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Computationa54. Computational Neurogenetic Modeling:
Gene-Dependent Dynamics of Cortex

and Idiopathic Epilepsy
Lubica Benuskova, Nikola Kasabov

The chapter describes a novel computational ap-
proach to modeling the cortex dynamics that
integrates gene–protein regulatory networks with
a neural network model. Interaction of genes
and proteins in neurons affects the dynamics of
the whole neural network. We have adopted an
exploratory approach of investigating many ran-
domly generated gene regulatory matrices out of
which we kept those that generated interesting
dynamics. This naïve brute force approach served
us to explore the potential application of compu-
tational neurogenetic models in relation to gene
knock-out experiments. The knock out of a hy-
pothetical gene for fast inhibition in our artificial
genome has led to an interesting neural activity.
In spite of the fact that the artificial gene/protein
network has been altered due to one gene knock
out, the dynamics of SNN in terms of spiking activ-
ity was most of the time very similar to the result
obtained with the complete gene/protein network.
However, from time to time the neurons spon-
taneously temporarily synchronized their spiking
into coherent global oscillations. In our model, the
fluctuations in the values of neuronal parameters
leads to spontaneous development of seizure-like
global synchronizations. These very same fluctua-
tions also lead to termination of the seizure-like
neural activity and maintenance of the inter-ictal
normal periods of activity. Based on our model,
we would like to suggest a hypothesis that param-
eter changes due to the gene–protein dynamics
should also be included as a serious factor deter-
mining transitions in neural dynamics, especially
when the cause of disease is known to be genetic.
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54.1 Overview

Properties of all cell types, including neurons, are de-
termined by proteins they contain [54.1]. In turn, the

types and levels of proteins are determined by differ-
ential transcription of genes in response to internal and
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external signals. Eventually, the properties of neurons
determine the structure and dynamics of the whole neu-
ral network they are part of. In this chapter, we turn
our attention to modeling the influence of genes and
proteins upon the dynamics of mature cortex and the dy-
namic effects due to mutations of genes. The chapter is
thus an extension and further development of a general
framework for modeling brain functions and genetically
caused dysfunctions by means of computational neuro-
genetic modeling [54.2].

54.1.1 Neurogenesis

Sophisticated mathematical and computer models of the
general control of gene expression during early embry-
onic development of neural system in vertebrates have
been developed [54.3]. Computational models based on
the analogy of gene regulatory networks with artificial
neural networks have been applied to model the steps
in Drosophila early neurogenesis [54.4, 5]. The latter
models attempted to elucidate how genes orchestrate
the detailed pattern of early neural development. During
early development, dynamics of changes in architecture
and morphology of neural network parallels changes in
gene expression in time.

54.1.2 Circadian Rhythms

One particular instance where the gene expression de-
termines the neural dynamics is the circadian rhythm.
A circadian rhythm is a roughly-24 h cycle in the physi-
ological processes of plants and animals. The circadian
rhythm partly depends on external cues such as sun-
light and temperature, but otherwise it is determined
by periodic expression patterns of the so-called clock
genes [54.6, 7]. Smolen et al. [54.8] have developed
a computational model to represent the regulation of
core clock component genes in Drosophila (per, vri,
Pdp-1, and Clk). To model the dynamics of gene ex-
pression, differential equations and first-order kinetics
equations were employed for modeling the control of
genes and their products. The model illustrates the
ways in which negative and positive feedback loops
within the gene regulatory network (GRN) cooperate
to generate oscillations of gene expression. The relative
amplitudes and phases of simulated oscillations of gene
expressions resemble empirical data in most simulated
situations. The model of Smolen et al. [54.8] shows that
it is possible to develop detailed models of gene control
of neural behavior provided that enough experimental
data is available to adjust the model.

