
Toward Reproducible Baselines: The
Open-Source IR Reproducibility Challenge

Jimmy Lin1(B), Matt Crane1, Andrew Trotman2, Jamie Callan3,
Ishan Chattopadhyaya4, John Foley5, Grant Ingersoll4, Craig Macdonald6,

and Sebastiano Vigna7

1 University of Waterloo, Waterloo, Canada
jimmylin@uwaterloo.ca

2 eBay Inc., San Jose, USA
3 Carnegie Mellon University, Pittsburgh, USA

4 Lucidworks, Redwood City, USA
5 University of Massachusetts Amherst, Amherst, USA

6 University of Glasgow, Glasgow, UK
7 Università degli Studi di Milano, Milan, Italy

Abstract. The Open-Source IR Reproducibility Challenge brought
together developers of open-source search engines to provide reproducible
baselines of their systems in a common environment on Amazon EC2.
The product is a repository that contains all code necessary to gener-
ate competitive ad hoc retrieval baselines, such that with a single script,
anyone with a copy of the collection can reproduce the submitted runs.
Our vision is that these results would serve as widely accessible points
of comparison in future IR research. This project represents an ongoing
effort, but we describe the first phase of the challenge that was organized
as part of a workshop at SIGIR 2015. We have succeeded modestly so
far, achieving our main goals on the Gov2 collection with seven open-
source search engines. In this paper, we describe our methodology, share
experimental results, and discuss lessons learned as well as next steps.

Keywords: ad hoc retrieval · Open-source search engines

1 Introduction

As an empirical discipline, advances in information retrieval research are built
on experimental validation of algorithms and techniques. Critical to this process
is the notion of a competitive baseline against which proposed contributions are
measured. Thus, it stands to reason that the community should have common,
widely-available, reproducible baselines to facilitate progress in the field. The
Open-Source IR Reproducibility Challenge was designed to address this need.

In typical experimental IR papers, scant attention is usually given to baselines.
Authors might write something like “we used BM25 (or query likelihood) as the
baseline” without further elaboration. This, of course, is woefully under-specified.
For example, Mühleisen et al. [13] reported large differences in effectiveness across
c© Springer International Publishing Switzerland 2016
N. Ferro et al. (Eds.): ECIR 2016, LNCS 9626, pp. 408–420, 2016.
DOI: 10.1007/978-3-319-30671-1 30



Toward Reproducible Baselines: The Open-Source IR Reproducibility 409

four systems that all purport to implement BM25. Trotman et al. [17] pointed out
that BM25 and query likelihood with Dirichlet smoothing can actually refer to at
least half a dozen different variants; in some cases, differences in effectiveness are
statistically significant. Furthermore, what are the parameter settings (e.g., k1
and b for BM25, and μ for Dirichlet smoothing)?

Open-source search engines represent a good step toward reproducibility, but
they alone do not solve the problem. Even when the source code is available, there
remain many missing details. What version of the software? What configuration
parameters? Tokenization? Document cleaning and pre-processing? This list goes
on. Glancing through the proceedings of conferences in the field, it is not difficult
to find baselines that purport to implement the same scoring model from the
same system on the same test collection (by the same research group, even), yet
report different results.

Given this state of affairs, how can we trust comparisons to baselines when the
baselines themselves are ill-defined? When evaluating the merits of a particular
contribution, how can we be confident that the baseline is competitive? Perhaps
the effectiveness differences are due to inadvertent configuration errors? This is a
worrisome issue, as Armstrong et al. [1] pointed to weak baselines as one reason
why ad hoc retrieval techniques have not really been improving.

As a standard “sanity check” when presented with a purported baseline,
researchers might compare against previously verified results on the same test
collection (for example, from TREC proceedings). However, this is time consum-
ing and not much help for researchers who are trying to reproduce the result
for their own experiments. The Open-Source IR Reproducibility Challenge aims
to solve both problems by bringing together developers of open-source search
engines to provide reproducible baselines of their systems in a common exe-
cution environment on Amazon’s EC2 to support comparability both in terms
of effectiveness and efficiency. The idea is to gather everything necessary in a
repository, such that with a single script, anyone with a copy of the collection
can reproduce the submitted runs. Two longer-term goals of this project are to
better understand how various aspects of the retrieval pipeline (tokenization,
document processing, stopwords, etc.) impact effectiveness and how different
query evaluation strategies impact efficiency. Our hope is that by observing how
different systems make design and implementation choices, we can arrive at gen-
eralizations about particular classes of techniques.

