum of
individual term, t, scores. N is the number of documents in the
collections, dft is the number of documents containing the term
(the document frequency), tftd is the number of times term t occurs
in document d. Ld is the length of the document (in terms) and Lavg
is the mean of the document lengths. There are two tuning param-
eters, b, and k1.

This equation differs from the Robertson et al. equation [22] in
several ways. The k3 component of the Robertson et al. function
accounts for terms that occur in the query more than one, whereas
this function assumes each term in the query is unique. The k2
parameter in the Robertson et al. function accounts for the query
length and as they set k2 to zero, so to have the authors of ATIRE.

The most striking difference in the ranking functions is the change
to the IDF component. Robertson et al. use the Robertson-Sparck
Jones IDF,

௧ܨܦܫ ൌ log
ܰ െ ݀ ௧݂ ൅ 0.5
ሺ݀ ௧݂ ൅ 0.5ሻ

 (4)

which produces negative scores when dft > N/2 whereas ATIRE
uses the Robertson-Walker IDF [8] N/dft, which tends to zero as
dft tends to N.

This change is intuitive. If the entire collection is ranked on rsvq,
then for a 1-term query containing a term that occurs in more than
half the documents, the Robertson-Sparck Jones IDF ranks all
documents not containing that term higher than those that do
whereas the ATIRE function always considers documents con-
taining the term to be more relevant than those that do not.

The ATIRE implementation of BM25 has proven to be effective
in a number of scenarios, and by independent authors [18].

3.2 BM25L
Lv & Zhai [12] observe that the document length normalization of
BM25 (Ld/Lavg) unfairly prefers shorter documents to longer ones.
An observation made earlier by Singhal et al. [26], with respect to
cosine ranking. Lv & Zhai address this problem in their BM25L
function; their derivation is as follows:

Starting with a different BM25 that disallows negative values,
again differing only in the IDF component:

௤ݒݏݎ ൌ෍log ൬
ܰ ൅ 1

݀ ௧݂ ൅ 0.5
൰ .

ሺ݇ଵ ൅ 1ሻ. ݐ ௧݂ௗ

݇ଵ. ቆሺ1 െ ܾሻ ൅ ܾ	. ൬
ௗܮ
௔௩௚ܮ

൰ቇ ൅ ݐ ௧݂ௗ௧∈௤

(5)

They re-arrange to get

௤ݒݏݎ ൌ෍log ൬
ܰ ൅ 1

݀ ௧݂ ൅ 0.5
൰ .
ሺ݇ଵ ൅ 1ሻ. ܿ௧ௗ
݇ଵ ൅ ܿ௧ௗ

	
௧∈௤

(6)

where

ܿ௧ௗ ൌ
ݐ ௧݂ௗ

1 െ ܾ ൅ ܾ	. ൬
ௗܮ
௔௩௚ܮ

൰

(7)

A rearrangement seen in other functions discussed in this section.

For BM25L, Lv & Zhai are interested in affecting this ctd compo-
nent to avoid over penalizing long documents. They do this by
adding a positive constant, δ, to it. This has the effect of shifting
the function to better favor small numbers (i.e. large denomina-
tors, equivalently large Ld values, or long documents).

Their final equation, BM25L, is given as:

௤ݒݏݎ ൌ෍log ൬
ܰ ൅ 1

݀ ௧݂ ൅ 0.5
൰ .
ሺ݇ଵ ൅ 1ሻ. ሺܿ௧ௗ ൅ ሻߜ

݇ଵ ൅ ሺܿ௧ௗ ൅ ሻߜ
	

௧∈௤

(8)

They show BM25L outperforming BM25 on several TREC col-
lections including: GOV2, WT10G, WT2G, Robust04, and
TREC-8. The best value for δ was 0.5 in all their experiments.

3.3 BM25+
Lv & Zhai [11] go on to observe that the penalization of long
documents occurs not only in BM25 but other ranking functions.
They propose a general solution to this, which is to lower-bound
the contribution of a single term occurrence. That is, no matter
how long the document, a single occurrence of a search term con-
tributes at least a constant amount to the retrieval status value.

They do this differently from BM25L; they add δ to the tftd com-
ponent before multiplying by IDF (which they also change).

௤ݒݏݎ ൌ෍log ൬
ܰ ൅ 1
݀ ௧݂

൰ .

ۉ

ۈ
ۇ ሺ݇ଵ ൅ 1ሻ. ݐ ௧݂ௗ

݇ଵ. ቆሺ1 െ ܾሻ ൅ ܾ	. ൬
ௗܮ
௔௩௚ܮ

൰ቇ ൅ ݐ ௧݂ௗ

൅ ߜ

ی

ۋ
ۊ
	

௧∈௤

 (9)

They use the TREC GOV2, WT100g, WT2G, and Robust04 col-
lections and show that BM25+ outperforms BM25 in all cases.
They suggest that a δ value of 1 is effective across collections.

3.4 BM25-adpt
In different work on BM25, Lv & Zhai [10] observe that a global
k1 applied to all query terms is likely to be less effective than a
term-specific k1, and seek to identify term-specific k1 values di-
rectly from the index. This makes their ranking function transfer-
able from collection to collection without re-training.