54.1.3 Neurodegenerative Diseases

Many diseases that affect the central nervous system
and manifest cognitive symptoms have an underlying
genetic cause – some are due to a mutation in a sin-
gle gene, others are proving to have a more complex
mode of inheritance [54.9]. A large group of disor-
ders are neurodegenerative disorders (like Alzheimer’s
disease, Rett syndrome, Huntington disease, etc.), in
which the underlying gene mutations lead to particular
degenerative processes in the brain that progressively
affect neural functions and eventually have fatal conse-
quences. In the case of neurodegenerative diseases, the
dynamics of neural networks degeneration is slow, usu-
ally lasting for years. The gene mutation is always there
and particular degenerative changes in the brain tissue
accumulate over time. It is a challenge for future com-
putational neurogenetic-genetic models to attempt to
model the onset and progression of these diseases using
the integration of gene regulatory networks and artifi-
cial neural networks. Already for Alzheimer’s disease,
computational models of neural networks’ dysfunction
caused by experimentally identified biochemical fac-
tors that result from genetic abnormalities have been
developed to gain insights into the neural symptoms
of the disease [54.10–12]. All these neurodegenera-
tive diseases (like Alzheimer’s disease, Rett syndrome,
Huntington disease, etc.) are characterized by the fact
that once the gene mutation manifests itself, the disease
progresses and its symptoms of cognitive impairment
are always there.

54.1.4 Idiopathic Epilepsies

However, there are genetic diseases of the brain like, for
instance, some genetically caused epilepsies, in which
the main symptom – seizure – occurs only from time
to time and between these episodes, in fact most of
the time, the brain activity appears normal. In general,
epilepsy is a disorder characterized by the occurrence
of at least two unprovoked seizures [54.13]. Seizures
are the manifestation of abnormal hypersynchronous
discharges of neurons in the cerebral cortex. The clin-
ical signs or symptoms of seizures depend on the
location and extent of the propagation of the discharg-
ing cortical neurons. The prevalence of active epilepsy
is about 1% [54.13], which, however, means about
70 million people worldwide are affected. Seizures are
often a common manifestation of neurologic injury and
disease, which should not be surprising because the
main function of neurons is the transmission of elec-
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trical impulses. Thus, most epilepsies are not caused
genetically. A particular case of nongenetic epilepsy
is temporal lobe epilepsy (TLE). The most common
pathological finding in TLE is hippocampal (temporal
lobe) sclerosis that involves cell loss [54.14]. High-
resolution MRI shows hippocampal atrophy in 87%
of patients with TLE. Causes of the cell loss involve:
past infections, trauma, and vascular and brain tissue
malformations including tumors. Experimentally, the
specific cell loss can be triggered by the injection of
kainic acid [54.15]. Inhibitory neurons are more af-
fected than excitatory neurons. Two broad classes of
GABAergic inhibitory neurons can be distinguished:
(1) dendritic-projecting interneurons mediating the slow
inhibition through the GABAB and GABAA dendritic
postsynaptic receptors [54.16, 17], and (2) interneurons
that selectively innervate somas of other neurons and
mediate the fast inhibition through GABAA type of
postsynaptic receptors [54.15, 18]). In TLE, a selec-
tive reduction of the slow (dendritic) inhibition and an
increase in the fast (somatic) inhibition have been iden-
tified [54.15]. There are many computational models of
temporal lobe-like epileptic seizures based on the effect
of abnormal values of inhibition parameters upon neural
network dynamics [54.19–22].

There is quite a high percentage of pharmacore-
sistant epilepsies, i. e., 15–50% depending on age and
definition [54.23]. In humans with intractable tempo-
ral lobe epilepsy (TLE), many of surviving inhibitory
interneurons lose their PV content or PV immunoreac-
tivity [54.24]. It has been proposed that efficient Ca2+
buffering by PV and its high concentration in PV-
expressing inhibitory cells is a prerequisite for the pro-
ficient inhibition of cortical networks [54.25]. To inves-
tigate this hypothesis, Schwaller and co-workers used
mice lacking PV (PV−/−). These mice show no obvious
abnormalities and do not have epilepsy [54.26]. How-
ever, the severity of generalized tonic-clonic seizures
induced by pentylenetetrazol (PTZ) was significantly
greater in PV−/− than in PV+/+ animals. Extracellular
single-unit activity recorded from over 1000 neurons in
vivo in the temporal cortex revealed an increase of units
firing regularly and a decrease of cells firing in bursts.
In addition, control animals showed a lesser degree of
synchronicity and mainly high frequency components
above 65 Hz in the local field potential (LFP) spectrum
compared to PV−/− mice. On the other hand, PV−/−
mice were characterized by increased synchronicity and
by abnormally high proportion of frequencies below
40 Hz [54.27]. In the hippocampus, PV deficiency fa-
cilitated the GABAAergic current reversal induced by

