
In Vacuo and In Situ Evaluation of SIMD Codecs

Andrew Trotman
Department of Computer Science

University of Otago
Dunedin, New Zealand

andrew@cs.otago.ac.nz

Jimmy Lin
David R. Cheriton School of Computer Science

University of Waterloo
Waterloo, Canada

jimmylin@uwaterloo.ca

ABSTRACT
The size of a search engine index and the time to search are
inextricably related through the compression codec. This in-
vestigation examines this tradeoff using several relatively un-
explored SIMD-based codecs including QMX, TurboPackV,
and TurboPFor. It uses (the non-SIMD) OPTPFor as a
baseline. Four new variants of QMX are introduced and
also compared. Those variants include optimizations for
space and for time. Experiments were conducted on the
TREC .gov2 collection using topics 701-850, in crawl order
and in URL order. The results suggest that there is very
little difference between these codecs, but that the reference
implementation of QMX performs well.

CCS Concepts
•Information systems → Search index compression;

Keywords
Search, Score-at-a-Time, Compression, Procrastination

1. INTRODUCTION
Two of the most important aspects in a search engine are

the size of the index and the time it takes to search. If the
size of the index can be reduced, then more documents can
be indexed in the same amount of space. In a massively dis-
tributed (or replicated) search engine that stores the index
in memory, a reduction in the index size has a direct payoff
as a reduction in the amount of memory necessary to store
the index during search time. This payoff is only worthwhile
if it is not associated with an increase in search latency. An
increase in latency due to a reduction in index size will, in
all likelihood, result in an increase in the number of CPU
cycles needed to search.

The space / time tradeoff has been a topic of investiga-
tion in the information retrieval literature for many decades.
Several techniques have been proposed, one of the most com-
mon is index compression. This investigation examines three

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ADCS ’16, December 05 - 07, 2016, Caulfield, VIC, Australia
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4865-2/16/12. . . $15.00

DOI: http://dx.doi.org/10.1145/3015022.3015023

SIMD-based codecs of three different classes. TurboPackV
is a bin-packer, TurboPFor is an SIMD-implementation of
PFor, and QMX is in the Simple family. Four new vari-
ants of QMX are introduced. As a baseline, the non-SIMD
OPTPFor [21] is used. OPTPFor has become a popular im-
plementation of PFor [22].

Each of these codecs is tested in three experiments. The
first examines compression effectiveness and decompression
efficiency (hereafter, effectiveness and efficiency) using a pub-
lic document-ordered dump of the TREC .gov2 collection.
The second examines query-by-query search performance in
the JASS impact-ordered score-at-a-time search engine [8]
using TREC topics 701-850. In the final experiment, the
size of the JASS index and overall latency are examined as
a space / time tradeoff. All experiments were conducted on
both the crawl-ordered and URL-ordered collection.

The results show that the PFor codecs do result in a
smaller index, but that there is a measurable performance
hit as a consequence of the added decoding complexity. On
a query-for-query comparison QMX outperforms the oth-
ers (including all variants). But overall the best performing
codec is dependent on the document collection ordering.

2. POSTINGS LISTS
Modern search engines are typically based on an inverted

index. This index stores a list of all the unique terms in a
corpus, and for each term a list of which documents contain
that term (and how many times) called a postings list. A
postings list is represented:

< d1, ft,d1 >< d2, ft,d2 > ... < dn, ft,dn >

Where d is a document ID and ft,d is the number of times
term t occurs in document d (the so-called term frequency).
As a side effect of indexing, these postings lists are ordered
in increasing order of d, consequently the index is known as
document-ordered.

Persin et al. [11] observe that fewer integers need be stored
if the postings lists are ordered first on decreasing term fre-
quency, then on increasing document ID. That is, the post-
ings list is represented:

< ft,d, d1, d2, ...dn > ...

Where f is the term frequency and the d’s are the IDs of the
documents that contain that term ft,d times. This represen-
tation is known as frequency-ordered because the primary
sort key is the term frequency.



Many common ranking functions (such as BM25 [12]) are
expressed as the sum, over the query terms, of a set of con-
stants, essentially:

rsv =
∑
t∈q

f(t, d) (1)

Where q is the query and rsv is the retrieval status value
(higher is better), the sort key used in a ranking search.

Anh et al. [1] propose that f(t, d) be computed at in-
dexing time and that the only part of the ranking function
performed at search time is the sum. That is, replace the
ft,d value in a frequency-ordered index with an impact score
it,d, and in doing so introduce impact-ordered indexes:

< it,d, d1, d2, ...dn > ...

Typically the document length is used in f(t, d) and so
the documents in each postings segment differ between a
frequency-ordered and an impact-ordered index.

Each of the index orderings is processed according to its
type. For a document-ordered index document-at-a-time
(DaaT) techniques such as WAND [4] and BlockMax [6]
are typically used. Frequency-ordered indexes are often pro-
cessed term-at-a-time (TaaT), whereas impact-ordered in-
dexes are processed score-at-a-time (SaaT) using techniques
such as the Anytime [9] algorithm.

In a recent benchmark of open-source search engines [8]
the performance of impact-ordered indexes with Anytime
was typically slightly better than the performance of doc-
ument-ordered indexes with quasi-succinct indexes [20] (the
most efficient of the DaaT approaches there). These differ-
ences could easily be caused by other factors such as parsers,
stemmers, and so on. So it remains unclear whether DaaT
or SaaT is the most efficient way to process postings, and
that is left for further work.