They apply information gain and divergence from randomness
theory to the problem. Starting with the probability of seeing at
least one occurrence given 0 or more occurrences and the query:

,ሺ1|0݌ ሻݍ ൌ
݀ ௥݂ ൅ 0.5
ܰ ൅ 1

(10)

they derive the probability of seeing one more occurrence as:

ݎሺ݌ ൅ ,ݎ|1 ሻݍ ൌ 	
݀ ௥݂ାଵ ൅ 0.5
݀ ௥݂ ൅ 1

(11)

from which the information gain at any point in the function can
be computed as the change from r to r + 1 occurrences, minus the
initial probability:

௤௥ܩ ൌ ଶ݃݋݈ ൬
݀ ௥݂ାଵ ൅ 0.5
݀ ௥݂ ൅ 1

൰ െ ଶ݃݋݈ ൬
݀ ௧݂௥ ൅ 0.5
ܰ ൅ 1

൰
(12)

dfr is more complex. Rather than using term frequency, tftd, val-
ues, they define dfr based on the result of the length normalized
term frequency, equation (7). They do that by defining dfr as:

݀ ௥݂ ൌ ቐ
หܦ௧|௖೟೏ஹ௥ି଴.ହห ݎ ൐ 1

݀ ௧݂ ݎ ൌ 1
ܰ ݎ ൌ 0

(13)

that is, for the base case of r = 0, the number of documents in the
collection is used; when r = 1, the document frequency is used; in
all other cases, หܦ௧|௖೟೏ஹ௥ି଴.ହห, the number of documents, |Dt|, con-
taining the term, t, that have a length normalized occurrence
count, ctd, greater than r (once rounded).

To compute k1, they align the information gain function to the
BM25 score function and solve for k1 giving the term specific ݇ଵᇱ .

݇ଵ
ᇱ ൌ arg	min

୩భ
෍ቆ

௤௥ܩ

௤ଵܩ
െ
ሺ݇ଵ ൅ 1ሻ. ݎ
݇ଵ ൅ ݎ

ቇ
ଶ்

௜ୀ଴

(14)

They can compute ݇ଵᇱ entirely from the index because all parame-
ters are there – but they suggest pre-computing these values and
storing them in the index, one per term.

Finally, ݇ଵᇱ gets substituted into the term frequency component of
BM25, and the IDF score replaced by	1ݍܩ:

௤ݒݏݎ ൌ෍ܩ௤ଵ.
ሺ݇ଵ

ᇱ ൅ 1ሻ. ݐ ௧݂ௗ

݇ଵ
ᇱ . ቆሺ1 െ ܾሻ ൅ ܾ . ൬

ௗܮ
௔௩௚ܮ

൰ቇ ൅ ݐ ௧݂ௗ

	
௧∈௤

(15)

Lv & Zhai test their function on TREC-8, WT10g, and WT2g, and
show that it out performs BM25.

3.5 BM25T
Lv & Zhai [13] later propose a log-logistic method of calculating
term-specific k1 parameters, again directly out of the index.

They first define the elite set of a term, Cw, as the set of all docu-
ments containing the term. Within this set they suggest that the

length normalized term frequency contribution should be propor-
tional to the proportion of documents with a higher length normal-
ized term frequency contribution. They then use the log-moment
estimation method to estimate the term specific	݇1, ݇ଵᇱ as:

݇ଵ
ᇱ ൌ arg min

୩భ
ቆ݃௞భ െ

∑ ሺܿ௧ௗሻ݃݋݈ ൅ 1ሻ஽∈஼ೢ

݀ ௧݂
ቇ
ଶ

(16)

where ctd is defined in equation (7) and ݃௞భ is defined as:

݃௞భ ൌ ൝
݇ଵ

݇ଵ െ 1
. logሺ݇ଵሻ ݂݅	݇ଵ ് 1

1 ݁ݏ݅ݓݎ݄݁ݐ݋

(17)

which they solve using the Newton-Raphson method. This ݇ଵᇱ is
then substituted for ݇ଵ in equation (5) giving BM25T.

They suggest this method of estimating ݇ଵ might be unstable when
the document frequency is small (there isn’t much information).
To address this they introduce BM25C which uses the mean ݇ଵᇱ
over all terms seen in all queries (which is unknowable), and
BM25Q which uses the mean ݇ଵᇱ for all terms in the current query.

Tests on WT2G, WT10G, AP, and Robust04 show that these
functions outperform BM25. However which is best is unclear.
For this investigation we have experimented with BM25T

3.6 TFl◦◦pIDF
Rousseau & Vazirgiannis [25] suggest that nonlinear gain from
observing an additional occurrence of a term in a document
should be modeled using a log function thus:

௟:௧ௗܨܶ ൌ 1 ൅ lnሺ1 ൅ lnሺݐ ௧݂ௗሻሻ (18)

Following BM25+, they add  to ensure there is a sufficient gap
between the 0th and 1st term occurrence. They refer to this as TF:

ఋ:௧ௗܨܶ ൌ ݐ ௧݂ௗ ൅ (19) ߜ	

For document length normalization they prefer the pivoted com-
ponent from BM25, equation (7). They refer to this as TFp:

௣:௧ௗܨܶ ൌ
ݐ ௧݂ௗ

1 െ ܾ ൅ ܾ	. ൬
ௗܮ
௔௩௚ܮ

൰

(20)

Using their rules of combination, a combined TFl, TF, and TFp,
gives TFl◦◦p defined as:

௟°ఋ°௣ܨܶ ൌ 1 ൅ ln൮1 ൅ ln൮
ݐ ௧݂ௗ

1 െ ܾ ൅ ܾ	. ൬
ௗܮ
௔௩௚ܮ

൰
൅ ൲൲ߜ

(21)

Finally, adding the IDF component, for which they use:

௧ܨܦܫ ൌ log
ܰ ൅ 1
݀ ௧݂

(22)

We assume log is the natural log, giving TFl◦◦pID as:

௤ݒݏݎ ൌ෍ln
ܰ ൅ 1
݀ ௧݂

.

ۉ

ۈ
ۇ
1 ൅ ln൮1 ൅ ln൮

ݐ ௧݂ௗ

1 െ ܾ ൅ ܾ	. ൬
ௗܮ
௔௩௚ܮ

൰
൅ ൲൲ߜ

ی

ۋ
ۊ

௧∈௤

(23)

Experiments with TFl◦◦pID and other combinations of functions
conducted on the Robust04 and WT10g suggest that TFl◦◦pID
outperforms BM25.

