

A |

—

— m— S

FILE HANDLING

Files are simpiy sets of data stored on disk. The operating system looks
after where it is stored and catalogues each file by name. CAT shows the
Tist of files on a disk.

Files whatever their function, all have a standard forma*t on disk. Thus it
is possible to read or List any type of file. To distinguish the functions
of different files, we do assign particular extensions.

DAT Is a deta file, In a program if 2 data file is not given an
extension, then .DAT is put onto the filename.

.BAS BASIC source files are assigned an extension of .BAS. The LOAD
command expects .BAS if no extension is specified. SAVE assigns
the extansion .BAS.

.BAC BASIC compiled files are COMPILED with the default extension of
.BAC. Run and CHAIN expect the extension .BAC.

.BAK Version 2.0 may assign a file the extension .BAK if the SAVE
option is used on opening a file.

PRT Files with an extension of .PRT are automatically printed by the
operating system, as soon as they are closed. The default
extension for tha WTD command is .PRT

JIXT 1s assigned to files SAVED when editina in the TEXT mode.

-CMD QOperating system commands are stored in files with a .CMD
extansion.

.SYS Operating system files are stored with .SYS extension.

Any extension may be used %o suit the user. .PRT is the only extension for
which any automatic function *take place.

Information is stored on the disk magnetically in concentric circles, each
circle is called a2 SECTOR. Each sector holds 256 bytes of information.

Disks can be recorded on both sides or on only one side, 1in single or
double density. The Poly system can use aither single or double sided disks
and records in sirgle density. Using single density, each side of the disk

nas 1140 sectors. When a file is created, it may contain many sectors,
which may or may not be adjacent. The first 4 bytes of a sector 'noint' to
the next sector in *he file. This leaves 252 bytes if tha sector is left
for data. '

Filas are of two types serial and random.

Serial Files

Files are made up of a number of records, esach record containing 3 set of
information. Think of a card file where each card contains information
about different plants. Fach card would probably contain a basic set of
formatted information - the common name, the Dbotanical name, the
distribution etc. A file is the set of cards. An individual record is one
card. Each record contains a set of 'fields' each centaining a set of data.

A disk file is similiar. Fach record may be up fo 252 bytes long. Records
are separated by a line feed character (CHR$(13}) on the disk.

In BASIC, before a file can be writfen or read, it must be opensd. The OPEN
statement checks *the disk for the named file, stores the location of the
file and sets up a 252 byte 'buffer' in the Poly's memory, into which a
record is read. This buffaer i5 simply a piece of memory s2t aside for that
file. When a file has been finished with, it must be closed. The following
are a1l valid OPEN statements.

1. OPEN OLD "MASTFILE"™ AS 1
2. OPEN NEW "CUSTFILE™ AS 6
3. OPEN MNEW A$ AS 12

When a file is opened, it musi be specified whether the file is a NEW or
OLD file. If OLD is specified, then the file must be present. Unless the
filename has specified a specific drive, this will be on the current drive
for that Poly. If it cannot be found, ERROR4 is returned. This would need
to be trapped using an ON ERROR routine.

If NEW is specified a new file is immediately created. If a file of the
same name already exists, then the old file is automatically deleted. No
error is given.

In v2.0 a third form of OPEN is available.
OPEN SAVE "FILE1" AS 10

This is the same as NEW except that if ar old file exists then dinstead of
being deleted, its extension is changed to .BAK. If a file of that name
exists, it is deleted. ~This allows an cld version of a file to be kept
automatically.

The filaname may either be entarsd 1in guotes or be held in a string
variable. The filename contains

The drive number (optional)

The filename

The file extension {optignal)

If the drive number is not specified, then the current drive for that Poly
is assumed. '

If the file extension is not specified, then .DAT is assumed.

The filename must not be longer than 8 characters.

The following are valid filenames.
"1, MASTFILE.TXT"
*XXX . DAT"
IJTH
"0 LOXXX"

When creating filenames, they should be meaningful. Pupils should always
sut their initials as the first three characters.

In BASIC, a program may use up to 12 files at any one time. Fach file s
assigned a channel number between 1 and 12. The OPEN associates the file
with a particular channel. This channel number is then ysed in 3%l other
commands which reference the file.

Reading and Writing Serial Files

WARMING. In Versions of the operating system prior to V2.0, errors may
occur if more than 2 files are open for write at the same time. No error is
flaqged but disk area corruption may occur. ¥2.0 allows muitiple files to
be written simultaneously at any time.

Seprial files are written using PRINT# and read using INPUT# or INPUTLINE#

Fach PRINT# command writes data to the file starting in the next record.
Cach INPUT# or INPUTLINE# reads the data starting in the next record on the
£i1a. A record is terminated by a CHRS${13) automatically.

For Example:

PRINT#1, A$;B$;C

The 1 is the channel number specified in the OPEN. This must be followed by
a ,. Thereafter the fields to be written to the file are specified
separated as in the PRINT statement.

A= -2

A$ = "AA"

PRINT#L, "XXX"; X$; "7ZZ"
PRINT#1, AS, A

This writes 2 records on the file. The first contains
XAXAAIZTZ

and the second contains.
AA -2

The printad representation of the numeric field is stored. Note that the -Z
is "tabbed" %o the next column and has & spaces preceding it.

The physcial record on the disk would contain
XAXAAZZ*AA -2%

To further format the record, USING may be used.
PRINT#1, USING "$5##.##", 123.436

writes a record on the file ccntaining
£§123.46

The maximum string length of data written cannot exceed 255 characters. No
arror is griven if this length is exceeded. If the string contains CHR$(O)
characters, these are deleted.

Reading a File

INPUT# and INPUTLINE# are used for reading a sequential file.

INPUT#L, AS

nuts into A$, all the data in the next record up to the next CHR3(13). If
multiple fields are to be read from a record, these must be written

separated by commas.