For the experiments herein document-ordered postings are
used to compare the effectiveness and efficiency of the codecs.
Impact-ordered indexes as implemented in the JASS search
engine are used to measure search latency. The JASS index
is used for the space / time tradeoff experiment.

3. COMPRESSION
In early search engines the index was stored on moving-

parts hard drives. Reducing index size was paramount as it
reduced the amount of data read from disk, which in turn
decreased latency. The typical approach is to compress each
postings list independently.

In an index-on-disk environment Trotman [17] examined
the efficiency of bit-aligned codes such as Elias, Golomb,
and Binary Interpolative Coding along with variable byte
encoding. Trotman shows that bit-aligned codes are ineffi-
cient when the disk is modelled along with the decompres-
sion characteristics. Scholer et al. [13] differently demon-
strated this being the case within a search engine.

Byte-aligned codes are not as space efficient as bit-aligned
codes. Anh & Moffat [2] addressed this by introducing 32-
bit word-aligned codes such as Simple-9 and 64-bit word-
aligned codes such as Simple-8b [3]. These codes are both
space efficient and fast to decode.

Advances in hardware led to two changes in the way the
index is stored. First, the availability of cheap RAM made
it possible to store the entire index in memory. Second,
CPUs now contain SIMD instructions and consequently a
new generation of codecs has emerged.

Stepanov et al. [15] introduce varint-G8IU, which packs
the maximum number of integers into an 8-byte word pre-
ceded by a selector giving details on how to unpack.

Lemire & Boytsov [7] introduce SIMD-BP128 which packs
128 integers of the same bit width into as few 16-byte words
as possible. 16 of these blocks are then preceded by a 16-byte
selector explaining how to decode these blocks.

Trotman [16] compares byte-aligned codes, word-aligned
codes, and SIMD codes in both effectiveness and efficiency.
He shows that the SIMD codecs are, indeed, more efficient
than the previous methods, and goes on to introduce an
effective and efficient SIMD codec called QMX.

QMX is based on the Simple family of codecs in so far as
it fixed-width bin-packs as many integers as possible into a
single, or sometimes two, 16-byte machine words. It is based
on the SIMD family in so far as it uses SIMD instructions
to unpack integers. For SIMD codecs it is novel in that it
has special handling for short sequences that are common in
postings lists. For Simple family it is novel that it stores the
selectors at the end of the compressed sequence rather than
it being part of the machine word. It is additionally novel
in so far as it run-length encodes the selectors.

QMX not only performs well in theory, but in practice
too. The reference implementation1 is included in the JASS
search engine where it is the preferred codec – making it a
candidate for further optimisation.

4. EXTENSIONS TO QMX
The QMX codec fixed-width bin-packs as many integers

as it can into a single 128-bit SIMD-word sized payload when
integers are 1, 2, 3, 4, 5, 6, 8, 10, 16, or 32 bits wide. It fixed-
width bin-packs into a two SIMD-word sized payload when
they are 7, 9, 12, or 21 bits wide. It additionally packs 256 0-
bit integers in a selector without a payload. These payloads
are laid out first when serializing.

In total there are 15 encodings described and the encoding
is stored in the high nybble of an 8-bit selector called an
eXtractor. The low nybble of the selector is used to store a
run-length (or Multiplier) of that selector. These selectors
are laid out second when serializing.

Finally, it is necessary to find the start of the selectors so
that the decoder knows how to decode the first and subse-
quent payload. This pointer is stored variable-byte encoded
at the end of the serialized sequence. Figure 1 schematically
represents this layout.

By laying out in this way, pointers to the start and to
the end of the compressed sequence are needed for decod-
ing. Both of these are typically known in a search engine
as the postings are normally serialized one after the other
in memory (so the start of the next postings list is the end
of the previous one). In the unlikely event that the index is
stored on disk, the start of the postings list and its length
are needed in order to read from disk and consequently both
pointers are known once the data is loaded into memory.

Four variants are discussed in the remainder of this sec-
tion. Each builds on the previous by taking the previous
and adding either a possible effectiveness optimization or ef-
ficiency optimization. That is, Variant 2 includes all changes
for Variant 1, and Variant 4 includes all changes for Variants
1, 2, and 3.

1http://www.cs.otago.ac.nz/homepages/andrew/papers/QMX.zip



Payload 1
128 bits

Payload 2
128 bits

Selector 1
8 bits

Selector 2
8 bits

Pointer
Vbyte

1-4 bytes

Figure 1: QMX stores all 128-bit payloads before
the 8-bit selectors before the variable-byte encoded
pointer to the selectors. Each selector is broken into
2 parts, a 4-bit eXtractor describing the bit-packing
and a 4-bit Multiplier (or run-length) of the eXtrac-
tor.

4.1 QMX Variant 1
Around half of the vocabulary terms in an inverted index

can be expected to occur in only one document [19]. Of the
remaining terms, a large proportion only occur twice. In an
impact-ordered index the situation is worse as a postings list
is broken into segments, each of which may be singleton.

