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ABSTRACT
�ery expansion is used to overcome the vocabulary mismatch be-
tween the documents and queries, but it can lead to query dri�. We
propose an automatic term reweighting strategy for BM25 ranking
functions. Using expansion terms obtained from general purpose
thesauri, we found that reweighting through term frequency merg-
ing is more e�ective than standard query expansion. Instead of
appending the new terms directly to the original query, we merge
the term frequencies with the original query term. �is reduces the
impact of spurious expansion terms being over represented in the
modi�ed query.
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1 INTRODUCTION
�e vocabulary mismatch problem is rampant in human generated
text, even domain experts will use di�erent terms to describe the
same concept. Experiments have show that the likelihood of two
such individuals using the same term is less than 20% [3]. In infor-
mation retrieval research this problem is o�en described as term
mismatch, because there is a disparity between the terms used in
search queries and the terms used in a document corpus. �is is a
problem when you consider that the average Internet search query
is reported to be less than 4 terms. With fewer words the probability
of terms coocurring within documents is clearly lower than a more
comprehensive search query. Analysis has also shown that even
when experts manually tag queries to relevant documents, many
query terms will not be contained within those documents. �is
has been shown in the TREC ad hoc retrieval tracks [15].
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Reformulating a search query is a typical technique used to ad-
dress term mismatch, the most common of which is query expansion.
Additional terms are appended to the search query, terms which
are both relevant to the query and frequent in relevant documents.
�e combination of the original query terms and the expanded
terms should more accurately re�ect the vocabulary used in the
corpus. A popular query expansion algorithm is Rocchio's relevance
feedback technique [9]. �e unmodi�ed query is used to retrieve a
short list of relevant documents, then terms that strongly represent
those documents (discriminating terms) are extracted and ranked
in descending order of weight. �e top terms are then appended to
the query, and the search process is run a second time. �is method
is known as blind relevance feedback as the process does not require
a user to manually identify the relevant discriminating terms. Be-
cause a document can cover many di�erent topics, even the most
relevant documents can include terms which are irrelevant to the
users information need. Appending these spurious terms can cause
query dri�, which leads to performance degradation. Re�ning the
initial retrieved document set can help reduce the e�ect of dri� [8].
Accounting for the terms locality within the document with respect
to the original query terms can also help alleviate this issue [14]

Using a precomputed thesaurus is another way to obtain expan-
sion terms, and also faster than relevance feedback which requires
multiple passes through the search engine pipeline. Domain spe-
ci�c thesauri are prohibitively expensive to construct manually,
since they require experts with domain knowledge of the docu-
ments to label the data. However, some exist such as the Uni�ed
Medical Language System (UMLS), which contains terms from 40
biomedical vocabularies [4]. Using general-purpose thesauri (like
Roget's or WordNet) for query expansion was tested in the early
days of information retrieval. Early evidence suggested retrieval
accuracy could be improved , but that it was too unpredictable to be
useful in practice [10]. Voorhees concluded that lexical-semantic re-
lationships provide li�le bene�t, but have the ‘potential to improve
an initial query’ [13].

No ma�er which method is used, automatic query expansion
is not perfect and will o�en append terms that cause query dri�.
Blind relevance feedback can potentially identify terms that are
in relevant documents but not relevant to the original query. A
thesaurus can identify terms synonymous to alternatives de�nitions.
e.g. the polyseme ’mine’, could refer to explosives or an excavation
site. �is is not something which can be easily avoided in automatic
systems, but we can change the way our ranking function treats
expansion terms. Many ranking functions treat expansion terms
with the same level of importance as the original user generated
query terms, despite the fact that they have a higher chance of
being spurious. In our experiments we compare standard query
expansion to term frequency merging, and found it to be e�ective at
combating the e�ects of query dri�.
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2 EXPERIMENT CONDITIONS
�e purpose of this investigation was to determine if the e�ects
of query dri� could be reduced with term reweighting. We used
the TREC ad-hoc retrieval tracks 1 to 8. Approximately 1,367,000
documents (excluding CR) from TREC disks 1 to 5, queries 51 to
450, and the set of binary relevance evaluations. �e ATIRE search
engine [11] was used in our experiments.

2.1 General-Purpose �esauri
Two general-purpose thesauri were used in our experiments. Rogets
thesaurus which only identi�es synonyms; we used the 2004 Project
Gutenburg edition, which contains over 36,000 words.