10 OPEN NEW "MYFILE" AS 1

20 AS"AAA":B$="BBB"
30 PRINT#1, AS;BS
40 PRINT#1, AS,";BS

5¢ CLOSE 1
60 OPEN OLD "MYFILE" AS 1
70 INPUT#1, A3, 8% ERRCR

80 PRINT AS, BS

90 INPUT#1, AS, BS
100 PRINT AS, BS
110 CLOSE 1

An arror occurs at line 70 because there is only one field to input before
raach the end of the record - there was no , to break it up into fields.

WARNING

1. 1f the Data written using a PRINT# statement contains any CHRS(O)
(nulls), then these are deleted before the data is written to disk. To
store data containing nulls, random files must be used. Not this when
using CVT functions.

INPUTLINE# acts in a similiar fashion to INPUT# except that it reads all
the data up to the end of the record (CHR$(13}) including any commas.
Whereas INPUT# may specify a number of wvariables, INPUTLINE# may onily
specify a single string variable.

INPUT LINE#1, AS

Reading and Writing Files in Programs

In most programs, it is necessary to put in a separatfe INPUT# or PRINT# for
avery record on a file, but these would be placed within a loop.

20 OPEN NEW "MYFILE" AS 1
30 CLS : PRINTG (10,0}

35 ng Hu
40 INPUT "NAME"; NS
45 IF N§ = "% TURN 110

50 IMPUT “ADDRESS LINE 1"; L1S

60 INPUT "ADDRESS LINE 2%; L2

70 INPUT "ADDRESS LINE 3"; L32%

20 INPUT "TELEPHONE NO®;

90 PRINT#1, N§, ", ", L1s, *,", L2s, ", ", L3§, ",", Ts
100 GO TO 30 |

110 CLOSE 1

To read this file

5 ON ERROR GO TO 20

10 OPEN OLD "MYFILE"™ AS 1

20 IMPUT#1, AS, BS, C3, D035, E3
30 CLS

40 PRINT A$IBS!CSIDSIES

50 A$ = INCHS(O}

60 GO TO 20
70 CLOSE 1
80 END

90 RESUME 70

¥y2.0 has a new command to check for end of file
15 OM END 1 GO TQ 70

This would replace the OGN ERROR routine specified above.

V2.0 also allows a INPUT LINE statement to specify the lenght of the fold
to be entered - the cursor cannoi move cutside this area.
INPUT LINE(4), AS

1¢f a ! is used in a PRINT#, this effectively creates separate records for
each field.

Exercise

Becausa of the possible errors in multiple units writing to disk in V1.6,
these exercises are only centred around reading serial files. As long as
not more than 1 person is writing to the disk at a time, there should be no
problems.

BASIC source files are serial files, each Tline being saparated by 3
CHRS(13).

Write a program to read a BASIC source file, and 1ist it on the screen.

SAVE the program and then run it.

Random'Fi1es

Serial files may only be read or writien starting from the lst record and
moving through the file. Random Files may be read or written in any record
order. V1.5 sets all record sizes at 252 characters (ie a sector) but in
y2.0 a record size may be specified which is Jess, allowing several records
‘to be packed into a sector. Serial files can be OPEM either for reading or
writing but not for both. Once OPEN, a RANDOM file may be either read or
written to.
OPEN OLD RANDOM “CUSTFILE" AS 1

The OPEN statement is the same as for serial files, except that the word
RANDOM must be inserted. The CLOSE statement is the same.
' CLOSE 1

Instead of PRINT# and INPUT#, random files use GET# and PUT#.
GET#, REOCRD 10

GET# gets a specific record and places it in the “buffer” area for the
file. It does not put the record directly into a variadle. if the RECORD NO
is not specified the next record on the file is returned. The FIELD
statement is used to assign variable names to the contents of the buffer.

' FIELD#1, 24 AS AS, 20 AS BS, 30 AS C$

This assigns the first 24 characters to AS, the next 20 to BS% and the next
30 as CS.

After GETTING the record, we can now process the information in the various
variables. -

5 Of ERROR GO TO 110

10 OPEN OLD RANDOM "CUSTNAME"™ AS 1

20 DIM AS(4)

30 FIELD#1, 20 AS AS(0), 20 AS AS(1), 20 AS A$(2}, 20 AS AS(3), 6 AS
AS(4)

35 INPYT "RECORD NO'; I

40 GET#1, RECORD 1

50 CL

60 FOR I =070 4
70 7 AS{IY

80 NEXT

100 &0 TO 35

110 CLCSE 1

Writing RAMDCM Files

PUT# is used to write a random file record from the file buffer. The
program myst first put the data into the huffer. The fiegld names are
assigned using the FIELD statement as in the GET#. However, the values
cannot be put into the variables in the usual way.

10 FIELD#1, 20 AS A%, 20 AS BS
20 A$ = "MYFILE®

Line 10 assigns a 20 character field to AS. Line 20 assigns AS a new value
"MYFILE" somewhere else in the string area and the value of A5 in the

 buffer s Tlost.

Two special commands LSET and RSET which do not shift the current position
of A%, must be used.

FIELD#1, 20 AS AS, 20 AS BS
LSET AS = "MYFILE"
RSET BS = "YOURNAME"

1R]

LSET puts the value "MYNAME™ into the current A3 string, right justifying
it and padding the end of A§ to spaces.

RSET put "YOURNAME" into the right hand end of the current 8% string, and
puts spaces preceding it. Once the buffer has been set up, it is Lhen PUT#
to the file.

10 CLS

20 OPEN OLD "NAMEFILE" AS 1

25 FIELD#1, 20 AS A$, 10 AS BS
30 INPUT "NAME; A3

40 INPUT "TELEPHONE", BS$

50 INPUT "RECORD NO"; C

60 LSET AS = AlLS

70 LSET B$ = Bi$

80 PUT#1l, RECORD C

90 CLS: GO TC 3C

WARNING

Writfng a random record which extends the file may cause disk corruption in
¥y1.6. ¥2.0 corrects this.

GRAPHICS

- TOOLS
SELECT
MIX
SET
RESET
LINE
POINT
LDESS
DRAW
DRAU®
FILL
FILL@
STORE
Extensions in V2.0
DRAW#
FILL%
STORE#

These notes discuss the use of the fine graphics on the Poly. To use them
most effectively, some knowledge of the way in which they are stored and
accessed is necessary.