Many codecs are incapable of encoding or decoding a sin-
gle integer. For example, Group Varint cannot encode or
decode fewer than 4 integers. Trotman [16] outlines how
QMX can encode a single integer, but it cannot decode a
single integer. The reference implementation decodes a sin-
gle integer into the correct integer and at least 3 over-run in-
tegers of undefined value. Problematically, when the QMX
reference implementation is used to decode into an exact-
sized buffer the over-run integers can (and do) overflow that
buffer. Worse, an overflow also happens when reading the
coded sequence from an input buffer.

QMX Variant 1 addresses this issue. That is, it can both
encode and decode between 1 and 3 integers in addition to
the existing encodings of 4 or more integers. It does this
without overflowing either the input or output buffer.

Only 15 of the 16 possible eXtractors are used in QMX
with the remaining eXtractor being reserved for future use
(eXtractor F16). In Variant 1 this future use is appropriated
for encoding 3 or fewer integers.

As the high nybble of the selector is already taken as the
eXtractor, the only remaining part of the selector available
for further re-purposing is the Multiplier. There are 16 avail-
able values, this somewhat restricts the number of ways a
sequence of up to 3 integers can be encoded.

In Variant 1 these integers are fixed-width bin-packed into
as few bytes as possible (that is, a payload shorter than an
SIMD-word). The Multiplier is then used to identify both
the number of packed integers and the width of the encoding.
An obvious solution is to break the Multiplier into two 2-bit
snips, one storing the run length and the other storing the
byte width.

The details are shown in Table 1. Column 1 lists the bit
pattern, column 2 gives the interpretation when seen as the
width (the high 2 bits), column 3 gives the meaning when
seen as the run length (low 2 bits). In this way, if the high
two bits are 002 then all the integers are encoded in 8 bits. If
the low two bits are 102 then there are two such integers. A
Multiplier of 00102, therefore, represents two 8-bit integers
in the short payload.

For example, the integer sequence (0F16, F116) would be
encoded 0F16 F116 F216 along with the QMX pointer to the
start of the selectors. The sequence 0F016 1F116 would be
encoded as two 16-bit integers and therefore as 0016 F016

0116 F116 F616 along with the QMX pointer to the start of
the selectors.

An additional change is needed to the QMX reference im-
plementation. There, a sequence is encoded based on the

Table 1: Encoding of the F16 selector used in Vari-
ant 1. 2 bits are used for the byte-width and 2 bits
for the run-length.

Bit Pattern Width Run-length
002 8-bits unused
012 16-bits 3
102 24-bits 2
112 32-bits 1

bit width of the largest integer in a sequence. For example,
a sequence of six 16-bit integers is packed into an 8-integer
payload with 2 over-run integers. Now they are packed to fill
payloads wherever possible, the example is newly encoded as
a 4-integer payload with the two remaining integers encoded
using the re-purposed selector.

4.2 QMX Variant 2
At the end of the encoded sequence QMX stores a variable-

byte encoded pointer to the beginning of the selectors (see
Figure 1). This pointer is only needed so that the selectors
can be processed in a sequential manner from low memory
to high memory.

QMX Variant 2 removes this pointer from the end of the
compressed sequence. This is achieved by reversing the se-
lector sequence and processing from high memory to low
memory (in the reverse direction to QMX). That is, the
first selector is the final byte in the encoded sequence, the
second selector is the second to last, and so on.

Processing the selectors in this way could have a negative
impact on decoding efficiency if the CPU is less able to pre-
dict this usage pattern or less able to pre-fetch predecessor
bytes from memory than successor bytes. However, it will al-
ways have a positive effect on effectiveness as every sequence
will be between 1 and 5 bytes shorter as a consequence of
the loss of the pointer.

4.3 QMX Variant 3
Trotman [16] observes that the selectors can be decoded

in a case statement. He goes on to encode the run-lengths
in two’s complement and uses the optimization of case-
statement fall-though to avoid a loop. That is, if the run-
length is 1 then a certain set of lines of code are needed for
decoding, those are in a single case, and followed by a break.
If the run-length is 2 then a repeat of those lines of code in a
second case above the first, but without a break, will cause
the code to be executed twice before a break. However,
this approach does mean that other house-keeping (such as
incrementing pointers) is repeated at each case boundary.

Variant 3 does not use case fall-through, but rather un-
winds each loop in each case. This makes the decoding rou-
tine substantially longer, but means that the house-keeping
only occurs once per selector. Unwinding the loops, how-
ever, is also likely to result in an increase in the number of
program-cache misses. It is not clear whether the efficiency
gain from reduced house-keeping is greater or less than the
efficiency hit from having a larger code base.

4.4 QMX Variant 4
The memory access patterns used by QMX and variants

is predictable. The payloads are always processed from low
memory to high memory, they are SIMD-word aligned and
SIMD-word sized. In Variant 1 the selectors are processed
byte at a time and from low memory to high memory. In



Variant 2 and Variant 3 the selectors are processed byte at
a time from high memory to low memory.

It is reasonable to expect the CPU to notice the access
patterns at run-time and to automatically pre-fetch data
into the cache before it is needed. However, during decoding
the encoded sequence in the input buffer is read-only and the
decoded sequence in the output buffer is write-only. Leaving
parts of the coded sequence in the cache leaves less space for
the decoded sequence which could result in delays during
decoding (or later accesses during postings processing).

