THE CAO EN SURFACE: A NEW APPROACH TO FREEFORM
GEOMETRIC MODELS

G. Wyvill,1 Cao En,»2 and A. Trotman!

The Cao En surface provides a new way to describe freeform models for computer graphics. In essence, it is a
rmapping from a sphere, or hypersphere, to a corresponding, closed, parametric surface. However, the same technigue
can create surfaces of arbitrary topology, perform smoothing by interpolating surface normals, calculate projections
of a surface, define distortions, and interrogate texiure functions. The mapping can be described as the function of a
two-layer neural network. This structure suggests that it could be implemented efficiently in special-purpose parallel
hardware. By separating the concepts of blending and geomerry, the Cao En surface has enabled us to better under-
stand the modelling process. ' '

1. Introduction

In this paper we present a new kind of geometric model for freeform surfaces, the Cao En surface. Why do we need it?

Parametric patches, such as Bezier or B-spline surfaces, can approximate arbitrary surfaces, but in common use, they
have several drawbacks. If you use patches at all, you must decide where the boundaries are to be. Choosing the number and
placement of patches has received little or no attention in the literature, vet it is the first and often the most difficult problem
in a giver design. Most objects consist of one or more closed surfaces. A patch, by its nature, is not closed, so the onus is placed
on the designer to organize a network of patches to fit the desired shape and enforce conditions to close the surface.

An attractive alternative is to use blended, implicit surfaces (Blinn 1982, Wyvill 1986, Nishimura 1985). Soft objects
created this way are guaranteed to be closed, 3D objects and can be incorporated easily into a CSG system (Wyvill 1990). But
the efficient construction of soft objects is still a mysterious art, If you 1ry 10 create a simple skeleton of key points, the resulting
surface will show a bump, roughly corresponding to each key point. Smoother results can be had by choosing key points that
create general quadric fields, and relatively few of these can be combined to produce a variety of shapes. But this is a process
requiring a great deal of skill and an understanding of the underlying mathematics. It is no longer intuitive.

A parametric paich defines a mapping from a finite plane to a bounded, curved surface in 3D space. The Cao En
surface, in its simplest form, can be thought of as a mapping {rom the surface of a sphere w an arbitrary, closed surface in 3D
space. Intuitively, it is like taking a spherical balloon and stretching the surface into another shape. To describe the stretching
operation, we specify a set of points on the original sphere and a cerrespohding set of points on the target surface. The resulting '
surface is guaranteed closed and topologically identical to the sphere. Like other parametric surfaces, it can intersect itself and
it does not necessarily separate inside and outside regions of space. ‘

2. Definition of the Cao En Surface

Let x represent a vector, (%), X,, ..x,,) on the surface of a unit hypersphere. Thus,
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Fig. 1. Each w; corresponds 10 a point t; in the targel space. A point y on the target surface
corresponds to a source point x on the parametric sphere.

Let X, 1 =i = n represeat one of n key points. With K; is associated a weight vector w; = (W, Wiy W, o), and a dlending
function F;.
Let G;, 1 = i £ p represent one of p shape generators. With each G; is associated a weight vector v; = {v;, Vi 5, Vi)
For each K, we can calculate a value

ki = Fi(xowi) (2)

and these k values make a vector, k = (kq, Ky, . k,)
For each G;, we can calculate a value

yi = K.v; )

and these p values make a vector, y = (¥, ¥, ¥p)»-

The vector y represents a position in p-dimensional space that is a mapping from the vector x in m-dimensional space.
The set of points y that correspond to the set of all points x on the surface of the hypersphere defines a Cao En surface.

In the case where m = p = 3, this defines a mapping from a sphere 10 a closed surface in 3D using n key points.

For computer implementation, it is convenient to regard the vectors w; as comprising a matrix W of points disiributed
on the surface of a hypersphere which we call the blending matrix. Similarly, the vectors v; comprise a matrix V, which we cail
the shape matrix.