4. LANGUAGE MODELS
Petri et al. [17] provide a derivation of Language Models with
Dirichlet smoothing that includes document and query length
priors – we use this derivation.

Puurula [20] examines improvements in language models, show-
ing three areas where language models have shown improvement.
These are the Pitman-Yor Process smoothing, TFIDF feature
weighting, and model-based feedback. The former two are dis-
cussed in Sections 4.2 and 4.3, the latter in Section 5.2.

4.1 LM-DS
Dirichlet smoothing is a standard method of interpolating between
the collection model and the document model. Petri et al. [17]
give the derivation as:

௤ݒݏݎ ൌ ௤ܮ . log ൬
ߤ

ௗܮ ൅ ߤ
൰ ൅෍ݐ ௧݂௤. log	൬

ݐ ௧݂ௗ

ߤ
.
௖ܮ
ܿ ௧݂

൅ 1൰
௧∈௤

(24)

Where Lq is the length of the query, μ is a tuning parameter, tftq is
the number of times the term occurs in the query, Lc is the length
of the collection (in terms), and cft is the number of times the term
occurs in the collection (the collection frequency). Experiments
on .GOV and TREC 7+8 show that this function, LM-DS, outper-
forming BM25.

4.2 LM-PYP
The Pitman-Yor Process (PYP) is used for probabilistic modeling
of distributions that follow a power law. Inference on a PYP can
be efficiently approximated by combining power-law discounting
with a Dirichlet-smoothed language model [15, 20]. This dis-
counts term frequencies by:

ݐ ௧݂ௗ
ᇱ ൌ max	ሺݐ ௧݂ௗ െ ݃. ݐ ௧݂ௗ

௚, 0ሻ (25)

where g is a discounting parameter. This discounting applies to all
term frequencies used throughout the ranking function – including
the computation of document length, ܮௗ

ᇱ .

Puurula uses this discounting with document length priors1:

ௗݎ݋݅ݎ݌ ൌ log	ቆ1 െ
ௗܮ
ᇱ

ௗܮ ൅ ߤ
ቇ

(26)

Where μ is a smoothing parameter.

For each term in the query the discounted term frequency is used
along with the number of times the term occurs in the collection
(the collection frequency, cft,) and the length of the collection
measured in terms, Lc to compute the influence of that term with
respect to the query, rsvtq:

௧௤ݒݏݎ ൌ ݐ ௧݂௤. log	ቆ
ݐ ௧݂ௗ

ᇱ . ௖ܮ
.ߤ ܿ ௧݂

൅ 1ቇ
(27)

Combining these with a query length, Lq, gives LM-PYP:

௤ݒݏݎ ൌ .௤ܮ log	ቆ1 െ
ௗܮ
ᇱ

ௗܮ ൅ ݑ
ቇ ൅෍ݐ ௧݂௤. log	ቆ

ݐ ௧݂ௗ
ᇱ . ௖ܮ

.ߤ ܿ ௧݂
൅ 1ቇ

௧∈௤

(28)

Experiments conducted on TREC 1-5, FIRE 2008-2011, and
OHSUMED show improvements on LM-DS.

4.3 LM-PYP-TFIDF
TFIDF weighting can be applied to all term frequency values
before PYP smoothing. Doing so weights term frequencies based
on collection properties [20]. This weighting is done by universal-
ly applying the TFIDF transform to all frequency parameters.
For example, the Pitman-Yor TFIDF smoothed term frequency,

1 These “priors” are not probabilistic priors, they are query term-

independent components equal to the log weights of the back-
ground smoothing distribution.

ݐ ௧݂ௗ
ᇱᇱ , is derived from the TFIDF weighted term frequency, ݐ ௧݂ௗ

ᇱ
thus:

ݐ ௧݂ௗ
ᇱᇱ ൌ maxሺݐ ௧݂ௗ

ᇱ െ ݃. ݐ ௧݂ௗ
ᇱ ௚, 0ሻ (29)

where

ݐ ௧݂ௗ
ᇱ ൌ log ൬1 ൅

ݐ ௧݂ௗ

଴ௗܮ
൰ . log ൬

ܰ
݀ ௧݂

൰
(30)

where ܮ଴ௗ is the document L0 norm (the unique term count).

The length of the document is ܮௗᇱᇱ derived likewise:

ௗ′ܮ
ᇱ ൌ ෍ݐ ௧݂ௗ

ᇱᇱ

௧∈ௗ

(31)

and also

ௗܮ
ᇱ ൌ෍ݐ ௧݂ௗ

ᇱ

௧∈ௗ

(32)

Collection smoothing and IDF weighting have overlapping roles
and should not both be applied [20]. Using a uniform background
distribution for smoothing replaces the collection frequency com-
ponent of the equation by N0, the number of unique terms in the
collection, resulting in a term specific rsv component:

௧௤ݒݏݎ ൌ ݐ ௧݂௤
ᇱ . log ቆ

ݐ ௧݂ௗ
ᇱᇱ . ଴ܰ

ߤ
൅ 1ቇ

(33)

where ݐ ௧݂௤
ᇱ is computed from the query frequency, tftq, and the L0

norm of the query, L0q, (the number of unique terms in the query):

ݐ ௧݂௤
ᇱ ൌ log ቆ1 ൅

ݐ ௧݂௤

଴௤ܮ
ቇ . log ൬

ܰ
݀ ௧݂

൰
(34)

and ܮ௤ᇱ is computed similarly:

௤ᇱܮ ൌ ෍ݐ ௧݂௤
ᇱ

௧∈ௗ

(35)

Again, a prior based on document length is used:

ௗݎ݋݅ݎ݌ ൌ log ቆ1 െ
ௗܮ
ᇱᇱ

ௗܮ
ᇱ ൅ ߤ

ቇ
(36)

When combined with the query length, ܮ௤ᇱ , it gives the Pitman-Yor
Process TFIDF ranking function, LM-PYP-TFIDF:

௤ݒݏݎ ൌ ௤ᇱܮ . log ቆ1 െ
ௗܮ
ᇱᇱ

ௗܮ
ᇱ ൅ ߤ

ቇ ൅෍ݐ ௧݂௤
ᇱ . log	ቆ

ݐ ௧݂ௗ
ᇱᇱ . ଴ܰ

ߤ
൅ 1ቇ

௘∈௤

(37)

When measured on several TREC and FIRE collections this func-
tion was shown to outperform LM-DS, and to often outperform
the variant without TFIDF smoothing.

