
P

Processing Structural Constraints

Andrew Trotman
University of Otago, Dunedin, New Zealand

Definition

When searching unstructured plain text, the user
is limited in the expressive power of their query –
they can only ask for documents that are about
something. When structure is present in the doc-
ument, and with a query language that supports
its use, the user is able to write far more precise
queries. For example, searching for “smith” in a
document is not necessarily equivalent to search-
ing for “smith” as an author of a document. This
increase in expressive power should lead to an
increase in precision with no loss in recall. By
specifying that “smith” should be the author, all
those instances where “smith” was the profession
will be dropped (increasing precision), while all
those in which “smith” is the author will still be
found (maintaining recall).

Historical Background

With the proliferation of structured and semi-
structured markup languages such as SGML and
XML came the possibility of unifying database
and information retrieval technologies. The Eval-
uation of XML Retrieval (INEX) was founded

in 2002 to examine the use of semi-structured
data for both technologies. It was expected that
the use of structure would not only unify the
two technologies but would also improve the
performance of both.

Foundations

User Querying Behavior
When using an information retrieval search en-
gine, the user typically has some information
need. This information need is expressed by the
user as a keyword query. There are many different
queries that could be drawn from the same infor-
mation need. Some might contain only keywords,
others phrases, and others a combination of the
two. It is the task of the search engine to satisfy
the information need given the query. Because
the task is not to satisfy the query, the terms in
the query can be considered nothing more than
hints by the user on how to identify relevant doc-
uments. It is likely that some relevant documents
will not contain the user’s keywords, while others
that do might not be relevant.

If the user does not immediately find an an-
swer, they will often change their query, perhaps
by adding different keywords or by removing
keywords. If the query syntax permits, they might
add emphasis markers (plus and minus) to some
terms.

With a few exceptions, semi-structured search
engines remain experimental, so user behavior
cannot be studied in a natural environment.

© Springer Science+Business Media LLC 2017
L. Liu, M.T. Özsu (eds.), Encyclopedia of Database Systems,
DOI 10.1007/978-1-4899-7993-3_280-2



2 Processing Structural Constraints

Instead the user behavior is expected to mirror
that of other search engines or search engines that
include some structural restriction.

The model used at INEX is that a user will give
a query containing only search terms; then, if they
are dissatisfied with the results, they might add
structural constraints to their query. The keyword
searches are known as content only (CO) and
when structure is added as content-only C struc-
ture (CO C S) or content-and-structure (CAS)
queries. Just as the keywords are hints, so too are
the structural constraints. For this reason they are
commonly referred to as structural hints.

The addition of structure to an otherwise
content-only search leads to a direct comparison
of the performance of a search engine before and
after the structural constraint has been added.
The two queries are instantiations of the same
information need, so the same documents or
document components are relevant to each query
making a direct comparison meaningful.

The analysis of runs submitted to INEX 2005
(against the IEEE document collection) showed
no statistical difference in performance between
the top CO and top CO C S runs – having
structural hints in the query did not improve
performance [1]. Even at low levels of recall (1
and 10%), no significant improvement was seen.
About half the systems showed a performance
gain and the other half no gain.

There are several reasons why improvements
are not seen: first it could be a consequence of the
structure present in the IEEE collection; second
(and more likely) it could be that users are not
proficient at providing structural hints.

The result was backed up by a user study [2]
in which users were presented with three ways
of querying the document collection: keywords,
natural language (including structure), and bricks
[3] (a graphical user interface). Sixteen users each
performed six simulated work tasks, two with
each interface. The same conclusion is drawn,
that is, no significant improvement was seen
when structure was used in querying.

INEX subsequently reexamined this problem,
first using the Wikipedia, and then in 2010 the
Data Centric Track [4] examined queries over
IMDb (people and movies). No improvements

were seen when structure was used on the
Wikipedia [5]. It was not until the second evalua-
tion over the IMDb (in 2011) that evidence started
to emerge that structure may help early precision,
but may negatively impact recall [6, 7]. INEX
has not run this kind of experiment since 2011.

Structural Constraints
There are two reasons a user might add structural
constraints to a query. The first is to constrain the
size of the result. When searching a collection
of textbooks, it is, perhaps, of little practical use
to identify a book that satisfies the user need. A
better result might be a chapter from the book, or
a section from the chapter, or even a single para-
graph. One way to identify the best granularity of
result is to allow the user to specify this as part
of the query. These elements are known as target
elements.