3. Understanding the Definition

Each w, represents a point on the original hypersphere. The dot product x-w; is a measure of how close the point x is
10 w,. The blending function F; determines how quickly the influence of w; drops off as x moves away. For a given i, the p
dimensional vector & = (vy; Va;, ...Vp;) rEpresents a point in the target space corresponding to the point w;. The Cao En surface
does not, in general, include ¢, but will normally pass close to it (see Fig. 1). We can think of the points w; as source points that
map approximately to the corresponding target points-t;. This fits with the idea of stretching a rubber sphere intc a new shape.
We stretch it to try and make each w, move 1o t; and the result is a smooth surface that approximates this fit.

4. The Blending Function F;

Every pointy on the target surface is a weighted sum of the shape vectors ¢, 1 = i < n. For a point x close to some w;, we
would expect the corresponding point y to be close to t;, This is achieved if k; is equal to one when x ="w; and close 1o zero
when x is reasonably distan: from w;. The dot product x-w; is a cosine function of the angular distance from % 10 w;, The
purpose of the blending functior F; is (o change this cosine function into something closer to our needs. In principle, you can
have a different F, for each key point. So far, we have not needed such flexibility. If we introduce a parameter g; for each key
boim, then the function
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Fig. 4. The neural network form of the mapping function.

In each case, a suitable value of g; must be chosen. The effect of varying this value is shown in Fig. 2 for the simple case where
W is equal to V. The six target points lie at the points where the coordinate axes intersect the unit sphere and the vaiue of g; for
each target point is the same. The six shapes correspond to values of g; from 1 to 6. The value g; = 1 produces the most
rounded shapes, and g; = 6, the most spiky.

1t is also possible 1o use a rational blending function where

k; = (x.wi)/i Fi(x.wi) (6)
=1

Figure 3 shows the effect of altering q; in this case. The target points are the same as in Fig. 2. As the value of g; increases, the
shape becomes less round, approximating an octahedron. '

5, Local Control

The functions of (4) and (5) above produce nonzero k; values even when the points x and w; are widely separated.
Because of this, the whole surface is affected by a change in any w.. If we want more local control of shape, we have to choose
a function Fy(s) that falls to zero at some particular value of s = x-w;. This is an area that needs further investigation. The
surface could be generated more efficiently if only a subset of the key points were needed for each calculation.

.

6. Neural Network

We can visualize the mapping as the effect of an artificial neural network (Fig. 4). The key points and shape generators
form two independent layers of nodes. The w and v vectors are then seen as weights for the inputs of these nodes. The Cao En
surface was originally conceived as something produced by a neural network (Hertz 1991) and the visualization is s0 convenient
that we have come to refer to the mapping and associated ajgorithm as Can En’s network or simply the network.

From this visualization, we can see that 2 Cao En surface could be produced efficiently with parallel hardware.

7. Surface Normals

For rendering purposes we need to calculate the normal at any point of a Cao En surface. For this calculation, we
consider only the simple case of mapping a sphere to a surface embedded in 3D space. In polar coordinates, a point x = (%1, Xy,
%3) on the surface of a sphere may be represented by the angles 6, ¢, where
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X1 =c0s(8) sin(e), X, =sin(8) sin(d), X3=cos(o) o

Small movements, 86 and S¢, lie in the surface of the sphere and the corresponding vectors 3y/8 or dyide lie in the arget
surface. The desired normal is therefore in the direction of the cross product

= ==X ®)

The components of (8} are easily calculated, e.g.