5. PSEUDO-RELEVANCE FEEDBACK
The probability ranking principle states that a search engine
should order documents from most likely to least likely to be rele-
vant. If successful at this then further processing of the top docu-
ments might be used to improve precision and recall. A common
approach to this is relevance feedback.

In full relevance feedback the search engine presents a results list
to the user who selects relevant (and sometimes irrelevant) docu-
ments. This input is then used to produce a new list of results.
Several approaches exist, some involve performing a new query
(for example, query expansion) while others simply re-order the
results based on the feedback (for example, query re-ranking).

If the search engine is effective at ranking then it is reasonable to
assume that the top documents are relevant and the bottom docu-
ments less so. So the user need not manually identify relevant and
irrelevant documents as they are implicit. This approach to feed-
back is known as pseudo-relevance feedback.

Two approaches to pseudo-relevance feedback are examined:
query expansion using KL-divergence; and query re-ranking using
truncated model-based feedback.

5.1 KL-Divergence
The purpose of KL-divergence is to identify how the frequencies
in one distribution diverge from the frequencies in a second.
When used for relevance feedback, the technique is used to find
terms occurring (in the top k documents) more frequently than
predicted by collection statistics.

Given a list of results, the top k documents are examined (as if a
single meta-document) and the frequency of each unique term is
computed. Then, for each term, the Kullback–Leibler divergence
from the collection language model is computed:

௄௅ሺ݀||ܿሻܦ ൌ .ሺ݀ሻ݌ log
ሺ݀ሻ݌

ሺܿሻ݌

(38)

Where d is the meta-document and c is the collection. The proba-
bilities are computed using the maximum likelihood estimation,
the observed frequency divided by observed length.

All terms in the meta-document are then ranked from highest to
lowest DKL(d||c). The top m terms are used for query expansion.
There are many different approaches, but the approach seen in
ATIRE is based on Rocchio.

Within the vector space model Rocchio [24] suggests moving the
query towards the centroid of known relevant documents and
away from the centroid of known non-relevant documents, but
keeping the original query, qi. That is,

௜ାଵݍ ൌ ௜ݍߙ ൅ ߚ
∑ ܴ௜
௥
௜ୀଵ

ݎ
െ ߛ

∑ ఫܴഥ
௥̅
௝ୀଵ

ݎ̅

(39)

where the new query, qi+1, is  proportion of the original query, 
proportion of the centroid of the r number of relevant documents,
R, while moving away from the ̅ݎ number of non-relevant docu-
ments, തܴ, by  amount.

The ATIRE combination ignores non-relevant documents as they
cannot be known ( = 0) and it sets  =  = 1.

Robertson et al., [21] assume that documents at the bottom of the
results list are non-relevant. However an alternative source of
non-relevant documents is the set of documents not in the results
lists. We leave for future work the experiment to determine
whether using non-relevant documents is effective in feedback.

In summary, the ATIRE relevance feedback approach generates
the new query, qi+1 from the old query qi by adding to the old
query the top n terms from the top k documents, computed using
KL-divergence from the document collection. This can result in
the same term occurring in the feedback query multiple times, but
that is assumed to be taken care of by the ranking function. As
new terms can be added to the query, this is query expansion.

5.2 Truncated Model-based Feedback
Puurula [20] suggests re-computing the query frequency of each
term as a linear interpolation of the language model of the top k
documents and the language model of the document. As this
method does not add new terms to the query, it is query re-ranking

(albeit by performing a second search). For efficiency reasons, the
model uses only the top k documents and only terms present in the
query. Both strategies are common with pseudo-relevance feed-
back for language models.

The language model scores computed by the search engine are log
probabilities, so it is necessary to convert out of logs before use,

ݐ ௧݂௤
ᇱ ൌ ሺ1 െ ሻߣ

ݐ ௧݂௤

௤ܮ
൅ ෍ߣ

݁௥௦௩೜ା௥௦௩೟೜ା௣௥௜௢௥೏

ܼ
ௗ∈ோ

(40)

where R is the set of the top k documents,  is a tuning parameter,
and Z is introduced as a normalizer,

ܼ ൌ෍෍݁௥௦௩೜ା௥௦௩೟೜ା௣௥௜௢௥೏

௧ఢ௤ௗ∈ோ

(41)

The normalizer Z is defined so that it can be efficiently computed,
by iterating the top documents d from an inverted index for the
terms, t, in the query. The new query length, ܮ௤ᇱ is computed as
the sum of ݐ ௧݂௤

ᇱ scores.

This feedback method has been applied to the Pitman-Yor and
TFIDF Pitman-Yor language models of Section 4.2 and 4.3.
When tested on the early TREC and FIRE collections, it normally
outperformed the same function without feedback.

6. EXPERIMENTS
A substantial number of ranking functions are discussed in Sec-
tions 3 and 4. Two different feedback method are discussed in
Section 5. Although the ATIRE feedback method can be applied
to any of the functions, the language model feedback approach
relies on the rsv scores being log probabilities which BM25 and
related functions do not produce.

