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ABSTRACT
The quality of a search engine is typically evaluated using
hand-labeled data sets, where the labels indicate the rele-
vance of documents to queries. Often the number of labels
needed is too large to be created by the best annotators,
and so less accurate labels (e.g. from crowdsourcing) must
be used. This introduces errors in the labels, and thus errors
in standard precision metrics (such as P@k and DCG); the
lower the quality of the judge, the more errorful the labels,
consequently the more inaccurate the metric. We introduce
equations and algorithms that can adjust the metrics to the
values they would have had if there were no annotation er-
rors.

This is especially important when two search engines are
compared by comparing their metrics. We give examples
where one engine appeared to be statistically significantly
better than the other, but the effect disappeared after the
metrics were corrected for annotation error. In other words
the evidence supporting a statistical difference was illusory,
and caused by a failure to account for annotation error.

CCS Concepts
•Information systems→ Presentation of retrieval re-
sults;
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1. INTRODUCTION
New ranking algorithms are often compared in forums like

TREC using manual assessments of the relevance of docu-
ments to queries. These manual assessments are treated as
the gold standard ground truth, and are used to compute
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precision metrics which are then used to determine whether
differences between algorithms are significant.

This process relies on the gold standard being accurate
(and there being one unambiguous assessment of a document
with respect to the query regardless of the user). If the
ground truth is inaccurate then the statistical tests used to
detect significance are inaccurate, and the outcome of an
experiment comparing two ranking functions might produce
an invalid result. We ask:

Is it possible to perform sound statistical significance tests
when the assessments contain errors?

We show that it is. We assume two levels of judging,
bronze and gold. Bronze judges are inexpensive but inac-
curate. Gold judges are a scarce resource, but have a high
level of accuracy. Bronze judge accuracy is estimated by tak-
ing a set of bronze judge assessed query-document pairs and
asking the gold judge to carefully re-assess the pairs. This
provides two accuracy rates for the bronze judges: a rate on
relevant documents (relevant according to gold judges), and
a rate on irrelevant documents.

We derive equations that directly include these accuracy
rates and give the values that P@1, P@k and DCG would
have if there were no bronze judge errors. We also show how
to compute the standard errors of these corrected metrics
and use them in turn to compute a p-value when doing a
t-test to compare two ranking algorithms.

We apply our adjustments to a large-scale commercial
eCommerce search engine and show that an incorrect conclu-
sion would have been drawn if the accuracy rate were not
considered—showing that our test is harder to pass than
tests not incorporating accuracy rates. We further apply
our techniques to the only TREC collection that mirrors
our environment.

2. RELATED WORK
Our investigation centers on robust evaluation in an envi-

ronment of errorful assessments—which others have already
demonstrated exists. Bailey et al. [2] examined three qual-
ity levels of judge: gold, silver and bronze. They found low
levels of agreement with the silver and bronze judges, and
consequently small but consistent variation in system scores
and rankings. Most interestingly, Bailey et al. used bronze
judges for 50 topics but the gold judges for only 33 topics.
A decision that may have been motivated by cost (highly



trained judges cost more than TREC participants). This is
exactly our motivation. We cannot afford to train and use
gold judges for all evaluations. So we use bronze judges to
assess and then and gold judges to evaluate the quality of
the bronze judges..

Sanderson et al. [12] investigate the cause of judge errors
and show that the relevance of a document to the judge
is not independent of previously seen documents. Scholer
et al. [13] attribute high levels of judgment error in TREC
assessments to many factors including how far through the
assessment process a given judge is (i.e. tiredness).

Many have turned to crowdsourcing in an effort to reduce
the high cost of generating assessments. Our work applies
to both crowdsourcers and more dedicated (but imperfect)
assessors. Alonso et al. [1] suggested using either a weighted
sum or a voting scheme to reduce errors. Snow et al. [15]
estimate judge accuracy using examples labeled by an ex-
pert judge. They observe that with enough judges the ac-
curacy of each judge can be inferred from the others and
that a weighted average of all judges could be used as an
aggregated assessment. Vuurens et al. [17] examine spam in
crowdsourced assessments. Tang & Lease [16] combine ex-
pert assessments with crowdsourced assessments and show
that adding small amounts of expert assessments approaches
the accuracy of assessments from experts only.

Dawid & Skene [4] compute the error of a clinician tak-
ing discrete observations of a patient. When the answer is
known (e.g. diagnosis of a break before an X-ray), the error
is easily computed. If the gold standard is not known then
they use the EM algorithm to compute the error in each cell
of a confusion matrix. Passonneau & Carpenter [10] extend
this algorithm by adding a Dirichlet prior. Zhao et al. [20]
are the first to explore both false positive (type I) errors
and false negative (type II) errors. They observe: voting is
unreliable as the majority can be wrong. We also use type
I and type II errors.

Comparing ranking functions in the light of noise is not
new, but previous work considered only noise created by
picking a different set of queries or a different set of doc-
uments. Moffat & Zobel [9] and Webber et al. [19] intro-
duce Rank-Biased Precision (RBP) and Rank-Biased Over-
lap (RBO) respectively, both of which compute a precision
score along with a residual. In other words, RBP and RBO
give an upper bound and a lower bound on the precision
score at any point in the results list. Their uncertainty is
uncertainty in the remainder of the results list (assuming no
judging errors).

