
Collision Resolution in Hash Tables for Vocabulary
Accumulation During Parallel Indexing

Matt Crane
Department of Computer Science

University of Otago
Dunedin, New Zealand

mcrane@cs.otago.ac.nz

Andrew Trotman
eBay Inc.

atrotman@ebay.com

ABSTRACT
During indexing the vocabulary of a collection needs to be
built. The structure used for this needs to account for the
skew distribution of terms. Parallel indexing allows for a
large reduction in number of times the global vocabulary
needs to be examined, however, this also raises a new set
of challenges. In this paper we examine the structures used
to resolve collisions in a hash table during parallel index-
ing, and find that the best structure is different from those
suggested previously.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing – Dictionaries

General Terms
Algorithms, Measurement, Performance

Keywords
Indexing, Parallel, Collision resolution

1. INTRODUCTION
During indexing of a collection, the vocabulary for that col-
lection needs to built. As terms are encountered the vocab-
ulary is consulted so that postings, and statistics, for that
term can then be updated. Terms within a collection typ-
ically follow Zipf’s law which states that the frequency of
a term in a collection is proportional to the inverse of its
rank in a frequency table [7]. That is, let α be a parameter
that describes the decay rate of frequencies, and f1 be the
frequency of the most common term. The frequency of the
kth most common term, fk, is then given by fk ≈ f1/kα. Fig-
ure 1 shows this distribution of collection frequencies (CF)
occurring in the Wall Street Journal (WSJ) collection.
When indexing documents in parallel, the vocabulary only

needs to be consulted once per term, rather than per term

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ADCS, December 08 - 09, 2015, Parramatta, NSW, Australia
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4040-3/15/12 ...$15.00.
DOI: http://dx.doi.org/10.1145/2838931.2838942.

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

1 10 100 1,000 10,000 100,000
Rank Position

Fr
eq

ue
nc

y

CF
DF

Figure 1: Frequency rank of a term plotted against
its collection (CF) and document (DF) frequencies
from the WSJ collection.

occurrence. However, as shown in Figure 1, this is still a
skew distribution. Because there are multiple indexers that
are accessing the vocabulary concurrently, the best structure
may be different from a serial indexer.

2. RELATED WORK
Williams et al. [6] tested a range of structures that took the
skew distribution into consideration. The structures they
considered were splay trees, periodic splay trees, red-black
trees, and randomised search trees. A splay tree is a binary
search tree (BST) where nodes are rotated towards the root
after access, a periodic splay tree does so periodically. Red-
black trees are a self-balancing BST. Randomised search
trees are a treap (discussed in Section 4.4) where the heap
property is randomly assigned. They concluded that of these
structures the periodic splay tree was the best performing,
however, overall a hash table was the best.

Heinz & Zobel [2] also tested a range of tree structures,
including those of Williams et al., with the addition of a
frequency-adaptive BST (fab tree), and a burst trie. A fab
tree is a treap where the heap property is an access counter,
which approaches the collection frequency of the term. A
burst trie is a trie where suffixes are stored at a trie node,
rather than individual characters. The trie nodes are burst
apart when they contain too many suffixes. Heinz & Zobel
also conclude that hash tables are the fastest overall struc-
ture.

This prior work shows that the hash table is the fastest
structure overall. However, when multiple terms hash to the

Collection Documents Unique Terms Total Terms

Wall Street Journal (WSJ) 173,252 229,498 83,270,622
.GOV 1,247,753 5,410,059 1,100,383,268
.GOV2 25,205,179 37,236,871 20,100,412,569
ClueWeb09 Category B (CW09B) 50,220,423 96,111,883 55,466,785,086

Table 1: Document, unique term, and total term counts for tested collections.

same slot a collision occurs and must be resolved. Due to
the birthday paradox, even with very large numbers of slots
and small numbers of terms, the chances of a collision can
be high. For example only 109, 124 terms are required for a
75% chance of a collision across 232 slots. Even if no colli-
sions occur across n slots after hashing n terms, due to the
pigeonhole principle, the next term must cause a collision.
The structure used for resolving collisions within the hash

table has received little attention. Previous work has used
linked lists to resolve collisions. These lists have utilised var-
ious heuristics, and these are discussed in Section 4.1. Our
research question is then “Which data structure for collision
resolution in a hash table is best in a parallel indexer?”
Experiments are performed using the ATIRE search en-

gine and indexer [5], revision 0ab3cd0228d8. Serialisation
of the index, and accumulation of postings are disabled to
allow for more experimental repetition. These account for
≈ 50% of indexing time, and are constant regardless of vo-
cabulary accumulation method, so can be disabled without
affecting results. Table 1 shows the document, unique term,
and total term counts for the collections used in experimen-
tation. For example, CW09B contains 55B occurrences of
96M unique terms extracted from 50M documents.