Each of the 2 graphics sc¢reens occupy an 8K block of memory. Screen 2 1is
outside of addressable memory and screen 4 is in the top 8K of the
programming area. If used, screen 4 reduces the available memory for
programming by 8K. In V1.6, a SELECT of screen 4 cannot be made from with a
loop or subroutine. It is wise therefore to select screen 4 at the start of
the program if it is going to be used. Be aware that if secondary colours
are used on screen 2, then screen 4 is automatically assigned.

Colours

Fach of the graphics screens have only the four primary colour availabie,
je white, red, dblue and green. The .secondary colours, yellow, magenta and
cyan can be achieved in several ways by using MIX.

By using MIX on an individual screen a choice of any one of 4 sets of 4
colours can be made ie either

1. RED RED YELLOW MAGENTA
2. GREEN YELLOW GREEN CYAN
4, BLUE MAGENTA CYAN BLUE
7. WHITE WHITE WHITE WHITE

{+RED} {+GREEN) (+BLUE)

Note that the COLOUR command still demands that the primary set is used *to
define the colour.

SEE LISTING GRS.BAS

If there is sufficient memory to use both graphics screens, then seacondary
colours may be obtained more simp?y by using MIX ON.

SEE LISITNG GR1O.BAS

If st line 90 screen 4 has not been selected, it is selected automatically
and memory is reduced. (V1.5 has trouble at the moment if this occurs
inside a FOR/NEXT 1loop or within a subroutine). Screen 4 is not
automatically displayed or cleared or MIX put ON. If secondary colours are
required on the graphics screen a careful consideration of the MIX fype
required needs to be made. -

On the fine graphics screens it is not possible to have every pixel a
separate colour. Each group of 6 horizontal pixels must be the same colour.
This can be understood by lTooking at the way in which the screen s
represented in memory. The whole screen is stored in an 8K block, starting
with the top left hand side, each row is stored serially. Each six pixels
are stored in an 8 bit byte, the first 2 bits giving the colour, and the
Tast 6 bits havingl to represent a pixel off and 1 to represent a pixel on.

For Example:

Coleur
Colour
On

n

Off
Off

On

bt © D 1 e O et

Screen 4 can be looked at from BASIC by PEEKING at the memory from 32768 to
40989. Screen 2 can be mapped into memory and looked at as well but this is
considerably more difficult {see secticn on Memory Mapping)

When using SET, LINE, DRAW or FILL the rules used within &HASIC are as
follows:

Setting a pixel on:

If the byte is of the correct colour already or if all pixels are off then
the pixel is set on and the colour set if necessary.

If the byte has the incorrect colour set, then all pixels in the byte are
set off, the colour is set and the new pixel set on.

Setting a pixel off:
The bit vatue is simply set to O

SEE LISTING GR1.BAS

p— g g o [pem—

] [] p—

E.g

Motice how the green line clears a 6 pixel wide highway through the other
colours. As you now understand the way in which the graphics work, then it
will heip you in producing good graphics programs.

The screen coordinates are numbered from the top left hand side corner.

The columns are numbered from O to 239 and the rows from 0 to 203. In all
specifications of positions, the row is given first foilowed by th column.

Hence (0,0} is in the top left hand corner and (203,239} is row 203, column
239 and is in the bottom right hand corner.

Most of the commands accep® negative values or values over the edge of the
screen. Lines are drawn to these points as if they were there.

SET and RESET need no further comment except to say that the brackets are
not necessary. Hence SET (100,10} is the same as SET 100,10.

POINT is a function which returns the colour of any particular pixel. f
the pixel is OFF the POINT returns value 0. POINT does not take into
account any mix which may be on but returns the primary colour of the pixel
on that screen.

LINE draws a line between the sets of points defined. Note that the
coordinates may be defined using variables. By changing the variables the
"LINE" can be moved around the screen. LINE may have the coordinates
written paired with brackets or the brackets may be omitted.

LINE 0,0,0,30,10,35,10,50,20,50
LINE (0,0),{C,30),(10,35),(10,50),(20,50)

These are both permisable.
SEE LISTING GRZ.BAS

Note that LINE quite happily accepts negative coordinates so that the car
can appear and disappear easily.

The logic for this program is for esach positicen of the car across the
screen,

Set colour to green
Oraw the car

Set colour to blank -
Draw the car

This gives a jerky movement as we can visually see the car being drawn and
undrawn. If these actions can take place on a screen that §s furned off,
then the movement can be much clearer.

SEE LISTING GR3.BAS

yse of LDESS and DRAW are a lot easier to code. LDESS can define the
picture anywhere on the screen. DRAW moves it for you.

Listing GR5.BAS shows this done using one screen and GR4.BAS shows it using
both screens.

This is a simple example of animation. When doing any animation, carefully
work out each of the alternate actions that you want. In this case each of
the drawings were the same. If it was a martian moving across the scteen
there would need to be at least 2 different diagrams. Or maybe only a small
piece of the diagram needs to be changed. '

SEE LISTING GR&6.BAS

When using LDES$ it is always worthwhile defining shapes in a clockwise
direction so that it can also be used with FILL. Let's go back to our car
and repiace the DRAW with a FILL.

SEE LISTING GR7.BAS WHICH SHOWS FILL ON 1 SCREEN AND GR8.BAS WHICH USES TWO
SCREENS.

LDESS does not need to define a continous 1ine - the line may be broken
into several pieces by separating the coordinates with a ; in place of a ,.

For example:
A$ = LDES$ (0,0,10,10:100,100,0,100)

Lf the LDESS contains more points than can be accomodated in a single BASIC
line, then the description may be broken into several strings and then
added together. Note that the Tine is broken at the point where the strings
are joined. To make a continuous line, the end points need %o be
duplicated.

For example:
A$ = LDES$(0,0,100,100,200,200)

B$ = LDES$(200,200,100,50,0,0)
A$ = A$ + BS -
DRAW AS

One for the main restrictions of LDESS and LINE is that they only allow
DRAW to draw the picture in a single colour. Each colour in the picture
needs to be handled separately. STORE enables a block of the graphics
screen to be stored in a string and then be drawn again anywhere on the
screen.

