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ABSTRACT
We present JASSjr, a minimalistic trec_eval compatible BM25-
ranking search engine that can index small TREC data sets such
as the Wall Street Journal collection. We do this for several rea-
sons. First, to demonstrate how a term-at-a-time (TaaT) search
engine works. Second, to demonstrate that a straightforward and
competitive search engine with indexer can be written in under
600 lines of documented code. Third, as a way of providing a sim-
ple code-base for teaching Information Retrieval. We present two
index-compatible versions (one in C/C++, the other in Java) that
compile and run on MacOS, Linux, and Windows.

Our code is released under the 2-clause BSD licence, and we
provide several suggestions for extensions which might be used as
exercises in an Information Retrieval course.
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1 INTRODUCTION
One of the topics discussed at the SIGIR 2019 Open-Source IR Repli-
cability Challenge Workshop (OSIRRC 2019) [7] was the difficulty
of writing a search engine. This difficulty was perceived to be one
reason that open source was important to the community, and also
why some search engine research was conducted outside of the
search engine and in packages such as R. Indeed, the open source
search engines seen at the workshop were thousands of lines of
code in length and complex in their implementations. They were
also written in a variety of languages ranging from C/C++ to Java.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGIR ’20, July 25–30, 2020, Virtual Event, China
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8016-4/20/07. . . $15.00
https://doi.org/10.1145/3397271.3401413

However, building a tool to construct and serialise an inverted
index need not be complex. Equally, implementing a term-at-a-time
(TaaT) search engine can be straightforward given the index.

In this work we set out with the sole objective of writing a
simple and straightforward pair of tools for demonstrating this.1 We
present a tool to build and write an inverted index of the TRECWall
Street Journal collection – in under 300 lines of documented code.
We also present a tool to search that index, rank using BM25, and
produce output compatible with trec_eval.2 The search engine is
also under 300 lines of documented code.

This code is a demonstration of “how to do it” in the simplest
form. It does not include any of the extras seen in a larger search
engine – index compression, stemming, thesaurus, relevance feed-
back, WAND processing, and so on. We present some of these as
possible extensions for those who might wish to use JASSjr as a
teaching tool.

2 RELATEDWORK
In this section we outline the related work in both open source
search engines and in teaching and learning Information Retrieval.

2.1 Open Source
There are many open source search engines, sixteen submissions
were seen at OSIRRC 2019,3 suggesting a healthy open source
community in academia, but there are others used in industry.

Several open source search engines are written in Java and are
based on the Lucene code base – including Solr and Elastic Search.
Both of these are influential in industry where they are used by
many organisations. Several academic and experimental search en-
gines are also based on Lucene including the Anserini [6] family: Sol-
rini (based on Solr), Pyserini (the Python interface to Anserini), and
Elasterini (Anserini on Elasticsearch). Separate from Anserini there
is the ielab submission to OSIRRC 2019. According to Fernández-
Luna who experimented with Lucene in a teaching environment [1],
“Lucene is a "monster", with lots of classes and methods. This is
because it is a large-scale production system, and so students often
are frighten [sic] by it, unsure of how to work with it”. In contrast,
the approach we take is to simplify as much as possible in order
to clarify how to build an indexer and search engine – which we
achieve in under 600 lines of documented code.

IRC-CENTRE2019 [2] is a logistic regression model for document
routing. It is not a traditional search engine.

Recent interest in neural IR has seen open source search engines
such as Birch [27] and NVSM [26]. Neural models of Information

1Available here: https://github.com/andrewtrotman/JASSjr
2https://github.com/usnistgov/trec_eval
3The source code for many of the search engines we discuss here is available indirectly
through the OSIRRC 2019 GitHub repository at https://osirrc.github.io/osirrc2019/
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Retrieval are neither simple nor mature. Consequently we leave it
for others to explain this technology.

Terrier [15], also written in Java, is well known within the IR
community. It is a scalable search engine used for both research
and in industry. It supports many ranking approaches, learning
to rank, fast query processing, and so on. It is not a minimalistic
search engine for learning.

Galago [8] and Indri [20] are both built on the Lemur toolkit.
The latest release of Indri (June 2019) suggests that it is no longer
possible to build it and run it with modern tools (MacOS 10.12+,
gcc 7+, Visual Studio beyond 2012). Galago is current and continues
to be used for research. It supports a complex query language and
ranking models – it is not minimalistic.