The x86-64 ISA includes memory pre-fetch instructions
that shift the contents of a given memory location closer to
the CPU. Of the instructions, the PREFETCHNTA instruction
is appropriate for decoding. That instruction shifts the data
on the given cache line close to the CPU in the knowledge
that it will be used only once – i.e. it can be cache evicted
upon first access. The Intel specification leaves room for
the CPU to implement this however it chooses, but it is
generally believed to move data into the L1 cache and not
the other caches.

Variant 4 adds pre-fetch instructions so that every time a
memory read occurs, the next word to be accessed is pre-
fetched. This happens separately to the payloads and the
selectors. That is, each payload is pre-fetched before it is
used and each selector is pre-fetched before it is used.

If the CPU is capable of predicting the QMX access pat-
terns then the pre-fetch instructions are unnecessary, but
do make the program longer (risking program-cache misses)
and must be decoded (which will take time). If the CPU
is unable to predict the pattern, then an improvement in
efficiency will be seen.

5. OTHER CODECS
Trotman [16] compares the efficiency and effectiveness of

QMX to a multitude of prior codecs including several imple-
mentations of byte-aligned codes, words-aligned codes, and
SIMD codes. Since then, more efficient implementations of
some of those algorithms have become available. There have
also been new SIMD implementations of these other codecs.

5.1 TurboPackV
TurobPackV2 is an SIMD-based fixed-width bin-packer.

The reference implementation computes the smallest num-
ber of bits necessary to store the largest of 128 consecutive
integers and bin-packs all 128 integers into a payload that
bit width.

TurboPackV is similar to SIMD-BP128 in the encoding,
however it differs in how the selector is stored. SIMD-BP128
appends 16 blocks into a meta-block and prepends 16 selec-
tors (an SIMD-word) to the meta-block. In doing so, SIMD-
BP128 ensures all memory reads are SIMD-word aligned.
The reference implementation of TurboPackV does not man-
age the selector, it returns it to the caller to store. QMX
has already been compared to SIMD-BP128, this experiment
was not reproduced.

For this work, the selector and the payload are serialized
alternately. That is, first the first selector (a single-byte) is
written, that selector describes the width of the first pay-
load (a variable number of SIMD-words) which is written
second; followed by the second selector, then the second
payload, and so on. If there are fewer than 128 integers

2https://github.com/powturbo/TurboPFor

to encode TurboPackV fixed-width bin-packs those integers
into a sequence of bytes.

5.2 TurboPFor
With TurboPackV and any other bin-packer, the encod-

ing effectiveness is largely dependent on the bit width being
used, which in turn is prone to exceptions having catas-
trophic effects. For example, the sequence 1, 4, 2, 8 could
be packed into 2 bytes using 4 bits per integer. However, by
changing the 8 to a 16, it is no longer possible to store all
the integers in 4 bits, as 5 bits are needed to store the 16.
The sequence would now take 3 bytes.

Zukowski et al. [22] observe that by keeping an exceptions
list it’s possible to keep encoding effectiveness high while not
forfeiting decoding efficiency.

The usual implementation is to encode, inline with the
integers, a pointer to the exception in an exceptions list and
to patch-up the decoded sequence from this list while de-
coding. The general approach used in information retrieval
is to take a run of 128 integers, to place the largest at-most
10% into an exceptions list, then to fixed-width bin-pack
the remainder into as few words as possible. When serializ-
ing, a selector identifying the bit width is stored first, along
with details of the length of the exceptions list, then the
bin-packed payload, then the exceptions list.

TurboPFor3 differs from this standard approach. 128 in-
tegers are encoded in a block, but the exceptions are stored
first and the remainder second (along with a set of flags in-
dicating the location of the exceptions). Both blocks are
fixed-width bin-packed. The exceptions are decoded into a
temporary array, then the remainder is decoded and com-
bined with the exceptions in a single pass. The decoding is
performed using SIMD instructions. In the case where there
are fewer than 128 integers to pack, they are likewise packed
into 32-bit sequences.

5.3 OPTPFor
OPTPFor [21] includes two optimizations over PFor. In

the first, the exceptions are stored differently; whereas be-
fore a pointer to the exception was stored in-line with the
encoded integers, in OPTPFor the low-bits of the integer are
stored in-line and the high-bits are stored in an exceptions
list along with details of which integers to patch. The high-
bits and patch table are themselves encoded using Simple-16.

In the second optimization the way exceptions are com-
puted is different. Rather than targeting 10% of the integers
as exceptions, OPTPFor chooses the width of the bin-packed
integers to optimize on encoded size.

The implementation used herein4 is provided by Lemire
& Boytsov [7] and is not SIMD. In the case where there are
fewer than 128 integers to encode (i.e. short postings lists or
the end of a longer postings list), the integers are encoded
using variable-byte encoding.

6. COMPARISON
Three sets of experiments were conducted. The first uses

public data made available by Lemire5 to examine the space
needed to encode the document IDs in a document-ordered
index along with the time needed to decode. The second

3also at https://github.com/powturbo/TurboPFor
4https://github.com/lemire/FastPFor
5http://lemire.me/data/integercompression2014.html



examines search time in an impact-ordered search engine.
The third is the efficiency / effectiveness tradeoff.

QMX Variant 1 is expected to be negligibly slower than
QMX because of additional work needed at the end of each
postings list. Variant 2 is expected to be slower again if the
CPU cannot predict the backwards access pattern. Variant
3 will be more efficient if the overheads of the fall-through
are high. Variant 4 will be more efficient if the pre-fetch
instructions are effective. TurboPackV is expected to be
most efficient on moderate-sized postings lists. The PFor
codecs are expected to be effective, but less efficient than
the others.