The Open-Source IR Reproducibility Challenge was organized as part of the
SIGIR 2015 Workshop on Reproducibility, Inexplicability, and Generalizability
of Results (RIGOR). We were able to solicit contributions from the developers
of seven open-source search engines and build reproducible baselines for the
Gov2 collection. In this respect, we have achieved modest success. Although this
project is meant as an ongoing exercise and we continue to expand our efforts,
in this paper we share results and lessons learned so far.

2 Methodology

The product of the Open-Source IR Reproducibility Challenge is a repository
that contains everything needed to reproduce competitive baselines on standard



410 J. Lin et al.

IR test collections1. As mentioned, the initial phase of our project was organized
as part of a workshop at SIGIR 2015: most of the development took place between
the acceptance of the workshop proposal and the actual workshop. To begin, we
recruited developers of open-source search engines to participate. We emphasize
the selection of developers—either individuals who wrote the systems or were
otherwise involved in their implementation. This establishes credibility for the
quality of the submitted runs. In total, developers from seven open-source sys-
tems participated (in alphabetical order): ATIRE [16], Galago [6], Indri [10,12],
JASS [9], Lucene [2], MG4J [3], and Terrier [14]. In what follows, we refer to the
developer(s) from each system as a separate team.

Once commitments of participation were secured, the group (on a mailing
list) discussed the experimental methodology and converged on a set of design
decisions. First, the test collection: we wished to work with a collection that
was large enough to be interesting, but not too large as to be too unwieldy.
The Gov2 collection, with around 25 million documents, seemed appropriate;
for evaluation, we have TREC topics 701–850 from 2004 to 2006 [7].

The second major decision concerned the definition of “baseline”. Naturally,
we would expect different notions by each team, and indeed, in a research paper,
the choice of the baseline would naturally depend on the techniques being stud-
ied. We sidestepped this potentially thorny issue by pushing the decisions onto
the developers. That is, the developers of each system decided what the base-
lines should be, with this guiding question: “If you read a paper that used your
system, what would you like to have seen as the baseline?” This decision allowed
the developers to highlight features of their systems as appropriate. As expected,
everyone produced bag-of-words baselines, but teams also produced baselines
based on term dependence models as well as query expansion.

The third major design decision focused around parameter tuning: proper
parameter settings, of course, are critical to effective retrieval. However, we could
not converge on an approach that was both “fair” to all participants and feasible
in terms of implementation given the workshop deadline. Thus, as a compromise,
we settled on building baselines around the default “out of the box” experience—
that is, what a näıve user would experience downloading the software and using
all the default settings. We realize that in most cases this would yield sub-optimal
effectiveness and efficiency, but at least such a decision treated all systems equi-
tably. This is an issue we will revisit in future work.

The actual experiments proceeded as follows: the organizers of the challenge
started an EC2 instance2 and handed credentials to each team in turn. The EC2
instance was configured with a set of standard packages (the union of the needs
of all the teams), with the Gov2 collection (stored on Amazon EBS) mounted
at a specified location. Each team logged into the instance and implemented
their baselines within a common code repository cloned from GitHub. Everyone
agreed on a directory structure and naming conventions, and checked in their
1 https://github.com/lintool/IR-Reproducibility/.
2 We used the r3.4xlarge instance, with 16 vCPUs and 122 GiB memory, Ubuntu

Server 14.04 LTS (HVM).

https://github.com/lintool/IR-Reproducibility/


Toward Reproducible Baselines: The Open-Source IR Reproducibility 411

code when done. The code repository also contains standard evaluation tools
(e.g., trec eval) as well as the test collections (topics and qrels).

The final product for each system was an execution script that reproduced
the baselines from end to end. Each script followed the same basic pattern: it
downloaded the system from a remote location, compiled the code, built one or
more indexes, performed one or more experimental runs, and printed evaluation
results (both effectiveness and efficiency).