PISA [16], written in C/C++, is designed as an extensible im-
plementation of state of the art in efficient search. The algorithms
it uses include the most recent work on dynamic pruning (MaxS-
core [25], WAND [3], Block-Max MaxScore [5] and Block-Max
WAND [9]). It also includes the most recent work on compression
(Partitioned Elias Fano [18]) and SIMD-based compression schemes
such as StreamVByte [10] and QMX [24]. Designed to be state of
the art, a working knowledge of the academic literature is needed
in order to understand the implementation. We make no effort
to be state of the art and include neither dynamic pruning nor
compression, we focus on simplicity and clarity.

Written in C/C++, the ATIRE [23], JASS [11], JASSv2 [22] se-
quence of search engines are written to demonstrate the efficiency
of impact ordering. ATIRE is comprehensive in its inclusion of com-
pression schemes, ranking functions, stemmers, relevance feedback
approaches and so on. JASS, the anytime search engine, demon-
strates how to use impact ordering and Score-at-a-Time (SaaT) pro-
cessing to control server load. JASSv2 is a C++14 re-implementation
of ATIRE and written for clarity – but it is still monolithic. None of
these three are minimalistic.

The Old Dog search engine [17], like ours, takes a minimalistic
approach. The authors suggest that the search engine could rely
on an external column-store for the index, and demonstrate this
by implementing the ranking function in SQL. While we agree
with their general approach (simplicity for understanding), we
believe that the requirement for a SQL database as a back-end is
over-kill especially if the database already has a built-in search
engine. We demonstrate that the index can easily be stored in disk
files serialisable without any extra libraries or tools beyond those
provided by our programming language.

2.2 Teaching and Learning
Azzopardi et al. [1] describe their hackathon efforts to make Lucene
work with TREC collections, and their workshop discussing the
use of IR for teaching and learning. At this event Fernández-Luna
discussed the University of Granada where teaching included index-
ing and retrieval models. They initially used SulaIR, a custom built
learning environment, but found that students found it difficult
to understand both the IR process and how to code it – they later
adopted Lucene. Palchowdhury discussed the dangers of treating
the search engine as a black box, especially when it has its own im-
plementation of otherwise standard ranking functions. We address
these concerns with a minimalistic code base that we believe is
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Figure 1: Layout of JASSjr Index.

easy to understand, TREC compatible, and implements the ATIRE
version of BM25. Di Buccio and also Balog discussed the contents
of their course which includes indexing and searching, and requires
students to implement simple systems. We believe our JASSjr could
act as a model answer in such courses. Indeed, we initially wrote it
as a model answer to our own “write a search engine” exercise.

López-García & Cacheda [13], similar to Fernández-Luna, state
that “Although there are a lot of available and mature IR systems
on the Internet, their code is often too complex to be explained to
students”. They go on to introduce IR-Components, a Java frame-
work for making IR tools. Calado et al. [4] introduce the IR-BASE
framework for building search components. It is not clear whether
IR-Components and IR-Base are available today (2019). What is
clear is that research into IR teaching and learning has shown a
need for a small and simple example implementation of some of
the core technologies in IR – and we provide that for text indexing
and search.

3 JASSjr
JASSjr is a straight-forward implementation of an inverted index
search engine and its indexer all in under 600 lines of code.

3.1 Indexing
The indexing tool, JASSjr_index assumes the TREC file format
where each document is stored within a <DOC> element, and the doc-
ument unique identifier (or primary key) is stored in a <DOCNO> ele-
ment within that. In a single pass, and line by line, JASSjr performs
lexical analysis and builds an in-memory inverted index. The C/C++
version uses a std::unordered_map to store the index, a hash-map
from a term to an ordered pair of < d, ft > (document, term fre-
quency). Primary keys are stored in a std::vector<std::string>
object, while document lengths (needed for BM25) are stored in
a std::vector<int> – equivalent structures are used in the Java
version. Serialisation involves writing these data structures to disk
for later use by the search engine, JASSjr_search. The serialised
index is document-ordered.

Figure 1 is a schematic representation of the index once seri-
alised to disk. The vocabulary file (vocab.bin) is a list of terms and
associated data for each term. There are four parts, the first is the
length of the term, measured in bytes (and stored in 1-byte). The
second is the term itself (stored in a variable number of bytes). Next
is a pointer to the start of the postings list for that term, stored as a
4-byte offset from the start of the postings list file, postings.bin.
The length of the postings list is stored in a 4-byte integer. The Java
and C/C++ versions are index-compatible.

The postings file is the concatenation of all the postings lists.
Each posting in each postings list consists of two parts, d , the



document number and ft,d the number of time that term t occurs
in document d .

