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We introduce and test several micro and macro optimiza-
tions to the Score-at-a-Time approach to processing impact
ordered postings lists in a search engine. Our micro opti-
mizations are at the single assembly instruction level but
our macro optimizations are algorithmic. Overall we see an
improvement of 37% on our baseline (22% on state of the
art). We experiment with parallel search and present evi-
dence that we have hit the memory wall.
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1 | INTRODUCTION

It is often advised that micro-optimization is generally not worth the investment and that macro-optimization is more
valuable. Stackoverflow threads asking for advice on micro-optimization for C are often filled with advice to “rely
on your compiler to optimise this stuff” and to “concentrate on using appropriate algorithms and writing reliable,
readable and maintainable code” [1]. A recent and thorough study by Linares-Vásquez et al. [2] on micro-optimization
of Java apps for Android finds that developers rarely implement micro-optimizations, and that the effect of micro-
optimizations is negligible in most of the cases. The body of work on micro optimization for C++ (the language used
herein) appears to be mostly limited to a set of ad hoc principals on web pages (e.g. Lee [3]) with few exceptions (e.g.
Bajwa et al. [4]).

In this investigation we examine micro and macro optimization for the Score-at-a-Time (SaaT) approach to pro-
cessing postings lists in a search engine, in which we take an interest because of its effectiveness in a time constrained
environment [5, 6].

First we microscopically examine the cost of accessing member variables in C++ objects and show that there is
essentially no overhead to it, leading to a design decision to object orient the implementation of our new parallel
search engine.

We then microscopically examine the cost of accessing an array versus dynamically allocated memory and show
that the one additional instruction needed to access dynamically allocated memory can have a substantial effect on
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the latency of the search engine.

We are aware of only two open source SaaT search engines, ATIRE [7] and JASS [5]. Both use a heap to maintain
the top-k results, and both use the same algorithm to determine when a heap update is necessary. We examine that
algorithm and show that, in general, more comparisons are performed than necessary. We introduce an optimized
algorithm and show that using it results in further efficiency gains.

Finally, we believe we are the first to examine query-per-thread parallel search in SaaT. Our experiments suggest
that the changeswe present take us to thememorywall. That is, our search engine fully utilizes thememory bandwidth
and using additional cores simply results in those cores (mostly) sitting idle waiting for data.

2 | SAAT SEARCH

A document ordered index stores, for each unique term in the collection, a postings list, 〈d1, tf1 〉 ... 〈dN , tfN 〉, in in-
creasing order of document id, d (where tf is the term frequency of the term in the document). An impact ordered
index [8] stores the postings list,

〈
i1,

〈
d1,1 ...d1,n1

〉〉
...

〈
iI ,

〈
dI ,1 ...dI ,nI

〉〉
, where i is the impact score of all documents,

d , in the segment. The impact score, computed at indexing time, is the influence of the term in the document. That
is, for BM25 ranking [9], the BM25 score of that term for that document. These scores are normally quantized into a
small integer range [10] and so the number of segments per term is small.

Both JASS and ATIRE participated in the SIGIR 2015 RIGORworkshop [11]. JASS was shown to be more efficient
than ATIRE (and all other participants), but they share a processing strategy. They allocate a set of accumulators, Á,
(one per document) then pull the postings lists for all the query terms, order the segments from highest to lowest
impact, then processes them in that order. Each segment is processed by loading the i score from the segment, then,
for each d , i is added to Ád . To compute the top-k, a heap of pointers to the top k accumulators is kept up-to-date
while processing. SaaT processing is a tight loop and takes advantage of CPU pre-fetch and branch prediction [12].
We use JASS as one of our baselines.

3 | EXPERIMENTAL ENVIRONMENT

We used the TREC .GOV2 collection [13] of 25,205,179 documents along with all 20,000 TREC Million Query Track
queries pertaining to it (TREC 2007 [14] and 2008 [15]). We build a QMX [16] compressed BM25 (k 1 = 0.9, b = 0.4)
impact ordered index quantized into 8-bit impact scores and use that index in all experiments (with our search engine
and with JASS). We load the entire index into memory on startup. We used TREC topics 701–850 to verify that the
top k = 10 results from both our search engine and JASS were identical, and that the precision of both was in line
with expectations.