6.1 Preliminaries
All experiments use the TREC .gov2 document collection

of 25,205,179 web pages crawled from the .gov domain in
2004. This dataset is commonly used in efficiency exper-
iments and was used by both Lemire & Boytsov [7] and
Trotman [16] in prior work.

Experiments were conducted on a 4 CPU Intel quad-core
Xeon X5550 at 2.66GHz with Linux 2.6.32-504.3.3.el6.x86 64
(Centos 6.6 (Final)). Programs were written in C/C++ and
gcc/g++ version 5.3.0 with optimization set to level 3 (-O3).
Although multiple cores were used during indexing, only a
single core was used for search.

The implementations of each algorithm were verified us-
ing Lemire’s dataset. Each postings list was encoded, de-
coded, then the decoded list was compared byte-for-byte to
the original list. The implementations were considered accu-
rate only if the original and decoded lists were identical for
all postings lists in the collection. They were also verified in
JASS, they were considered accurate only if all codecs pro-
duced the same results list (which differ from crawl-ordered
and URL-ordered because the internal document IDs differ).

In a document-ordered index the document IDs in each
postings list are, by definition, stored in increasing order.
In an impact-ordered index the document IDs are normally
stored in increasing order within each segment. In both
cases, document IDs form a strictly monotonically increasing
sequence. Each of the codecs examined is better at storing
large numbers of small integers than large numbers of large
integers, consequently the document IDs were converted into
deltas (also known as d-gaps or differences) before being en-
coded. This is simply performed by subtracting the preced-
ing integer from the current integer before encoding, and
performing a cumulative sum on decoding.

Queries were derived from TREC topics 701-850 by taking
the title field, removing duplicate words, and stemming.

The reader is assumed to be viewing this document in
colour so as to be able to distinguish the lines in each graph.

6.2 Document ID Ordering
Lemire provides two datasets that are derived from .gov2.

Both are a dump of the document IDs (without term fre-
quencies) for all terms seen in the collection 100 times or
more (document frequency ≥ 100). It is unclear whether
any other form of stopping or stemming was performed as
the terms themselves are not provided. Without the terms it
is not possible to use this as an index to a search engine, but
it is also not possible to reconstruct the original documents
(a requirement of the nondisclosure agreement).

The two datasets differ in document order. The first is in
the order the documents are seen in the collection, i.e. crawl

order. For the second the documents were first re-ordered
alphabetically on URL. For this particular collection URL-
reordering is a known technique for both reducing the size
of the index and decreasing latency while searching [14].

Each of the codecs described in Section 4 and Section
5 along with the reference implementation of QMX were
tested on each of these two data sets. Each postings list
in the dataset was encoded and the size (in bytes) of the
encoding was stored. It was then decoded and the time
taken to decode (measured in nanoseconds using the C++
steady_clock) was stored. The lengths this program re-
ported were the means over all postings lists of a given num-
ber of document IDs (for example, the mean of all postings
lists with 100 document IDs in them) – which does not vary
from run to run. The times reported are computed in a
similar fashion (mean of all lists of a given length). The ex-
periment was conducted 25 times and the numbers reported
are the medians of the means.

The results when tested on the crawl-ordered collection
are shown in Figure 2 and Figure 3. Figure 2 presents the
encoding effectiveness of each of the codecs on a log / log
scale. On this set of data there is very little difference seen
in the size required to store postings lists of any length ex-
amined. Figure 3 presents, on a log / log scale, the decoding
time taken for postings lists of a given length. There it can
be seen that the PFor family takes longer to decode than
the others – the exceptions lists take time to process.

There is very little difference in the others, except that
TurboPackV is faster than the others when the lists are
short. This difference is likely to be due to the number of
selectors that must be decoded. When there are 128 integers
TurboPackV needs only 1 selector, but the QMX variants re-
quire more. However, when the lists get denser (i.e. longer)
QMX is able to encode 256 integers in a single selector that
itself can have a run-length of up to 16. In other words,
QMX can encode as many as 4096 integers in a single se-
lector. There is an overhead to processing each selector and
this is reflected in the decoding times.

Figure 4 and Figure 5 show the results when tested on
the collection in URL order. A similar pattern emerges; it is
not obvious that any one scheme is more effective than any
other – the codecs are highly dependent on the sequences of
integers in the postings lists. The QMX-based schemes all
show far more chaotic behaviour than the others. To explore
this, all postings lists segments with more than 78,000 docu-
ment IDs and that QMX encoded into fewer than 100 bytes
were examined. Each and every one was the name of an
American county6 which are likely to be sorted beside each
other in URL order. Given that a single 1-byte QMX selec-
tor encoding 0-bit integers (without payloads) can encode
4,096 document IDs, and that 78,000 IDs could, therefore,
be encoded in as few as 20 selectors and 0 payloads (i.e.
20 bytes), URL ordering this collection does appear to be
highly effective for some terms and QMX. With respect to
efficiency, the PFor-based codecs take longer to decode than
the others, which appear to behave similarly.

6.3 Comparison in JASS
Section 6.2 suggests that the effectiveness of PFor codecs is

not substantially better than the QMX variants and Turbo-
PackV. It also suggests that decoding is less efficient.