high-frequency stimulation, a mechanism implied in
the generation of epileptic activity [54.28]. Through
an increase in inhibition, the absence of PV facili-
tates hypersynchrony through the depolarizing action of
GABA [54.26]. Thus there is a permanent change in
the spectrum of the local field potential (LFP) of the
PV gene KO mice. We developed a hierarchical spik-
ing neural network model of LFP, in which each neuron
has the values of parameters governed by an internal
gene regulatory network [54.29]. For simplicity and be-
cause the measurements of LFP lasted only minutes, we
assumed the gene expressions were constant. In spite of
that, the removal of the gene for PV from the gene reg-
ulatory network affected all the parameters of neurons.
We have evolved the gene interactions so that the re-
sulting gene interaction matrix yielded such values of
neuronal parameters that the resulting model LFP had
similar changes of the frequency spectrum as in the
experiment with PV−/− mice of Villa et al. [54.27].

Genetic contribution to etiology has been esti-
mated to be present in about 40% of patients with
epilepsy [54.30]. Pure Mendelian epilepsies, in which
a single major locus can account for segregation of the
disease trait are considered to be rare and probably ac-
count for no more than 1% of patients [54.30]. The
common familial epilepsies tend to display complex in-
heritance, in which the pattern of familial clustering can
be accounted for by the interaction of several loci to-
gether with environmental factors. Table 54.1 lists some
types of genetically caused epilepsies, associated brain
pathologies, symptoms, and putative mutated genes.
This account is by far not complete.

54.1.5 Computational Models of Epilepsies

Let us consider in more detail childhood absence
epilepsy (CAE). It is an idiopathic (i. e., arising from
an unknown cause), generalized nonconvulsive epilep-
sy [54.31, 32]. The main feature is absence seizures.
A typical absence is a nonconvulsive epileptic seizure,
characterized by a briefly (4–20 s) lasting impairment
of consciousness. This may happen up to about eight
times each hour, and up to ≈ 200 times a day. Absence
seizures occur spontaneously, i. e., they are not evoked
by sensory or other stimuli. Absence is accompanied
by a generalized, synchronous, bilateral, 2.5–4 Hz spike
and slow-wave discharge (SWD) with large amplitudes
in the electroencephalogram (EEG), see Fig. 54.1.

SWDs can start anywhere in the cortex and from
there they quickly spread to the entire cortex and
thalamus [54.33]. The origin can also be in the thala-
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Table 54.1 Some idiopathic epilepsies, putative mutated genes, and affected functions of brain neurons in humans

Epilepsy Mutated genes/chromosome
location (if known)

Brain abnormality Symptoms References

Autosomal dominant
nocturnal frontal lobe
epilepsy (ADNFL)

α4 subunit of the nicotinic
AchR (CHRNA4)/20q
β2 subunit of the same
receptor (CHRNB2)/1p

Reduced nAchR channel
opening time and reduced
conductance leading to
hyperexcitability

Partial seizures during
night that may generalize,
arising from the frontal
lobes, motor, tonic,
postural type

[54.36–38]

Benign familial
neonatal convulsions
(BFNC1 and
BFNC2)

EBN1 (K+ channel gene
KCQ2)/20q EBN2 (K+
channel gene KCNQ3)/8q

Alteration of the gating
properties of the K+
channel leading to poor
control of repetitive firing

Generalized epilepsy of
newborns, seizures are
frequent and brief,
episodes resolve within a
few days

[54.36–39]

Childhood absence
epilepsy (CAE)

γ2 subunit gene for the
GABAA receptor gene
GABRG2/5q gene
CLCN2/3q

Fast and part of slow
GABAergic inhibition is
reduced, voltage-gated Cl−
channel function is
impaired

Absence seizures
(consciousness impaired)
up to 200 times a day,
bilateral 2–4 Hz spike
and slow-wave EEG

[54.31, 32]

Generalized epilepsy
and febrile seizures
plus (GEFS+)