Each team got turns to work with the EC2 instance as described above.
Although everyone used the same execution environment, they did not necessar-
ily interact with the same instance, since we shut down and restarted instances
to match teams’ schedules. There were two main rounds of implementation—all
teams committed initial results and then were given a second chance to improve
their implementations. The discussion of methodology on the mailing list was
interleaved with the implementation efforts, and some of the issues only became
apparent after the teams began working.

Once everyone finished their implementations, we executed all scripts for
each system from scratch on a “clean” virtual machine instance. This reduced,
to the extent practical, the performance variations inherent in virtualized envi-
ronments. Results from this set of experiments were reported at the SIGIR work-
shop. Following the workshop, we gave teams the opportunity to refine their
implementations further and to address issues discovered during discussions at
the workshop and beyond. The set of experiments reported in this paper incor-
porated all these fixes and was performed in December 2015.

3 System Descriptions

The following provides descriptions of each system, listed in alphabetical order.
We adopt the terminology of calling a “count index” one that stores only term
frequency information and a “positions index” one that stores term positions.

ATIRE. ATIRE built two indexes, both stemmed using an s-stripping stemmer;
in both cases, SGML tags were pruned. The postings lists for both indexes were
compressed using variable-byte compression after delta encoding. The first index
is a frequency-ordered count index that stores the term frequency (capped at
255), while the second index is an impact-ordered index that stores pre-computed
quantized BM25 scores at indexing time [8].

For retrieval, ATIRE used a modified version of BM25 [16] (k1 = 0.9 and
b = 0.4). Searching on the quantized index reduces ranking to a series of integer
additions (rather than floating point calculations in the non-quantized index),
which explains the substantial reduction in query latencies we observe.

Galago (Version 3.8). Galago built a count index and a positions index, both
stemmed using the Krovetz stemmer and stored in document order. The post-
ings consist of separate segments for documents, counts, and position arrays (if
included), with a separate structure for skips every 500 documents or so. The
indexes use variable-byte compression with delta encoding for ids and positions.
Query evaluation uses the document-at-a-time MaxScore algorithm.



412 J. Lin et al.

Galago submitted two sets of search results. The first used a query-likelihood
model with Dirichlet smoothing (μ = 3000). The second used a sequential depen-
dence model (SDM) based on Markov Random Fields [11]. The SDM features
included unigrams, bigrams, and unordered windows of size 8.

Indri (Version 5.9). The Indri index contains both a positions inverted index
and DocumentTerm vectors (i.e., a forward index). Stopwords were removed and
terms were stemmed with the Krovetz stemmer.

Indri submitted two sets of results. The first was a query-likelihood model
with Dirichlet smoothing (μ = 3000). The second used a sequential dependence
model (SDM) based on Markov Random Fields [11]. The SDM features were
unigrams, bigrams, and unordered windows of size 8.

JASS. JASS is a new, lightweight search engine built to explore score-at-a-time
query evaluation on quantized indexes and the notion of “anytime” ranking func-
tions [9]. It does not include an indexer but instead post-processes the quantized
index built from ATIRE. The reported indexing times include both the ATIRE
time to index and the JASS time to derive its index. For retrieval, JASS imple-
ments the same scoring model as ATIRE, but requires an additional parameter
ρ, the number of postings to process. In the first submitted run, ρ was set to one
billion, which equates to exhaustive processing. In the second submitted run,
ρ was set to 2.5 million, corresponding to the “10 % of document collection”
heuristic proposed by the authors [9].

Lucene (Version 5.2.1). Lucene provided both a count and a positions index.
Postings were compressed using variable-byte compression and a variant of delta
encoding; in the positions index, frequency and positions information are stored
separately. Lucene submitted two runs, one over each index; both used BM25,
with the same parameters as in ATIRE (k1 = 0.9 and b = 0.4). The English
Analyzer shipped with Lucene was used with the default settings.

MG4J. MG4J provided an index containing all tokens (defined as maximal
subsequences of alphanumerical characters) in the collection stemmed using the
Porter2 English stemmer. Instead of traditional gap compression, MG4J uses
quasi-succinct indices [18], which provide constant-time skipping and uses the
least amount of space among the systems examined.