STORE (10,10),(100,100) CARS

Stores the rectangle with the opposite corners {10,10) and (100,100). Some
care needs to be taken with wuse of STORE as the data stored wmay be
extremely large. A full screen may require up to 8K of memory. When storing
the screen, multiple blanks and repeated patterns are compressed.

Although the coordinates for STORE are given for the fine graphics screen,
only complete bytes are stored. In the above example the start column
requested is 10, The start of that byte is column 6.

The end column is 100, and the end of that byte is 10i. So
STORE (1C,6),{100,101) CARS
would store the same area.

—

The block can then be redrawn in the same piace with DRAW CARS
or elsewhere with DRAW® (120,0) CARS

Small pictures drawn from a stored picture reproduce reasonably quickly
SEE THE GL1.BAS LISTING WHICH INTERCHANGES 2 PICTURES.

For a moving object, it is worthwhile storing a blank space alongside the
picture so that the previous picture is erased when the new one is drawn.

SEE G12.BAS LISTING WHICH USES THE FIGURE FROM THE PRESENTATION.

When setting up strings using LDES$, is often convenient for them alil
reference a common point so that positioning them with DRAWG follows a set
of standard positions. For example, if a set of special characters are
created by LDESS for the graphics screen, it is sensible to base them on a
rectangular area and to position them on the screen relevant to the top
left hand corner of the rectangle.

To do this, all "characters” should be defined in the top left hand corner
of the screen with a "dummy” {C,0) point first. This should be followed
with a ;.

SEE G13.BAS LISTING

LDESS creates strings. Each pair of coordinates are stored in 3 bytes, the
first byte denoting the row, and bytes 2 and 3 the column. STORE saves an
image of the screen area into the string. Ahead of the screen dump is a 4
byte header. Where multiple spaces or muitiple patterns occur these are
stored in a compressed format.

Printing Graphics Screens

The Epson printer has 8 vertical pins. The dots must be presented to it as
a vertical set of 8 dots. Considerable manipulation has to take place in
order to format them in this way.

The only way of doing this reasonably effectively in BASIC is by the use of
the logical operators.

LISITNG G14.BAS SHOWS THE LISTING OF A ROUTINE TO PRINT THE TWG GRAPHICS
SCREENS.

MEMCRY MAPPING

The 6809 hardware is capable of addressing 54K bytes of memory. - However, a
feature called Dynamic Memory Allocation has been incorporated into tha POLY
design which allows more than 64K to be used.

This feature allows the user to switch into addressable memory any of 8 blocks
of 8K memory, from a maximum of 16 blocks. These may be pilaced in any order in
any of the 8 positions in addressabie memory. Two memory maps are available,
and the user indicates which is currently in use. Memory Map 1 is fixed at
initialization of the system, but the user may alter Memory Map 2 to suit his
requirements by using Software Interrupt 29 {SID). The selection of Memory Map
is made using Software Interrupts 27 {$IB) and 28 (SIC).

The Physical memory in the POLY is allocated as follows:

Blocks 10 to 15 not present
Blocks 8 and 9 16K RAM Bank 4
Blocks & and 7 16K BASIC ROM
Blocks 4 and & 16K RAM Bank 3

Block 4 contains Graphic Screen 4
Blocks 2 and 3 16K RAM Bank 2

Block 2 contains Graphic Screen 2
Blocks 0 and 1. 18K RAM Bank 1

The System ROM and teletext screens are within a protected area not accessable
directly by the user. These may only be accessed via software interrupts.

Memory Map I is set up as follows:

LOWER Physical Block

Address

SFFFF

$E00O 7 BASIC ROM

$C000 5 OPERATING SYSTEM RAM
SACO0 6 BASIC ROM

$8000 4 {GRAPHICS 4 OR USER RAM)
$6000 8 RAM

$4000 3 RAM

$2000 1 RAM

$0C00 0 Contains BASIC extensions up to $1700 approximately.

Memory Map 2 may vary depending upon the last use of it.

setting and Calling Memory Map 2

1. Set up a string of 8 bytes, each byte containing the physical block
number to be put into the map, starting from address 0.

2. Call software interupt 29 ($ID) giving the address of the 8 bytes
s parameter 1.

3. Call software interupt 28 ($IC) to select memory Map 2.

CALLING MEMORY MAP1

1. Call software interupt 27 ($1B) to select memory Map 1.

For example

In BASIC
100 AS

110 A%
120 A%

CHRS(O)+CHRS(1}+CHRS(3)+CHRS(8)+CHRS (2)+CHRS(6) +CHRS (5)+CHRS(7)
SWI (29, DPEEK {PTR(A$)))
SWI {28)

0

This puts the graphics screen 2 in place of graphics screen 4 in addressable
memory. In BASIC, care must be *taken not to call graphics commands

while using Memory Map 2 as all graphics commands use Memory Map 2 and will
overwrite the memory map set up by the user.

PASCAL has no direct command to call Software Interupts. These may be called
from Assembler which may be embedded in the PASCAL program by preceding it
with a | The code to set up Memory Map 2 the same as in the BASIC example is

1
1
| .
l
[

! PSHS D Save register D
i i LDD #MAP? Points D to MAP?2
L] ¢ SWI
.Y FCB 29 Write to MAP2
‘ booSWI
! ! FCB 28 Select MAP2
L PULS D -
. I BRA NEXT
i IMAP2 FCB 0,1,3,8,2,6,5,7
' INEXT EQU*
l Software interrupts are called by
tSWI
'FCB n
g When n is the software interrupt number.

| -

(m. o ‘m,_;.._

GRAPHIC SCREEN MEMORY MAPPING

tach graphics screen is memory mapped into an 8K block of memery, screen 2
occupying block 2 and screen 4 memory block 4.

Display of the screens is controlled by software interupts 15 and 16 where
16 reads the 16 bit control word and 15 sets to the value put into the D
register. (See the BASIC manual for a description of the bit values)

Each byte of the screen memory contains the display informatien for a garoup
of & horizontal pixels. The first 2 bit contain the colour information and
the last 6 bits show whether a pixel is on or off - 1 indicates ON and 0 off.
The colour has 00 = blue, 0L = green, 10 = red and 11 = white.