8yi _8y1 8%y  8y18x , 8y1dx3

et NS850 B 9
86 5%, 50 Oxp 50 bx3 56 ®
and
SX] _ . .
-gé- = - sin(6) sin(¢) a0
and so forth.
Using (5) for our F, we can write 3
. qj(z xiwl}-l)
yg=2 vg€ ,g8=1123 (1)
j=1
Differentiating with respect to x; we have
)
Sy n - qi(. xiwij'l)
.._._g.,:EVg]qJWhJe =1 ,h=1,2,3 (12)

Using (8), (9), (10), (12), etc., we can calculate N for any point on the surface. If we start from the vector %, we can avoid
trigonometric functions since

. —_2
sin(0) = Vi1 etc. (13)

Notice that in (12), 4;, Wy; are constants. This means that éyg/éxh can be calculated from the same network by replacing each Vie
by VigdiWpj

In many cases, we can avoid an exact calculation of the normal. I, for example, we calculate the normal for the key
points (x = w;}, we can use each of these normal vectors in place of the target vectors, t. The modified network will calculate an
approxmation to the surface normal for any input vector x, using the same algorithm that calculates the shape,

8. Projection onto & View Plane

Projections of a Cao En surface can also be made directly with the originai network, Let z = (z, 7z, -Zp) be a vector in
the target space. Then the component of y projected onto z is

P n

p
Y.z = Z y_lzj = 2 klvjlzj ’ (14)

=1 =1 i=1
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Fig. 5. Implicit surface construction. The thick lines represent the hyperplanes, the thin lines represent the perpendiculars.

Reordering this sum, we have

n P
V.2 = z k; Z ViiZj a5

=1 j=l

and for each i we can pre-calculate

p
Vi = z Vjizj

i=1 (i6)

This amounts to saying that we can construct a new shape generator G,, whose inputs are v;, and whose cutput is y -z,
the projection of y onto an arbitrary axs.

Similarly, we can construct a pair of generators G, Gg, where «, J are vectors representing the perpendicular axes of a
piane coordinate system. The same network calculates the projected coordinates. If we choose the «, B plane as our screen
coordinates, then we produce the final view directly from the network.

In the case of the perspective transformation, things are a little more complicated. We can, of course, create a true
perspective projection using homogenized coordinates but that requires an exira division when each screen point is eventually
displayed or processed. A neater solution is to calculate the screen coordinates for each key point and use these in place of the
original t; vectors. The network then interpolates these values 10 give an approximation to the true perspective projection of
each v.

9. Implicit Form

Like other parametric surfaces, the general Cao En surface can intersect itself, turn inside out, and exhibit cusps and
other peculiarities. For this reason, it cannot be transformed into an imphicit functional form such that every point in space can
be clagsified, uniquely, as inside, outside, or on the surface.

In certain special cases, however, it is possible to construct an implicit form. The following construction works for
convex surfaces.
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Fig. 6

The same mapping is used as for the ordinary parametric surface, and the same network describes it. But instead of
mapping from a unit hypersphere onto a freeform surface, we are mapping from one hyperspace to another. Each source point,
X = (Np, Xp, Xy}, MAPS 10 a target point y = (vy, ¥, ~¥p): and the point x is considered to be inside the surface if and only if y
is inside the hypersphere y* = 1. We assume that m = p. For simplicity, p can equal 1 and the inside/outside test is reduced to
the comparison y; = s; s is any number greater than 1.0. ‘

Assume that the desired shape is approximated by a convex polyhedron and that the perpendicuiar from some center
point to each bounding hyperplane meets that hyperplane at the target point. Figure 5 shows the construction. Let the points
where these perpendiculars intersect the hyperplanes be represented by vectors t, and define the blending matrix W by

W, = ti / t?’ amn

If the ocutput points are chosen o lie on the unit hypersphere, then the same network will calculate the implicit form of the
surface.

A more general impiicit form would be very valuable, but we do not yet know how 10 characterize the subset of Cao En
surfaces that can be expressed implicitly.