β1 subunit of the Na+
channel gene SCN1B/19q α1
and α2 subunits, gene
SCN1A and gene SCN2A/2q
GABRG2/5q

Normal inactivation
kinetics of the Na+ channel
is reduced causing
persistent Na+ influx and
hyperexcitability, reduced
function of the GABAAR

Childhood onset of febrile
seizures, with febrile and
afebrile generalized
seizures continuing
beyond 6 years of age

[54.36–38]

Intractable childhood
epilepsy

α1 subunit of the Na+
channel, gene SCN1A/2q

Rapid recovery of the Na+
channel from inactivation
or very slow inactivation

Frequent intractable
generalized tonic-clonic
seizures

[54.39]

Juvenile absence
epilepsy (JAE)

α1/5q, α5/15q, γ2/5q subunit
genes for the GABAA
receptor gene (CLCN2)/3q

Fast and part of slow
GABAergic inhibition is
reduced, voltage-gated Cl
channel function is
impaired

Similar like CAE but the
seizures start after year
10, seizures may be less
frequent and last longer
than few seconds

[54.39]

Juvenile myoclonic
epilepsy (JME)

α7 subunit of the nicotinic
AchR (CHRNA7)/15q gene
CLCN2/3q, β4 subunit of
Ca2+ channel,
(CACNB4)/19p

Reduced function of the
nicotinic AChR,
voltage-gated Cl channel
and voltage-gated Ca2+
channel have reduced
conductance

Myoclonic jerks or
seizures shortly after
awakening, generalized
tonic-clonic seizures, and
sometimes absence
seizures

[54.36]

Dravet syndrome,
severe myoclonic
epilepsy of infancy
(SMEI)

α1 subunit of the Na+
channel, gene SCN1A/2q

Complete loss of activity of
the Na+ channel

Both generalized and
localized seizures, clonic
and myoclonic seizure
types

[54.38,39]

Lafora disease
(progressive
myoclonus epilepsy)

Laforin gene EPM2A/6q24
malin gene EPM2B/6p22.3

Presence of Lafora bodies
(granules of accumulated
carbohydrates)

Myoclonic jerking,
ataxia, mental
deterioration leading to
dementia

[54.40]

mus [54.34]. Several gene mutations have been reported
for CAE, and an extensive review can be found, for
instance, in [54.31]. Some suspected gene mutations
are linked to the receptor GABAA which mediates the
so-called fast somatic inhibition and a smaller part of
the slow dendritic inhibition in the cortex [54.16, 17].
Blockage of GABAA receptors by chemical agents
leads to SWDs even in healthy brain tissue and in
the corresponding model of the thalamo-cortical cir-
cuit [54.18, 34]. If excitatory and inhibitory cells

generate high-frequency discharges in synchrony and
if GABAB receptors are present (their time constants
match with the period of SWDs), sufficient conditions
are brought together to generate SWDs. In compu-
tational models, epileptic discharges can be evoked
chemically or by a specifically manipulated input, and
these seizures last as long as this altered input or chem-
ical is present [54.20, 35]. However, in reality seizures
occur spontaneously during the alert state of the brain
(that is in CAE). The underlying cause is always there,
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i. e., the gene mutation, however, the seizures are not
always present. When a spiking neural network model
is used to model epilepsy, it can be shown that spiking
neurons in a network exhibit spontaneous synchro-
nizations when the overall excitation is permanently
increased [54.22]. Depending on the level of total ex-
citation of neurons the model network went from the
nonbursting (asynchronous) activity through single syn-
chronized bursts each lasting few milliseconds, and
complex partly synchronized clusters of bursts, each
lasting few seconds, to a continuous synchronization of
firing. However in this model, the ictal and inter-ictal
periods are unrealistically short, i. e., both periods last-
ing few seconds at most. While in CAE the seizures
are indeed short-lasting, the inter-seizure periods are
generally longer than just few seconds.