Our contribution is to analyze the effect of judge error
and the additional noise it introduces (since judge error is
only imperfectly known). We show that ignoring judge error
affects conclusions about actual ranking functions on actual
data sets.

Noise is usually addressed through the use of a significance
test such as the t-test or Wilcoxon signed rank test. Smucker
et al. [14] examine the use of different significance tests for
use with ranking functions and conclude that the t-test is
as good as bootstrap (and randomization), and better than
Wilcoxon’s signed rank test. Cormack & Lynam [3] propose
the use of the bootstrap for computing the standard error.
We build on this work by showing how to apply the boot-
strap to compute the standard error in the light of errorful
assessments and how to perform Welch’s unequal variances
t-test on the precision score and the standard error.

There is prior work on evaluating the accuracy of assess-
ments. Passonneau & Carpenter [10] observe that just be-
cause two judges agree, it does not make the agreement ac-
curate. If one judge is usually wrong and the second is some-
times wrong then no claim can be made about an individual
assessment without a confidence interval—so they compute
confidence intervals for each assessment. Joglekar et al. [7]
compute both the error rate of crowdsource workers, and
also confidence intervals on their work. From this it’s possi-
ble to estimate the accuracy of any answer set, and to elim-
inate bad workers. None of this previous work showed how
assessment error affects decisions about the relative quality
of two ranking functions.

We give an explicit equation for the effect of assessment
error on precision along with the standard error of precision.
Together they give a range of possible precision scores, and
enable what we believe is a better way of comparing two
ranking functions.

3. BINARY RELEVANCE ASSESSMENTS

3.1 Precision at 1
This section examines the scenario in which the search en-

gine is given a set of n queries and produces a single result
for each query. This result is either relevant or non-relevant.
The scenario is not atypical, it is precision at 1 document
(P@1)—one of the many measures used to indicate the qual-
ity of a commercial search engine.

More formally, the probability that this search engine will
produce a relevant result is estimated by the average j,

j =

n∑
s=1

js
n

(1)

where n is the number of queries used in the estimate, and
js is the relevance (1 for relevant, 0 for non-relevant) of the
s-th returned document. This is an estimate because n is
finite and js could differ with a different set of n queries.

The confidence in j is given by the standard error σj ,
estimated as σ̂j , using

σ̂j =

√
j(1− j)

n
(2)

We use j to emphasize that these are relevance estimates of
a judge (the bronze judge). Equation (1) and Equation (2)
assume that the judge’s assessments are accurate—which we
know they are not.

We assume that there is a well-defined relevance for each
document, and that there is a gold judge who can reliably
determine that relevance value. Assume that across the en-
tire assessment set (1 assessment per query) the bronze judge
gives an assessment that matches that of the gold judge with
a probability mJ (we use m as it is a mean, see section 3.2).

Prior studies [11] have shown that the time to assess a doc-
ument is different for relevant and non-relevant documents,
so we make no assumption about the probability of a match
on documents considered relevant by the gold judge, mJR ,
being equal to the probability of a match on documents con-
sidered not-relevant mJN .



Bronze
Relevant Non-Relevant
mJ 1−mJ

Gold
Relevant mG mJR 1−mJR

Non-Relevant 1−mG 1−mJN mJN

Table 1: Confusion matrix showing possible outcomes

Table 1 presents the 2× 2 confusion matrix in grey. The
first row is for the case when the document is considered
relevant by the gold judge, which occurs with probability
mG. The second row is when the document is not consid-
ered relevant by the gold judge, which occurs with probabil-
ity 1 −mG. Similarly the first column is when the bronze
judge assesses as relevant, and the second column is for non-
relevant. The values in the 2 × 2 matrix are conditional
probabilities; the probability of the bronze judge’s decision
given the gold judges’s decision. For example the upper left
box, mJR , is the probability that the bronze judge assesses
a document relevant, given that the gold judge says it is rel-
evant, and the lower right box, mJN , is the probability the
bronze judge assesses not relevant when the gold judge says
it is not relevant.

We are interested in computing mG, the probability that
the one result is considered relevant by the gold judge. Un-
fortunately, mG cannot be observed directly. But mJ , the
unconditional probability that the bronze judge rates the
document as relevant can be observed. The value of mJ is
given by

mJ = mGmJR + (1−mG)(1−mJN ) (3)

In words, mJ is the probability that the one returned docu-
ment is considered relevant by the gold judge and the bronze
judge agrees, mGmJR , plus the probability the document
is not relevant according to the gold judge but the bronze
judge, none-the-less, assesses it as relevant, (1 − mG)(1 −
mJN ).

Equation (3) can easily be solved for mG, the probabil-
ity that the gold judge considers the document as relevant,
giving

mG =
mJ − 1 +mJN

mJR +mJN − 1
(4)

The variables mJR and mJN are the hidden accuracy rates
of the bronze judge but can be estimated from assessments
as m̂JR and m̂JN .