10. Rendering Methods
To date, we have used three methods of rendering Cao En surfaces in 3D.
10.1. Ray Tracing

For the special case of convex surfaces, the implicit form can be ray traced using ray marching (Perlin 1989). A bounding
sphere is placed around the surface and the two intersection points with this sphere are found. Somewhere between these points
an intersection may occur. A binary search is made along the ray between the sphere intersection points in an attempt to find a
point inside the surface. The search examines the mid- -point of the range. If this is outside, it divides the range into two halves
and searches these recursively until an inside point is found or the range of search is below some limit. If an inside point is
detected, then the intersection points can be found by means of an ordinary bisection algorithm along the way. This finds all
intersection points because the implicit surfaces are strictly convex and can have only twe intersections. By finding both intersec-
lion points we can use the Can En surfaces with CSG (Roth 1982). Figure 6 shows such a ray traced surface.
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10.2. Polygon Mesh

We cover the original sphere with a fine polygon mesh and map each polygon vertex to its corresponding point on the
Cao En surface. The result is a polygon mesh that approximates the desired surface, and it can be rendered by standard methods.
This approach is not intended for final rendering but it enables us to see models quickly using the graphics pipeline in a Silicon
Graphics Personal IRIS computer. The teapot in Fig. 7 was generated with polygons from four Cac En surfaces. The original
teapot data contained only 104 target points. It is worth pointing out that the lid and body of the teapot are not surfaces of
revolution. They are complete Cao En surfaces and the key points have only sixfold symmetry.

10.3. Depth Buffer

A depth buffer is stored for the screen and a set of sample points is defined on the sphere. For each sample point, the
network is applied (o create a point on the Cac En surface. The depth buffer is updated if the depth associated with the new
point is less than that stored for its pixel. In the case where a pixel is "skipped” between adjacent sample points, an intermediate
sample point is generated. This process is not very efficient and further work on a scanline renderer is needed.

11, Alternative Topology

The Cac En surface, as defined in Section 2, might better be called the spherical Cae En surface because it is topologi-
cally equivalent 1o a sphere, or hypersphere. It is also possible to use the same network to define surfaces with other topology.
For example, a point on a torus car: be described by a pair of angles 6, ¢ as shown in Fig. 8. And if we are avoiding explicit
trigonometric functions, we can represent such a point as a vector x = (X, %o, X3, X4}, Where

X1 = c08(8), X7 = sin(B), X3 = cos(¢), X4 = $in{o) . (18)

The dot product x-w, provides a measure of distance between points x and w; and we can use the same network to
generate surfaces topologically equivalent to a torus. The target points would, of course, be defined in 3D. Similarly, we can
construct special coordinate systems for other topologies. Because the Cao En surface is equally well defined in any number of
directions, this is not difficult )
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Fig. 8. A point @ on the torus is defined by angles ¢ and 6.

It is also possible to define a mapping that is independent of the surface topology. If you project the surface of a sphere
0n10 a plane, you produce a circle in which each poiat represents two points on the original surface. Similarly, you can project
the surface of a 4D hypersphere onto a 3D space and create a sphere within which every point represents a pair of points on the
original hypersurface.

Any surface drawn inside this sphere can be used as an input surface for the network and it can be used to generate a
corresponding freeform surface in 3D.

12, Applications

The Cao En surface was conceived as a way to describe freeform shapes in 3D. The network, however, defines a very
flexible and general transformation function capable of many other applications. Here we list a few that we are actively studying.

12.1. Metamorphosis

When a metamorphosis is described in an animation sequence, it is necessary and usually difficult to specify the
correlation between points on the changing objects,

If, however, two objects are described as Cao En surfaces, they are already related because they are both derived from a
sphere. The transformations can be effected simply by aliowing the various w; and t; values to change from the one shape into
the other. Even if one model has more key points than the other, this can still be done. Any kev point for which the elements of
the corresponding v; are all zerc has no effect on the surface. So these "emply" key points can be changed into the extra ones
required.

12.2. Distortion

If the network is used as described in Section 11 to map from the surface of a 4D hypersphere into 3D, it actually
_ describes a distortion function in 3D. Such a function has an arbitrary number of controls.

12.3. Direct Reflection and Refraction
Just as the network will calculate surface normals directly, it can be used 1o calculate the direction of a reflected or

refracted ray directly. The incident ray direction becomes part of the input vector. Similarly, lighting calculations based on the
cosine law can be performed by the network so that the cutput can be a shaded, projected image.
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12.4. Texrure Mapping

Clearly, any texture that can be applied to the original sphere can be mapped austomatically onto the target surface. In
some cases, we can make almost the same shape using different key point positions w; but corresponding to the same shape
vectors ¢, This implies that we are mapping different parts of the original sphere to the same parts of the freeform surface. If the
sphere is textured, then we have a means to decide how and where the texture will be streiched to fit the target surface.