Although the above models cast invaluable insights
into the mechanisms underlying epilepsies, according
to us, these models do not satisfactorily explain spon-
taneous transitions to and from the seizures, neither the
maintenance of inter-ictal and ictal states. Noise can be
used to trigger transitions to and from abnormal activ-
ity, but cannot dramatically change the short duration of
periodic and aperiodic phases of activity (being on the
order of milliseconds – our own simulations of spiking
networks). The reason is that these models work with
constant values of parameters. We believe that if the
parameter values were allowed to change dynamically,
more realistic temporal dynamics could be achieved.
LeMasson, Marder and Abbott [54.41,42], realized that
in neurons, like in other cells, there is a continuous
turnover of ion channels and receptors that underlie
neuronal signaling such that the properties of neurons
are dynamically modified. They investigated the role
of neuronal activity upon dynamic modification and
maintenance of neuronal conductances to achieve a bi-
ologically plausible explanation of transitions between
different neural activity modes in the stomatogastric
ganglion. In their models the activity-dependent intra-
cellular calcium concentration was used as a feedback
element that leads to processes of insertion, removal,
and modification of ion channels. These processes, hap-
pening probably at a local synaptic level, can be quite
fast, taking just seconds or at most minutes, because
they do not involve gene expression.

54.1.6 Outline of the Chapter

So far, due to the complexity of the whole issue, no at-
tempt to bridge the slow dynamics of gene–protein-gene
interactions with the fast dynamics of neural networks
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Fig. 54.1 EEG record of eight channels of the normal and epileptic
slow-wave discharge (SWD) in childhood absence epilepsy. SWD
have large amplitudes and frequency of 2.5–4 Hz

has been made. We think it can be done and we would
like to elaborate a proposal of how to move forward in
this direction. Thus, in this chapter we describe a com-
putational neurogenetic model (CNGM) to investigate
the influence of a slow gene–protein dynamics upon
the fast neural dynamics. This approach is illustrated by
means of a simple model of a spiking neural network,
in which parameter values are linked to proteins that
are the products of gene expression. Gene expressions
change in time as a consequence of the dynamics of the
internal gene–protein regulatory network. Thus, the val-
ues of neuronal parameters are not fixed but instead they
vary in time due to the changes in expressions of genes
coding for proteins that are behind the corresponding
parameters of the neuronal functions (like amplitude of
excitation or inhibition, resting firing threshold, etc.). In
such a way, we can investigate different modes of gene
interactions with normal or knock out genes, and their
effects upon the neural dynamics. Based on these toy
simulations we propose a hypothesis that spontaneous
transitions to and from the ictal neural activity may be
due to variations of neuronal parameters resulting from
the underlying dynamics of gene–protein regulatory in-
teractions. In other words, we would like to suggest
a hypothesis why the seizures occur only from time to
time and why between these episodes, in fact most of
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974 Part K Information Modeling for Understanding and Curing Brain Diseases

the time, the brain activity appears normal in spite of
the genetic mutation always being present.

First we overview relevant facts from molecu-
lar biology and bioinformatics. Then we introduce
the model that is a continuous extension of the
discrete model of gene–protein dynamics introduced

in [54.43, 44]. Next we present some illustrative com-
puter simulations with the new continuous model.
In the discussion section, we outline directions for
further development and applications of the neuroge-
netic approach to future modeling of the genetic brain
disorders.

54.2 Gene Expression Regulation

54.2.1 Protein Synthesis

The term gene expression refers to the entire pro-
cess whereby the information encoded in a particular
(protein-coding) gene is decoded into a particular pro-
tein [54.1]. Regulation at any one of the various steps
in this process can lead to differential gene expression
in different cell types, different developmental stages
of one cell type, in response to external conditions,
etc. The most important mechanism for determining
whether or not most genes are expressed is the control
of transcription initiation [54.1].

After transcription has been initiated, RNA poly-
merase II, together with the necessary transcription
elongation factors, travels along the DNA template and
polymerizes ribonucleotides into a pre-messenger RNA
(pre-mRNA) copy of the gene. The polymerase moves
at a regular speed (approximately 30–50 nucleotides
per second) and holds on to the DNA template effi-
ciently, even if the gene is very long. At the end of the
gene, the RNA polymerase falls off the DNA template
and transcription terminates [54.45]. Each resulting pre-

Translation

Final
destination

Time (   10–30 min)