�e other was WordNet, one of the more comprehensive general-
purpose thesauri available today. Constructed at Princeton by
Miller and his team in 1985 [7]. �e relationships in WordNet
are more precisely catagorised than Roget’s, it has 26 di�erent
relationship types. Some of these relationships are symmetric,
where the associated terms are in a synset, or synonym ring. Other
relationships are not, and describe an ‘is-a’ or ‘has-a’ relationship.

Many IR researchers have used older versions of this thesaurus
for query expansion, including Voorhees who used version 1.3 [13].
We used WordNet 3.1 the most recent version available.

2.2 Ranking Function
We used a variant of the BM25 ranking function, with parameters
k1 and b chosen empirically by particle swarm optimization [12].

RSV (d) =
∑
t ∈Q

loд
( N
dft

)
×

(k1 + 1) · tftd
k1 ·

(
1 − b + b ·

(
Ld
Lavд

))
+ tftd

(1)

BM25 computes the retrieval status value (RSV) of the document
by summing the contribution of each query term individually. Each
term’s contribution can be expressed as a product of two values,
the inverse document frequency (IDF) component and the term
frequency (TF) component.

We used the Robertson-Walker IDF component, loд(N /dft ), which
prevents negative scores [5]. �e IDF component scales the RSV by
taking into account the frequency of a query term across the entire
document collection. If a term is contained within the majority
of the collection (e.g. ‘the’), it is not considered a discriminating
term, so its contribution to the RSV is negligible. But if the term is
only contained within few documents, then it is considered highly
discriminating, and has a large contribution to the �nal RSV.

�e TF component is an asymptotic function which scales the
contribution of the term frequency (tftd ). �e contribution is also
scaled by the length of the documents (Ld ), relative to the average
document (Lavд ). �e main purpose of this function is to prevent
over boosting, by reducing the contribution of highly frequent
terms. If this is not done we risk one term dominating the entire
rank, and the less frequent terms having a relatively inconsequential
contribution. Figure 1 shows the contribution of the TF component,
with many of the parameters �xed for the sake of clarity. It is clear
that the �rst few occurrences of term t have the largest e�ect, a�er
tftd > 10 the functions output has begun to plateau.

2.3 �ery Expansion Modes
As described in Section 1, there are many ways to derive a set of
expansion terms from a query. Knowing which documents con-
tain these expansion terms allows more documents to be retrieved
(improving recall), and also to compute a more accurate rank (im-
proving average precision). We tested two separate methods of
query expansion, the standard approach and tf-merging.

Standard query expansion reformulates the original query by
appending the expansion terms as additional terms. �is increases
the diversity of the vocabulary and can potentially improve retrieval
performance. Each expansion terms is treated just like one of
the original query terms. �e dft and tftd are calculated for the
expansion term, and the contribution is added to the �nal RSV
sum. �e standard approach is simple but the query can easily
dri� towards one of the more frequent terms in the expansion, or
become biased towards a subset of the original query.

If we de�ne an expansion-set to be the set of expansion terms
for a single term. e.g. for TREC-6 query 40 ‘land mine ban’, we get
three expansion-sets, one for each term in the unmodi�ed query.
Some expansion-sets might contain hundreds of discriminating
terms, while other expansion-sets might contain only a few, or
possibly none. It is possible that a large expansion-set could over
represent the original term in the modi�ed query, and the sum of the
contributions could dominate the rank over smaller expansion-sets.

It would be appropriate to include the expansion terms within
the TF component of BM25. �is way we could take advantage of
the diminishing returns seen in Figure 1. �is way the existence of
expansion terms in a document can increase the �nal RSV, without
biasing the rank towards terms with excessive expansions.

We can achieve this with tf-merging, which is an automatic term
reweighting approach. Instead of appending the new terms directly
to the original query, the frequencies of the expansion terms are
combined with the frequencies of the original terms. �e IDF is
consequently calculated more accurately for each individual query
term because the terms postings lists are expanded rather than
treating each expansion as a unique query term. Both tftd and
dft become a sum/union over their respective expansion sets. A
more precise explanation is provided in Section 3. From this point
onwards tf-merging will refer to term reweighting by merging
term frequencies, and query expansion will refer to the standard
approach.

Figure 1: Example Output of the BM25 TF Component
Ld = Lavд , k1 = 0.9, b = 0.4, asymptote at k1 + 1.
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3 TF-MERGING DETAILS
In (2) we de�ne et to be the set of expansion terms of t . Where
t 7→ u means u is an expansion term of t . It is possible that t 67→ t
(e.g. hyponyms), so we explicitly include t .

et = {u | t 7→ u} ∪ {t} (2)
For Roget’s thesaurus, et is simply the synonyms of t .