MG4J submitted three runs. The first used BM25 to provide a baseline for
comparison, with k1 = 1.2 and b = 0.3. The second run utilized Model B,
as described by Boldi et al. [4], which still uses BM25, but returns first the
documents containing all query terms, then the documents containing all terms
but one, and so on; quasi-succinct indices can evaluate these types of queries very
quickly. The third run used Model B+, similar to Model B, but using positions
information to generate conjunctive subqueries that are within a window two
times the length of the query.

Terrier (Version 4.0). Terrier built three indexes, the count and positions
indexes both use the single-pass indexer, while the “Count (inc direct)”—which
includes a direct file (i.e., a forward index)—uses a slower classical indexer.



Toward Reproducible Baselines: The Open-Source IR Reproducibility 413

Table 1. Indexing results

System Type Size Time Threading Terms Postings Tokens

ATIRE Count 12 GB 41 m Multi 39.9M 7.0B 26.5B

ATIRE Count + Quantized 15 GB 59 m Multi 39.9M 7.0B 26.5B

Galago Count 15 GB 6 h 32 m Multi 36.0M 5.7B -

Galago Positions 48 GB 26 h 23 m Multi 36.0M 5.7B 22.3B

Indri Positions 92 GB 6 h 42 m Multi 39.2M 23.5B

JASS ATIRE Quantized 21 GB 1 h 03 m Multi 39.9M 7.0B 26.5B

Lucene Count 11 GB 1 h 36 m Multi 72.9M 5.5B -

Lucene Positions 40 GB 2 h 00 m Multi 72.9M 5.5B 17.8B

MG4J Count 8 GB 1 h 46 m Multi 34.9M 5.5B -

MG4J Positions 37 GB 2 h 11 m Multi 34.9M 5.5B 23.1B

Terrier Count 10 GB 8 h 06 m Single 15.3M 4.6B -

Terrier Count (inc direct) 18 GB 18 h 13 m Single 15.3M 4.6B -

Terrier Positions 36 GB 9 h 44 m Single 15.3M 4.6B 16.2B

The single-pass indexer builds partial posting lists in memory, which are flushed
to disk when memory is exhausted, and merged to create the final inverted index.
In contrast, the slower classical indexer builds a direct (forward) index based on
the contents of the documents, which is then inverted through multiple passes to
create the inverted index. While slower, the classical indexer has the advantage
of creating a direct index which is useful for generating effective query expan-
sions. All indexes were stemmed using the Porter stemmer and stopped using
a standard stopword list. Both docids and term positions are compressed using
gamma delta-gaps, while term frequencies are stored in unary. All of Terrier’s
indexers are single-threaded.

Terrier submitted four runs. The first was BM25 and used the parameters
k1 = 1.2, k3 = 8, and b = 0.75 as recommended by Robertson [15]. The second
run used the DPH ranking function, which is a hypergeometric parameter-free
model from the Divergence from Randomness family of functions. The query
expansion in the “DPH + Bo1 QE” was performed using the Bo1 divergence
from randomness query expansion model, from which 10 terms were added from
3 pseudo-relevance feedback documents. The final submitted run used positions
information in a divergence from randomness model called pBiL, which utilizes
sequential dependencies.

4 Results

Indexing results are presented in Table 1, which shows both indexing time, the
size of the generated index (1 GB = 109 bytes), as well as a few other statistics:
the number of terms denotes the vocabulary size, the number of postings is
equal to the sum of document frequencies of all terms, and the number of tokens



414 J. Lin et al.

0.00

0.25

0.50

0.75

Te
rr
ie
r:
BM

25

G
al
ag
o:
Q
L

JA
SS
: 2
.5
M

P

In
dr
i:
Q
L

M
G
4J
: B

JA
SS
: 1
B
P

AT
IR
E:

Q
ua
nt
. B

M
25

AT
IR
E:

BM
25

M
G
4J
: B

+

G
al
ag
o:
SD

M

In
dr
i:
SD

M

Te
rr
ie
r:
D
PH

+
Pr
ox

SD

M
G
4J
: B

M
25

Te
rr
ie
r:
D
PH

Lu
ce
ne
: B

M
25

(P
os
.)