WE*¥$#$$$¥¥*$**#ﬁ*#ﬁ%%%**%%%%*##&***%*%ﬁ*#&%#****k*%*%*%ﬁ%*#ﬁ%%k#*$%$$$*$$$**$$i
LT ST I il . B

SRS ERELE IO PR P IO PSSO ETF ISR IS SRR R S e e e e At P T e R St T

10CLS: FRINTD (10,100 ;
POSELECT 4:0L5: DISPLAYS
EBOASE=LDESS (0,0, 0, 239,40, 239, 40, 0,0, 0)
ESFILLDL0,0)As

AOCOLOUR 1

EEFILLD (B0, 0) A%

“SOCOLOUR 2 .

7OLINE ©, 4,200,239

P SSTOR

BOFORI=I2768 TO 40959 STER4
SODFOKE I,RND(I2767)
WOONEXTI

A1osTOR

L

k#*##*$$$$*$$ﬂ$$#*$***¥$#$%$$#****#*ﬁ%###*##*###%**X*%#&K%****#**##*K**X%###X*)

%%*y%*K$#**$$#$£%%$¥F#*X##Q%QW*%$*$ FEESESEE TS LSS FET TS FTEESIET IS EEETS

L XS ¥ S O S . Bt

ﬂ%**%#$33%##%**ﬁ**%%**&**%*$*%**#*%*###*#*#%x&#ﬁ***#%**$$$$%$$#$$#$¥13%$***%***

10CLS -

FOSELECT 2:CLS: DISPLAY2

AZOFOR col=-30 TO 2&0 STEP 10

AOFOR colo = 2 TO @ STEF -2

oL OLOUR colo :
HOLINEROO, col, 100, ool +30, 1lu,cal+ww,1lﬂncul+50,12Q,cml+50,120,&01,10$ﬂcu1
CTONEXT: NEXT ‘
BOBOTOZES

J

ﬁ**#$$*#¥X$**X#*%#*%**%ﬁ%%##*%#*#%K%ﬁ*#*##ﬁ#*##*ﬁ&##*&%#%ﬁ***#%*%k#**%***%ﬁ*ﬁ*

‘ s

Xﬁ*%ﬁ*ﬁ%*#**X*#*%$$$#ﬁ%*%%ﬂ***K%*%*ﬁ#%X**K*%#**%%%*%**ﬁ**ﬁ****ﬁ***t***#*$**#$$

LLEIST IS O ERTE - Beiss

ﬂ**$$$*$#%%***%&******%*#&*##K%*X%%**X%%%*#***%**ﬁﬁ****ﬁ*%%#%*#%#***K*X**%#*%#*

100LS
FOSELECT Z2:CLS:DISPLAYS
AZOSELERT 4:CLE:DISFLAYL
4OFOR col=-30 TO 260 STERF 5
Yo OR scr=2T04 STEP I
JOORISPLAY scr OFF

FOBELECT scr

JOFOR colo = O TO 2 8TEP 2
ZOLCOLOUR coléd
'”IGOLIMEiOO,cml,100,c01+30511Q,c01+35,110,ca1+505126,col+§0g120,cml,10$,c01
110col=col+1i0 :
T20NEXT
SN 30col=col~-15
140DISFLAY sor
RLOOMEX T col=col -5
JLSOMNEXT

17060TD40

]

R R RO RO R R RO RO KRR R A R KRR AR A KR R KRR A KA A%

!

M#****#$¥$#3$$$$*k*¥#%*K*%*%ﬁ%#**%%**&%%%#%ﬁ##kk#%%%%ﬁ#**%*%****#3****$#*#$X*¥*

e EST E RS OOF e s N s

$$*$$$¥*$%*$*#&**%#*ﬁ##**#&***$*%$%%$%%#**#*X%*i%X*#*****&ﬁ**#%*#%*%&******%**

g

10CL.S
SOGELECT 2:CLS:DISFLAYD
Focars=L.DES$ (0,0,0,30, 10,35, 10, 50, 20,50, 20,0, 0,0)
AOFOR col=-30 TO 240 STEF 5
SOFOR coelo = 2 TO O STER -2
HOCOLOUR colao
T7ODRAWD (100, colicard
SBONEXTsNEXT
TvosoToao

o

-y

~**%*K&%***%*X***#**##K*z*%ﬁ%**#&*&%#*###&*#*******$$$#*¥#$*$$$**$#$*X**$$$$*X#

MR R umeel e

o

“$¥#%X*$$$$#$#**#K%X*%%$$$#%$$?$*$$#&*%%%%******#**%ﬁ#*%%%**##X&*####K%*#*#*#%%

LI =T XM O D - Bt

KRR R MR IR ONCIOR K RROR OR OR R R KOO R R EOR R R R R L ARR K KRR L RN LW Y

100LE

JOGELECT Z2:CLS: DISPLAYZ
SOSELECT 4:CLE:DISFLAYA

IScars=LDESS (0,0,0,30, 10,35, 10,50, 20, 50, 20,0, 0, 0)

AOFOR cal=-30 TO 260 STEP =
SOFOR scr=2T04 STEF 2

]

g

HODIBFLAY sor OFF
TOSELECT aor

SOFOR colo = O 7O 2 8T 2
POCOLOUR colo
100DRANRD (100, collcars
1i0col=cal+10

JizonexT

130col=cnl—-15
140DISPLAEY sCor
ISONEXT:col =rol ~5

T1EONEXT
_17068T040

N$$$**#X*****#**#*$$K#**$*#R$*X#$$*$*$$$¥#$**#*$*t#*$**#**###X***X%*$*$%*##ﬁ##*

4

LLITET IMME GOF Doy . Frenyss

$$I»‘i$¥3k>#$$$i**&tﬁkﬁi){fﬂ(}k*n"i&**#}k*2&*3%’*Xﬁ**#**:ﬁ-‘k**gx%Xl‘kﬁ%{%*%ﬁ:&***:‘k##&***#%‘%*%%*’MP{C*‘***#%*"a{(#