6“marinette” was the longest with 78,103 document IDs en-
coded into 98 bytes.



102

103

104

105

106

107

102 103 104 105 106 107

Le
n
g

th
 o

f 
E
n
co

d
e
d

 S
e
q

u
e
n
ce

 (
B

y
te

s)

Postings List Length (Integers)

Encoding Effectiveness (Crawl Order)

QMX
v1
v2
v3
v4

OPT
TurboPackV

TurboPFor

Figure 2: Encoding effectiveness when tested on
TREC .gov2 in crawl order. Bytes for a list of a
given length is shown on a log / log scale.

102

103

104

105

106

107

108

102 103 104 105 106 107

M
e
a
n
 D

e
co

d
in

g
 T

im
e
 (

N
a
n
o
se

co
n
d

s)

Postings List Length (Integers)

Decoding Efficiency (Crawl Order)

QMX
v1
v2
v3
v4

OPT
TurboPackV

TurboPFor

Figure 3: Decoding efficiency when tested on TREC
.gov2 in crawl order. Nanoseconds to decompress a
list of a given length is shown on a log / log scale.

For a search engine, there are two issues being traded-
off. The first is index size. The second is search latency.
Naturally, a smaller and faster index is better than a larger
and slower index.

The .gov2 collection was pre-processed then indexed using
the ATIRE [18] search engine. In this case ATIRE loads the
documents, cleans them by replacing all non-ASCII char-
acters with spaces, removing all HTML tags (but not their
content), and s-stemming.7 ATIRE produces an impact-
ordered index, in this case BM25 with k1 = 0.9 and b = 0.4
was chosen as the ranking function (the ATIRE default),
the impact values were computed as 9-bit integers using the
techniques of Crane et al. [5] and stored in 16-bit integers
in the index.

ATIRE uses a parallel indexing pipeline which concur-
rently reads from multiple input channels, parses documents
in parallel, then merges these parsed documents into a cen-
tralized index. Document IDs are assigned to documents at
the merge stage, consequently the exact order of the docu-
ments in the index is non-deterministic. Unfortunately, this
non-determinism is a realistic indexing model as it is fast.
Even though the exact results are non-reproducible, similar
results will be seen each time the collection is re-indexed.

The ATIRE index was then converted into a JASS index
using the JASS tool atire_to_jass_index – this is the stan-
dard way of building a JASS index, an approach the JASS
authors took to avoid having to build an indexing pipeline.

7removes suffixes ‘s’ and ‘es’, and turns suffix ‘ies’ into ‘y’.

101

102

103

104

105

106

107

102 103 104 105 106 107

Le
n
g

th
 o

f 
E
n
co

d
e
d

 S
e
q

u
e
n
ce

 (
B

y
te

s)

Postings List Length (Integers)

Encoding Effectiveness (URL Order)

QMX
v1
v2
v3
v4

OPT
TurboPackV

TurboPFor

Figure 4: Encoding effectiveness when tested on
TREC .gov2 in URL order. Bytes for a list of a
given length is shown on a log / log scale.

102

103

104

105

106

107

108

109

102 103 104 105 106 107

M
e
a
n
 D

e
co

d
in

g
 T

im
e
 (

N
a
n
o
se

co
n
d

s)

Postings List Length (Integers)

Decoding Efficiency (URL Order)

OPT
TurboPFor

QMX
v1
v2
v3
v4

TurboPackV

Figure 5: Decoding efficiency when tested on TREC
.gov2 in URL order. Nanoseconds to decompress a
list of a given length is shown on a log / log scale.

Each JASS index is a translation of the exact same ATIRE
index and is not subject to further non-determinism.

For the codecs tested, JASS pads the index so that each
and every postings list and postings list segment starts on an
SIMD-word aligned boundary (16-bytes). On modern CPUs
unaligned SIMD reads are just as fast as aligned SIMD reads
on aligned boundaries, but they are slower on unaligned
boundaries. The JASS authors clearly chose to trade off
effectiveness for efficiency in this case.

Each experiment was conducted 25 times and the reported
results are the medians of those 25 runs. Search, using
TREC topics 701-850, was performed to completion with
no early termination.

Figure 6 shows, on a log / linear scale, the time to search
the crawl-ordered collection. It is ordered from highest to
lowest latency according to QMX. From visual inspection
there is no material difference between any of the codecs.

The ATIRE indexer can be configured (with compile-time
flags) to index documents in collection order. This is unre-
alistic as it takes substantially longer to index sequentially
than it takes to index in parallel, however indexing .gov2 in
URL order has become common practice due to effectiveness
and efficiency gains seen by doing so. So, the documents in
the .gov2 collection were sorted into URL order, indexed
sequentially using ATIRE in deterministic order, then con-
verted to a JASS index. The same document cleaning, stem-
ming, and ranking parameters were used as before.

Figure 7 shows, on a log / linear scale, the time to search
the URL-ordered collection. It is ordered from highest to



105

106

107

108

109
Ti

m
e
 (

N
a
n
o
se

co
n
d

s)

Query

Time to Search (Crawl Order)

QMX
v1
v2
v3
v4

OPT
TurboPackV

TurboPFor

Figure 6: Time to search crawl-ordered .gov2 with
queries ordered from highest to lowest latency.

lowest latency according to QMX. It is clear from this figure
that, as seen in Section 6.2, the PFor codecs are slower than
the others.