An estimate of mJ , m̂J = j, is given by Equation (1).
From these an estimate of mG, m̂G, can be computed,

m̂G =
j − 1 + m̂JN

m̂JR + m̂JN − 1
(5)

Equation (1) should be compared to Equation (5) as they
are both estimates of P@1. In the former the bronze judge
is assumed to be faultless. The latter uses the former along
with estimates of the judge’s accuracy rates to give a more
accurate score. Equation (5) is consistent with Equation
(1): if m̂JR = m̂JN = 1 then m̂G = j. In other words, if
the bronze judge is faultless then both equations give the
same result. At the other extreme, if m̂JR = m̂JN = 0.5
then the bronze judge is performing an action equivalent to
a coin toss and we can derive no useful information because
the denominator of Equation (5) is 0. m̂G and j are very
different. j is easy to compute but inaccurate, whereas m̂G

is accurate but harder to compute.

3.2 Standard Error
In this section we compute the variance of m̂G, (our esti-

mate of P@1). The square root of variance is the standard
error, and statistical significance can be computed from m̂G

and its standard error. Two different methods for comput-
ing the variance are presented: the first is the parametric
bootstrap; the second is an explicit equation.

To get the variance of m̂G we need to write it as a random
variable, which we do by introducing random variables to
represent the parts of Equation (5): j, m̂JN , and m̂JR . If J is
the random variable which is 1 when a bronze judge assesses
a document relevant and 0 otherwise, then J = (J1 + · · ·+
Jn)/n is the random variable representing j. Similarly if JR
is 1 when the bronze judge assesses as relevant a document
considered relevant by the gold judge, then JR = ((JR)1 +
· · ·+ (JR)nR)/nR represents m̂JR , similarly for m̂JN .

The random variables J , JR and JN are linked to the
variables in the previous section via E[J ] = E[J ] = mJ ,
E[JR] = E[JR] = mJR and E[JN ] = E[JN ] = mJN , where
E[J ] is the expected value of J. This explains the notation
m (for mean) introduced in the previous section.

The distribution of the random variable J is

J ≈ Binom(j, n)

n

To get the distributions of JR and JN , select nR assessments
considered relevant by the gold judge and nN considered
non-relevant by the gold judge1. If the bronze judge rates r
of the nR items relevant, then m̂JR = r

nR
is an estimate of

JR, and the distribution of JR is

JR ≈
Binom(m̂JR , nR)

nR

similarly,

JN ≈
Binom(m̂JN , nN )

nN

In all three cases Binom(θ, n) is the binomial distribution,
the number of heads in n coin tosses, where a coin has prob-
ability of θ of coming up heads.

Algorithm 1 Bootstrap Computation of Standard Error

1: function OneBootstrap(j, n)
2: j∗ ← Binom(j, n)/n
3: j∗R ← Binom(m̂JR , nR)/nR
4: j∗N ← Binom(m̂JN , nN )/nN
5: m̂ ∗

G ← (j∗ − 1 + j∗N )/(j∗R + j∗N − 1)
6: return m̂ ∗

G

7: for i← 1 to n.iter do
8: samplesi ← OneBootstrap(j, n)

9: var← Variance(samples)
10: return

√
var

To perform the parametric bootstrap, draw many samples
of J , JR and JN from the binomial distributions and for each
sample use Equation (5) to compute an instance of m̂G,
m̂∗
G. The standard deviation of these m̂∗

G is an estimate
of the standard error of m̂G. The square of the standard

1This could be a separate set from the n items used to com-
pute j. That is, it could be a prior process, or even the
validation phase in a crowdsourcing experiment.



deviation is the variance, V [m̂G]. The algorithm is presented
in Algorithm 1.

As well as there being a straightforward algorithm for
bootstrapping the variance, there is an explicit equation that
adds insight. The derivation of the variance, V [m̂G], the
square of the error, is from the standard equation for the
variance of a quotient,

V
[
A

B

]
≈ V [A]

E[B]2
+ V [B]

E[A]2

E[B]4
− 2

E[A]

E[B]3
V [A,B]

where V [A,B] is the covariance of A and B. To compute
V [m̂G] set (from Equation (4))

A = J − 1 + JN

and

B = JR + JN − 1

We explain below why it is reasonable to assume that J ,
JR, and JN are uncorrelated (e. g. V

[
J, JR

]
= 0).

Now,

V [A,B] = V
[
JN
]

because

V [A,B] = V
[
J − 1 + JN , JR + JN − 1

]
= V

[
J, JN

]
+ V

[
J, JN

]
+ V

[
JN , JR

]
+ V

[
JN , JN

]
= 0 + 0 + 0 + V

[
JN , JN

]
= V

[
JN
]

so

σ̂2
G = V [m̂G] ≈

V
[
J
]

+ V
[
JN
]

(m̂JR + m̂JN − 1)2

+
(V
[
JR
]

+ V
[
JN
]
)(j − 1 + m̂JN )2

(m̂JR + m̂JN − 1)4

− 2
(j − 1 + m̂JN )V

[
JN
]

(m̂JR + m̂JN − 1)3
(6)

This can be rewritten in a more instructive form via some
algebraic manipulations (see the Appendix) as:

σ̂2
G ≈

V
[
J
]

(m̂JR + m̂JN − 1)2
+ V

[
JR
] (j − 1 + m̂JN )2

(m̂JR + m̂JN − 1)4

+V
[
JN
] (j − m̂JR)2

(m̂JR + m̂JN − 1)4
(7)

Equation (7) shows explicitly how the bronze judge accu-
racy affects the standard error of the estimate of precision at
1, m̂G. If the assessments are random then m̂JR ≈ m̂JN ≈
0.5 and so σ̂G ≈ ∞, as expected.