1OCLS

1SBIM fig% (i)
Z20GELECT 2:CLS: DISPLAYY

w25ig(0)%LDE§$(4520,2,18,0,20,2,22,4,30,20,26,40,33320,20,30,16,30,0)

2&fia% (1) =LDES%(4,20,2, 18,0, 20, 2,22, 4, 20, 20, 20, 30, 30, 30, 403 20, 20, 40, 5)
JOFOR col=-30 TO 260 STEF 5

TAOFOR colo = 2 TD O STER -2

SOCOLOUR colo

JEODRAWD ¢ 100, col)yfigsni)
STONEXT

73 U=RBE (Y1)

7LNEXT
lsosoTO30

7**?%fJk#.#3#####***##***%#*SUH!#FK)Ht3#65#1%?HE***ﬁ(**213‘.?JKPHCK*ﬁkk***ﬁ“***#)K*?k-***-#*K*'**-*ﬂ*'*#*#%*

S —

“#xwxxﬁ##x%xm$$x$*xgx$$*X$xxm#xxx*$$*%**x*m*x*xgzx&mxxmx#xx%*g*x#**xx%x*&a&%&xx

LIS I edis O S L B

sl

K¥$$$##$**$&*#%##*%&*ﬁ*%ﬁ###&**¥*$$$*%K*¥$*Xg*%%%%*$*#K*%$#*¥#*$*$#$#$**$$**

1OCLS
JROSELECT 2:CL8: DISFLAYZR
_lsocarﬁzLDES$ca,oﬂm,3oﬂ10,35,10,5o,mm,sm,zaﬂogo,a)
4OFOR col=-30 TO 260 STERP

SOFOR cola = 2 TO O STEF ~2

HOUOLOUR cola
TTOFILLD (100, col Ycars

_BONEXT: NEXT

}?QGDTD4G

[—

¢$$$#$¥$$*¥$#$$#$$**##%**K*#ﬁ****%##*$$$**#%*#**X#*#*%*#**%*##**#**KK%*K####**K

Jr— — j—

pro— — pr—]

g g b i p

]
J
1

'$$*x*#*$$m$$x**xx&xxgx#m#***xxgg%**xxmx¥$*$x*xxx$$*$$m$$mmx*xﬂ#**ﬁ*##**$xxxxma
} L. ST I O ERE . B

_*%$$%%*%ﬁ**$*¥¥$ﬁ$*$$%#%**%***#*#%%#K%$$*%#**#x#*ﬁﬁﬁ$%%XX*K**ﬁ***#%XR*%#%%***#

10CLs

ZOSELECT 2:CLS:DISFLAYDR
SOSELECT 4:CL8:DIBFLAYY
SOcars=LDES$ (0, 0,0,30,10,35, 10,50, 20,50,20,0,0,0)
GOFOR col=-30 TO 240 STEP S
SOFOR scr=2T04 STER 2
HODISPFLAY ser OFF
7O8ELECT ser
HOFOR ceolo = G TO 2 STEP 2
AFOCOLOUR cola
1COFILLY 100, colYcars
1ii0col=col+10
1Z20NEXT
1Z0cal=col~15
4 140DISFLAY sor
150MEXTicol =col -5
C1AOMEXT
170607040

‘***x********#****%###*x*xx&$$*$x#mmxm*$xxm***xx###x**#*x**gx****x*x#x&x*#*#x#*

]

S B2)

]
J

ORI EE RRE R R KRR R O K KR R R R RO R KRN % K

‘1 LT =T Ll O (S . e s

.

R R R R O R R R R O R R K N O R O R R R R R R R R

L S—

1OCLE

2O0SELECTZ2: CLS:DISFLAYE
EZOMIX 2,

S4OCOLOUR 1

SOLINE O, 100, 200, 100
HOEOLOUR 2

ATOLIME Q. 110,200,110
SOCOLOUR 4

FPOLINE O, 120,200, 120

ALTO0WATT 20

TioMIx 2,2

P1Z2OWATT 20

JISOMIX 2,4

LA40OWAIT 20

5 LEOMIX 2,0

1&OWATIT 20

T1T70GOTOED

Vﬂﬁ$#*$X%****K#***#%*#ﬁ&***ﬁ%#%*#%*#*ﬁ%*ﬁﬁ%#ﬁﬁ%%*$$$$$$$¥ﬁ$¥$$*##**3#*#$%$**$*$

el beeesd e

$ﬁ#$$#ﬁﬁﬁ%#%%ﬂﬁﬁ%*%$$$**%%ﬁ**%%ﬁ&*%%#%%?*33%%%%%%%%%%*%#*%%%**%%ﬁﬁ%**#&%%**%%k

LI s M 8 T T] CHf ey o B iS

harai

LSRR P32 23 2T 2RSS SRR SRR ER IR EEIECO RIS ISR E LS T TS S

100LS

15MIX ON

16SELECTA: CLS: DISPLAYS

POSELECTE: CLE:1 DISPLAYD

4OCOLOUR 1

SOLLINE G, 109, 200, 100

HOCOLOUR 2

7OLINE O,110,200,110

BOCOLOUR 3

POLIME 0, 120,200, 120

1OOCOLOUR 4

PIGLINE 0, 130,200,170

120C0OLOUR 5

1Z0LINE O, 140,200, 140

14GLOLOUR &

ISOLINE O, 150,200, 150

16OCOLOUR 7

170LIME 0, 160,200, 160
EIBQSTDP

X#*#$$$$$$$$$$$#$$$#$$%$K*%%%*$$$$¥ﬁ*ﬁ$$#$#¥$*$#$$$$$X#$$K*$*$$*$%¥$#$#%$#$§

]
]
i

]
]

k!) : .
"Jl‘@%$?#*¥*¥4*€f’&”%fw‘a?%‘f&‘?ii%féﬁf%‘%’iﬁlﬁ’?;’f‘%ﬂxﬁk EX S A RS R ES FEESFER ST ISP IS S 2R R NS E S EETE