6.1 Training
Each of the ranking functions was trained on the INEX Wikipedia
document collection using the title fields of the 68 topics from
2009. This Wikipedia collection is a dump of taken on 8th October
2008 and consists of 2,666,190 articles converted into XML and
annotated using the 2008-w40-2 version of YAGO. It is about
50.07GB in size and has been used extensively at INEX.

In all cases, the best parameters were found using particle swarm
optimization (64 particles, 20 generations, ω=0.4, φp=0.3, φg=0.2).
For the BM25 functions, the search for b was in the range 0 to 1;
as was δ; while the search for k1 was from 0 to 3 (all to one deci-
mal place). For LM-DS, the search for μ was in the range 100 to
3000. For LM-PYP the search for g was in the range 0 to 0.9 in
steps of 0.1 (to one decimal place) and μ from 100 to 3000. For
LM-PYP-TFIDF the search for μ was from 0 to 1 for g it was
0.000 to 0.009 in steps of 0.001 (to one significant figure).

Table 1 presents the best parameters found for each of the ranking
functions. Column 1 lists the function, column 2 gives the learned
parameters. Column 3 gives the MAP at 1000 documents found
during the search – the Oracle MAP on this collection. Column 4
is discussed in Section 6.2. For example, the best parameters for
ATIRE BM25 are b=0.3 and k1=1.1 which result in a MAP of
0.3502. The highest scoring functions, were BM25+ and BM25L
with a MAP of 0.3540 (shown in bold).

It is striking that there is very little variance in the MAP score of
the best functions, a result similar to the finding of Petri et al. [18]
when comparing ATIRE, Indri, and NewSys on .GOV2.

The training suggests that if improvements on BM25 are to be
seen then those improvements are not going to come from a rank-
ing function. Such improvements might come from recall enhanc-
ing tools such as stemming or relevance feedback; or false-
positive reducing tools such as stopping; or bigram and proximity
processing. Alternatively, the binary assessments used for MAP
computation may not be of sufficient granularity to measure the
subtle re-orderings seen between these ranking functions; as sug-
gested by Trotman & Keeler [28].

Table 1: Results of training on the INEX 2009 collection (where MAP
at 1000 scores are Oracle scores) and testing on INEX 2010.

Function Parameters
Training

INEX 2009

Testing

INEX 2010

ATIRE BM25 b=0.3; k1=1.1 0.3502 0.3460

BM25L b=0.3; k1=1.8; δ=0.6 0.3540 0.3501

BM25+ b=0.3; k1=1.6; δ=0.7 0.3540 0.3556

BM25-adpt b=0.3 0.3475 0.3429

BM25T b=0.3 0.3452 0.3560

TFl◦◦pIDF b=0.3; δ=0.5 0.3536 0.3547

LM-DS μ=1089 0.3489 0.3395

LM-PYP μ=1303; g=0.2 0.3440 0.3432

LM-PYP-TFIDF μ=0.53; g=0.004 0.3406 0.3341

6.2 Same Documents Different Queries
To measure the performance on untrained queries the ranking
functions and parameters from Table 1 were tested on the INEX
2010 topics against the same document collection. The title field
of the 52 topics was used. The results are presented in the final
column of Table 1. For example ATIRE BM25 with k1=1.1 and
b=0.3 scores a MAP of 0.3460 when trained on INEX 2009 and
tested on INEX 2010. The highest scoring function was BM25T
with a MAP of 0.3560 (in bold). It is again striking how little
variance there is across the different ranking functions.

6.3 Different Documents Different Queries
To measure the portability of the ranking functions, the ranking
functions and parameters from Table 1 were tested on each of the
first 8 TREC ad hoc collections and the TREC 8 wt2g collection.

Table 3 lists the topics and the document collections that were
used. The first row lists the TREC campaign, the second gives the
topic numbers, and the third provides the source of the documents.
For example, TREC 7 used topics 351-400 on the documents
shipped on TREC disks 4 and 5, but without the Congressional
Record documents. The title field was used as the query (TREC 4
does not have titles so the description field was used). The MAP

at 1000 scores are presented in Table 2. The first column gives the
name of the ranking function, the second and subsequent columns
give the MAP at 1000 score seen for the given TREC campaign.
For example, ATIRE BM25 scores a MAP at 1000 of 0.1874 on
TREC 1. The best scores for each TREC are shown in bold.

When tested in this way BM25-adpt outperformed the others on 5
of the 9 collections. The BM25 functions generally performed
better than language models – but ATIRE was designed as a
BM25 based search engine, and the language models were not
implemented by the original authors.

BM25-adpt, which computed a term-specific k1 from the index,
does appear to be easily transferable from collection to collection
without retraining.

Table 3: TREC collections used in the experiments. †TREC 7 and 8
used disks 4 and 5, without the Congressional Record.

TREC 1 2 3 4 5 6 7 8 8 wt2g

Topics
51-
100

101-
150

151-
200

201-
250

251-
300

301-
350

351-
400

401-
450

401-
450

Disks 1+2 1+2 1+2 2+3 2+4 4+5 4+5† 4+5† wt2g

6.4 Feedback
The ranking functions from Table 1, with relevance feedback add-
ed, were re-retained using a 50-generation particle swarm opti-
mizer. Not only were n (terms) and k (documents) learned for the
KL-Divergence feedback algorithm, but two sets of ranking func-
tion parameters were learned, the first was the pre-feedback
search parameters while the second was the post-feedback search
parameters. INEX 2009 was used for training and INEX 2010 for
testing. Both k and n were searched for in the range 1 to 100.

The results are presented at the top of Table 4. Column 1 lists the
function name, column 2 lists the MAP at 1000, and column 3
lists the score when those parameters are used with the 2010 top-
ics. For brevity the optimal parameters (of which there are up-to
8) are omitted. For example, the best score, shown in bold, during
training was for BM25+ which scores 0.3887 during training and
0.3728 during testing.