Lu
ce
ne
: B

M
25

(C
ou
nt
)

Te
rr
ie
r:
D
PH

+
Bo
1
Q
E

System / Model

M
A

P
System Effectiveness

Fig. 1. Box-and-whiskers plot of MAP (all queries) ordered by mean (diamonds).

is the collection length (relevant only for positions indexes). Not surprisingly,
for systems that built both positions and count indexes, the positions index took
longer to construct. We observe a large variability in the time taken for index
construction, some of which can be explained by the use of multiple threads. In
terms of index size, it is unsurprising that the positions indexes are larger than
the count indexes, but even similar types of indexes differed quite a bit in size,
likely due to different tokenization, stemming, stopping, and compression.

Table 2 shows effectiveness results in terms of MAP (at rank 1000). Figure 1
shows the MAP scores for each system on all the topics organized as a box-
and-whiskers plot: each box spans the lower and upper quartiles; the bar in the
middle represents the median and the white diamond represents the mean. The
whiskers extend to 1.5× the inter-quartile range, with values outside of those
plotted as points. The colors indicate the system that produced the run.

We see that all the systems exhibit large variability in effectiveness on a
topic-by-topic basis. To test for statistical significance of the differences, we
used Tukey’s HSD (honest significant difference) test with p < 0.05 across all
150 queries. We found that the “DPH + Bo1 QE” run of Terrier was statistically
significantly better than all other runs and both Lucene runs significantly better
than Terrier’s BM25 run. All other differences were not significant. Despite the
results of the significance tests, we nevertheless note that the systems exhibit a
large range in scores, even though from the written descriptions, many of them
purport to implement the same model (e.g., BM25). This is true even in the
case of systems that share a common “lineage”, for example, Indri and Galago.
We believe that these differences can be attributed to relatively uninteresting
differences in document pre-processing, tokenization, stemming, and stopwords.
This further underscores the importance of having reproducible baselines to
control for these effects.



Toward Reproducible Baselines: The Open-Source IR Reproducibility 415

Table 2. MAP at rank 1000.

Topics

System Model Index 701–750 751–800 801–850 All

ATIRE BM25 Count 0.2616 0.3106 0.2978 0.2902

ATIRE Quantized BM25 Count + Quantized 0.2603 0.3108 0.2974 0.2897

Galago QL Count 0.2776 0.2937 0.2845 0.2853

Galago SDM Positions 0.2726 0.2911 0.3161 0.2934

Indri QL Positions 0.2597 0.3179 0.2830 0.2870

Indri SDM Positions 0.2621 0.3086 0.3165 0.2960

JASS 1B Postings Count 0.2603 0.3109 0.2972 0.2897

JASS 2.5M Postings Count 0.2579 0.3053 0.2959 0.2866

Lucene BM25 Count 0.2684 0.3347 0.3050 0.3029

Lucene BM25 Positions 0.2684 0.3347 0.3050 0.3029

MG4J BM25 Count 0.2640 0.3336 0.2999 0.2994

MG4J Model B Count 0.2469 0.3207 0.3003 0.2896

MG4J Model B+ Positions 0.2322 0.3179 0.3257 0.2923

Terrier BM25 Count 0.2432 0.3039 0.2614 0.2697

Terrier DPH Count 0.2768 0.3311 0.2899 0.2994

Terrier DPH + Bo1 QE Count (inc direct) 0.3037 0.3742 0.3480 0.3422

Terrier DPH + Prox SD Positions 0.2750 0.3297 0.2897 0.2983

Efficiency results are shown in Table 3: we report mean query latency (over
three trials). These results represent query execution on a single thread, with
timing code contributed by each team. Thus, these figures should be taken with
the caveat that not all systems may be measuring exactly the same thing, espe-
cially with respect to overhead that is not strictly part of query evaluation (for
example, the time to write results to disk). Nevertheless, to our knowledge this
is the first large-scale efficiency evaluation of open-source search engines. Previ-
ously, studies typically consider only a couple of systems, and different experi-
mental results are difficult to compare due to underlying hardware differences. In
our case, a common platform moves us closer towards fair efficiency evaluations
across many systems.