Prior models assume there is no judge error and conse-
quently σ̂G = V

[
J
]
. The rewritten form (Equation (7))

shows that the standard error is in fact larger. First,V
[
J
]

is increased by a factor of (m̂JR + m̂JN − 1)−2; and second,
uncertainty in m̂JR , and m̂JN also play a role.

In a working environment its necessary to compute V
[
J
]
,

V
[
JR
]

and V
[
JN
]
. Using variance of Binom(θ, n)/n =

θ(1− θ)/n the variances can be estimated as

V
[
J
]
≈ j(1− j)

n

V
[
JR
]
≈ m̂JR(1− m̂JR)

nR

V
[
JN
]
≈ m̂JN (1− m̂JN )

nN
(8)

The derivation of Equation (7) assumes that J , JR and
JN are uncorrelated. They are actually independent, which
is even stronger than being uncorrelated. They are inde-
pendent because knowing a specific value of (say) JR gives
no additional information about the other variables J , and
JN . That’s because J is modeled as the bronze judge’s as-
sessment of a random document. Knowing that assessment
gives no additional information about what happens when
a document deemed relevant by the gold judge is randomly
selected and rated by a bronze judge (resulting in JR).

In this section we derived an equation for the standard
error of the estimate m̂G. Unlike others, we work with the
error of m̂G rather than trying to determine the error in
each individual assessment. This choice was made because
inferences about the quality of a ranking algorithm require
an estimate of m̂G, not the error in each assement.

3.3 P-Value
In an information retrieval ranking experiment, the ex-

perimenter is typically trying to determine whether ranking
function a outperforms ranking function b. The p-value ap-
proach is to assume the ranking functions return equally
relevant documents, and compute the probability that the
observed difference in P@1 under this hypothesis is as large
as it is. This section outlines how to compute the p-value us-
ing Welch’s unequal variances t-test (a variant of Student’s
t-test).

Equation (5) is the equation for m̂G, the corrected P@1
score. Equation (7) is the equation for the standard error,
σ̂G. Given two ranking functions, a and b, there are two
precisions m̂G,a and m̂G,b, and two standard errors, σ̂G,a
and σ̂G,b .

First presume that the algorithms are not different (the
null hypothesis). Then compute the probability that m̂G,a

and m̂G,b are different.
If the bronze judge always agrees with the gold judge

(error-free assessments) this is estimated via Welch’s t-test,

t =
ja − jb√
s2a
na

+
s2
b
nb

(9)

where for ranking function a, ja is the P@1 score from Equa-
tion (1), s2a is the variance in the na assessments. Likewise,
jb, s

2
b , and nb for function b.

To compute the p-value for Welch’s test, the number of
degrees of freedom, ν, is needed. That is given by

ν =
(
s2a
na

+
s2b
nb

)2

(
s2a
na

)2

na−1
+

(
s2
b

nb
)2

nb−1

The Welch two-tailed p-value is

p-value = 2
(
1− Pr(Tν < |t|)

)



where Tν is a t-distribution with ν degrees of freedom, and
p-value is the probability that the difference in the means is
as large as observed. The smaller the p-value the more likely
we will consider algorithm a to have different relevance from
algorithm b.

All the necessary parameters to compute the p-value in
the light of uncertain assessments are derived in Section 3.1
and Section 3.2. The denominator of Equation (9) is the
square root of the squares of the standard errors—which are
given in Equation (7). The numerator is the m̂G score from
Equation (5); so

t =
m̂G,a − m̂G,b√
σ̂2
G,a + σ̂2

G,b

(10)

In Equation (9) t grows like
√
n, meaning t is more likely to

be significant as n gets larger. The same is true of Equa-
tion (10), because σ̂2

G,a and σ̂2
G,b are both O(V

[
J
]
) which is

O(1/n), so that t is O(
√
n) just as in Equation (9).

In a typical search engine scenario ν is very large and so
we use a normal distribution, Z, as an approximation of the
t-distribution, Tν :

p = 2 (1− Pr(Z < |t|))

giving

p = 2

1− Pr(Z <
|m̂G,a − m̂G,b|√
σ̂2
G,a + σ̂2

G,b

)

 (11)

3.4 Precision at k
Our discussion has focused on a single document-query

pair which has been averaged over n queries resulting in
P@1. An equation to compute standard error and the p-
value has been given. This section focuses on a results list—
specifically precision at k, P@k.

The P@k score according to the bronze judge, j@k, for a
single query is the number of relevant documents found in
the top k results in the results list divided by k.

j@k =

∑k
t=1 j

(t)

k

where j(t) is the relevance (1 for relevant, 0 for non-relevant)
of the document at position t in the results list.