The user may also wish to narrow the search to
just those parts of a document he or she knows to
be appropriate. In this case the user might search
for “smith” as an author in order to disambiguate
the use from that as any of: an author, a profes-
sion, a street, or a food manufacturer. Restricting
a query to a given element does not affect the
granularity of the result; instead it lends support
on where to look so such elements are known
as support elements. Both target elements and
support elements can appear in the same query.

It is not at all obvious from a query whether
or not the user expects the constraint to be
interpreted precisely (strictly) or imprecisely
(vaguely). In the case of “smith” as an author, it is
likely that “smith” as a profession is inappropri-
ate, but “smith” as an editor might be appropriate.
If the target element is a paragraph, then a
document abstract (about the size of a paragraph)
is likely to be appropriate, but a book not so.

The four possible interpretations of a query
were examined at INEX 2005 [8]. Runs that
perform well with one interpretation of the target
elements do so regardless of the interpretation of
the support elements. The interpretation of the
target element does, however, matter. The conse-
quence is that the search engine needs to know,
as part of the query, whether a strict or vague
interpretation of the target element is expected by
the user.



Processing Structural Constraints 3

P

Processing Structural Constraints

Given a search engine, the strict interpretation of
target elements can be satisfied by a simple post-
process eliminating all results that do not match.
As just discussed above, strictly processing sup-
port elements has been shown to be unnecessary.

Several techniques for vaguely satisfying tar-
get element constraints have been examined in-
cluding ignoring them, pre-generating a set of tag
equivalences, boosting the score of elements that
match the target element, and propagating scores
up the document tree.

Ignoring Structural Constraints
Structural constraints might be removed from the
query altogether and a content-only search engine
used to identify the correct granularity of result.

Tag Equivalence
A straightforward method for vaguely processing
structural constraints is tag equivalence. A set
of informational groups are chosen a priori, and
all tags in the DTD (DTD is the document type
definition, specifying the format of the XML
documents forming the collection) are mapped
to these groups. If, for example, <p> is used
for paragraphs and <ip> is used for initial para-
graphs, these would be grouped into a single
paragraph group.

Mass and Mandelbrod [9] a priori choose ap-
propriate retrieval units (target elements) for the
document collection and build a separate index
for each. The decision about which units these are
is made by a human before indexing. A separate
index is built for each unit, and the search is run
in parallel on each index. Within each index the
traditional vector space model is used for rank-
ing. The lexicon of their inverted index contains
term and context (path) information making strict
evaluation possible. Vague evaluation of paths is
done by matching lexicon term contexts against a
tag equivalence list.

Mihajlović et al. [10] build their tag equiva-
lence lists using two methods, both based on prior
knowledge of relevance. For INEX 2005 they
build the first list by taking the results from INEX
2004 and selecting the most frequent highly and

fairly relevant elements and adding the most
frequently seen elements from the queries. In the
second method, they take the relevant elements
from previous queries targeting the same element
and normalize a weight by the frequency of the
element in the previous result set (the training
data, in this case INEX 2004). Using this sec-
ond method, they automatically construct many
different tag equivalence sets using the different
levels of relevance seen in the training data.

In a heterogeneous environment in which
many different tags from many different DTDs
are semantically but not syntactically identical,
techniques from research into schema matching
[11] might be used to automatically identify tag
equivalence lists.

Structure Boosting
Van Zwol [12] generates a set of results ignoring
structural constraints and then boosts the score of
those that do match the constraints by linearly
scaling by some tag-specific constant. The con-
sequence is to boost the score of elements that
match the structural constraints while not remov-
ing those that do not. A score penalty is also used
for deep and frequent tags in the expectation of
lowering the score of highly frequent (and short)
tags. A similar technique is used by Theobald et
al. [13] who use it with score propagation.

Score Propagation
Scores for elements at the leaves of the document
tree (i.e., the text) are computed from their con-
tent. Scores for nodes internal to the document
tree are computed from the leaves by propagating
scores up the tree until finally a score for the root
is computed. Typically as the score propagates
further up the tree, its contribution to the score
of an ancestor node is reduced (see the entry on
“ Propagation Based Structured Text Retrieval”
and for details).