Except where noted, experiments were run on a 4-core iMac with a 3.2GHz Intel Core i5 CPU and 24GB of
1867MHz DDR3 RAM running macOS 10.13.3 with Xcode 9.2 (Apple LLVM version 9.0.0 (clang-900.0.39.2)) and
maximum compiler optimizations. Only one core was used to measure latency, but more cores were used to measure
throughput.

Timings were measured using the std::chrono::steady_clock provided by C++. Each experiment was run 5
times and the reported times are the micro-averages. Search was to completion (no early termination) with k = 10.
Prior work has shown that k has little effect on efficiency in a SaaT system [6].
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L I ST ING 1 Global and class member accesses.

c l a s s access
{
pub l i c :

u in t32_t m_f i r s t , m_second ;
s t a t i c u in t32_t g _ f i r s t , g_second ;

access ( ) : m_second ( 2 ) { }
u in t32_t second_member ( ) ;
u in t32_t second_g loba l ( ) ;

} ;

u in t32_t access : : g_second = 2;

u in t32_t access : : second_member ( )
{
re turn m_second ;
}

u in t32_t access : : second_g loba l ( )
{
re turn g_second ;
}

4 | GLOBAL VERSUS MEMBER VARIABLES

Intuitively, access to a member variable in a C++ object (or a C struct) is more expensive than access to a global. In
the former the CPU loads the address of this, adds the offset of the member, then accesses the value. In the latter
the address is known in advance and does not need to be computed. Consequently, we expect a search engine using
global variables for housekeeping (such as JASS) to outperform a search engine that manages the housekeeping in an
object (such as ATIRE)—and JASS has been shown to be more efficient than ATIRE [11]. In this section we examine
this perceived efficiency gain.

Listing 1 presents simple C++ class illustrating the different access types. In this code, variables starting g_ are
global while those starting m_ are members. Two of each have been allocated to ensure that offsets are non-zero.

We are interested in the difference between the assembly generated for second_member() and second_global()
so we compiled this code and examined it.1

The assembly for access to m_second,

mov eax , dword ptr [ r d i + 4]

1Interested readers can verify this, and experiment, here: https://godbolt.org/g/zf5vvE
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F IGURE 1 The accumulator management of Jia et al. [18] breaks the accumulators into pages and keeps a dirty
flag for each page. Dirty flags are initialized on search start but accumulator pages are on demand zeroed
(clear-on-write).

uses relative addressing via rdi. That is, the rdi register holds the address of the object (the this pointer), the
member is 4 bytes past the start of the object, and the value is loaded into the eax register.

Access to g_second is similar,

mov eax , dword ptr [ r i p + access : : g_second ]

in this case being relative addressing via the rip register (known as rip-relative addressing).
In order to support runtime object code relocation (i.e. DLLs) compilers such as clang output assembly that

accesses global data relative to the instruction pointer. In short, the absolute address of a global cannot be known
until a DLL is loaded, so a fixed address cannot be allocated at compile or link time. The global address is relative
to the DLL load address, but the x86_64 instruction pointer, rip, is used for convenience. Rip-relative addressing
also results in smaller (and faster) instructions than absolute addressing as rip-relative offsets are 32-bits but absolute
addresses are 64-bits.

We ran an experiment and verified that the overhead of placing variables in objects is nil. We do not report on
this further. We conclude that accessing members is no more expensive than accessing globals as both use relative
addressing (ATIRE is not slower than JASS because of this). We accept that calling into an object has a cost because
rdimust be loaded, and calling a virtual function has a further cost. But once rdi is loaded there is no overhead in
accessing members. Hereon in we adopt an object oriented design.

5 | ACCUMULATORS

Several accumulator management schemes for SaaT search have been proposed [17, 18, 19]. The simplest appears to
be that of Jia et al. [18]. They allocate an array of accumulators, one per document, and sum the impact scores into
this array. Their structure is small (16-bit accumulators, or 19MB for 10 million documents). They observe that the
most expensive operation in their search engine is zeroing this array at the start of each search. To address this they
break the array into a series of pages and keep a dirty-flag for each page.

This is illustrated in Figure 1. All dirty-flags are set to 1 on search initialization. During query processing, when
writing to an accumulator, if the flag is set then it is cleared, the accumulator page is zeroed, and the write proceeds.
Otherwise, the page is already clean and the write goes ahead unhindered.