3.1 Standard�ery Expansion
Standard query expansion with BM25 (1) replaces the original query
set Q , with the set of all expansion terms, shown in (3).

Q →
⋃
t ∈Q

et (3)

3.2 tf-merging
For tf-merging we leave the query set as Q , but we rede�ne tftd
and dft . tftd becomes equation (4); the sum of term frequencies
for each expansion. In other words, the number of times t or an
expansion of t , occurs in document d .

tftd →
∑
w ∈et

tfwd (4)

dft becomes equation (5); the magnitude of the set of documents
(d ∈ D) which contains an expansion of t , or t itself. In other words,
the number documents which contain t or an expansion of t .

dft →
��� ⋃
w ∈et
{d | w ∈ d}

��� (5)

Here is the full BM25 formula with tf-merging.

∑
t ∈Q

loд

(
N�� ⋃

w ∈et
{d | w ∈ d}

��
)
×

(k1 + 1) · ∑
w ∈et

tfwd

k1 ·
(
1 − b + b ·

(
Ld
Lavд

))
+

∑
w ∈et

tfwd

(6)

4 RESULTS
Table 3 shows the MAP of each TREC track using di�erent query
expansion techniques. �e bold entries indicate an improvement
over doing nothing. Rocchio's relevance feedback method shows
that standard query expansion can consistently improve the mean
average precision (MAP). However when using a general-purpose
thesaurus (Roget/WordNet), standard query expansion degrades
the MAP in all cases. �ese results are not unexpected. We can see
that our tf-merging technique performs be�er than the standard
approach, and occasionally performs be�er than doing nothing.

Focusing speci�cally on the thesaurus approach, standard query
expansion improves about 57% of the 400 queries, and degrades 42%.
Tf-merging however improves 71% of the queries and degrades only
29%. See Table 1 for the probability of improvement/degradation
using speci�c WordNet relationships. By improved we mean no
worse (i.e. same or be�er).

We performed two-tailed t-tests on 400 paired MAP samples.
We tested the baseline against, standard query expansion, and tf-
merging, and in every case we obtained p-values < 0.003. Which
suggests that the observed di�erences cannot be a�ributed to chance
alone.

Table 1: Probability of Improvement vs Degradation

�ery Expansion tf-merging
Relation improved dedgraded improved degraded
Antonym 0.5025 0.4975 0.6525 0.3475
Entailment 0.8800 0.1200 0.9325 0.0675
Hypernym 0.1175 0.8825 0.2450 0.7550
Hyponym 0.1875 0.8125 0.3975 0.6025
Meronym part 0.8925 0.1075 0.9050 0.0950
Meronym subs 0.7900 0.2100 0.9200 0.0800
Similar To 0.4650 0.5350 0.6200 0.3800
Roget 0.5875 0.4125 0.7250 0.2750
WordNet (all) 0.5768 0.4232 0.7095 0.2905

4.1 Evidence of�ery Dri�
By inspecting the expansion terms of individual queries, we can
see exactly how query dri� has been addressed. Table 2 shows 9 of
the 170 hyponym expansions for the TREC-6 query 40 ‘land mine
ban’. Some expansion terms like c, e, f, g, i are clearly relevant,
so boosting documents containing these terms will improve our
overall MAP. Other terms like a, b, d are clearly irrelevant. More
importantly there are 153 expansions for the term ‘land’, many of
which are geographic labels. �e excessive amount of expansion
terms compared with ‘mine’ and ‘ban’, caused the query to dri�
towards documents only about ‘land’. However with tf-merging,
the e�ects of query dri� were greatly reduced, as the other two
terms were not overshadowed by the ‘land’ term.

Without query reformulation the MAP is 0.0805, query expansion
degrades this to 0.0014, and tf-merging improves the MAP to 0.0984.
Standard query expansion clearly has a huge negative impact for
this query, and tf-merging has a small positive e�ect.

It is likely that tf-merging will fail to reduce the e�ects of query
dri�, when there are many discriminating spurious terms in every
expansion set. But if the expansion term selection process is good,
then tf-merging should be able to improve it.

Table 2: Expansion hyponyms, TREC-6 query 40

Term num Example expansion terms
land 153 crash landa farmlandb no man’s landc
mine 18 goldmined booby trape ground emplacedminef
ban 9 embargoд rusticateh cease and desisti

4.2 Speed
We did not focus our experiments on time e�ciency but it was
a consideration. Automatic query expansion methods like blind
relevance feedback are intrinsically slow, as they require at least
two passes through the search engine pipeline. �e problem is
worse in a distributed environment, as the document list from the
�rst pass must be merged over a network before the second pass
can be executed [6].