Figure 1 illustrates score propagation. A
search term is found to occur two times in the
p element and four times in the (left) sec element.
With a decay factor of 0.5, the score of the bdy
element is computed as 4 *0.5 C 2 * 0.5 *
0.5 D 2.5. The score for the article element is
computed from that score likewise. If the target

http://link.springer.com/Propagation Based Structured Text Retrieval


4 Processing Structural Constraints

P 2

secsec

bdy 2.5 × K=5

1.25

14

article

Processing Structural Constraints, Fig. 1 Score prop-
agation, each time a score is propagated, the score is
weakened (in the example: halved), but at target nodes it
is boosted (in the example: KD 2)

element is bdy and the score, for example, is
boosted by K D 5, then the element with the
highest score is that element. The score for K
and the propagation value are chosen here for il-
lustrative purposes only and should be computed
appropriately for a given document collection.

Hurbert [14] uses score propagation with
structure reduction – if a node in the tree does
not match a constraint in the query, then the
score there is reduced by some factor. In this
way all nodes in the tree obtain scores, but those
matching the constraints are over-selected for.
Sauvagnat et al. [15] use score propagation
in a similar way but in combination with tag
equivalence.

Key Applications

Retrieval of document components from struc-
tured document collections.

Future Directions

The best performing search engines that interpret
structural constraints were shown at INEX 2011
to outperform those that ignore them; however
this result is shown on only one document col-
lection, with a relatively small number of topics
and a small number of participants – it should

be considered preliminary. Several reasons have
been suggested for the long string of negative
results.

There is evidence to suggest specifying a
structural constraint is difficult for a user. Studies
into the use of structure in INEX queries suggest
that even expert users, when asked to give
structured queries, give simple queries [1]. This
is in line with studies that show virtually no use
of advanced search facilities on the web.

Structure-aware search engines are not as ma-
ture as web search engines, and as yet the best
way to use structural constraints (when present in
a query) is unknown. The annual INEX workshop
provides a forum for testing and presenting new
methods.

Improvements were not seen when the IEEE
document collection or Wikipedia was used, but
were seen when IMDb was used. At the very
least, this suggests that the result is collection
specific. Alternative collections including news-
papers, radio broadcast, and television have been
suggested [16, 17]. It is not known that charac-
teristic of a document collection indicates that a
structured approach will be effective.

Relevance feedback including structural con-
straints has been examined. Users might provide
feedback on both the desired content and the
preferred target element or just one of these.
Evidence suggests that including structure in rel-
evance feedback does improve precision.

Experimental Results

Evidence that the use of structure increases pre-
cision is tentative. In the XML search engine of
Kamps et al. [18], no significant difference is seen
overall; however significant differences are seen
at early recall points (the first few tens of docu-
ments). Wang et al. [7] observe an early precision
increases but loss in recall. The search engine
of Geva [19] performs better without structure
than with. That of Trotman [20], often used to
generate baselines at INEX, also performs well
by ignoring structure.

At INEX 2005, a comparative analysis of per-
formance with and without structural constraints



Processing Structural Constraints 5

P

on the same set of information needs was per-
formed [5]. The best structure run was compared
to the best non-structure run, and no significant
difference was found. Not even a significant dif-
ference at early recall points was found. On a
system-by-system basis, about half the search
engines show a performance increase. However,
at INEX 2011, and using the IMDb collection,
the top runs used structural hints, and analysis
suggests that structure does help early precision
but negatively affects recall.

Cross-References

�Content-and-Structure Query
�Content-Only Query
� INitiative for the Evaluation of XML Retrieval
�Mean Average Precision
�Narrowed Extended XPath 1
� Propagation-based Structured Text Retrieval
�XML Retrieval

Recommended Reading

1. Trotman A, Lalmas M. Why structural hints in
queries do not help XML retrieval. In: Proceedings
of 32nd annual international ACM SIGIR conference
on research and development in information retrieval;
Seattle, Washington; 2006. p. 711–2.

2. Woodley A, Geva S, Edwards SL. Comparing XML-
IR query formation interfaces. Aust J Intell Inf Proc
Syst. 2007;9(2):64–71.

3. van Zwol R, Baas J, van Oostendorp H, Wiering F.
Bricks: the building blocks to tackle query formula-
tion in structured document retrieval. In: Proceedings
of 28th European conference on IR research; London,
UK; 2006. p. 314–25.

4. Trotman A, Wang Q. Overview of the INEX 2010
data centric track. In: Proceedings of 9th international
workshop of the initiative for the evaluation of XML
retrieval; Vugh, The Netherlands; 2010. p. 171–81.