The usual implementation is to use a page size of 2blog2
√
D c , where D is the number of documents in the collection

(Jia et al. [18] provide a proof of optimal page size). This has two efficiency advantages. First, converting from a doc-
ument identifier into a dirty-flag index is performed with a single instruction (bit-shift). Second, all pages are aligned
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L I ST ING 2 Access to an array versus dynamic memory.

c l a s s d i f f e rence
{
pub l i c :

u i n t8_ t ∗dynamic_data ;
u in t8_ t a r ray_data [1024] ;

d i f f e rence ( )
{
dynamic_data = new u in t8_ t [1024] ;
}

char dynamic_access ( s i z e _ t element ) ;
char a r ray_access ( s i z e _ t element ) ;

} ;

char d i f f e rence : : dynamic_access ( s i z e _ t element )
{
re turn dynamic_data [ element ] ;
}

char d i f f e rence : : a r ray_access ( s i z e _ t element )
{
re turn ar ray_data [ element ] ;
}

with CPU cache lines (except in tiny collections) as the page size is a whole power of 2. The usual implementation is
to use an array of bytes to store the flags which is space inefficient, but avoids bit-level operations.

Both ATIRE and JASS use dynamic allocation to allocate the accumulator array and dirty-flags, but this is inefficient
for memory accesses. In detail, to access a dirty-flag the CPU must first load the dynamic address of the array, then
compute the offset, and then accesses the flag. As this is happening for each and every posting in all postings lists for
each term of each query, any improvement in this could result in a substantial throughput gain.

We observe that by allocating as arrays rather than through dynamic allocation, one instruction per access can
be avoided. If the address of the dirty flags is known in advance then a load of the address can be avoided.

The two approaches are illustrated in Listing 2. Both _access()methods access a contiguous segment ofmemory
as if it were an array, but, dynamic_data, is dynamically allocated while array_data is allocated as an array. In the
case of dynamic_access(), the assembly to access the data is

mov rax , qword ptr [ r d i ]
movsx eax , byte ptr [ rax + r s i ]

that is, load the address from the object, compute the offset of the data, then load the value into eax. In the case of
array_access(), the assembly is
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Allocation Algorithm ms/Query Reduction c.f. JASS

Dynamic 1 177 0% -24%

Array 1 166 6% -16%

Dynamic 2 164 8% -14%

Array 2 152 14% -6%

JASS 1, inline 143 19% 0%

Array 2, inline 112 37% 22%

TABLE 1 Execution time for 20,000 TREC queries on .GOV2 and the different approaches in this paper. Savings
sum to an overall reduction in execution time of 37% on our baseline and 22% on state of the art. We believe the
times reported here for JASS are for the same code-base used in Crane et al. [6], but the times per query differ
because the query set is different (TREC Million Query Track queries here verses TREC Topics 701-850 there) and
due to hardware is differences.

movsx eax , byte ptr [ r d i + r s i + 8]

that is, compute the address of the data, and load the value into eax. It takes one instruction for an array access but
two if dynamic allocation is used.

We ran an experiment to measure the size of this saving (20,000 queries, .GOV2, etc.). Table 1 presents the
results, of which the first two rows are for this experiment. They show that avoiding dynamic allocation results in a
6% reduction on our baseline – the tight loop in SaaT search appears to be sufficiently tight that 6% of the time is
spent loading and performing these extra instructions. The performance of JASS is shown in bold. Our baseline is not
as competitive, but our improvements eventually sum to a 22% reduction over JASS.

The saving from this micro-optimization is substantial, but the improvement comes at a loss of functionality.
The maximum size of the two arrays must be known at compile time. That is, the largest document collection the
search engine will see, not the size of the actual collection (which can be substantially smaller). Our implementation
allocates accumulators for 50,000,000 documents (95MB), and the appropriate number of dirty-flags (48MB) for the
25,205,179 documents. We rely on operating system delayed allocation strategies to ensure physical memory is not
allocated to those parts of the array that are not used – which is much of it in the experiments herein.

6 | HEAP MANAGEMENT

The search engine must compute the top-k documents to return to the user. The standard solution for SaaT is to use
a heap to keep track of the top-k while the query is progressing [7]. The standard algorithm, seen in both JASS and
ATIRE, is presented as Algorithm 1.