This score is then averaged over the set of n queries,

j@k =

∑n
s=1

∑k
t=1 j

(t)
s

k

n
=

∑k
t=1

∑n
s=1 j

(t)
s

n

k
(12)

where j
(t)
s is the relevance of the document at position t of

the results list of query s.
Up to this point, J has represented the first result in the

results list and the bronze judge has assigned a value of
j = 1 for relevant and j = 0 for non-relevant. For P@k there
are k assessments for a results list of length k, represented
J(1), J(2), . . . J(k).

Precision at k for a single query can now be defined in
terms of those k random variables as

J@k =
1

k

(
J(1) + J(2) + · · ·+ J(k)

)
(13)

From the expected precision value at each given position
in the results list, E[J(t)], we can compute the expected value

of P@k as

mJ@k = E[J@k] =
1

k

(
E[J(1)] + E[J(2)] + · · ·+ E[J(k)]

)
This E[J@k] is computed naively from the bronze judge’s

assessments. The values E[J(t)] = m
(t)
J on the right hand

side can be written using Equation (3) in terms of mG, mJR

and mJN . Substituting for E[J(t)] gives

mJ@k =
1

k

((
m

(1)
G (mJR +mJN − 1) + (1−mJN )

)
+ · · ·

+
(
m

(k)
G (qr +mJN − 1) + (1−mJN )

))
Note that m

(t)
G is position dependent but mJR and mJN

are position independent. That is, the precision of the search
engine at each position in the results list is different, but the
accuracy of the judge is position independent.

The previous equation can be rewritten as

mJ@k =
m

(1)
G + · · ·+m

(k)
G

k
(mJR +mJN − 1) + (1−mJN )

and pulling all the mG’s to one side of the equation yields

mG@k =
m

(1)
G + · · ·+m

(k)
G

k
=
mJ@k − 1 +mJN

mJR +mJN − 1
(14)

The left hand side of Equation (14) is precision at k us-
ing the gold judge’s judgement of relevance while the right
hand side uses the observed P@k using the bronze judge’s
relevance ratings, mJ@k, together with mJN and mJR .

3.5 Standard Error and P-Value
The similarity between Equation (14) and Equation (4) is

striking, and means that the standard error of mG@k has
the same form as σ̂2

G in Equation (7). Specifically, replace j
in Equation (7) with j@k from Equation (13). And replace

V
[
J
]

with the variance of J@k = (J
(1)

+ · · · J(k)
)/k. How-

ever this variance can no longer be computed using the first
equation of (8), because J@k is not binomial. Instead the
variance must be computed directly as a standard deviation
of the observed P@k values of the different queries.

4. GRADED RELEVANCE ASSESSMENTS
Section 3 discusses the scenario where the judges are asked

to mark relevance on a binary scale. In this section we ex-
tend from binary assessments to multi-level (i.e. graded) rel-
evance assessments. This extension can then in turn be used
to further extend our methods to DCG.

4.1 Multi-Class Assessments
For graded assessment the bronze judge is asked to as-

sign one of k possible labels, or grade names (A1, . . . , Ak),
to each document-query pair. Each label, Ai, has an (un-
known) probability, mGAi

(succinctly, mAi), that the gold
judge assigns that label to the document. Just as mG was
unknown in Table 1, each mAi is unknown – however the
sum of the probabilities mAi is known to be 1 (every docu-
ment must be assigned only one label).

Rather than having two accuracy rates, mJR and mJN , we
now have a matrix of accuracy rates which we denote with
a script J , J , where Jji is the probability that the bronze
judge said i when the gold judge said j (the binary case is
Table 1).



If ~J is a random vector whose ith component is 1 when
the bronze judge assigns the label Ai, then the expected
probability of a correct label is

E[ ~Ji] =

k∑
j=1

mAjJji = (mT
AJ )i (15)

where (~mT
AJ )i is the ith element of the product of the vec-

tor2 ~mT
A = (mA1 , . . . ,mAk ) with the matrix J ; while ~Ji is

the ith element of the vector ~J . In the 2-dimensional case
with the label A1 meaning relevant, E[ ~J1] = mJ where mJ

was defined in Equation (3).
Equation (15) can be rewritten as

E[ ~J ]T = mT
AJ (16)

so

mT
A = E[ ~J ]TJ−1 (17)

As with the binary relevance case, the values of J are not
known and must be estimated. The two dimensional case of
Equation (17) reduces to Equation (4) as follows:

J =

(
mJR 1−mJR

1−mJN mJN

)
~mA =

(
mG

1−mG

)
E[ ~J ]T =

(
E[J ] 1− E[J ]

)
so

J−1 =
1

mJR +mJN − 1

(
mJN mJR − 1

mJN − 1 mJR

)
~mT
A = E[ ~J ]TJ−1 =

1

mJR +mJN − 1

(
E[J ]− 1 +mJN

−E[J ] +mJR

)T
Note that matrix J is Table 1, that ~mA are the row labels
in Table 1, and that (~mA)1 is Equation (4).

