PASCAL
- POLY

VERSION 2.21
UUUUUUUUUUU

asren

£rR YAV
FEwapew

X WES
EAREREBET RS
bErEE R EEEE
PR R ot

EEEax SRk
N R
FEE St o 20
e Eam
A RS EaRE
EAREE RS ERRY
PR

L b
TERER RN REEY
R DDA
Eay Bk
ERERERERAER
AR

T ECEAEERE

Y EM A w A
EEwed TEFFP
Wk S EEAY
Ep FEL
BB w
SR RTER
R B

reaTEd
EEEbRTR
PR e
BT
AR ERRAL XSRS
R EEEERS L
Sakaaa TRA
BE¥

L S ARl
KRS RS L ER
FARSECBEFLT

HEE AR
A AARERFST
B RS R R
L HEF
Ae AR REE
LRI A SRS 2]

AR TR XX

PRERRXNRERE
GEpR sy EER

retrieval

in any form or by
of POLYCORP

mechanical,

a
recording or otherwise

in

.

stored
electronic,
permission
New Zealand Limited.

transmitted
COPYRIGHT AUGUST 1984

New Zealand Limited
Talex PO LHT NZ3740 Atin Progeni

Progeni House, 14/18 Pretoria Street

Telephone (04} 693-302. P.O. Box 30-243, Lower Hutt

means,

photocopying,
POLYCORP NEW ZEALAND LIMITED

has been expressly prepared by POLYCORP

New Zealand Limited.
No part of the publication wmay be

reproduced,
system,
without prior

The material presented in this document
any

CONTENTS

INTRODUCTION

PREPARING A PASCAL PROGRAM

STANDARD PASCAL

TRYING OUT PASCAL

OMEGASOFT PASCAL ON POLY

5.1. Extensions to Omegasoft Pascal
5.2. Conversion of Existing Programs
5.3. Character Set

TEXT SCREEN CONTROL CHARACTERS

6.1. Use of Teletext Colours

6.2. ASCII Control Codes

APPENDICES

7.1, Unpackaged Omegasoft Pascal

7.2. Using Software Interrupts in Pascal

7.3. Current Restrictions of Omegasoft Pascal

Version 2.21
7.4. Input/Output Examples

. PAGE

10

i1
il

14 -

16

1. ‘ INTRODUCTION

Cmegasoft Pascal is supplied for POLY in two forms:

(i} A single-command method of compilation which is easy to use and
requires the minimum of user interaction.

{i1) For users with a more extensive knowiedge of the proces:ins
involved, there is a version which alTows more flexibility.
However, the compilation process is much more complex than with
the single-command method. (See Appendix 7.1).

There is no difference in the Pascal language supported, only in the
compilation process. '

Omegasoft Pascal programs are written using the text editor resident on the
POLY. The programs are then SAVEd on disk and the Pascal compiler executed.

Compilation of a Pascal program consists of three phases:
1. Compiling the Pascal source code into assembler code.

2. Converting the assembler code 1into 6809 relocatable machine
tanguage object code.

3. Linking the machine language program with the system subroutines
used in the program.

As the Pascal program is compiled into 6809 machine language, the resulting
compiled program executes extremely guickly.

2. - PREPARING A PASCAL PROGRAM

The POLY Text Editor is described din the POLYSYS Utilities Movual.
Basically the steps to use it are:

1. Load the text editor.
This is done by entering
TEXT
from either DOS or BASIC
Ready
is displayed in CYAN.
2. Type in the Pascal program.
The editing commands are described fully in the POLYSYS Utilities
Manual. Note that the line numbers shown on the screen are for
editing purposes only and are removed when the program is SAVEd
onto disk.
3. SAVE the program onto disk.
Use the SAVE command. This saves the program as filename.TXT.
For example:

SAVE "MYPROG"

saves your program as MYPROG.TXT.

3. STANDARD PASCAL

The files supplied for the standard Pascal are:

PASCAL.CMD A DOS command which sets the standard options and
controls the complete compilation process.

LL.CMD The Tinking ltoader.
PASLNK.RO A Tinking file.

PC.CMD The Pascal compiler.
RA.CMD The relocatable assembler.
RE.CMD The re-enter command.
RL.RO The subroutine library.

These files occupy approximately 340 sectors on disk and must be resident
on the disk being used for the compilation.

To compile a Pascal program, enter DOS mode and run the Pascal compiler.
The syntax of the command is: :

PASCAL filename [SI[DI[L]

The filename is the name of the source file previously saved on disk. The
default extension is .TXT. The resulting machine language program will be
stored as a file with the name filename.CMD.