Figure 2 shows query evaluation latency in a box-and-whiskers plot, with the
same organization as Fig. 1 (note the y axis is in log scale). We observe a large
variation in latency: for instance, the fastest systems (JASS and MG4J) achieved
a mean latency below 50 ms, while the slowest system (Indri’s SDM model) takes
substantially longer. It is interesting to note that we observe different amounts
of per-topic variability in efficiency. For example, the fastest run (JASS 2.5M
Postings) is faster than the second fastest (MG4J Model B) in terms of mean
latency, but MG4J is actually faster if we consider the median—the latter is
hampered by a number of outlier slow queries.



416 J. Lin et al.

Table 3. Mean query latency (across three trials).

Topics

System Model Index 701–750 751–800 801–850 All

ATIRE BM25 Count 132 ms 175 ms 131 ms 146 ms

ATIRE Quantized BM25 Count + Quantized 91 ms 93 ms 85 ms 89 ms

Galago QL Count 773 ms 807 ms 651 ms 743 ms

Galago SDM Positions 4134 ms 5989 ms 4094 ms 4736 ms

Indri QL Positions 1252 ms 1516 ms 1163 ms 1310 ms

Indri SDM Positions 7631 ms 13077 ms 6712 ms 9140 ms

JASS 1B Postings Count 53 ms 54 ms 48 ms 51 ms

JASS 2.5M Postings Count 30 ms 28 ms 28 ms 28 ms

Lucene BM25 Count 120 ms 107 ms 125 ms 118 ms

Lucene BM25 Positions 121 ms 109 ms 127 ms 119 ms

MG4J BM25 Count 348 ms 245 ms 266 ms 287 ms

MG4J Model B Count 39 ms 48 ms 36 ms 41 ms

MG4J Model B+ Positions 91 ms 92 ms 75 ms 86 ms

Terrier BM25 Count 363 ms 287 ms 306 ms 319 ms

Terrier DPH Count 627 ms 421 ms 416 ms 488 ms

Terrier DPH + Bo1 QE Count (inc. direct) 1845 ms 1422 ms 1474 ms 1580 ms

Terrier DPH + Prox SD Positions 1434 ms 1034 ms 1039 ms 1169 ms

1

10

100

1,000

10,000

100,000

JA
SS
: 2
.5
M

P

M
G
4J
: B

JA
SS
: 1
B
P

M
G
4J
: B

+

AT
IR
E:

Q
ua
nt
. B

M
25

Lu
ce
ne
: B

M
25

(C
ou
nt
)

Lu
ce
ne
: B

M
25

(P
os
.)

AT
IR
E:

BM
25

M
G
4J
: B

M
25

Te
rr
ie
r:
BM

25

Te
rr
ie
r:
D
PH

G
al
ag
o:
Q
L

Te
rr
ie
r:
D
PH

+
Pr
ox

SD

In
dr
i:
Q
L

Te
rr
ie
r:
D
PH

+
Bo
1
Q
E

G
al
ag
o:
SD

M

In
dr
i:
SD

M

System / Model

Se
ar

ch
T

im
e

(m
s)

System Efficiency

Fig. 2. Box-and-whiskers plot for query latency (all queries); diamonds are means.



Toward Reproducible Baselines: The Open-Source IR Reproducibility 417

Finally, Fig. 3 summarizes effectiveness/efficiency tradeoffs in a scatter plot.
As expected, we observe a correlation between effectiveness and efficiency:
R2 = 0.8888 after a multi-variate regression of both MAP and system against
log(time). Not surprisingly, faster systems tend to compromise quality.

5 Lessons Learned

Overall, we believe that the Open-Source IR Reproducibility Challenge achieved
modest success, having accomplished our main goals for the Gov2 test collection.
In this section, we share some of the lessons learned.

This exercise was a lot more involved than it would appear and the level
of collective effort required was much more than originally expected. We were
relying on the volunteer efforts of many teams around the world, which meant
that coordinating schedules was difficult to begin with. Nevertheless, the imple-
mentations generally took longer than expected. To facilitate scheduling, the
organizers asked the teams to estimate how long it would take to build their
implementations at the beginning. Invariably, the efforts took more time than
the original estimates. This was somewhat surprising because Gov2 is a standard
test collection that researchers surely must have previously worked with before.