The first clause checks to see whether the heap has fewer than topk elements, and if so then it puts the accumu-
lator into the heap, building the heap once it is full. The second clause checks to see if the accumulator is already in
the heap and if so then it rebuilds the heap. The third clause checks to see if the accumulator should be added to the
heap, and adds it if it should.

We observe that the usual case is that the heap is full, that the accumulator is not in the heap, and does not
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Algorithm 1 Heap Update
1: if needed_for_topk > 0 then
2: ol d_v al ue ← acc[i ndex ]

3: acc[i ndex ] ← acc[i ndex ] + scor e

4: if ol d_v al ue = 0 then
5: dec(needed_for_topk)
6: heapk [needed_for_topk] ← &acc[i ndex ]
7: end if
8: if needed_for_topk = 0 then
9: build the heap on heapk

10: end if
11: else if acc[i ndex ] >= ∗heapk [0] then
12: acc[i ndex ] ← acc[i ndex ] + scor e

13: heap_updat e()
14: else
15: acc[i ndex ] ← acc[i ndex ] + scor e

16: if acc[i ndex ] > ∗heapk [0] then
17: heap_i nser t (&acc[i ndex ])
18: end if
19: end if

Location Times

First clause (line 2 is executed) 199,965

Second clause (line 12 is executed) 143,406

Third clause, in if (line 17 is executed) 73,733,775

Third clause, else of if (else of line 16) 378,923,996,448

TABLE 2 Clause execution counts for Algorithm 1.

need to enter the heap, that is, all comparisons are false. To confirm this we annotated the source code to count the
number of times each clause was executed (20,000 queries, .GOV2, etc.). The results are presented in Table 2 which
shows that in 378,923,996,448 cases, three comparisons are performed in order to determine that the heap need not
change.

If the heap is primed with a single entry whose value is lower than the lowest possible accumulator value (i.e. 0),
then a single comparison of a new accumulator value against the top of the heap is sufficient to determine that, in
most cases, no change to the heap is needed. Reducing the number of comparisons not only reduces the number of
instructions executed, but also decreases the probability of a CPU pipeline stall, that is, there is a double efficiency
gain. The new algorithm is presented as Algorithm 2.

We sanity checked the new algorithm against the original, and indeed they produce identical results. We then
annotated the new source code and re-ran the experiment. The results are presented in Table 3, where it can be seen
that in the vast majority of cases (over 99.9%) only one if is evaluated and it is normally false.
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Algorithm 2 Fast Heap Update
1: acc[i ndex ] ← acc[i ndex ] + scor e

2: if acc[i ndex ] >= ∗heapk [0] then
3: if needed_for_topk > 0 then
4: if acc[i ndex ] = scor e then
5: dec(needed_for_topk)
6: heapk [needed_for_topk] ← &acc[i ndex ]
7: if needed_for_topk = 0 then
8: build the heap on heapk

9: end if
10: end if
11: else
12: if acc[i ndex ] − scor e < ∗heapk [0] then
13: heap_i nser t (&acc[i ndex ])
14: else
15: heap_updat e()
16: end if
17: end if
18: end if

Location Times

Line 3 is executed 74,077,146

Line 3 is not executed 378,923,996,448

TABLE 3 Clause execution counts for Algorithm 2.

To measure this efficiency gain we measured the mean time per query for each algorithm both with and without
the changes in Section 5. The result are presented in Table 1 where it can be seen that an 8% reduction is due to this
algorithm, and an overall reduction of 14% is seen if arrays are also used.

During our experiments we noticed that despite using C++ templates the compiler did not inline our changes.
We altered our code to force inlining and re-ran the experiment. The result (marked inline in Table 1) shows that all
three improvements result in a substantial reduction in execution time of 37%, a 22% reduction on JASS (which inlines
Algorithm 1). Inlining and careful optimization results in a large efficiency improvement.

7 | PARALLEL SEARCH

One reason to object orient our design is parallel search. Mackenzie et al. [20] discuss the use of multiple threads to
decrease latency in a SaaT search engine. We believe we are the first to examine parallel search with SaaT to increase
throughput.