IT S is specified then the compiler checks the program for syntax errors
and po machine language program is produced.

If S is not specified and errors are found during the compile, then the
machine language program is not created.

If L. is specified, then a 1isting of the compilation on the printer is
made.

1f D is specified as well as L, then the Tisting 1is displayed on the
screen, not the printer.

For example:
PASCAL MYPROG SL

compiles the source file MYPROG.TXT checking for syntax errors,
producing a 1Tisting on the printer.

PASCAL MYPROG.TXT LD

compiles the source file MYPROG.TXT, displays & listing on the s¢ - »n,
and if no errors are found, creates the object program MYPROG.CMD.

Following compilation, the object program may be run by simply enfering the
filename.

For example:

MYPROG

After a program has been run, it may be vre-run by using the re-enter
command. ‘

For example:

MYPROG

RE

" will run MYPROG twice.

4. TRYING OUT PASCAL

The foliowing example Pascal program 1is supplied on disk in the :ile
PRIMES.TXT:

program fastprimes{INPUT,0UTPUT);
{(* find the first 1229 primes *)
const n=1229; nl=35; (* sgqrt of n *)
var i,k,x,inc,Tim,square,lin;: integer;
prim: boolean;
p,v: array{.0..n.) of integer;
begin
writeln;
write{2:8,3:8); lin:=2;
x:=l; inc:=4; Tim:=1l; square:=9;
for 1:=3 to n do
begin {* find next prime *)
repeat x:=xtinc; inc:=6-1inc;
iT square<=x then
begin Tim:=Tim+l;
v{.1im.}:=square; square:=p(.1im+l .)*p{.1im+1 .)
end;
k:=2; prim:=true;
while prim and (k<lim) do
begin k:=k+1;
if vk <x then vk):=v(.k.)+2%p(k.);
prime=x<>v(k.)
end
until prim;
if i<=nl then pl.i.):=x;
write {x:8); lin:=Tlin+l;
if 1in=9 then
begin writeln; 1in:=0
end
end;
writeln
end.

To edit the program, enter
TEXT,PRIMES
H¥hen complete enter

LIST

The file will be displayed on the POLY with line numbers., Move the cursor
up to Tine 2, change 1229 to 1000 and press <ENTER>. Repeat for Tline 3.
Then, enter

SAVE "NEWPRIME"

(%]

and the altered file will be saved as KEWPRIME.TXT.

Enter
PASCAL NEWPRIME L
When the compilation is complete
B0S
is displayed. Enter
| NEWPRIME

to run the program.

Shift <EXIT> may be pressed at any time to terminate the program and return
the POLY to DOS mode.

5.1.

(1)

(1)

(i11)

{iv)

OMEGASOFT PASCAL ON POLY

Extensions to Omegasoft Pascal

The device AUXOUT documented in the Omegasoft Pascal Manual as “he
printer, has not been implemented. To print on the printer, open a
text file with .PRT as the extension. When the file is closed, it will
be printed and deleted.)

The Omegasoft Pascal compiler is intended to operate on single-user
systems. Since a POLY network is a multi-user system, Pascal on POLY
has been exitended to provide for the Tocking and unlocking of random
files, thus allowing more than one user to share the same random file.
Two standard procedures, LOCK and UNLOCK, are provided so that when a
random file is being accessed, the file may be Tocked to prevent
access to spurious information. The syntax for calling these
procedures is:

LOCK{device variable)
UNLOCK {device variable)

The LOCK statement locks the specified random file for 60 seconds., If
the specified file is already locked, or if a SEEK 1is executed when
the file has been locked by another user, runtime error 134 will be
generated. Since the user will normally want to trap this error so as
to retry the LOCK or SEEK operation until the file is unlocked, it s
necessary to disable runtime I1/0 checking and use the function DEVERR.
Following a successful seek operation, the file should be unlioccked. An
example using these procedures appears in Appendix 7.5.

When accessing an existing random file, it should be opened with the
update option. The disk door should not be opened while the file s
open, otherwise runtime error 132 {disk door opened while file open
for write) will occur even if the file is being used for input only.

If runtime error checking is enabled and a runtime error occurs, the

~error will be printed with the corresponding line number in the Pascal

source program. This facility has been added for ease of debugging. In
order to minimise the code generated to support this facility, only
executable Pascal lines {marked with an * on the 1listing) generate
runtime Tine numbers. Thus if an "include file" (see page 1-14 of the
Cmegasoft Pascal manual) is specified, only one line number will be
generated for the whole file. Because of this facility, the global and
Tocal stack frames in the runtime environment for POLY Pascal are 12
bytes Yong rather than 10 (see Appendix € of the Omegasoft Pascal
manual}. The additional two bytes are used for stering the source line
number. This must be taken into account when writing procedures in

assembler Tanguage (see the software dinterrupts example 1in section
7.2). -

(v) The Pascal compiier released by POLYCORP has the S compiler oy :n
enabled (on} as default. If PASCAL.CMD is used to compile a prog: -,
then the compiler options R, I, € and S are all enabled.

