
Ray-Tracing Soft Objects 

Geoff Wyvill and Andrew Trotman 

Abstract 

Soft objects, also known as metaballs or implicit surfaces, are deformable free-form 
shapes represented as a surface of constant value in a scalar field. 

We present a simple, robust method for ray tracing soft objects defmed by polynomial 
field functions. The method is guaranteed to find all the intersections of a ray with a 
soft object. Thus it is suitable for use in eSG systems where all intersections may be 
required. 

Keywords: geometric modelling, ray tracing, soft objects, animation. 

Introduction 

Soft objects are solids described by scalar fields. A scalar field is a function that has a 
real value defmed for every point of space. The surface of the soft object is a set of 
points that have the same field value. For this reason, they are sometimes called iso
surfaces. Soft objects have been described by Blinn (1982), Nishimura (1985), Wyvill 
(1986b) and others. Both Blinn and Nishimura us~d a form of ray casting to render 
their surfaces but both algorithms are of an ad hoc nature and have not been proven to 
find the intersection of any given ray with the surface. Our earlier papers on soft 
objects all used polygonal approximations for rendering (Wyvill1986a, 1986b, 1987a, 
1989). Kalra (1989) has described a provable algorithm for ray tracing, but it is more 
complicated, and (we believe) slower than the one presented here. Also, Kalra's 
algorithm, as described, fmds only the nearest intersection of a ray with a soft object. 
ill constructive solid geometry, a shape is built by adding and subtracting volumes. It 
often happens that an intersection point of one primitive object has disappeared in the 
fmal model because something has been subtracted from that region of space. ill cases 
like this, we must fmd all the intersections and eliminate the ones that we don't need. It 
often happens that the correct intersection is not the nearest to the eye. 

KaIra's algorithm appears to be more general than ours. They establish a criterion to 
determine whether a Newton's iteration will converge in a given region of space. If it 
does not, they divide the region until it will and apply Newton's method in each 
region. We have restricted our field functions to a polynomial type for which we can 
guarantee solvability without resorting to space division. Thus we believe our method, 
while less general, is more practical in most cases. 

T.-S. Chua et al. (eds.), CG International ’90
© Springer-Verlag Tokyo 1990



470 

The field function 

The purpose of using soft objects is to model free-form surfaces. These surfaces are 
usually edited by hand and it is important that we can exercise local control of their 
shape. Sometimes we need hundreds of data points, and it is important that we can 
calculate the field value at a point without having to refer to all of them. For this 
reason, we use a field function that is guaranteed to have only a local effect. Our basic 
field function is calculated from a set of key points as follows: 

Key points form a kind of skeleton around which the soft object is drawn. We regard 
each key point as a source of energy, a hot spot around which the temperature drops 
off as a function of distance. The field value due to two or more key points is the sum 
of the values due to the individual key points. To achieve local control, the field 
produced by each key point has to conform to certain rules. In particular, the field 

function, fer), and its derivative: : must drop to zero at some special distance, R from 

the key point. R is called the 'radius of influence' of a key point: the distance at which 
the field contribution falls to zero. In earlier work (WyvillI986a, 1986b, 1987a) we 
described a suitable function as a cubic in r2: 

6 " 2 r r r 
C(r) = - 0.4444 R6 + 1.8888 R" - 2.4444 R2 + 1.0 ,r ~ R 

o , r> R (1) 

where the coefficients were chosen so that the volumes of the soft objects behaved 
reasonably when key points were combined. The surface of our soft object lies by 
definition everywhere where C(r) = magic. The value of magic is chosen by evil art 
but in most cases, if we are using equation (1), magic = 0.5 works well. 

In this paper, we demonstrate that this field function can be ray traced with a provable 
algorithm for any number of key points. The method can also be extended to non
spherical keys. That is key points for which the effective 'radius' is not simply the 
geometric distance from the key point, but may depend on direction too. 

The algorithm 

Because our field function is a polynomial in r, the ray intersection calculation for a 
single key is done by solving a simple polynomial. The geometry is shown in Fig. 1. 
For a ray from eyepoint e in a direction v the line is given by the parametric equation: 

p=e+vt (2) 

For a key point at k, the distance from k to p is r = Ip - kl and the field value is: 

f = C(le + v t - kl) (3) 

where CCr) is given by equation (1), provided we are within the radius of influence of 
k. The significant point here is that f is a polynomial of degree six in t, and all the 



471 

coefficients are calculated from the geometry. If there are more key points, then the 
field is given by the sum of the effects of the individual keys: 

f = LC(le + v t - kil) 
i 

e 

(4) 

Fig. 1. Ray geometry. 

Since this is still a polynomial of degree six, we can solve it for f = magic by standard 
methods. We use Laguerre's method which is guaranteed to find all the roots and, in 
the case of single roots, has third order convergence. Details of this method can be 
found in standard texts on numerical analysis; see, for example, Ralston (1965). 
Substituting the value of t back into (2) gives the point p, the intersection of the ray 
with the surface. 

The function defined in (2), of course, is polynomial only within the radius of 
influence, R. So the simple polynomial solution works only in regions where we 
remain within the radius of influence of all the key points being considered. 

In the general case, the ray will pass into and out of the radius of influence of key 
points. Each radius of influence defines a sphere around a keypoint and we find the 
points of intersection of the ray with all of the bounding spheres. Of course, in many 
cases, most of these spheres will be well away from the ray and it will not be necessary 
to check them for intersection. Spatial sorting (Wyvill1986a) can eliminate most of 
these tests and this will improve the efficiency. Here we are mostly concerned with 
provability. 