We build a lock-free queue of all the queries. In parallel, each thread looks for the next unassigned query, marks
it as assigned, then executes it. This way the total workload is evenly distributed across the threads and there is no
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F IGURE 2 Total execution time for 20,000 queries as the core count increases (left: all optimizations, right: no
optimization) suggest that the memory wall has been hit.

job stealing at the end.
We ran an experiment using 1 to 4 threads (CPU cores) and all our optimizations. The left of Figure 2 presents the

observed time needed to execute all 20,000 queries along with the expected time ( single_core_timecore_count ). A 21% reduction
in time is seen between 1 and 4 cores, where a 75% reduction is expected. Extensive further investigation on several
machines suggests this is because parallel SaaT fully saturates the memory to CPU channels (hits the memory wall).
An improvement of only 3% is seen when going from 3 to 4 cores because the memory cannot keep up with CPU
demand.

To illustrate our hypothesis, we turned off all improvements herein, compiled without optimization, and ran on a
2.6GHz Intel Core i7 with 16GB 2133MHz LPDDR3 RAM (more CPU intensive, slower CPU, faster RAM) which, in
effect, moves the memory wall. The results are presented on the right of Figure 2 which shows that if the task were
more CPU intensive a near perfect improvement would be seen (72% vs. 75%).

SaaT search as we have measured it is a purely CPU and memory task (the I/O time to disk or screen is not
being measured) one of which must be the bottleneck. Figure 2 illustrates this point. On the left the process is
memory access bound, on the right it is CPU bound. Optimization is usually a process of identifying a bottleneck and
identifying a way to remove it. As it is unlikely that our search engine has the optimal memory access pattern, we will
be carefully examining this pattern for areas of further improvement. One obvious place to look is decompression.
Integer compression codecs such as QMX are normally distributed as source code that decodes a large block of
integers for later processing (and the version we use does exactly this). Interleaving the decoding and the processing
of postings is likely to reduce memory accesses as decoded integers do not need to be written to, and later read from,
memory. Unfortunately, a change of this nature comes and the expense of not being able to plug-in a third party
pre-optimized codec without adaptation – and it will increase coupling which is not normally considered to be good
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practice.

8 | DISCUSSION AND CONCLUSIONS

In this investigation we examined micro and macro optimizations to SaaT search and showed that the removal of a
single assembly instruction from the tight loop can result in a substantial decrease in latency. We optimized and inlined
the heap update algorithms which showed further improvements. Finally we examined parallel search which suggests
that we have hit the memory wall. This work covers SaaT search on Intel x86-64 architecture using Intel CPUs and
the TREC .GOV2 document collection.

We expect that the optimizations will be effective on other x86-64 CPUs (such as AMD), but have not conducted
experiments to verify this. Section 7 discusses the effect of changing the CPU to memory access time ratio – faster
RAM shifts the bottleneck back to the CPU. We have not experimented with different cache sizes and leave this for
further work. RISC architectures such as Power or ARM may not have the same complex instructions as x86-64 and
as such the micro-optimizations we outline may not be effective on those architectures. We have not conducted
experiments to verify this.

Other postings list processing strategies for search includeDocument-at-a-Time (DaaT) and Term-at-a-Time (TaaT).
We believe that (on x86-64) all the optimizations we outline will decrease latency will work for TaaT as it is similar to
SaaT. DaaT processing is radically different from SaaT and TaaT, and does not use an array of accumulators and does
not use the same heap management strategy [21], however our observations on arrays, dynamic allocation, and class
member variables remains valid in for that work – but likely at a smaller improvement in performance. We leave for
future work the micro optimization of DaaT.

We have experimented with just one document collection (.GOV2) as it is commonly used in search engine effi-
ciency experiments. The size of the improvements seen herein is a function of the execution time spent in the main
tight loop, and the overhead of starting and stopping that main loop (the pre-amble and post-amble to search). With
a larger collection more time is spent processing postings and so the saving will be larger. Conversely, with a smaller
collection, relatively less time is spent in the tight loop and so the improvement is likely to be smaller. We leave for
future work the measurement of the performance gain as a function of document collection size.

Our memory accesses are not optimal because of a design decision to use pre-existing code for decompression,
and without increasing coupling. That code decompresses complete segments of postings lists and stores the results
in memory. In future work we will examine the interlacing of the decompression and the processing of the results.
Although bad from a design perspective we expect to see a reduction in memory accesses and an improvement in
throughout – perhaps even removing the memory access boundedness.