Figures 6 and 7 are presented on log / linear scales empha-
sizing differences for all query latencies, however little can
be deduced about the efficiency of QMX, QMX variants, or
TurboPackV because the lines are indistinguishable.

Table 2 presents the tournament matrix of which codec
outperforms which other codec when the collection is in
crawl order. The first row presents the name of the codec be-
ing compared to the first column. The numbers in the other
cells report the number of times that codec is no worse (i.e.
time ≤). For example, the 17 in the cell in column “v2” row
“QMX” reports that in 17 of the 150 queries Variant 2 was
better or equal to QMX. The last row of the table presents
the total number of “wins” for the given codec. Table 3
shows the same table for the URL-ordered collection.

QMX outperforms the others in both cases. TurboPackV
is effective in crawl order but not in URL order – in URL
order the difference in the number of selectors is likely to be
smaller. Variant 1 outperforms the other variants on both
collections, suggesting that reading the selectors from low-
memory to high-memory is more efficient that reading the
other way around. Variant 3 generally outperforms Variant
2, suggesting that the case statement fall-through overheads
are measurable. Variant 4 is effective on the URL-ordered
collection but not on the crawl-ordered collection, suggesting
that pre-fetch is only sometimes worthwhile. In both cases,
the PFor codecs did not perform as well as the others.

The Friedman test shows a significant difference between
the codecs (p < 0.001). The Wilcoxon-Nemenyi-McDonald-
Thompson post hoc analysis shows that QMX is significantly
(p < 0.05) faster than all the others except TurboPackV
(crawl order) and Variant 1 (URL order).

If efficiency is important then QMX is the best option.
The changes made to prevent overflow and to reduce the
size of the index also add decoding overheads. However, if
effectiveness is more important then TurboPFor is the best.

7. THE SPACE TIME CONTINUUM
Section 6.3 examined how the user experiences the search

engine – a direct query-for-query comparison. An alterna-
tive way to examine the utility of the codecs is the system
view. That is, if a given codec is chosen, how much storage
space is needed and how much CPU will be consumed?

This question is examined using the very same JASS runs
seen in Section 6.3. However, rather than examining on a

105

106

107

108

109

Ti
m

e
 (

N
a
n
o
se

co
n
d

s)

Query

Time to Search (URL Order)

QMX
v1
v2
v3
v4

OPT
TurboPackV

TurboPFor

Figure 7: Time to search URL-ordered .gov2 with
queries ordered from highest to lowest latency.

Table 2: Tournament matrix showing how many
times the codec in column i results in a no-slower
(≤) search time than the codec in row j for crawl-
ordered .gov2 using topics 701-850. Larger is better.

QMX v1 v2 v3 v4 OPT TPackV TPfor
QMX - 17 17 26 14 9 42 8

v1 133 - 51 64 39 12 105 20
v2 133 99 - 82 58 10 123 32
v3 124 86 68 - 39 17 110 21
v4 136 111 92 111 - 29 129 66

OPT 141 138 140 133 121 - 144 137
TPackV 108 45 27 40 21 6 - 7

TPfor 142 130 118 129 84 13 143 -
TOTAL 917 626 513 585 376 96 796 291

Table 3: Tournament matrix showing how many
times the codec in column i results in a no-slower
(≤) search time than the codec in row j for URL-
ordered .gov2 using topics 701-850. Larger is better.

QMX v1 v2 v3 v4 OPT TPackV TPfor
QMX - 55 17 29 5 1 19 2

v1 95 - 14 7 47 1 10 2
v2 133 136 - 81 93 3 47 4
v3 121 143 69 - 98 3 46 4
v4 145 103 57 52 - 2 43 7

OPT 149 149 147 147 148 - 150 145
TPackV 131 140 103 104 107 0 - 1

TPfor 148 148 146 146 143 5 149 -
TOTAL 922 874 553 566 641 15 464 165

query-by-query basis, this section examines the total overall
CPU usage and the size of the postings file.

The median of total search time (of 25 runs) was plotted
against the index size in Figure 8 (with a non-zero origin)
when the collection is in crawl order and in Figure 9 when
in URL order (again, a non-zero origin). These figures show
that TurboPackV, TurboPFor, and Variant 1 (URL order)
or Variant 2 (crawl order) lie on the Pareto frontier – these
codecs offer the best choice between search latency, index
size, and the tradeoff of the two. It can also be observed
from these figures that the QMX variants result in index
sizes that are not substantially different from each other,
TurboPackV can be smaller, and that the PFor codecs result
in small indexes that take longer to process.

Care should be taken when drawing latency conclusions
from these two graphs as the total search time is dominated
by a small number of slow queries. This can be seen at the
left hand side of Figure 6 and Figure 7, which show (on a
log / linear scale) that a small number of queries take a
substantial amount of the time. For example, in crawl order
the quickest query using QMX took ≈4ms, the median took



 16000

 16200

 16400

 16600

 16800

 17000

 17200

 17400

 11800  11900  12000  12100  12200  12300  12400  12500  12600

OPT

QMXv1v2 v3

v4

TurboPackV

TurboPfor

Po
st

in
g

s 
S

iz
e
 (

M
B

)

Time (Milliseconds)

Space / Time Tradeoff (Crawl Order)

Figure 8: Space / time tradeoff when tested on
TREC topics 701-850 on .gov2 in crawl order.