We found Rocchio to be much slower, than thesaurus based
expansion. Tf-merging takes longer than standard query expansion.
�e mean time for Rocchio was 324 seconds, tf-merging was 122
seconds and standard query expansion was 102 seconds.
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Table 3: Mean Average Precision

Expansion terms mode TREC-1 TREC-2 TREC-3 TREC-4 TREC-5 TREC-6 TREC-7 TREC-8
None (baseline) 0.2181 0.1993 0.2324 0.1727 0.1432 0.1891 0.1905 0.2195
Rocchio query exp’ 0.2311 0.2103 0.2476 0.1802 0.1468 0.1925 0.2007 0.2286
Antonym query exp’ 0.1977 0.1823 0.2139 0.1411 0.1230 0.1618 0.1741 0.1977
Entailment query exp’ 0.2153 0.1942 0.2315 0.1651 0.1311 0.1851 0.1898 0.2171
Hypernym query exp’ 0.1220 0.0680 0.1139 0.0335 0.0475 0.1058 0.1011 0.1155
Hyponym query exp’ 0.1258 0.1114 0.1161 0.0243 0.0362 0.1347 0.1068 0.0937
Meronym part query exp’ 0.2154 0.1972 0.2250 0.1642 0.1402 0.1886 0.1896 0.2076
Meronym subs query exp’ 0.2157 0.1839 0.2168 0.1593 0.1259 0.1860 0.1911 0.2095
Similar To query exp’ 0.1760 0.1630 0.1754 0.1065 0.1074 0.1714 0.1715 0.2084
Roget query exp’ 0.1995 0.1740 0.1945 0.1349 0.1119 0.1802 0.1853 0.2069
Antonym tf-merging 0.2157 0.2004 0.2292 0.1718 0.1404 0.1851 0.1895 0.2161
Entailment tf-merging 0.2180 0.1978 0.2324 0.1726 0.1319 0.1879 0.1900 0.2175
Hypernym tf-merging 0.1446 0.1414 0.1553 0.1072 0.1012 0.1205 0.1104 0.1716
Hyponym tf-merging 0.1940 0.1929 0.1846 0.1483 0.1292 0.1844 0.1686 0.1996
Meronym part tf-merging 0.2190 0.2022 0.2307 0.1694 0.1406 0.1912 0.1912 0.2152
Meronym subs tf-merging 0.2180 0.1993 0.2324 0.1727 0.1425 0.1891 0.1834 0.2195
Similar To tf-merging 0.2075 0.1959 0.2183 0.1659 0.1301 0.1910 0.1882 0.2041
Roget tf-merging 0.2173 0.1986 0.2225 0.1609 0.1393 0.1877 0.1887 0.2041

5 CONCLUSIONS
�e purpose of our experiments was to determine if using general-
purpose thesauri for query expansion could be improved. We tested
two di�erent thesauri (Roget and Wordnet), with two di�erent
query expansion techniques. We compared standard query expan-
sion with our proposed method that we call tf-merging.

Our results agree with previous experiments, using a general-
purpose thesauri appears to have potential, but the usefulness is
not immediate. Despite the fact that WordNet has become more
comprehensive as a thesaurus, it is still not viable for basic query
expansion. It can, and frequently does, improve the precision of
ad-hoc retrieval tasks, but there is still a signi�cant chance that the
precision will be degraded.

Reformulating a query through tf-merging makes sense intu-
itively, as we are not biasing our search towards query terms which
have more expansions. Modern improvements to query expansion
use context, or word sense disambiguation to discern between good
and bad expansion terms [2]. What we have proposed is straightfor-
ward and e�cient, and it does not require a sophisticated language
model to be implemented. Our approach of tf-merging does em-
pirically improve general-purpose thesauri query expansion, but
not enough to be competitive against other query reformulation
methods.

Since our results indicate an improvement to thesaurus based
expansion, in future work we will apply tf-merging to other query
reformulation methods. �e most obvious choice would be rele-
vance feedback approaches, as their e�ectiveness is well established,
especially the RM3 relevance model [1]. Since tf-merging is inde-
pendent of the expansion term selection process, it could easily be
used to complement existing query expansion improvements, like
word sense disambiguation. We will also test the e�ectiveness with
other ranking functions that use TF and IDF scores.
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