ES &4
L. TET I MMIS F S A 1 . EeyRs
) B AR R R R R R o o O R R R RO K R R R R RN K K

—]1QDL3' :
ANSELECT2: CLS: DISPLAYR

]30ﬂ$=LDE5$(Q,D;E P2y 1S 11, 0,6,6,0,7,0,17,6,14,11,20,11,15,24,18)

AL0BS=LDESS (0, 0324,2:2,9,2,11,6,11,6,9,2,9)
BOCOLOUR 2

SODRAND (0, 9) A%

TOFILLD(O,9)B%

B8OCOLOUR 4

FOFOR c= QTOZ

100SETY, 17+2%c

LIONEXT _

120STORE(O,0), (24, 41)Ms

1Z0COLOUR 1

LAODRAWD (0, 9) A%

150FILLDIG, 9IRS

1S5COLOUR 7

160FOR o= OTOR

17G8ET?, 17+2%c¢

L 1BOMEXT

1908TORE (0, 0), (24,41)T%

200DRAWD (100, 104) M%

Z10DRAWD (100, 100 TS

2R060TOZ00

2IOBTOR

g

g

!**%‘.*K#*#&#*k***:ﬁ*ﬁ##*##:ﬁ#?H{#:H(#ﬁ:k#***‘K##?&*ﬁ*#$$$3k2€*$$3($$*$#3¥**%%**ﬁ***##*ﬁﬁk###

]

]*#*&%%33%%%%%##$$$$$$%*$$m¥ﬁ$¥$*#%$$$$##%#$*@K%%%R%*%ﬁ%%kﬁ%#*ﬁﬁ#$$$$$$$$$#$$$$
LY ST LGS bt o e T

i‘#%$#$$ﬁ$$$#$$$$$$$$¥%3*%*%&%%%K****Rﬁ*ﬁ%ﬁ%#%#K#ﬂ*%%%%i%*$$#¥*%**#*%*X#*%**#ﬁ&*

§10CLS

FOSELELDTZ: CLS:DISFLAYD
FEO0AS=LDESS (0, 0324,2,11,5,11,0,4,6,0
AGORS=LDESS(0,0; 24,232, 9,2, 11.6,11.46
SOUOLOUR 2 '
~S0DRANR {0, P2 A%

TOFTLLR (O, 9 ES

BOFOR c= 0702

POSETY, 17+2%c

1 OONEXT ‘
TLIO8TORE (O, Q) , {24, 29)Ms

1Z20REM %%% Bring class on %X

1 Z0FORF=110T0180 STEF3IO
LAOFORs=220TOLI00 STER-25

LO0F0Re=% TO = STEFRS

L&ODRAMR {r—24, c~7) M$
RL7ONEX T MEXT s NEXT

1805TOR

]

0, 13,6, 14,11,20,11, 15, 24, 18)
2 2e T

H

OO R OISO KO AROOCKCE K R 30K AR IO R RO OO R R RO RO O R R R R R R R R Kk

T&*dki# AR R N R O R R R R R AR R R R AR R R R RO R R ko

|

LS Xy R LE S R 23S =

3#%#$$¥#$$#%#*Xﬁ%ﬁ%%%$$%%##*%%$$$$**%%##kﬁ%%*#%ﬁ*éﬁ%*%#*#X%%RAK”%$$%¥$#$$*$Kk¥

EJCLB
_10ﬁ$wLDES$(H D30, l,a,. 1,6, Q,L,412,1)
ZOSELECT Q.CLS DISFLRY“
130?&ﬁwﬁm '
AOGTORE (3,0) , (2,3 as: LS
41A%=LDESS (0,030, 1,6,114,2,1,435,2,56,4)
laznﬁawﬁ% |
AZSTORE (O, 00, (9,5)b%
CSODISPLAYOOFF '
SEHSELECT S:LCLS:DISFLAYS
SOFOR1=0TOIR4STEFLO
JOFOR j=0TO4748TERL2
BODRAKND (1, 1) at
ASDRAWD (i, +6)hE
FONEXT:s NEXT
g TOFRINTD (22,00
1005TOR

#*3&##*##**3#$$$$$3$#*$#$$$$$E$#*$$*#$*$$#**%#*##ﬁﬁ*###*##ﬁk*#%#*###*#**3***%*

]
l
1
l
l
I
i
1
|

L TEST Xz O FR DT . Bt

%%%%%%%%%%%%%%%%*%%*M%%*%%*%%ﬁ%%%%%%%%%%%%%%%%%%**%%%%%%%*%ﬁ%*%%%%%**%%%%%ﬁ*%*%%

10CLBe PRINTS (1,81 ﬁnzﬁﬁr<.mmmmm2 FRINT":FRINT®2(S5, 0 1 INFUT Start column (O~7235%)
Tﬁﬂﬁw.“HZma:Fma calumn (O-239) "iecolL: INPUT"Start row (0-Z203) "rsrow?: INFUTTEND
row (0205 "rergad INFUTYFile name Yiptempds INFUT"SBoreens (24) "iacreen’
Z0IFpteanpd=""ORscol ¥ LOOReCcol Xr2TFP0Recol Ndscol Z0Rsrow’< OORer owl’s srowiORer owd 259 T
HEMFRIMT BERROR s WAITIOOLGOTHLO

AUboth¥%s=0: IFsrreent=240Rscreen?= =4ZTHENsreeni=2rhathi=— 11 DISFLAY4ELSE IFscreenys =
ZANDscreen % MTHENPRINT | BERROR" 1 WAITIOO: GOTOLO

AODISFLAYscreen’% PRINT" |BNo of rows i:mAmwﬂgﬂiuﬁasxvcmcmummrmﬁﬁmﬁﬁmmjw G?ﬂZZﬂﬁmﬁ
ZUu?tﬁﬁaﬁmDth ﬂHmrw 11,25288254: IFzEYC 299 THEND IME % (7) t 2EY=09: FORE 1 4=0TO7 2% (= 1%