4.2 DCG
The graded assessment analogue of precision at k is Cu-

mulated Gain, CG [6]. Gain is the quantity of relevant ma-
terial seen by the user, and its exact definition depends on
evaluation context. For example, in XCG [8] gain is defined
in terms of a quantized score computed for XML document
elements assessed on a two dimensional relevance scale—we
leave for further work the extension to sub-document rele-
vance and concentrate herein on graded relevance on a whole
document scale measured as the user reads down a results
list.

The cumulated gain of a user after they have read k doc-
uments (in order) from the results of a single query is

CG =
k∑
s=1

j(s)

where j(s) is the relevance score (given by a judge) of a
document at position s (often in the range [0..1], where 0 is
not relevant and 1 is most highly relevant).

Eye-tracking experiments have shown that users typically
examine a results list top to bottom [5] so it is more impor-
tant to put a highly relevant document at position 1 in the
2We use column vectors, so ~mA is a k × 1 (column) vector
and the transpose ~mT

A is a row vector.

results list than at position 2, than position 3, and so on.
Metrics that model such a user model this decrease in utility
by increasingly penalizing a document’s contribution to the
metric the further down the results list it appears.

In Discounted Cumulated Gain, DCG, this penalization is
done by dividing the score of the document, j(s), by the log
of its position in the results list [18]. There are many subtly
different interpretations of this (using different bases to the
log, and so on). The interpretation we use is

DCG =

k∑
s=1

j(s)

log2(s+ 1)

for the results of a single query.
In the previous section judges assigned labels A1, . . . Ak to

queries. For DCG, the labels must be mapped to numerical
values, so we introduce the value vector ~v where the label Aj
is assigned the numerical value vj . If ~G is a random vector
with a 1 in the t-th coordinate when the gold judge assigns
the label At, then the dot product ~G·~v is the random variable
representing the gold judge’s value of the document. The
average judgement E[G] is likely to vary with the rank of the

documents, so we introduce G(s) for gold judge’s judgment
of documents at the s-th rank, and their value is ~G(s) · ~v.

With this notation, the expected DCG according to the
gold judge is

E[DCGG] =

k∑
s=1

E[~G(s)] · v
log2(s+ 1)

=

k∑
s=1

~m
(s)
A · v

log2(s+ 1)

Repeating Equation (17)

mT
A = E[ ~J ]TJ−1

and substituting gives

E[DCGG] =

k∑
s=1

(~m
(s)
A )T v

log2(s+ 1)
=

(
k∑
s=1

E[ ~J(s)]T

log2(s+ 1)

)
J−1v

(18)
which is an estimate of DCG according to the gold judge.
Note that E[DCGG] is not computed from E[DCGJ ]. In-
stead, it is computed based on how the judges classified doc-
uments, E[ ~J(s)], rather than how they were scored, E[ ~J(s)]·v.

As an example, suppose we give highly-relevant docu-
ments a score of 1, not-relevant a score of 0 and partly-
relevant a score of 0.5. Then A = (highly-relevant, partly-
relevant, not-relevant), and vT = (1.0, 0.5, 0.0). Suppose the
bronze judge gives the ratings shown in Figure 1

Position Query 1 Query 2
1 Not-relevant (0) Partly-relevant (0.5)
2 Highly-relevant (1) Not-relevant (0)

Figure 1: Two results lists (relevance grades in braces)

We estimate E[ ~J(1)]T as the vector (0, 0.5, 0.5) since at rank
1 we never got a rating of highly-relevant, and half the
time we got partly-relevant and half not-relevant. Similarly

E[ ~J(2)]T ≈ (0.5, 0, 0.5). Then,

E[DCGG] =

(
E[ ~J(1)]T

log2(1 + 1)
+

E[ ~J(2)]T

log2(2 + 1)

)
J−1v

≈
(

1

log2 2
(0, 0.5, 0.5) +

1

log2 3
(0.5, 0, 0.5)

)
J−1

 1.0
0.5
0.0





The standard error in Equation (18) can be computed
using the ordinary non-parametric bootstrap (similarly to
Cormack & Lynam [3]). Simply select (query, document)
pairs without replacement and use Equation (18) on these
bootstrap samples.

5. SIMULATION
This section uses simulation on a specific example to illus-

trate that the traditional and corrected equations for P@k
and its standard error can give dramatically different results.

Imagine a search engine with a true but hidden P@k of
0.4. This is hidden because it is not practical to assess all
possible queries. Instead we need to rely on imperfect bronze
judges who only assess a subset of queries.

Further imagine that the true but hidden judge accuracy
rates are mJR = 0.9 and mJN = 0.8. These are hidden
because it is not possible to compute the agreement level
over all possible assessments, only a sample of the bronze
judge’s assessments is given to the gold judge for evaluation.

Take a ranking experiment involving n = 50 queries where
the search engine returns the top k = 10 results per query.
In order to estimate mJR = 0.9 and mJN = 0.8, the gold
judge assesses documents until they have assessed nR = 250
of the documents as relevant and nN = 250 of the documents
as non-relevant. These documents are then given to bronze
judges in order to compute the estimates m̂JR and m̂JN .