5. Arvola P, Geva S, Kamps J, Schenkel R, Trotman A,
Vainio J. Overview of the INEX 2010 ad hoc track.
In: Proceedings of 9th international workshop of the
initiative for the evaluation of XML retrieval; Vugh,
The Netherlands; 2010. p. 1–32.

6. Schuth A, Marx M. University of Amsterdam data
centric ad hoc and faceted search runs. In: Proceed-
ings of 10th international workshop of the initiative
for the evaluation of XML retrieval; Saarbrücken,
Germany; 2011. p. 155–60.

7. Wang Q, Gan Y, Sun Y. RUC @ INEX 2011 data-
centric track. In: Proceedings of 10th international
workshop of the initiative for the evaluation of XML
retrieval; Saarbrücken, Germany; 2011. p. 167–79.

8. Trotman A, Lalmas M. Strict and vague interpre-
tation of XML-retrieval queries. In: Proceedings of
32nd annual international ACM SIGIR conference
on research and development in information retrieval;
Seattle, Washington; 2006. p. 709–10.

9. Mass Y, Mandelbrod M. Using the INEX environ-
ment as a test bed for various user models for XML
retrieval. In: Proceedings of 4th international work-
shop of the initiative for the evaluation of XML
retrieval. Dagstuhl, Germany; 2006. p 187–95.

10. Mihajlovic V, Ramírez G, Westerveld T, Hiemstra D,
Blok HE, de Vries AP. Vtijah scratches INEX 2005:
vague element selection, image search, overlap, and
relevance feedback. In: Proceedings of 4th interna-
tional workshop of the initiative for the evaluation of
XML retrieval; Dagstuhl, Germany; 2006. p. 72–87.

11. Doan A, Halevy AY. Semantic integration research
in the database community: a brief survey. AI Mag.
2005;26(1):83–94.

12. van Zwol R. B3-sdr and effective use of structural
hints. In: Proceedings of 4th international workshop
of the initiative for the evaluation of XML retrieval.
Dagstuhl, Germany; 2005. p. 146–60.

13. Theobald M., Schenkel R., and Weikum G. Topx and
xxl at INEX 2005. In: Proceedings of 4th interna-
tional workshop of the initiative for the evaluation of
XML retrieval; Dagstuhl, Germany; 2006. p. 282–95.

14. Hubert G. XML retrieval based on direct contribution
of query components. In: Proceedings of 4th interna-
tional workshop of the initiative for the evaluation of
XML retrieval; Dagstuhl, Germany; 2006. p. 172–86.

15. Sauvagnat K, Hlaoua L, Boughanem M. Xfirm at
INEX 2005: ad-hoc and relevance feedback tracks.
In: Proceedings of 4th international workshop of
the initiative for the evaluation of XML retrieval;
Dagstuhl, Germany; 2006. p. 88–103.

16. O’Keefe RA If INEX is the answer, what is the ques-
tion? In: Proceedings of 3rd international workshop
of the initiative for the evaluation of XML retrieval;
Dagstuhl, Germany; 2005. p. 54–9.

17. Trotman A. Wanted: element retrieval users. In: Pro-
ceedings of INEX 2005 workshop on element re-
trieval methodology; Dagstuhl, Germany; 2005. p.
63–9.

18. Kamps J, Marx M, Rijke MD, Sigurbjörnsson B.
Articulating information needs in XML query lan-
guages. Trans Inf Sys. 2006;24(4):407–36.

19. Geva S. GPX – gardens point XML IR at INEX 2006.
In: Proceedings of 5th international workshop of the
initiative for the evaluation of xml retrieval; Dagstuhl,
Germany; 2007. p. 137–50.

20. Trotman A, Jia X-F, Crane M. Towards an efficient
and effective search engine. In: Proceedings of SIGIR
2012 workshop on open source information retrieval;
Portland, Oregon; 2012. p. 40–7.

http://link.springer.com/Content-and-Structure Query
http://link.springer.com/Content-Only Query
http://link.springer.com/INitiative for the Evaluation of XML Retrieval
http://link.springer.com/Mean Average Precision
http://link.springer.com/Narrowed Extended XPath 1
http://link.springer.com/Propagation-based Structured Text Retrieval
http://link.springer.com/XML Retrieval

	Processing Structural Constraints
	Definition
	Historical Background
	Foundations
	User Querying Behavior
	Structural Constraints

	Processing Structural Constraints
	Ignoring Structural Constraints
	Tag Equivalence
	Structure Boosting
	Score Propagation

	Key Applications
	Future Directions
	Experimental Results
	Cross-References
	Recommended Reading