 13500

 14000

 14500

 15000

 15500

 6900  7000  7100  7200  7300  7400  7500  7600  7700  7800

OPT

QMXv1

v2

v3

v4

TurboPackV

TurboPfor

Po
st

in
g

s 
S

iz
e
 (

M
B

)

Time (Milliseconds)

Space / Time Tradeoff (URL Order)

Figure 9: Space / time tradeoff when tested on
TREC topics 701-850 on .gov2 in URL order.

≈57ms and the slowest took ≈339ms (88 times longer than
the quickest and 6 times longer than the median). These
high latency searches dominate the total execution time.

8. DISCUSSION AND CONCLUSIONS
This investigation compared OPTPFor with several SIMD-

based codecs including TurboPFor, TurboPackV, and QMX.
It introduced four variants of QMX, two supposed effective-
ness improvements and two efficiency improvements. Exper-
iments on public data in document order showed little dif-
ference between the codecs. Experiments in the JASS open-
source score-at-a-time search engine with impact-ordered in-
dexes suggest little difference between the codecs with QMX
slightly outperforming the others.

This work has some limitations, prior work has shown that
results depend on hardware [16], document collection, and
processing strategy – none of which were examined. SaaT
does not use skipping so Elias-Fano [10] was not tested, nor
were previously compared codecs such as variable-byte en-
coding.

In conclusion, no evidence was found to suggest that the
QMX variants improved efficiency, even though they im-
proved effectiveness. Although PFor codecs were shown to
take less space than the others, they also performed unfa-
vorably against QMX and variants when decoding. Turbo-
PackV, a bin-packer, was less effective, but more efficient on
longer queries and unsorted data.

9. REFERENCES
[1] V. N. Anh, O. de Kretser, and A. Moffat.

Vector-Space Ranking with Effective Early

Termination. In SIGIR 2001, pages 35–42.

[2] V. N. Anh and A. Moffat. Inverted Index Compression
Using Word-Aligned Binary Codes. Inf. Retr.,
8(1):151–166, 2005.

[3] V. N. Anh and A. Moffat. Index Compression Using
64-bit Words. Softw. - Pract. Exp., 40(2):131–147,
2010.

[4] A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and
J. Zien. Efficient Query Evaluation Using a Two-Level
Retrieval Process. In CIKM 2003, pages 426–434.

[5] M. Crane, A. Trotman, and R. O’Keefe. Maintaining
Discriminatory Power in Quantized Indexes. In CIKM
2013, pages 1221–1224.

[6] S. Ding and T. Suel. Faster Top-k Document Retrieval
Using Block-Max Indexes. In SIGIR 2011, pages
993–1002.

[7] D. Lemire and L. Boytsov. Decoding Billions of
Integers Per Second Through Vectorization. Softw. -
Pract. Exp., 45(1):1–29, 2015.

[8] J. Lin, M. Crane, A. Trotman, J. Callan,
I. Chattopadhyaya, J. Foley, G. Ingersoll,
C. Macdonald, and S. Vigna. Toward Reproducible
Baselines: The Open-Source IR Reproducibility
Challenge. In ECIR 2016, pages 408–420.

[9] J. Lin and A. Trotman. Anytime Ranking for
Impact-Ordered Indexes. In ICTIR 2015, pages
301–304.

[10] G. Ottaviano and R. Venturini. Partitioned Elias-Fano
Indexes. In SIGIR 2014, pages 273–282.

[11] M. Persin, J. Zobel, and R. Sacks-Davis. Filtered
Document Retrieval with Frequency Sorted Indexes.
J. Am. Soc. Inf. Sci., 47(10):749–764, 1996.

[12] S. Robertson, S. Walker, S. Jones,
M. Hancock-Beaulieu, and M. Gatford. Okapi at
TREC-3. Proc. 3rd Text Retr. Conf., pages 109–126.

[13] F. Scholer, H. E. Williams, J. Yiannis, and J. Zobel.
Compression of Inverted Indexes for Fast Query
Evaluation. In SIGIR 2002, pages 222–229.

[14] F. Silvestri. Sorting out the Document Identifier
Assignment Problem. In ECIR 2007, pages 101–112.

[15] A. A. Stepanov, A. R. Gangolli, D. E. Rose, R. J.
Ernst, and P. S. Oberoi. SIMD-Based Decoding of
Posting Lists. In CIKM 2011, pages 317–326.

[16] A. Trotman. Compression, SIMD, and Postings Lists.
In ADCS 2014, pages 50–57.

[17] A. Trotman. Compressing Inverted Files. Inf. Retr.,
6(1):5–19, 2003.

[18] A. Trotman, M. Crane, and X.-F. Jia. Towards an
Efficient and Effective Search Engine. In SIGIR 2012
Workshop on Open Source Inf. Retr., pages 40–47.

[19] A. Trotman, X.-F. Jia, and M. Crane. Managing Short
Postings Lists. In ADCS 2013, pages 113–116.

[20] S. Vigna. Quasi-Succinct Indices. In WSDM 2013,
pages 83–92.

[21] H. Yan, S. Ding, and T. Suel. Inverted Index
Compression and Query Processing with Optimized
Document Ordering. In WWW 2009, pages 401–410.

[22] M. Zukowski, S. Héman, N. Nes, and P. Boncz.
Super-Scalar RAM-CPU Cache Compression. In ICDE
2006, page 59.