Algorithm 2 Simulation

1: functionONE SIMULATION(mG,mJR ,mJNnR, nJ , n, k)
2: for s in 1:k do . g[s, ] = 1 with prob mG[s]
3: g[s, ]← Bernoulli(mG[s], n)

4: j ← g . what bronze report
5: for (s, t) in (1 :k, 1:n) do . bronze errors
6: if g[s, t] = 1 then
7: j[s, t]← 0 with prob 1−mJR

8: else
9: j[s, t]← 1 with prob 1−mJN

10: for t in 1:n do . judge’s P@k for each query
11: j[t]← average j[, t]

12: j∗ ← ave j . average j[t] over all t
13: m̂JR ← Binom(mJR , nR)/nR
14: m̂JN ← Binom(mJN , nN )/nN
15: g∗ ← (j∗ − 1 + m̂JN )/(m̂JR + m̂JN − 1)
16: return j∗, g∗

Figure 2: Histogram of simulated P@10 scores and corrected
P@k scores. The naive P@K scores computed by averaging over
50 queries (red) are almost always much higher than the true
value of 0.4. Algorithm called as ONE SIMULATION([0.49, 0.47,
. . . 0.31]), 0.9, 0.8, 250, 250, 50, 10)

Knowing the true (hidden) values and the number of sam-
ples makes it possible to simulate scores for both P@k and
the corrected P@k. The algorithm is presented as Algo-
rithm 2. The first input parameter mG is a vector with
mG[s] the average precision at rank s. Line 3 sets up an
array g with g[s, t] = 1 when the document of rank s for the
t-th query is relevant. Lines 4–9 compute the relevance that
the bronze judge will report, taking into account the judge
accuracy probabilities mJR and mJN . Lines 10–12 compute
the bronze judge’s estimate of P@k. Lines 13–14 compute
the estimates of mJR and mJN that will be obtained by
asking the bronze judges to assess nR and nN documents
respectively. Line 15 is the corrected value that would be
computed using Equation (14).

This simulation was run 10,000 times and the P@k scores
are displayed as a histogram in Figure 2. The red histogram
is P@k computed using the traditional (naive) method. The
blue histogram is P@k computed according to Equation (14).
Even though bronze judge accuracy is high, the naive com-
putation of P@k consistently returns values higher than the
true value of 0.4.

Simulation also allows us to compare the naive compu-
tation of the standard error with Equation (7). On each
simulation we test if the 95% confidence interval about the
estimate for P@k contains the true value of 0.4. Using the
naive standard error (the standard deviation of the 10 num-
bers j[t] divided by

√
10), the confidence interval includes

the true value only 5% of the time. So the confidence inter-
val is much smaller than it should be. Using Equation (7)
the interval contained the true value 95% of the time as it
should.

In the simulation, the true value of P@k is known to the
simulation but not to the experimenter who is evaluating the
search engine. Each run of the simulation returns the P@k
that would be observed by the experimenter in an actual
experiment. In every run the naive observed P@k (red) is
larger than the true value, often substantially so.

6. USE IN A LIVE ENVIRONMENT
This work is in use at eBay with its large-scale eCommerce

search engine. Unlike a web archive, an eCommerce envi-
ronment such as ours is highly dynamic: due to inventory
changes the document collection is not static; due to chang-
ing user needs the query set is not static; due to changes in
the code-base the ranking function is not static. We wish to
know whether, in this environment, there has been a statisti-
cally significant change in precision due to ranking function
changes.

We randomly selected queries from the query log weighted
by frequency (after removing nonsensical and informational
queries). For each query we selected the top 3 results and
sent those query-document pairs for assessment by a profes-
sional third-party. In turn that third-party used full-time
judges paid by the hour (not by the assessment). Three
judges examined each pair and made a binary decision (rel-
evant or not). We use the majority vote as the final assess-
ment of the query-document pair according to the bronze
judge. In total more than 10 judges were used.

Ten days later the process was repeated (reselection of
queries and top-3 results, but same third party who might
have used different judges), resulting in two data sets, a, and
b. The characteristics of which are:



na = 10278 ja = 0.6260 sa = 0.414

nb = 20604 jb = 0.6385 sb = 0.402

j is the average P@3 as measured by the judges3 and sa, sb
are the standard deviations of the P@3 scores. The naive
estimate of the p-value comes from Equation (9):

t =
ja − jb√
s2a
na

+
s2
b
nb

p-value = 2
(
1− Pr(Tν < |t|)

)
≈ 0.011

suggesting a significant (in the statistical sense) change in
performance. To verify this we randomly sampled 143 as-
sessments from the judges and gave those to an in-house
expert who acted as the gold judge. Of the 59 the gold
judge found relevant, the bronze judge agreed on 43 (m̂JR =
0.729). Of the 84 the gold judge found non-relevant, the
bronze judge agreed on 67 (m̂JN = 0.798).