From the figure, ls might be 4, s might be the (‘\0’ terminated)
term “jass”, the length of the postings list might be 4 (2 postings at 2
integers each posting).ds,0 might be 6, fs,0 might be 4,ds,1 might be
12, fs,1 might be 3 indicating that the term “jass” occurs in document
6 a total of 4 times and in document 12 thrice. Conveniently, as
the postings list is not compressed, the document frequency of the
term, nt , can easily be computed from the postings list length.

The length of each document (
∑
t ∈d ft,d ) is needed for BM25.

In JASSjr, these lengths are serialised in lengths.bin as an ar-
ray of 4-byte integers, one per document. The length of docu-
ment d , ld , is accessed by block-reading lengths.bin into an ar-
ray, length_vector, and accessing as length_vector[d]. JASSjr
counts from d = 0, the document number of the first document.

The final part of the index, docids.bin is a carriage return
separated list of the document identifiers (or public keys) as found
in the <DOCNO> element of the document. That is, it is a text file
with one DOCNO per line.

3.2 Searching
The search engine uses Term-at-a-Time (TaaT) query processing
because it is simpler to implement and understand than the alter-
natives of Document-at-a-Time (DaaT) seen in Terrier or Score-at-
a-Time (SaaT) seen in JASS. The search engine starts by loading
the primary keys, document lengths, and vocabulary into memory
(but not the postings lists). It then reads a query from stdin and
processes it term at a time.

This processing starts by initialising an array of accumulators,
A, to 0. It continues by loading the postings list for the first term in
the query, computing the ranking contribution (the impact) of that
term to the first document in the postings list, and adds it to that
document’s accumulator, Ad . It does this for each document in the
postings list before moving on to the next – processing the query
terms one at a time. In the case of JASSjr, the ranking function is the
ATIRE variant of BM25 (which always produces positive scores),

Ad =
∑
t ∈Q

log(
N

nt
) ×

(k1 + 1) × ft,d

k1 × ((1 − b) + b × (
ld
L )) + ft,d

, (1)

where N is the number of documents in the collection, nt is the
number of documents that contain term t , ft,d is the number of
times t occurs in documentd , ld is the length of documentd , and L is
the average document length. k1 and b are tuning hyperparameters.

Finally, JASSjr sorts the accumulators from highest to lowest
score and the highest at most 1,000 non-zero accumulators are
output in trec_eval format.

The search engine does not read TREC topic files directly, instead
it assumes a more condensed format (which can be used by some
other search engines, including ATIRE and JASS). That format is
one query per line, where the first token on the line is the query
number (required for trec_eval). As an example, TREC topics 51
would be “51 airbus subsidies”.

If the first token in the query is not a number then it is assumed
to be part of the query and treated as a searchable term. Our GitHub
repository includes TREC topics 51-100 in this format, along with
their assessments (the qrel file) as examples.

4 EXTENSIONS
As a minimalistic search engine, there are inumerable projects that
might be considered, especially if used in a classroom environment.

The JASSjr index is not compressed. Adding a simple but ef-
fective codec such as one from the variable byte family [21] is
straightforward. Sample code is readily available in many of the
other open source search engines. Adding a novel SIMD-based
codec is a substantial amount of work because SIMD codecs are
not easy to code. Adding it to JASSjr is straightforward: Encoding
of the postings lists could be performed just before serialisation,
and decoding immediately after loading from disk.

Adding a stemmer such as Porter [19] involves taking each token
from the lexical analyser and stemming it before adding to the in-
memory index. It is important to remember to also stem the query
terms as they come out of the query lexer otherwise there will be
a vocabulary mismatch. A simple classroom exercise might be to
implement a simple s-stripping stemmer and to add it to JASSjr.

The indexer does not stop words. There are many readily avail-
able stop word lists on the web. Adding stop word support could be
done in two ways. Either check each token in each document after
the lexical analysis and before adding it to the in-memory index, or
check each term in the in-memory index on serialisation.

Everything needed to implement language models [28] with
Dirichlet smoothing or with Jelinek-Mercer smoothing are present.
Complex rankers such as BM25-adpt [14] require more work as
additional postings list processing is required.

The results quality could be improved by adding a Learning-to-
Rank post-filter. This might be done using a NeuralIR model. The
efficiency could be improved using WAND or other early termi-
nation algorithms. Functionality could be increased with phrase
searching and fielded search. These extensions are beyond mini-
malistic model we adopt.