3. PARALLEL INDEXING
The ATIRE indexer indexes documents in parallel and then
merges these per document indexes into the final index. This
means that the global vocabulary is only consulted relative
to a terms document frequency, rather than collection fre-
quency. This feature alone saves a substantial amount of
lookups in the global vocabulary. For instance, the occurs
1.5B times across 42M documents in the CW09B collection,
this feature then saves 1.46B lookups in the global vocabu-
lary for the alone.
When a document indexer encounters a new term, the

global vocabulary is consulted and a reference to the node
in the global structure is stored. This saves work when the
single document index gets merged into the global index.
For nodes that have a reference, no lookup in the global
vocabulary needs to be performed. For nodes that do not,
the global vocabulary is consulted again and the node is
updated if found, or inserted if not.
This feature saves a substantial amount of time, as the

merge is single-threaded—to allow for sequential, contigu-
ous, and unique document ids. The document indexers,
however, are running concurrently. The presence of these
multiple readers require that any manipulations to the reso-
lution structure be performed using thread-safe operations.
For chained structures this is achieved by using the atomic
compare-and-swap operation on the pointers to other parts
of the structure.
Even with this feature, the skew of document frequencies

presented in Figure 1 must still be taken into account. For
example, the appears in 42M documents in the CW09B col-

lection. Every step down the resolution chain in which the
appears would incur another 42M string comparisons per
lookup.

4. RESOLUTION STRUCTURES
In this paper we examine a number of collision resolving
structures: linked lists, BSTs, periodic self-balancing BSTs,
and treaps. For the linked lists an insert-at-back heuristic is
used as this was found to be the best performing heuristic [1,
p. 121]. The selection of a BST that balances periodically
follows the work of Williams et al. [6] who found periodic
splaying out performed always splaying. The heap property
for the treap is set to the document frequency of the term,
this is equivalent to the fab trees of Heinz & Zobel [2].

4.1 Linked Lists
A number of heuristics for linked lists have been proposed
to account for the term skew. The first of these is insert-
at-back where new terms are inserted at the back. This
heuristic makes the assumption that frequent terms will ap-
pear sooner in the collection than infrequent terms. Another
commonly used heuristic is move-to-front where terms are
moved to the beginning of the list on access. The ordering
of terms in the list approaches ordering by CF.

Zobel et al. [8] showed that the move-to-front heuristic
performed better than resizing the hash table. Büttcher et al.
[1, p. 121] showed that the move-to-front and insert-at-back
heuristics performed equally. As the insert-at-back heuristic
is simpler to implement, this is selected for our experiments.

4.2 Binary Search Trees (BSTs)
A BST provides an ordering over terms that are inserted,
typically a lexicographical ordering. The choice of a BST
relies on two assumptions. The first of these, like the insert-
at-back heuristic of linked lists, is that a more common term
will appear before an infrequent term. The second assump-
tion is that in running text the order of terms is sufficiently
random to create a tree that is approximately balanced.

4.3 Periodic Self-Balancing BSTs
One disadvantage of BSTs is that performance is dependent
on the ordering that terms are inserted. If the second as-
sumption above does not hold, and terms inserted in sorted
order then the BST performs as if it were a linked list. This
affects both insertion and lookup, and causes what would
otherwise be an O(log n) operation to be O(n).

One technique to avoid this is to balance the BST. One
solution that does so is the Day-Stout-Warren (DSW) al-
gorithm [3, 4]. This is chosen over other methods as re-
balancing only needs to be performed periodically. Rolfe
shows that the time required to balance a given tree us-
ing this method is less than other methods [3]. In addition
Williams et al. show that only periodically splaying trees
improved run time when compared to always splaying [6].

a

c

f

h i

g

(a) Initial.

a

c f

h ig

(b) Step 1.

a

c f

h ig

(c) Step 2.

a

c

f

h

i

g

(d) Final.

Figure 2: Valid intermediary stages of treap rotation. The shown rotation occurs when f ’s document fre-
quency is increased to be larger than c, resulting in an upward rotation.