5.2. Conversion of Existing Programs

This is covered in Appendix F of the Omegasoft Pascal manual. If you have
used assembler language procedures, the byte frame in the stack will . have
to be extended from 10 to 12 (as described in iv above).

5.3. Character Set

The POLY Teletext character set does not contain square or curly brackets
and some characters have different representations. Pascal provides for
this by accepting alternatives as follows. (* and *) may be used instead of
curly brackets, and {. and .) instead of square brackets.

The Teletext hash (#) on POLY is the equiVa1ent of the ASCII underline (),
while the Teletext pound sign (£} is the equivalent of the ASCII hash (#7.

When writing comments curly brackets should be replaced with {* and *},
For example:
(* this is a comment *)

When using subscripts or sets the square brackets should be replaced with
{. or .).

For example:

character:= fnstring(. 2 .}
digits:= (. '0"..'9" .}

When declaring identifiers, the Teletext hash should be used in place of
the ASCII underline.

For example:
var input#string : string;

When designating a byte constant, a Teletext pound sign should be used in
place of the ASCII hash.

For example:

const enter = £13

6. . TEXT SCREEN CONTROL CHARACTERS

6.1. Use of Teletext Colours

The screen is displayed using Teletext conventions whereas Pascal progranms
execute in ASCII mode. -In order to use the Teletext control characters, s
shift must be made into Teletext mode before using the Teletext control
characters, and a shift back to ASCII after using them. The example below
shows how the CHR function is used to incorporate these in an expression.

The teletext control characters are:

ASCIT DECIMAL FUNCTION
~VALTE T
0 Not used
1 Start RED characters
2 Start GREEN characters
3 Start YELLOW characters
4 . Start BLUE characters
5 Start MAGENTA characters
) Start CYAN characters
7 * Start WHITE characters
8 Start FLASHING
9 * End FLASHING
10 Not used
11 ' Not used
i2 * : Normal height
13 Double height
i4 Shift to ASCII mode
15 Shift to Teletext mode
16 Reverse video on
17 Start RED graphics
.18 Start GREEN graphics
19 Start YELLOW graphics
20 Start BLUE graphics
21 Start MAGENTA graphics
22 Start CYAN graphics
23 Start WHITE graphics
24 CONCEAL display on rest of line
25 * Contiguous graphics
26 Separated graphics
27 * Reverse video off
28 * No background to characters
29 Set background to current colour
30 Print graphics characters over
contrel characters’
31 * Print space for contrnl characters

Each of the control characters occupies ONE screen position except o
reverse video on character, the reverse video off character, the ASCII ‘o
Teletext shift character, and the Teletext to ASCII shift character. Theze
characters do not require screen positions. A1l control characters «-e

reset at the beginning of each line of the screen to those with an * besi‘e
“them.

Double height characters extend down to the foliowing 1line. If doub =
height is used anywhere on a line, the following Tine is not displayed.

For example:

program colour{output);
var

num : integer;

red,si,so : char;
begin

red:= chr(l);

si:= chr{l4d};

so:= chr{l5);

for num:=1 to 1060 do

writeln{si, red,so,num);

end.

This prints 6ut.the numbers 1 to 100 in red. HNote the shift to and from
Teletext before and after the red colour control code.

6.72. ASCII Control Codes

ASCIT DECIMAL FUNCTION
VALUE -
7 Beep
8 Move the cursor 1 space to the Teft
9 Move the cursor 1 space to the right
10 Move the cursor down 1 line
i1 Move the cursor up 1 Tline
12 Clear screen and move the cursor
o the home position
13 Move cursor to the start of the line {RETURN}
14 Shift to ASCIT mode
15 Shift to Teletext mode
16 Reverse video on
27 ~ Reverse videc off
30 Clear 1o the end of the line

10

7. APPENDICES

7.1. Unpackaged Omegasoft Pascal

To use the unpackaged Pascal, an additional manual and further utilitie-
are required.

The extra manual is:

- Omegasoft Relocatable Assembler and Linking Loader manual.

The extra utilities are:
CHAIN.CMD The linkage creation control program.
DB.CMD The debugger.
LB.CMD Librarian for the runtime routines.

LC.CMD The tinkage~file creator.