The interface to JASSjr is text-based. We strongly encourage ex-
perimentation in user interfaces both on the web and off. An HTML
interface could be straightforward. A tool to load the documents
given their primary key might be required as an extension.

5 EVALUATION
In this section we compare JASSjr with two other open source
search engines (ATIRE and JASS). We demonstrate that the indexing
process is slower (but reasonable), that the index size is larger (but
not unreasonable), that search time is longer (but acceptable), and
that the quality of the results is near that of other search engines.We
do not evaluate it as a teaching tool because we have an insufficient
number of participants to do so.

Our experiments were conducted on an otherwise idle Mac run-
ning macOS Mojave 10.14.5 on an Intel Core i5 at 3.2Ghz with
24GB 1867 MHz DDR3 RAM using the Apple LLVM version 10.0.1
(clang-1001.0.46.4) with maximum optimisations, and Java 12.0.2.
We compare JASSjr to ATIRE and JASS simply because we have
familiarity with them. This is not intended to be a comprehen-
sive evaluation of open source search engines, which others have
done [12] and continue to do [6], but we observe that ATIRE and
JASS have performed well in prior evaluation exercises.

We use the TREC WSJ collection of 173,252 documents and to-
talling 508.5MB in size. Testing was with the titles of TREC topics



C/C++ Java ATIRE JASS
Indexing Time 18.47s 25.29s 8.96s 14.25s
Search Time (all 50) 1.0688s 2.2666 0.2826s 0.1698s
Index Size 326MB 326MB 67MB 284MB
MAP (from trec_eval) 0.2080 0.2080 0.2128 0.2116

Table 1: Mean time in seconds to index and search the TREC
WSJ document collection of 173,252 documents using TREC
topic 51-100 titles. Index size in MB (1024*1024 bytes), and
mean average precision at top k=1000.

51-100. This evaluation is intended to be indicative of the perfor-
mance on a reasonable sized document collection that might be
used in a learning environment.

Time was measured using the real time from the macOS time
command. Reported numbers are mean times over 5 repetitions.
Timings include start-up, search, and the time to output the top
k = 1, 000 documents in trec_eval format. The quality of the
results was measures using trec_eval, but only mean average
precision (MAP) is reported. The BM25 hyperparameters were set
at the same values for each search engine – the ATIRE defaults.

We make no comment on the efficiency of C/C++ over Java, but
the results in Table 1 show our C/C++ implementation being faster
than our Java one. We discuss the C/C++ version henceforth.

Indexing time for JASSjr is longer than the others, but only by
a factor of 1.3. The ATIRE indexer uses a sophisticated parallel
indexing pipeline and so is the fastest. JASS stores impact ordered
indexes and so must compute the impact scores for each term in
each document while indexing – which takes time.

The search time for JASSjr is longer that that of both ATIRE and
JASS, taking 4 times as long as ATIRE and 6 times longer than JASS.
Both JASS and ATIRE have accumulator management strategies
along with top-k management during search time – which substan-
tially reduce search time. JASSjr uses an array of accumulators and
sorts it using qsort() – neither of which is efficient.

The ATIRE index is the smallest at 67MB. By default ATIRE
uses variable byte compression for the postings lists and a number
of other techniques for decreasing the index size (including short
postings list management). JASS uses Group Elias Gamma SIMD
encoding for the postings and no compression for the vocabulary
or the pointers to the postings lists. JASSjr does not compress.

The results quality (from trec_eval) are comparable. ATIRE and
JASSjr use the same ranking function but different lexical analysers
– JASSjr uses alphanumeric tokens but ATIRE separates alphas
from numerics. JASS and ATIRE differ in quality because JASS uses
pre-computed impact scores quantised into 255 buckets, whereas
ATIRE computes BM25 on the fly (also contributing to some of
the search time). We did not perform statistical significance tests
as the purpose of reporting MAP is to demonstrate comparable
performance is comparable, not that one is better than other others.

Overall, we believe that JASSjr performs well when compared to
ATIRE and JASS. There is clearly room for improvement, but that is
partly the point – these improvements might be used as a learning
exercise as many take few lines of code.

6 CONCLUSIONS
In this work we have demonstrated that it is possible to write a
trec_eval compatible search engine that ranks using BM25 in

fewer than 600 lines of documented C/C++ or Java code. We have
made our code available online and with the BSD 2-clause licence.
An explanation of the indexing and the searching process is given,
and the serialised index is presented in detail. We hope that others
will use this work in their classrooms and extend it. We plan to add
a Python implementation soon.
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