The reproducibility efforts proved more difficult than imagined for a number
of reasons. In at least one case, the exercise revealed a hidden dependency—
a pre-processing script that had never been publicly released. In at least two
cases, the exercise exposed bugs in systems that were subsequently fixed. In
multiple cases, the EC2 instance represented a computing environment that
made different assumptions than the machines the teams originally developed
on. It seemed that the reproducibility challenge helped the developers improve
their systems, which was a nice side effect.

ATIRE: BM25

ATIRE: Quant. BM25

Galago: QL

Galago: SDM

Indri: QL

Indri: SDM

JASS: 1B P

JASS: 2.5M P

Lucene: BM25 (Count)
Lucene: BM25 (Pos.)

MG4J: B

MG4J: B+

MG4J: BM25Terrier: BM25
Terrier: DPH

Terrier: DPH+Bo1 QE
Terrier: DPH+Prox SD

100

1000

10000

0.
28

0.
30

0.
32

0.
34

MAP

T
im

e
(m

s)

Effectiveness/Efficiency Tradeoff

Fig. 3. Tradeoff between effectiveness and efficiency across all systems.



418 J. Lin et al.

Another unintended consequence of the reproducibility challenge (that was
not one of the original goals) is that the code repository serves as a useful
teaching resource. In our experience, students new to information retrieval often
struggle with basic tasks such as indexing and performing baseline runs. Our
resource serves as an introductory tutorial that can teach students about the
basics of working with IR test collections: indexing, retrieval, and evaluation.

6 Ongoing Work

The Open-Source IR Reproducibility Challenge is not intended to be a one-off
exercise but a living code repository that is maintained and kept up to date. The
cost of maintenance should be relatively modest, since we would not expect base-
lines to rapidly evolve. We hope that sufficient critical mass has been achieved
with the current participants to sustain the project. There are a variety of moti-
vations for the teams to remain engaged: developers want to see their systems
“used properly” and are generally curious to see how their implementations
stack up against their peers. Furthermore, as these baselines begin appearing
in research papers, there will be further incentive to keep the code up to date.
However, only time will tell if we succeed in the long term.

There are a number of ongoing efforts in the project, the most obvious of
which is to build reproducible baselines for other test collections—work has
already begun for the ClueWeb collections. We are, of course, always interested
in including new systems into the evaluation mix.

Beyond expanding the scope of present efforts, there are two substantive
(and related) issues we are currently grappling with. The first concerns the
issue of training—from simple parameter tuning (e.g., for BM25) to a com-
plete learning-to-rank setup. In particular, the latter would provide useful base-
lines for researchers pushing the state of the art in retrieval models. We have
not yet converged on a methodology for including “trained” models that is not
overly burdensome for developers. For example, would the developers also need
to include their training code? And would the scripts need to train the models
from scratch? Intuitively, the answer seems to be “yes” to both, but asking devel-
opers to contribute code that accomplishes all of this seems overly demanding.

The issue of model training relates to the second issue, which concerns the
treatment of external resources. Many retrieval models (particularly in the web
context) take advantage of sources such as anchor text, document-level features
such as PageRank, spam score, etc. Some of these (e.g., anchor text) can be
derived from the raw collection, but others incorporate knowledge outside the
collection. How shall we handle such external resources? Since many of them are
quite large, it seems impractical to store in our repository, but the alternative
of introducing external dependencies increases the chances of errors.

A final direction involves efforts to better understand the factors that impact
retrieval effectiveness. For example, we suspect that a large portion of the effec-
tiveness differences we observe can be attributed to different document pre-
processing regimes and relatively uninteresting differences in tokenization, stem-
ming, and stopwords. We could explore this hypothesis by, for example, using a



Toward Reproducible Baselines: The Open-Source IR Reproducibility 419

single document pre-processor. Such an experiment could be straightforwardly
set up by creating a derived collection that every system then ingests, but it
would be more efficient and architecturally cleaner to agree on a set of interfaces
that allows different retrieval systems to inter-operate. This is similar to the
proposal of Buccio et al. [5]: one difference, though, is that we would not pre-
scribe these interfaces, but rather let them evolve based on community consensus.
This might perhaps be a fanciful scenario, but the ability to mix-and-match dif-
ferent IR components would greatly accelerate research progress.