To compile a Pascal program use the following steps:
1. Run the Pascal Compiler.
2. Run the Linkage Creator.

3. Run the Assembler and Linking Loader.

The syntax for using the Pascal compiler for unpackaged use is:

PC <source-file [>output-file 01 [>>print-file L]

Source-file is the file containing the Pascal program, the default
extension is .TXT. The output-file is the compiler output file for the
next phase of the compilation, the default extension being .C0. The
print-file is the compiler listing.

The syntax for using the Linkage Creator for unpackeged use is:

LC
The Linkage Creator prompts the user for various parameters for the
assembling and Tinking of the program, and produces a command file

(extension .CF) and a pre-setup source file {extension .PS} for use in the
next step.,

11

The Assembler and Linking Loader steps are combined in the command ¢ ¢
outputby the Linkage Creator which is invoked by the CHAIN command. e
syntax for CHAIN

CHAIN filename

where filename is the output file from the Tinkage creator (defaul:
extension .CF}. This will cause the compiler output file {extension .C0) to
be assembled producing a relocatable object file (extension .CA). As well,
the pre-setup source file {extension .PS) produced by the Linkage Creator
will be assembled producing another relocatable object file (extension
LPAY. The Linking Loader then 1inks these vrelocatable object files
producing a binary object file {extension .BIN).

Shown below is an example showing the steps used to compile PRIMES wusing
the unpackaged method (user input is shown underlined).

PC <PRIMES >PRIMES 0 >>PRIMES L
Omegasott 6809 Pascal Compiler Version 2,21
Copyright 1983 by Certified Software Corporation

Lc

Omegasoft 6809 Linkage Creator Yersion 2.20
Copyright 1983 by Certified Software Corporation
Pascal compiier output file name : PRIMES

Pascal program name : FASTPRIMES =

Auto setup ? Y
System stack size : 512

Starting load location : 100

Library drive number : <ENTER> (current drive used)
Additional files to load : <ENTER> (no extra files)
Additional library files : <ENTER> {no extra files}
Load options : <ENTER> (no Toad options)

Map options : <ENTER> (no map options)

CHAIN PRIMES

Omegasoft 6809 Chain version 2.10

Copyright 1983 by Certified Software Corporation

RA <PRIMES.CO >PRIMES.CA O

Omegasoft 6809 Relocatable Assembler version 1.40
Copyright 1983 by Certified Software Corporation

Total errors : 0 Psct size : 0292 Table usage : 35 of 1948
RA <PRIMES.PS >PRIMES.PA O

Omegasoft 6809 Relocatable Assembler version 1.40
Copyright 1983 by Certified Software Corporation

Total errors : O Psct size : GOZF Table usage : 4 of 1949
LL

Linking Loader version 1.40

Copyright 1983 by Certified Software Corporation
?STRP=$0100

LOAD=PRIMES.PA PRIMES.CA

7LIB= RL

P0BJA=PRIMES BIN

12

?STRP=$0100

L.OAD=PRIMES.PA PRIMES.CA

LIB= RL

?0BJA=PRIMES,BIN

MAPC

PSCT SIZE=09A7 START=0100 END=0AAGL
SYMBOL TABLE USAGE: USED=50 of 1930
MODULE TABLE USAGE: USED=17 of 79
PEXIT

End chain
The above example will result in a file PRIMES.BIN, which will be identical
with PRIMES.CMD produced by the command: :

PASCAL PRIMES L

13

7.2. Using Software Interrupts in Pascal

Pascal has no command that can directly call software interrupts. Softwe e
interrupts must be called from assembier code which may be direct v
imbedded in a Pascal program.

For example:

program swifexamplelinput,output);

{(* example program using software
interrupts duplicates the first
example for SPLIT in the POLYBASIC
Manual *) -

procedure cursor{row,column:integer};

{* position the cursor at specified text
row and column. If the values
supplied are outside the screen
then the cursor is not moved *)

begin

! PSHS D,X,Y,U Save registers

! LEAU 12,U Skip over the Tinkage data

! LEAU 1,V Point to low order byte of column

! LDB 0,U++ Load B with the low order byte of column
! LDA G,u Load A with the Tow order byte of row

! SWI Position cursor

! FCB 9

i PULS DB,X,Y,U Restore the registers

end;

procedure split{splitat:integer);

{* Split the screen into two separate
scrolling sections. The parameter
is the row at which the split is
to be done. If the parameter is
0 or >24 then split is turned off *)

begin

t PSHS B,X,Y,U Save the registers

! LEAU 12,V Skip over the tinkage data

! LDD 0,u Load D with the 16 bit split-row value
! EXG A,B Swap byte positions of D