Using Equation (5) to compute corrected P@3,

m̂G,a =
ja − 1 + m̂JN

m̂JR + m̂JN − 1
= 0.805

m̂G,b =
jb − 1 + m̂JN

m̂JR + m̂JN − 1
= 0.828

Note that |m̂G,a − m̂G,b| > |ja − jb|, suggesting that after
correction the change between a and b might be more sig-
nificant than previously thought. However, using Equation
(7) to update the standard errors (see section 3.5)

σ̂2
G,a =

(
s2a
na

)
1

(m̂JR + m̂JN − 1)2

+

(
m̂JR(1− m̂JR)

nR

)
(ja − 1 + m̂JN )2

(m̂JR + m̂JN − 1)4

+

(
m̂JN (1− m̂JN )

nN

)
(ja − m̂JR)2

(m̂JR + m̂JN − 1)4
≈ 0.09032

and likewise, σ̂G,b ≈ 0.0923.
The corrected estimate of the p-value from Equation (11),

p-value = 0.841

suggests that there was no statistically significant change in
performance over the 10 day period of experimentation.

In summary, when the accuracy rates were not included
in the evaluation we were lead to the incorrect conclusion
that a statistically significant change had occurred, but by
including the accuracy rates the reality proves otherwise.
We believe this example demonstrates one compelling reason
why it is essential to include accuracy rates from now on.

7. USE ON TREC DATA
In 2007 one of the TREC Enterprise Track tasks was find-

ing key documents that might be useful in generating an
overview of a given subject. The assessments were com-
munity generated by bronze judges. The organizers used
gold judges (topic originators and experts in the field) to
re-assess 33 of the 50 topics [2]. There were 3004 reassessed

3For web search these scores are low, but in eCommerce it is
common to see queries for items no longer in the inventory.

query-document pairs. This appears to be the only TREC
collection where we can evaluate our techniques.

We wish to know if there is a statistially significant differ-
ence at the 5% level between the top two runs (by P@20).

TREC run nJ,R nG,R m̂JR nJ,N nG,N m̂JN j@20
DocRun02 17 38 0.447 216 262 0.824 0.527
york07ed4 14 50 0.280 230 285 0.807 0.513

Table 2: TREC Enterprise judge accuracies. The number of
documents deemed relevant by the gold judges is nG,R. Of those,
nJ,R are judged relevant by the bronze judges. Columns nG,N

and nJ,N are for non-relevant documents. The last column is the
naive estimate of P@20.

Table 2 presents the data on bronze judge accuracy based
on re-assessment by the gold judge. The very low accu-
racy rate of relevant assessments, m̂JR , made by the bronze
judges is striking. Being less than 50% in both runs, this
suggests that j@20 is a very uncertain estimate of P@20,
and that is qualitatively confirmed by Equation (7); which
shows that the variance of j@20 is proportional to a power
of (m̂JR + m̂JN − 1)−1, which is large when m̂JR is small.

Skipping details, Equations (7), (10 and (11) show that
569, 154 queries are needed in order to detect a difference
between the two runs significant at p = 0.05. Then using
Equation (8) shows that 23, 027, 371 relevant assessments by
the gold judge are needed. Both are vastly larger than the 30
topics and 3004 assessments rejudged—hence no statistically
sound conclusions about the difference between these two
runs can be drawn.

8. CONCLUSIONS
Relevance assessments usually have errors, and it is often

not practical to correct all the errors by doing extra assess-
ments or getting more accurate assessors. Our work applies
to this common situation. We derive methods that can ad-
just for assessment errors. We only require that a sample of
the assessments be more accurately rejudged.

We show how to adjust P@1, P@k and DCG, along with
their standard errors. From these we compute a p-value that
can be used to test for statistical significance.

A simulated example demonstrated how our adjustments
can recover the value the metric would have had if the assess-
ments did not have errors. We applied the adjustments to
our search engine and determined that previously believed
improvements were illusory and due to bronze judge inac-
curacy. Finally, we applied our metrics to TREC data and
showed that insufficient data was available to draw conclu-
sions.

We believe that the extra work necessary to evaluate the
accuracy of the bronze judges is worthwhile as it allows us
to draw sound conclusions from the necessarily noisy assess-
ments.

APPENDIX
A. DERIVATION OF EQUATION (7)

Start with Equation (6) and collect V
[
JN
]
, giving

σ̂2
G ≈

V
[
J
]

(m̂JR + m̂JN − 1)2
+

V
[
JR
]

(j − 1 + m̂JN )2

(m̂JR + m̂JN − 1)4
+ S



where S is

V
[
JN
]( 1

(m̂JR + m̂JN − 1)2
+

(j − 1 + m̂JN )2

(m̂JR + m̂JN − 1)4
+

2
j − 1 + m̂JN

(m̂JR + m̂JN − 1)3

)
Then expand S as

S =
V
[
JN
]

(m̂JR + m̂JN − 1)4
(
(m̂JR + m̂JN − 1)2 + (j − 1 + m̂JN )2

− 2(m̂JR + m̂JN − 1)(j − 1 + m̂JN )
)

or equivalently,

S =
V
[
JN
]

(m̂JR + m̂JN − 1)4
S1

where

S1 = (m̂JR+m̂JN−1)
2−(j−1+m̂JN )2−2(m̂JR+m̂JN−1)(j−1+m̂JN )

Rewrite S1 with z = m̂JN − 1 to get

S1 = (m̂JR + z)2 + (j + z)2 − 2(m̂JR + z)(j + z)

which simplifies to

S1 =
(
(m̂JR + z)− (j + z)

)2
= (m̂JR − j)

2

Putting these pieces together gives Equation (7).
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