Another possibility is 10 use one network (o create the shape and another to create a shape within a 3D texture space.
Since beth are mapped from the sphere, the texture sampled in one space can be appiied to the other. This sort of approach
could provide a high degree of control of the way a texture stretches.

12.5. Image Compression

The Cao En surface can be used for image compression. A bit map is a collection of scalar values R, G, B. The network
can be used to store a collection of R, G, B triplets from the screen and then reconstruct the values berween these points,

The target points are specified as (x, y, R, G. B). These are mapped to points on the surface of a 5D hypersphere. Then
the network is evaluated for anv point on the surface of the hypersphere x, v, and the R, G, B values of the original bit map are
calculated.

The choice of (%, v, R, G, B) is very important. The network will interpolate between the key points. If points on color
boundaries are given, the network can be used to reconstruct the smooth regions of the image bounded by the key points. In
regions of high frequency more target points should be used thap in areas of low frequency. The density of target poinis ar any
area in the image wiil depend on the complexity of that area of the image. This density is ruled by the Shannon (1948) sampling
theorem.

The tatget points can be saved 1o disk as a representation of the bit map. If very few key points are specified, the image
reconstruction will be very bad. With more target points the reconstruction will be better. The optimal number of target poinis
is frequency band limited. At some limit, adding more target points will not improve the image. The network can he used to
anil-alias a bit mapped tmage by evaluating the image at sub-pixel positions.

13, Discuassion

The Can En surface is built in the simplest way; every point on the surface is expressed as a weighted average of the
target shape vectors t,. Other parametric shapes, such as Bezier patches, are often expressed as a weighted sum of cubic base
functions {Foley 1990). Similarly, Soft objects (Wyvill 1986} are blends of spheres. In both cases, the blending and the geormetry
are defined together. The Cao En surface provides a modelling scheme in which the blending characteristics and the shape of
information are encoded in separate layers of a network. It is this separation of blending and geometry that makes it so versatile.

14, Conciusion

A new technique for geometric modelling of freeform surfaces has been developed. We have named it the Cao En
surface, after its inventor.

Cao En surfaces provide a simple, potentially parallel algorithm for generating a parametric surface of arbitrary
complexity and any topology. They avoid the need for surface patches.

The Cac En surface is generated by an algorithm represented by an artificial neural network. The same network can
generate projections and surface normals. Even texture mapping and Hghting calculations can be folded into the network process.

For convex surfaces, an implicit form can be created from the same network. This is potentially useful in ray tracing and
CSG applications.
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ANIMATED ROTATIONS USING QUATERNIONS AND SPLINES
ON A 4D SPHERE

G. M. Nielson and R. W. Heiland

A new method for animating rotations is presented, Given a sequence of orientations of an object, this method
allows for the computation of intermediaze Ppositions which represent @ smooth transition from one 1o the next. The
method uses the quaternion representation of a rotation matrix and @ new curve interpolation scheme for points on
a four-dimensional sphere.

1. Introduction

Given a sequence of orientations as shown in Fig. 1, it is often desirable to find intermediate otientations which
represent smeoth transitions from one orientation to the next. The orientation of an object relative to a particular coordinate
system can be represented by a rotation matrix

Y11 712 i
R=]ra1 raz ras

{(1.2)
F31 rzz raz

where the orientation is achieved by matrix multiplication. That is,

{oriented object} = {object}R.

Computer Science, Arizona State University, Tempe, Arizona 85287-5406. Published in Programmirovanie, No. 4, Pp.
17-27, July-August, 1992. Original article submitted June 1, 1692,

0361-7688/92/1804-0145812.50 1992 Plenum Publishing Corporation 145