! SWI Split screen

! FCB 13

! PULS D,X,Y,U Restore the registers

end;

procedure wait(milliseconds:integer);
{* wait for the specified number of
milliseconds *)

hagin

! PSHS DB,X,Y,U Save the registers

! LEAU 12,U Skip over the linkage data
! LDD 0,U Load the time to wait

! SWI Wait for x milliseconds

! FCB 19

! PULS DB,X,Y,U Restore the registers

end;

14

procedure numberprint;

var
toop: integer;

begin
for loop:=1 to 21 do
writeln{loop:2};
wait{20};
end;

begin {* mainline *)
page;
split{10});
numberprint;
cursor{10,0)};
numberprint;
wait(500);
split{0);

end,

15

7.3. Current Restrictions of Omegasoft Pascal
Version .21

Omegasoft has documented the following restriction:

Structures may not include devices as part of the structure. This incluc:z
arrays of devices or records containing devices. If this type of structu -
is desired it is possible to define the array or record as containis:
pointers to a device and using the addr function to set the pointer.

16

7.4, Input/Output Examples

Listed below 1is a simple example illustrating
input/output using Pascal on POLY.

program inputoutput(input,output);
var
eofflag : boolean;
filename,buffer : string;
filel : text;
hegin
eofflag:=false;
write{'Enter file name: '};
readln(filename);
{* open the file for output *)
rewrite{filel,filename);
(* put data into the file *)
repeat
readin{buffer);
(* if the first character of the
input string is a "#" then input
is complete *)
if buffer(.1.)="#" then eofflag:=true
else
writeln{filel,buffer):
until eofflag;
(* data input complete, close file *)
close{filel);
(* open the new file for input *)
reset{filel,filename);
(* read the data back from the
file and display it on screen ¥)
while not eof(filel) do
begin
readin{filel,buffer);
writeln{buffer);
end;
end.

17

technigues

for

Listed below is a further example illustrating techniques for using

files with Pascal on POLY.

program Randomfile{input,output);
jabel 11;

const

lock error = #134;
type

rekord = string(.62.);
var :

eofflag : boolean;
rec,filename,buffer : rekord;
filel : file of rekord;
I : integer;
hegin
ecfflag:=false;
write{ 'Enter file name: ');
readln{ fiiename);
{* open the file for output *)
create{filel,filename,output,l);
(* put data into the file *)
repeat
readin{buffer);
(* if the first character of the
input string is a "#" then input
is complete *) '
if buffer(.1.)="#"' then eofflag:=true

. else
begin _
filel® := buffer:
put{filel};
end;

until eofflag;
(* data input complete, close file *)
close(filel);
(* open the file for input *)
open{filel,filename,update,l};
(* read the data back from the
file and display it on screen *)
I :=0;
white I>=0 do
begin

write('Which record do you want to fetch? ')

readin{I};
if I>=0 then
begin
{(*$1- turn 1/0 error check off *)
T1:Tock{fitel);
if DEVERR(Filel}<>#0 then

if DEVERR(filel)=Tock error then goto 11

else halt{DEVERR(Fi161));
{*$1+ turn [/0 error check on *)
seek{filel,1);
untock{filel);

18

rai

O

buffer := filel®;
writeln(buffer);
end;
end;
close{filel);
end.

Two warnings when using random files, Since Pascal blocks logical records
into physical disk sectors, the last sector written may contain logical
records not written but which are present to fill cut the sector. These
records may be read without causing a non-existent record number runtime
error. The user is thus advised to keep track of the number of ‘togical
records actually written, storing this, for example, in the first record of
the random file. MNote also that Pascal commences to number records of &
random file with 0.

Further, if the Tast logical record written actually coincides with the end
of a physical disk sector, then it will not be possible to reference this
record (as with buffer := filel® in the above example}. This is because
Pascal employs a read-ahead method of input. It will successfully seek to
the Tast logical record and commence to vretrieve the individual bytes.
However, when the last byte is being retrieved, the read-ahead wmechanism
will cause an attempt to read the next disk sector resulting in a
non-existent record number error. This may occur if any multiple of your
record length plus 1 is also a multiple of 252. If this is the case, then
write a dummy record at the end of your file. Note that the actual length
of a random record is one greater than the declared length. The extra byte
is used by Pascal to store the length of valid data in the record. Thus, in
the above example, the declared record Yength is 62 and the actual record
Tength is 63. This divides exactly into 252 so there will be 4 records per
pnysical disk sector, and it will not be possible to retrieve and print the
iast record stored if this Tast record is record number 3, 7, 11, etc.,
since any of these records will coincide with the end of a physical. disk
sector,

19