The Open-Source IR Reproducibility Challenge represents an ambitious
effort to build reproducible baselines for use by the community. Although we
have achieved modest success, there is much more to be done. We sincerely
encourage participation from the community: both developers in contributing
additional systems and everyone in terms of adopting our baselines in their
work.

Acknowledgments. This work was supported in part by the U.S. National Science
Foundation under IIS-1218043 and by Amazon Web Services. Any opinions, findings,
conclusions, or recommendations expressed are those of the authors and do not neces-
sarily reflect the views of the sponsors.

References

1. Armstrong, T.G., Moffat, A., Webber, W., Zobel, J.: Improvements that don’t add
up: Ad-hoc retrieval results since 1998. In: CIKM, pp. 601–610 (2009)

2. Bia�lecki, A., Muir, R., Ingersoll, G.: Apache lucene 4. In: SIGIR 2012 Workshop
on Open Source Information Retrieval (2012)

3. Boldi, P., Vigna, S.: MG4J at TREC 2005. In: TREC (2005)
4. Boldi, P., Vigna, S.: MG4J at TREC 2006. In: TREC (2006)
5. Buccio, E.D., Nunzio, G.M.D., Ferro, N., Harman, D., Maistro, M., Silvello, G.:

Unfolding off-the-shelf IR systems for reproducibility. In: SIGIR 2015 Workshop
on Reproducibility, Inexplicability, and Generalizability of Results (2015)

6. Cartright, M.A., Huston, S., Field, H.: Galago: A modular distributed processing
and retrieval system. In: SIGIR 2012 Workshop on Open Source IR (2012)

7. Clarke, C., Craswell, N., Soboroff, I.: Overview of the TREC 2004 terabyte track.
In: TREC (2004)

8. Crane, M., Trotman, A., O’Keefe, R.: Maintaining discriminatory power in quan-
tized indexes. In: CIKM, pp. 1221–1224 (2013)

9. Lin, J., Trotman, A.: Anytime ranking for impact-ordered indexes. In: ICTIR,
pp. 301–304 (2015)

10. Metzler, D., Croft, W.B.: Combining the language model and inference network
approaches to retrieval. Inf. Process. Manage. 40(5), 735–750 (2004)

11. Metzler, D., Croft, W.B.: A Markov random field model for term dependencies. In:
SIGIR, pp. 472–479 (2005)

12. Metzler, D., Strohman, T., Turtle, H., Croft, W.B.: Indri at TREC 2004: Terabyte
track. In: TREC (2004)

13. Mühleisen, H., Samar, T., Lin, J., de Vries, A.: Old dogs are great at new tricks:
Column stores for IR prototyping. In: SIGIR, pp. 863–866 (2014)



420 J. Lin et al.

14. Ounis, I., Amati, G., Plachouras, V., He, B., Macdonald, C., Lioma, C.: Terrier:
A high performance and scalable information retrieval platform. In: SIGIR 2006
Workshop on Open Source IR (2006)

15. Robertson, S.E., Walker, S., Jones, S., Hancock-Beaulieu, M., Gatford, M.: Okapi
at TREC-3. In: TREC (1994)

16. Trotman, A., Jia, X.F., Crane, M.: Towards an efficient and effective search engine.
In: SIGIR 2012 Workshop on Open Source IR (2012)

17. Trotman, A., Puurula, A., Burgess, B.: Improvements to BM25 and language mod-
els examined. In: ADCS, pp. 58–65 (2014)

18. Vigna, S.: Quasi-succinct indices. In: WSDM, pp. 83–92 (2013)


	Toward Reproducible Baselines: The Open-Source IR Reproducibility Challenge
	1 Introduction
	2 Methodology
	3 System Descriptions
	4 Results
	5 Lessons Learned
	6 Ongoing Work
	References