The bottom of Table 4 presents, for the language models ranking
algorithms, the scores seen when used with the truncated model-
based feedback method. The search for k was in the range 1 to 100
while  in the range 0 to 1.

The results show improvements on BM25 based ranking functions
when query expansion is used, but not (italicized) in the language
model functions. Improvements are sometimes seen in language
models when truncated model-based feedback is used.

Table 2: Results (MAP at 1000 scores) from training on INEX 2009 and testing on the 9 TREC collections.

Function 1 2 3 4 5 6 7 8 8 wt2g

ATIRE BM25 0.1874 0.1795 0.2125 0.1496 0.1288 0.1821 0.1837 0.2112 0.2631

BM25L 0.1875 0.1793 0.2053 0.1238 0.1295 0.1841 0.1874 0.2121 0.2705

BM25+ 0.1871 0.1776 0.2059 0.1272 0.1307 0.1847 0.1888 0.2146 0.2688

BM25-adpt 0.1835 0.1726 0.2257 0.1511 0.1415 0.1865 0.1951 0.2217 0.2685

BM25T 0.1863 0.1765 0.2024 0.1334 0.1334 0.1857 0.1919 0.2044 0.2663

TFl◦◦pIDF 0.1864 0.1755 0.2070 0.1347 0.1307 0.1834 0.1916 0.2152 0.2671

LM-DS 0.1766 0.1651 0.1918 0.1620 0.1347 0.1808 0.1874 0.2156 0.2506

LM-PYP 0.1698 0.1571 0.1512 0.0606 0.0948 0.1629 0.1853 0.2133 0.2599

LM-PYP-TFIDF 0.1737 0.1621 0.1793 0.1030 0.1304 0.1831 0.1946 0.2180 0.2550

Table 4: Feedback trained on INEX 2009 and tested on INEX 2010.
Top shows KL-divergence. Bottom shows truncated model-based

feedback. †Significantly better (p=0.0267) than best in Table 1

Function
Training

INEX 2009

Testing

INEX 2010

ATIRE BM25 0.3692 0.3646

BM25L 0.3842 0.3686

BM25+ 0.3887 0.3728

BM25-adpt 0.3766 0.3679

BM25T 0.3761 0.3638

TFl◦◦pIDF 0.3730 0.3762†

LM-DS 0.3411 0.3320

LM-PYP 0.2668 0.2199

LM-PYP-TFIDF 0.3288 0.3186

LM-DS 0.3468 0.3431

LM-PYP 0.3519 0.3534

LM-PYP-TFIDF 0.3385 0.3267

6.5 Stemming and Stopping
Many different stemming algorithms are seen in the literature,
including the simple s-stripper [5], and those of Porter [19], Paice
[16], Lovins [9], and Krovetz [7]. Many different stop word lists
are also seen in the literature including: the 313 word list of the
NCBI; and the 988 word list used by Puurula [20].

Re-training each ranking function against each of these stemmers
and stop word lists with each of the feedback mechanism is pro-
hibitive. It is, however, possible to test one ranking function.
BM25-adpt, BM25T, and LM-DS each take a single parameter,
but BM25-adpt outperformed the others on the TREC collections,
and so it was chosen. Both stemming and stopping were per-
formed before indexing and so document lengths do not include
stopped works and term frequencies include all word forms.

Table 5 presents the results of training BM25-adpt with stopping
and stemming on the INEX 2009 collection. The first row gives
the name of the stemmer, the first column gives the number of
words in the stop word list. The other cells give the MAP at 1000.
For example, with the s-stripper and without stopping BM25-adpt
achieved a score of 0.3549, the best score seen (shown in bold).

The table shows two patterns on this collection with this ranking
function: first that the smaller the stop word list the better the
performance (with no stopping being best); and second that the s-
stripper is more effective than the others, suggesting that weak
stemming is better than strong stemming. Only the Krovetz stem-
mer and the s-stripper were better than not stemming. Others [20]
suggest that stop words are important for language models and for
natural language processing, but we only tested BM25-adpt.

Table 5: Training of BM25-adpt on INEX 2009 with different stem-
mers and stop word lists. Scores are MAP at 1000.

Stopwords None Krovetz Lovins Porter Paice S

0 0.3475 0.3528 0.2417 0.3388 0.3109 0.3549

313 0.3170 0.3485 0.2321 0.3345 0.3060 0.3514

988 0.2999 0.3357 0.2172 0.3150 0.2907 0.3230

6.6 Stemming and Feedback
Section 6.4 suggests that feedback is effective and Section 6.5
suggest that stemming is effective (and that stopping is not). In
this section the combination of the two is examined. That is, the

ranking functions are re-trained on an index stemmed with the s-
stripper but no stop word removal. The INEX 2009 collection was
again used for training and INEX 2010 for testing.

Table 6 presents the results. Column 1 lists the function, column 2
the MAP at 1000 seen in training and column 3 likewise for test-
ing. The table shows that, when training, stemming with feedback
is almost always better than feedback alone. The two cases where
it is not (BM25-adpt, and LM-PYP-TFIDF) are show in italics. In
almost all cases, the scores on the test queries are better than those
seen without stemming.