The intersection points are sorted according to distance from the eyepoint, e. Between 
any pair of points, the ray neither enters nor leaves a radius of influence so we can 
check for intersections in that interval using the simple polynomial solution. Each of 
these intervals is defined by an upper and lower limit of the parameter, t, of equation 
(2) and the solutions of the polynomials are also values of t. If any solution is outside 
these limits, then this is not an intersection in that interval and it can be discarded. 



472 

o 

o 
e 

Fig. 2. Between any pair of intersections with bounding spheres, the field 
is influenced by a fixed set of key points. 

The algorithm can be summarised as follows. 

1 Find the intersections with all bounding spheres and order them along the ray. 

2 Solve the polynomial equation (4) for f = magic in each interval. 

3 Return those intersection points that fall within each interval. 

Quadric surfaces 

The basic algorithm can be adapted easily to handle primitives that are not spherical. 
We represent a point in space by a vector 

u = (~) and we write its transpose, (x, y, z, 1) as u', 

The general quadratic fonn: 

Q=u'Mu (5) 

is a scalar value, a function of x, y and z, where the coefficients of each tenn are 
defined by the elements of M. It is convenient to regard Q as analogous to r2 in the 
equation of a sphere and we can use the same cubic in Q to manufacture a soft object 
field of general quadric shape. The surface Q = R2 gives us a bound and our algorithm 
can be extended to ray trace soft objects made by combining these shapes. 

The quadric surfaces include ellipsoids, cylinders and cones and provide a convenient 
extension of the shapes we can make using only a few primitives. This extension was 
used by Blinn (1982) and it is important to note that our algorithm is not limited to 
spheres. 



473 

Negative key points 

Blinn (1982) also introduced negative weights for some key points enabling holes and 
concavities to appear in the soft shapes. Use of such points can create rather 
complicated and sharply curving shapes. It is worth pointing out that these negative 
key points are handled equally well by our algorithm. 

CSG operations 

The soft object ray tracer has been incorporated into our Katachi solid modelling 
system at the University of Otago. Katachi supports set operations on volumes 
described by combining many primitive types (Roth 1982, Wyvill 1987b, 1988). 
Because we find all the intersections of a ray with the soft object, we are able to 
incorporate it into the solid modelling scheme. We can add and subtract the soft 
objects to and from any of the other primitives of Katachi. 

Figures 3 and 4 illustrate all these things. A teapot has been built from five quadric 
key points, one of them negative. In Fig. 3, it has been coloured with a symmetrical 
synthetic marble texture. In Fig. 4, the teapot is given a metallic appearance and is 
shown with half of a mould from which it could have been cast. The mould was 
created in the CSG system by subtracting the teapot from a block. 

Conclusion 

We have developed and tested a robust and simple method for ray tracing soft objects 
that is guaranteed to find all the intersections of a ray with an implicit polynomial 
surface defined by key points. 

The method has been tested in a CSG environment and works well. 

Acknowledgements 

The computer graphics project at Otago has been jointly funded by Otago University 
and the University Grants Committee. Our thanks also go to Television New Zealand 
for loan of equipment and studio time. 



474 

Fig. 3. Textured teapot. 

Fig. 4. CSG operations on soft objects. 



475 

References 

Blinn J (1982) A Generalization of Algebraic Surface Drawing. ACM Transactions 
on Graphics 1 : 235 - 256 

Kalra D and Bar AH (1989) Guaranteed Ray Intersections with Implicit Surfaces. 
Computer Graphics (proc. SIGGRAPH 1989) 23 (3) : 297-306 

Nishimura H, Hirai M, Kawai T, Kawata T, Shirakawa I and Omura K (1985) Object 
Modeling by Distribution Function and a Method of Image Generation. Journal of 
papers given at the Electronics Communication Conference '85 J68-D (4) (in 
Japanese) 

Ralston A (1965) A First Course in Numerical Analysis. McGraw Hill 368-371 

Roth SD (1982) Ray Casting for Modeling Solids. Computer Graphics and Image 
Processing 18 : 109-144 

Wyvill BLM, McPheeters C and Wyvill G (1986a) Animating Soft Objects. The 
Visual Computer 2 (4) : 235-242 

Wyvill G, McPheeters C and Wyvill BLM (1986b) Data Structure for Soft Objects. 
The Visual Computer 2 (4) : 227-234 

Wyvill G, Wyvill B and McPheeters C (1987a) Solid Texturing of Soft Objects. 
IEEE CG&A 7 (12) : 20-26 

Wyvill G, Ward A and Brown T (1987b) Sketches by Ray Tracing. Computer 
Graphics 1987 (Proc. CG International '87, Karuizawa) 315-333 

Wyvill G and Sharp P (1988) Volume and Surface Properties in CSG. New Trends in 
Computer Graphics (Proc. CG Intemational '88, Geneva) 257-266 

Wyvill BLM and Wyvill G (1989) Using Soft Objects in Computer Generated 
Character Animation. In: Computers in Art Design and Animation, Springer Verlag 
283-297 



476 

Geoff Wyvill graduated in physics from 
Jesus College, Oxford, and started 
working with computers as a research 
technologist with the British Petroleum 
Company. He gained MSc and PhD 
degrees in computer science from the 
University of Bradford where he lectured 
in computer science from 1969 unti11978. 
He is currently senior lecturer in 
computer science at the University of 
Otago. He is on the editorial board of The 
Visual Computer and is a member of 
SIGGRAPH, ACM, CGS and NZCS. 

Address: Department of Computer 
Science 
University of Otago Box 56 
Dunedin, New Zealand 

Andrew Trotman is a graduate student at 
Otago University. His research interests 
include constructive solid geometry and 
computer animation. He completed a BA 
degree in computer science in 1988 and he 
is a student member of ACM and 
SIGGRAPH. 

Address: Department of Computer 
Science 
University of Otago Box 56 
Dunedin, New Zealand 