The DSW algorithm degrades the BST to a linked list by
repeated rotations. After this, every second node down a
branch is rotated the opposite direction. This repeats until
the BST is balanced and complete (filled from left to right).
The balancing is performed in-place in O(n) time, and as it
is only performed periodically, this cost is amortized across
all insertions of new terms.
The rebalancing is triggered when a new node is created

at a depth greater than d. In slots with more than 2d unique
terms this will trigger unnecessary rebalancing. The num-
ber of times rebalancing is expected depends on the chosen
rebalancing depth. Even in a very dense hash table the
expected depth of a fully balanced tree is minimal. A re-
balancing depth that is set to the expected depth should
be sufficient as this will only affect trees that are already
degenerating.

4.4 Document Frequency Treap
A treap is a data structure that provides two orderings on
the data. The first is the same as the BST described above.
The second is the heap property, and for this, we select the
document frequency. This is selected over the collection fre-
quency as we are only considering the global structure and
this is only consulted per document occurrence. As index-
ing proceeds, this approaches the final document frequency,
putting the most frequent terms closer to the root.
Figure 2 shows an example of the stages of maintaining a

treap. The shown manipulations occur after an update to
node f has caused it to have a larger document frequency
than c, but not larger than a.

5. EXPERIMENTS
Conventional advice for hashing suggests calculating a hash
value, and then taking a prime number modulus of that
value. However, the table sizes selected are powers of two
following the advice of Bob Jenkins—“Table lengths should
always be a power of two because that’s faster than prime
lengths and all acceptable hashes allow it.”1

The collections selected for experimentation (see Table 1)
were chosen to provide a range of expected terms per slot
(shown in Table 2) for a range of hash table sizes. On the
WSJ collection for instance, there are an expected 3.5 terms
per slot when 216 table slots are available.
Figure 3 shows the effect of the size of the hash table

(measured by the big length of the hash) and resolver on
indexing time for the WSJ collection. As the number of
collisions rises (by reducing the number of table slots) the
performance of linked lists degrades substantially while the
BSTs and treaps perform approximately the same regardless
of table size, with treaps being consistently the worse of
the two. Absent from these results are the periodic self-
balancing BSTs (see Section 5.2).

1http://burtleburtle.net/bob/hash/doobs.html

Table Collection

Slots WSJ .GOV .GOV2 CW09B

28 896.48 21,133.04 145,456.53 375,437.04
216 3.50 82.55 568.19 1,466.55
224 0.01 0.32 2.22 5.73

Table 2: Expected number of unique terms per hash
table slot for various collections and table slots.

0
2
4
6
8

10
12
14
16
18

28 216 224

Hash Slots

T
im

e
to

In
de

x
(s

) Binary
Search
Tree

Document
Frequency
Treap

Linked
List

Figure 3: Effect of resolver and table slots on time
to index the WSJ collection. Shown is the median of
five runs.

The performance of resolvers is highly dependent on the
number of terms in each slot. If only one term is in a slot
then the advantages of a BST or treap over a linked list are
lost as no resolution is performed. In fact, there might be
a penalty, as additional memory is used for the tree-based
resolvers that could cause more cache misses.

From Table 2 and Figure 3, 216 slots for .GOV2 would
introduce performance degradation comparable to 28 slots
on the WSJ collection. Because of this, 224 slots are used
for remaining experimentation.

Figure 4 shows the effect that changing the resolution
method has on the time taken to index using 224 slots and
across multiple collections. As discussed, the reason that
the linked list performs on par with the BST resolver is be-
cause the expected number of collisions is low and thus the
benefits of the BST are lost.

5.1 Document Frequency Treap
The treap consistently performs worse than a regular BST,
despite the theoretical benefits and results of Heinz et al. [2].
The reasons for this are due to the nature of the parallel
indexing carried out by ATIRE.

When treap maintenance is performed (exampled by Fig-
ure 2), any number of document indexers can be traversing
the treap to find global references for a term. However, in
the first (Figure 2b) and second (Figure 2c) steps of a ro-

http://burtleburtle.net/bob/hash/doobs.html

CW09B .GOV2

.GOV WSJ

57.5

60.0

62.5

65.0

22.5

23.0

23.5

24.0

24.5

25.0

1.30

1.35

1.40

1.45

1.50

1.55

0.125

0.130

0.135

0.140

0.145

0.150

Binary
Search

Tree

Document
Frequency

Treap

Linked
List

Binary
Search

Tree

Document
Frequency

Treap

Linked
List

Collision Resolution

Ti
m

e
to

In
de

x
(m

in
)

Figure 4: Effect of resolver on time to index a num-
ber of collections. Shown are the results of five runs
and 224 slots.