Table 6: Feedback with stemming trained on INEX 2009 and tested
on INEX 2010. Top shows KL-divergence. Bottom shows truncated
model-based feedback. †Significantly better (p=0.0292) than best in

Table 4 and (p<0.0001) Table 1

Function
Training

INEX 2009

Testing

INEX 2010

ATIRE BM25 0.3815 0.3840

BM25L 0.3925 0.4016

BM25+ 0.3971 0.3977

BM25-adpt 0.3698 0.3840

BM25T 0.3955 0.4054†

TFl◦◦pIDF 0.3845 0.4011

LM-DS 0.3520 0.3423

LM-PYP 0.2780 0.2493

LM-PYP-TFIDF 0.3039 0.2607

LM-DS 0.3631 0.3698

LM-PYP 0.3638 0.3733

LM-PYP-TFIDF 0.3524 0.3621

6.7 Stemming, Feedback, TREC
In the final experiment the parameters learned in section 6.6
where tested on the TREC collections in Table 3 with the s-
stemmer and without removal of stop words. The results are pre-
sented in Table 7. The first column lists the ranking function and
the first row the TREC collection. The remaining cells give the
MAP at 1000 for that function against that collection. The best
scores for each collection are given in bold. The cases where
stemming with feedback performed worse than the function on its
own (Table 3 cf. Table 7) are shown in italics.

The general trends seen before continue. Stemming appears to be
effective; query expansion is not effective with language models,
but is with BM25; truncated model-based feedback is effective
with language models. There is no clear best function.

6.8 Statistical Significance
Indiscriminately performing hundreds of significance tests is un-
likely to show any meaningful result. However a paired 1-tailed t-
test was used to compare the best in Tables 1, 4, and 6. Feedback
is better than no feedback (p=0.0267). Stemming with feedback is
better than just feedback (p=0.0292). Stemming with feedback is
better than neither (p<0.0001). No adjustments (e.g. Bonferroni)
were made.

7. CONCLUSIONS
This investigation examined 9 ranking functions, 2 relevance
feedback methods, 5 stemming algorithms, and 2 stop word lists.
It shows that stop words are ineffective, that stemming is effec-
tive, that relevance feedback is effective, and that the combination
of not stopping, stemming, and feedback typically leads to im-
provements on a plain ranking function. However, there is no

clear evidence that any one of the ranking functions is systemati-
cally better than the others.

The implementations were all done by one author and into a
BM25-based search engine, which may negatively affect the per-
formance of language modelling. Training proved difficult with so
many parameters and it is likely that the best parameters were not
found. Specifically, the sensitivity of the power law discounting
parameter, g, in PYP and PYP-TFIDF was an issue.

Comparison of large numbers of ranking functions is exploratory
in nature due to the number of observed effects, but we found no
one ranking function consistently outperforming the others.

The use of these ranking functions for scenarios such as learning-
to-rank was not explored – we leave that investigating for future
work. We do, however, observe that in our scenario BM25-based
functions appear to generally outperform language modelling.

REFERENCES
[1] Armstrong, T.G., A. Moffat, W. Webber, J. Zobel, Has adhoc

retrieval improved since 1994? SIGIR 2009, p. 692-693.
[2] Armstrong, T.G., A. Moffat, W. Webber, J. Zobel, Improve-

ments that don't add up: ad-hoc retrieval results since 1998,
CIKM 2009, p. 601-610.

[3] Gövert, N., G. Kazai. Overview of the INitiative for the
Evaluation of XML retrieval (INEX) 2002, INEX 2002, p. 1-
17

[4] Harman, D. Overview of the First TREC Conference. SIGIR
1993, p. 36-47

[5] Jia, X.-F., D. Alexander, V. Wood, A. Trotman, University of
Otago at INEX 2010, INEX 2010, p. 250-268.

[6] Kando, N., K. Kuriyama, T. Nozue, K. Eguchi, H. Kato, S.
Hidaka, Overview of IR Tasks at the First NTCIR Workshop,
NTCIR-1, (1999), p. 11-44.

[7] Krovetz, R. Viewing morphology as an inference process,
SIGIR 1993. p. 191-202

[8] Lee, L., IDF revisited: a simple new derivation within the
Robertson-Sparck Jones probabilistic model, SIGIR 2007, p.
751-752.

[9] Lovins, J.B., Error evaluation for stemming algorithms as
clustering algorithms. JASIS, (1971), 22(1):28-40.

[10] Lv, Y., C. Zhai, Adaptive term frequency normalization for
BM25, CIKM 2011, p. 1985-1988.

[11] Lv, Y., C. Zhai, Lower-bounding term frequency normaliza-
tion, CIKM 2011, p. 7-16.

[12] Lv, Y., C. Zhai, When documents are very long, BM25 fails!
SIGIR 2011, p. 1103-1104.

[13] Lv, Y., C. Zhai, A log-logistic model-based interpretation of
TF normalization of BM25, ECIR 2012, p. 244-255.

[14] Majumder, P., M. Mitra, D. Pal, A. Bandyopadhyay, S. Maiti,
S. Pal, D. Modak, S. Sanyal, The FIRE 2008 Evaluation Ex-
ercise. TALIP, (2010), 9(3):1-24.

[15] Momtazi, S., D. Klakow, Hierarchical pitman-yor language
model for information retrieval, SIGIR 2010, p. 793-794.

[16] Paice, C.D., Another stemmer. SIGIR Forum, (1990),
24(3):56-61.

[17] Petri, M., J.S. Culpepper, A. Moffat, Exploring the magic of
WAND, ADCS 2013, p. 58-65.

[18] Petri, M., A. Moffat, J.S. Culpepper, Score-safe term-
dependency processing with hybrid indexes, SIGIR 2014, p.
899-902.

[19] Porter, M., An Algorithm for suffix stripping. Program,
1980. 14(3):130-137.

[20] Puurula, A., Cumulative Progress in Language Models for
Information Retrieval, ALTA 2013, p. 96-100.

[21] Robertson, S.E., S. Walker, M. Beaulieu, Okapi at TREC-7:
automatic ad hoc, filtering, VLC and interactive, TREC-7,
(1998), p. 253-264.