Y=Ete LR NEXT _ . -
omﬁaw\ wmawﬁUHCQ%& mnaph Brol ADIVEKE+S: s FU=E0768+5c0l UDIVE+40 S arowss = 1 toar ol Y- -
col %+l =M ILATHIMILTE" +CHRS (2 1%MODZ5L) +UHRS CINT (2 14/256)) 12 S4=8TRINGS (8) : = BY=D E
mevATﬂTmn“%vv.wmxﬁbﬁmmﬂmﬂqmﬂru%ww+m .
HOLBETz G4z 4 +8TRINGS (242, O)+" [2Y: FOR z27=0T0(erow/—srowZ) DIVEr PRINTz R s 2 A%=01
FOR= 4%, !:AGANM\ DDIVErsbh=gool U+24%%8 : FRReSX=0T07 : STORE (51 1Y+ +ESV 26N, (srowiti+ss

Fs m&UEEY 2 15 e 9Y=ABD (RIGHTS (2 1%, 1)) = IFbothATHENz 9=z 9LORFEER (2 F¥+x J%Tni.wﬁﬁv
4:7Omﬁ Br+zSY, 2 9% NEXT: FORz SY=0TOS 27 h=0r 28U S (TG-S s FORz =7 TOOSTER—11 IF (FEELK

mh+wiuﬁxv3Zm:m\ut4mﬁqzm2z.N!mquamz%nsﬂhvu o
mCLWxﬁwmmTWruN+:Dnara..rbhfub>¢~=zmx tNEXTr srowid=srowil+8: FUT_11: 2FY=eFY4+320 NEXT
s CLOBELY

1

....... HEREERERR R KA R AR R A R R R AR R R K kR R R RN AT &

My ey gl pmE gmem gews g meem (e SR SRS e e Meew Swed BeRE MW R ST O

OPERATING SYSTEM
ERROR MESSAGES

TLLEGAL FMS FUNMCTION CODE EMCOUNTERED
THE REQUESTED FILE IS5 IM LS
THE FILE BFECIFIED ALREADY EXISTS
THE SPECIFIED FILE COULD NOT BE FOUMD
BYSTEM DIRECTORY ERROR - RERBIOT SYETEM
THE SYSTEM DIRECTORY SPACE IS Fulll

L b e

T L

I
L.

ed el eeed esud e bewed beed ed eed weedd wesd beed el
A

7 Gl AVAILABLE DISKH SPACE HAS EBEENM USED

=) READ PAST END OF FILE

? DISK FILE READ ERROFR

10 DISK FILE WRITE ERROR

11 THE FILE OR DISK IS5 WRITE PROTECTED!
12 THE FILE IS PROTECTED - FILE NOT DELETED
13 ILLESAL FILE COMTROL BLOCE SPECIFIED

14 ILLEGAL DISK ADDRESS ENCOUNTERED

5 AN ILLEGSAL DRIVE NUMBER WAS SPECIFIED
14 DRIVES NOT READY

17 THE FILE IS FROTECTED - ACCESS DEMIED
15 SYBTEM FILE STATUS ERROR

19 FMS DATA INDEX RANGE ERROR

20 FME OINACTIVE - RERDOT SYSTEM

=1 ILLEGAL FILE SFECIFICATION

IR 8YSTEM FILE CLOSE £RROR

T SECTOR MAF OVERFLOW - DISE TOO SEGMEMTED
24 MONEXISTENT RECORD NUMBER SFECIFIED

2T RECORD MUMBER MATOH ERROR — FILE DAMAGED
28 COMMAND SYNTAYX ERROR - RETYFE COMMARND
27 NO RESFONSE FROM MASTER UMIT

283 WRONG HARDWARE CORNF IGURATION

% DRIVE NOT YET AVAILARLE FOR WRITE

e e el

—
T

]
]
]
]
]
]
]
1
1
]
1
1
1
1

NUMBER

0

WO 00~ On T D PN

ERROR MESSAGES

MEANING
EXIT key pressed

[1Tegal file request

Reguested filé is in use

File already exists

File could not be found

System directory error

System directory full

A1l disk space has been used

End of file error

Disk file read error

Disk file write error

File or disk is write protected
File is protected

I1legal file control block specified
[1legal disk address encountersd
I11egal drive number specified
Drive not ready

File is protected, access denied
File not opened in the correct mode
Data index range error

File management system inactive
I1legal file specification

File close error

Sector map overflow - disk too segmented
Non-existent record number specified
Record number match error or file damaged
Error in command

Communications error

Orive already booked for write
[17egal SWI function call
Unbalanced parentheses

ITlegal character

Source not present

Line too long

Syntax error on encode

Invaiid syntax

Invalid syntax in function

Invalid character at line start
invalid statement start

Invaiid statement terminator

Label expected

Numeric result expected

String result expected

"{* expected
", expected
"}" expected

Missing or invalid item in expression
Mixed mode

Too many temporary strings

Subscript negative or out of range
Incorrect numbar of subscripts
Undimensioned array reference
Expression result <G or »>255

i

Yoamd i Gt Vo

134
135
136
137
138
139
140
150
151

String variable expected

Different string lengths

RETURN without GOSUB

NEXT without FOR

RESUME not in error routine

Cannot continue

Line not found

Auto mode will not overwrite existing lines
Line number too large

Fatal renumbering error

Arithmetic overflow

Too large to convert fto integer

LOG of G or negative number

SGR of negative number

Division by 0

Argument tooc large

Argument out of range

OQut of data in READ

Data type mismatch in PRINT USING
ITlegal format in PRINT USING
Attempt to access cutside screen ares
Bad argument in SWAP

[1legal parameter in SWI or USR call
Array already dimensioned

FN function not defined

Dimension negative or too large
Clock not running

No room for stack

Memory set too low or high

No room for new string or array

CRC error

Verify aerror

No trailer record

Invaltid data on input

Number too large for integer

Number too large

Invalid “Compiled" file

Invalid channel number

Channel net open

Channel already in use

Vaiue mismatch in FETCH

Cannot merge compiled files

Field sizes exceed record size
I17egal DOS command from BASIC or TEXT
Random file used sequentially
Sequential file used randomly
Cannot have two files open for write
Graphics screen not selected
Invalid string for graphics

.
S

&