This work directly challenges the assumption that micro optimizations are not generally worthwhile by presenting
an application in which the main tight loop is responsible for a sufficiently substantial proportion of the execution time
that such optimizations are worthwhile. The optimizations presented sum to a total decrease in latency of 22% on
state of the art, and this short contribution offers several areas for further investigation in efficiency.

references
[1] R M, Micro-optimizations in C, Which Ones Are There? Is There Anyone Really Useful?; 2010. https://stackoverflow.

com/questions/2109262/micro-optimizations-in-c-which-ones-are-there-is-there-anyone-really-useful.

[2] Linares-Vásquez M, Vendome C, Tufano M, Poshyvanyk D. How Developers Micro-optimize Android Apps. Journal of
Systems and Software 2017;130:1–23.



Trotman & Crane 11

[3] Lee ME. Optimization of Computer Programs in C; 1997. http://icps.u-strasbg.fr/~bastoul/local_copies/lee.

html.

[4] Bajwa MS, Agarwal AP, Gupta N. Code Optimization as a Tool for Testing Software. In: 3rd International Conference on
Computing for Sustainable Global Development (INDIACom); 2016. p. 961–967.

[5] Lin J, Trotman A. Anytime Ranking for Impact-Ordered Indexes. In: ICTIR 2015; 2015. p. 301–304.

[6] Crane M, Culpepper JS, Lin J, Mackenzie J, Trotman A. A Comparison of Document-at-a-Time and Score-at-a-Time
Query Evaluation. In: WSDM 2017; 2017. p. 201–210.

[7] Trotman A, Jia XF, Crane M. Towards an Efficient and Effective Search Engine. In: SIGIR 2012 Workshop on Open
Source Information Retrieval; 2012. p. 40–47.

[8] Anh VN, de Kretser O,Moffat A. Vector-space Ranking with Effective Early Termination. In: SIGIR 2001; 2001. p. 35–42.

[9] Robertson SE, Walker S, Jones S, Hancock-Beaulieu MM, Gatford M. Okapi at TREC-3. In: TREC-3; 1996. p. 109–126.

[10] Crane M, Trotman A, O’Keefe RA. Maintaining Discriminatory Power in Quantized Indexes. In: CIKM 2013; 2013. p.
1221–1224.

[11] Lin J, Crane M, Trotman A, Callan J, Chattopadhyaya I, Foley J, et al. Toward Reproducible Baselines: The Open-Source
IR Reproducibility Challenge. In: ECIR 2016; 2016. p. 408–420.

[12] Lin J, Trotman A. The Role of Index Compression in Score-at-a-time Query Evaluation. IRJ 2017;20(3):199–220.

[13] Clarke CLA, Craswell N, Soboroff I. Overview of the TREC 2004 Terabyte Track. In: TREC 2004; 2004. p. 1–9.

[14] Allan J, Carterette B, Dachev B, Aslam JA, Pavlu V, Kanoulas E. Million Query Track 2007 Overview. In: TREC 2007;
2007. p. 1–20.

[15] Allan J, Aslam JA, Pavlu V, Kanoulas E, Carterette B. Million Query Track 2008 Overview. In: TREC 2008; 2008. p. 1–22.

[16] Trotman A. Compression, SIMD, and Postings Lists. In: ADCS 2014; 2014. p. 50–57.

[17] Anh VN, Moffat A. Pruned Query Evaluation Using Pre-computed Impacts. In: SIGIR 2006; 2006. p. 372–379.

[18] Jia XF, Trotman A, O’Keefe RA. Efficient Accumulator Initialisation. In: ADCS 2010; 2010. p. 44–51.

[19] Anh VN. Impact-Based Document Retrieval. PhD thesis, University of Melbourne; 2004.

[20] Mackenzie J, Scholer F, Culpepper JS. Early Termination Heuristics for Score-at-a-Time Index Traversal. In: ADCS 2017;
2017. p. 8:1–8:8.

[21] Broder AZ, Carmel D, Herscovici M, Soffer A, Zien J. Efficient Query Evaluation Using a Two-level Retrieval Process. In:
CIKM 2003; 2003. p. 426–434.