[22] Robertson, S.E., S. Walker, M.M. Beaulieu, M. Gatford, A.
Payne. Okapi at TREC-4. TREC-4 (1995), p. 73-96

[23] Robertson, S.E., S. Walker, S. Jones, M.M. Beaulieu, M.
Gatford. Okapi at TREC-3. TREC-3, (1994), p. 109-126

[24] Rocchio, J., Relevance feedback in information retrieval. In
The Smart Retrieval System- Experiments in Automatic Doc-
ument Processing, G. Salton (Ed). (1971), p. 313-323.

[25] Rousseau, F., M. Vazirgiannis, Composition of TF normali-
zations: new insights on scoring functions for ad hoc IR,
SIGIR 2013, p. 917-920.

[26] Singhal, A., C. Buckley, M. Mitra. Pivoted document length
normalization. SIGIR 1996, p. 21-29

[27] Trotman, A., X. Jia, M. Crane, Towards an Efficient and
Effective Search Engine, SIGIR 2012 Workshop on Open
Source Information Retrieval, p. 40-47.

[28] Trotman, A., D. Keeler, Ad hoc IR: not much room for im-
provement, SIGIR 2011, p. 1095-1096.

Table 7: Results (MAP at 1000 scores) from training on INEX 2009 with feedback and stemming; tested on TREC collections.

Function 1 2 3 4 5 6 7 8 8 wt2g

ATIRE BM25 0.2221 0.2103 0.2581 0.1779 0.1585 0.2348 0.2021 0.2342 0.2782

BM25L 0.2236 0.2081 0.2485 0.1446 0.1627 0.2472 0.2157 0.2420 0.2938

BM25+ 0.2215 0.2085 0.2577 0.1858 0.1746 0.2464 0.2236 0.2466 0.2929

BM25-adpt 0.2141 0.1923 0.2610 0.1718 0.1748 0.2417 0.2085 0.2441 0.2907

BM25T 0.2160 0.2057 0.2525 0.1628 0.1559 0.2257 0.1838 0.2359 0.2976

TFl◦◦pIDF 0.2242 0.2091 0.2530 0.1564 0.1625 0.2424 0.2136 0.2421 0.2869

LM-DS 0.1954 0.1839 0.2144 0.1551 0.1467 0.2281 0.1943 0.2236 0.2281

LM-PYP 0.1084 0.0605 0.0543 0.0280 0.0193 0.1137 0.1461 0.1541 0.1300

LM-PYP-TFIDF 0.1596 0.1612 0.1690 0.0945 0.1077 0.1741 0.2173 0.1968 0.2592

LM-DS 0.2006 0.1858 0.2249 0.1570 0.1639 0.2267 0.1936 0.2222 0.2542

LM-PYP 0.1803 0.1514 0.1584 0.0666 0.1043 0.2087 0.1919 0.2236 0.2604

LM-PYP-TFIDF 0.1818 0.1639 0.1800 0.0588 0.1422 0.2293 0.1994 0.2282 0.2640

Appendix 1: Feedback Parameters

Function Parameters
Training

INEX 2009

ATIRE BM25

b=0.9; k1=2.9;

k=65; n=35;

b=0.3; k1=0.7

0.3692

BM25L

b=0.7; k1=1.9; δ=0.2

k=3; n=83;

b=0.5; k1=1.1; δ=0.4

0.3842

BM25+

b=0.4; k1=2.2; δ=0.5

k=2; n=60;

b=0.4; k1=1.6; δ=0.6

0.3887

BM25-adpt

b=0.7;

k=6; n=85;

b=0.4

0.3766

BM25T

b=0.5;

k=7; n=34;

b=0.3

0.3761

TFl◦◦pIDF

b=0.8; δ=0.4

k=23; n=36;

b=0.4; δ=0.6

0.3730

LM-DS

μ=904;

k=57; n=1;

μ=2488

0.3411

LM-PYP

μ=795; g=0.6;

k=3; n=15;

μ=789; g=0.2;

0.2668

LM-PYP-TFIDF

μ=0.77; g=0.006;

k=5; n=2;

μ=0.87; g=0.006;

0.3288

LM-DS

μ=2206;

k=67; =0.7;

μ=1559

0.3468

LM-PYP

μ=791; g=0.8;

k=19; =0.6

μ=1342; g=0.2

0.3519

LM-PYP-TFIDF

μ=0.24; g=0.003;

k=46; =0.2;

μ=0.45; g=0.004

0.3385

Appendix 2: Feedback Stemming Parameters

Function Parameters
Training

INEX 2009

ATIRE BM25

b=0.9; k1=2.7;

k=59; n=42;

b=0.4; k1=1.0

0.3815

BM25L

b=0.5; k1=2.2; δ=0.3

k=11; n=63;

b=0.5; k1=1.2; δ=0.6

0.3925

BM25+

b=0.5; k1=2.0; δ=0.2

k=2; n=81;

b=0.6; k1=1.1; δ=0.6

0.3971

BM25-adpt

b=0.9;

k=7; n=25;

b=0.4

0.3698

BM25T

b=0.5;

k=5; n=46;

b=0.4

0.3955

TFl◦◦pIDF

b=0.6; δ=0.4

k=25; n=79;

b=0.4; δ=0.6

0.3845

LM-DS

μ=966;

k=63; n=1;

μ=1910

0.3520

LM-PYP

μ=845; g=0.5;

k=3; n=14;

μ=696; g=0.2;

0.2780

LM-PYP-TFIDF

μ=0.99; g=0.004;

k=2; n=10;

μ=0.09; g=0.004;

0.3039

LM-DS

μ=2236;

k=33; =0.7;

μ=1442

0.3631

LM-PYP

μ=809; g=0.3;

k=52; =0.3

μ=1024; g=0.2

0.3638

LM-PYP-TFIDF

μ=0.4; g=0.004;

k=56; =0.1;

μ=0.6; g=0.004

0.3524