tation, while a term that is being looked for may occur in
the global vocabulary, it may not be findable. This then
requires additional lookups at merging time causing delays.
For example, suppose a document indexer has just found

the term, f . It looks through the treap for the term and
determines it needs to look to the right of node a, to node
c (Figure 2a). After this happens, another document being
merged in has increased f ’s document frequency causing it
to rotate upwards in the treap. The first step of this (Fig-
ure 2b) sets c’s right child to be f ’s left child, h. From
this stage onwards, even though f has already been seen in
the collection it will not be discoverable from c, the node
that the document indexer is searching from. Depending
on the size of the treap now rooted at c this could incur
a substantial number of extra comparisons. However, the
lookup performed when the document is merged into the
index should resolve quicker, as f is now closer to the root.
While this reduction means the treap performs fewer com-

parisons, maintaining the heap property also incurs a sub-
stantial cost. Every time a term is encountered in a new
document, the document frequency is updated and the heap
property maintained. While a single such check is inexpen-
sive, the collective number of these across an indexing run
becomes a substantial factor.
It may be possible to amortize this cost by only periodi-

cally maintaining the treap, allowing for higher discoverabil-
ity. However, this is left for future work.

5.2 Periodic Self-Balancing BSTs
When the rebalance depth is less than log2(expected terms),
then rebalancing can occur when the tree is already bal-
anced. As the rebalance depth, d, increases the number of
rebalances decreases. When d = 10, the median (of five)
time to index the WSJ collection is 56 seconds, compared
with 8 when d = ∞, as a result of 155,000 rebalances.

For the tested depths, the index time was either statisti-
cally significantly slower (d < 13) or not different (d ≥ 13)
at the 0.01 level. The best value cannot be determined until
after indexing has completed, as it is then that the expected
number of terms per slot can be calculated.

In addition to the parameter sensitivity, this structure also
has the same problem as the treap. During balancing the
tree many rotations are performed and the document in-
dexer lookups can fail. Even if the interleaving of rotations
and lookup was such that all nodes were discoverable, the
lookup can degrade to O(n) in the worst case.

It may be possible to adjust the rebalance depth during
indexing if excessive rebalancing was performed. Alterna-
tively, rebalances could be triggered when lookups perform
large numbers of comparisons. Both are left for future work.

6. CONCLUSIONS
This paper presented an investigation into the structures
used to resolve collisions in a hash table. Four structures
were tested: linked lists with an insert-at-back heuristic,
BST, periodically self-balancing BSTs, and treaps.

The periodic self-balancing BSTs were overly parameter
sensitive, and the best parameter could not be determined
prior to indexing. The performance of the remaining struc-
tures are all directly related to the expected terms per hash
slot. Of these, the treap performed the worst, and reasons
for this were presented. The linked list was shown to severely
degrade as the density of the hash table went up, and so the
BST is selected as the best performing collision resolving
structure for parallel indexing.

References
[1] S. Büttcher, C. L. A. Clarke, and G. V. Cormack. Infor-

mation Retrieval: Implementing and Evaluating Search
Engines. MIT Press, 2010.

[2] S. Heinz and J. Zobel. Performance of data structures
for small sets of strings. In Proceedings of the 25th Aus-
tralasian Conference on Computer Science, ACSC ’02,
pages 87–94, 2002.

[3] T. J. Rolfe. One-time binary search tree balancing: The
Day/Stout/Warren (DSW) algorithm. SIGCSE Bull.,
34(4):85–88, Dec. 2002.

[4] Q. F. Stout and B. L. Warren. Tree rebalancing in op-
timal time and space. Commun. ACM, 29(9):902–908,
Sept. 1986.

[5] A. Trotman, X.-F. Jia, and M. Crane. Towards an effi-
cient and effective search engine. In SIGIR 2012 Work-
shop on Open Source Information Retrieval, pages 40–47,
2012.

[6] H. E. Williams, J. Zobel, and S. Heinz. Self-adjusting
trees in practice for large text collections. Software:
Practice and Experience, 31(10):925–939, 2001.

[7] G. K. Zipf. Human behavior and the principle of least
effort. 1949.

[8] J. Zobel, S. Heinz, and H. E. Williams. In-memory hash
tables for accumulating text vocabularies. Information
Processing Letters, 80(6):271 – 277, 2001.

	Introduction
	Related Work
	Parallel Indexing
	Resolution Structures
	Linked Lists
	Binary Search Trees (BSTs)
	Periodic Self-Balancing BSTs
	Document Frequency Treap

	Experiments
	Document Frequency Treap
	Periodic Self-Balancing BSTs

	Conclusions