Transcription

mRNA
DNA ER

GC
Protein

Fig. 54.2 Overview of the protein synthesis. ER = endoplasmic
reticulum, GC = Golgi complex. Final destination for a protein
from a secretory pathway can be, for instance, the plasmatic mem-
brane, if it is a receptor

mRNA consists of two types of segments – exons, that
are segments translated into proteins, and introns – seg-
ments that are considered redundant and do not take part
in the protein production. Removing the introns and or-
dering only the exon parts of the genes in the RNA
sequence is called splicing and this process results in
the production of a messenger RNA (mRNA) sequence.
From one gene, many copies of mRNA are produced
that are directly translated into proteins. Each protein
consists of a sequence of amino acids, each of them
coded by a base triplet of the transport RNA (tRNA),
called a codon. Translation of mRNA sequence into the
protein sequence (by means of tRNA) occurs on ribo-
somes, which are the protein synthesizing machines of
cells. Elongation of a protein polypeptide proceeds at
a rate of 3–5 amino acids added per second [54.45].

On average, a vertebrate gene is around 30 kb =
30 000 bases long, out of which the coding region
is only about 1–2 kb = 1000–2000 bases long, that
is 3–7%. However, huge deviations from the average
can be observed. Thus from the initiation of transcrip-
tion, it would take around 600–1000 s = 10–17 min to
transcribe this average 30 kb gene. Translation of the
coding part would take approximately 3–10 min. In to-
tal, the process of an average protein synthesis would
last about 13–27 min. However, the process of pro-
tein preparation for its function is not over yet for the
so-called proteins of the secretory pathways, like hor-
mones, neurotransmitters, receptors, etc. [54.46]. After
being synthesized on ribosomes, these proteins are
transferred to endoplasmic reticulum (ER) to undergo
the posttranslational modifications. After modification
is completed in the ER, these proteins move via trans-
port vesicles to the Golgi complex from where they
are further sorted to several destinations, like axonal
terminals, synapses, etc. The whole process is sum-
marized in Fig. 54.2. Posttranslational modifications,
sorting, and transport also take some time, probably on
the order of minutes. Thus, from the initiation of tran-
scription, it is fair to say, that it takes about 15 min
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for an average protein of the secretory pathway to start
functioning in its place, and it may take even more, de-
pending on the size of the protein. It is also obvious
that this time delay is different for different proteins.
These temporal considerations will be important for
the construction of the general gene–protein regulatory
network.

54.2.2 Control of Gene Expression

Each gene has a promoter region. The binding of
a nonspecific basal factor to promoter is a prerequi-
site for the basal level of the transcription of a gene.
The differential level of transcription is controlled by
transcription factors, activators and repressors, which
bind to regulatory DNA sequences, located proximally
to the promoter. Activators enhance gene expression
while repressors suppress gene expression. Transcrip-
tion can also be stimulated by control elements called
enhancers that are more distant from the promoter re-
gion than the promoter-proximal elements. Enhancers
include binding sites for several transcription factors.
Thus, transcription from a single promoter may be
regulated by binding of multiple transcription factors
to alternative control elements, promoter-proximal el-
ements and enhancers, permitting complex control of
gene expression [54.1]. Moreover, there are molecules,
which act as co-activators and co-repressors, that in-
teract with activators and repressors to modify their
activity. Whether or not a specific gene is expressed at
a particular time is largely a consequence of the net ef-

fect of the activity of the number of transcription factors
at that particular time.

To get from a particular protein in a cell to the
control of expression of some gene takes many steps
and thus some time. For instance, it is known that
activation of the NMDA (N-methyl-d-aspartate) recep-
tors in neurons causes de novo synthesis of BDNF
(brain-derived neurotrophic factor) [54.47]. BDNF de
novo synthesis was estimated by measuring the steady-
state content of BDNF mRNA and protein at various
times after NMDA treatment. NMDA elicited a time
dependent increase in BDNF mRNA content, begin-
ning at 3 h (2-fold) and lasting at least up to 8 h in
vitro. However, a small, about 1.2-fold, increase was
observed already after 1 h [54.47]. This means that it
takes about an hour for the signal from the NMDA re-
ceptor to reach the genome, to initiate and carry out the
transcription, and to synthesize enough proteins to be
detected above the basal concentration. The NMDAR
multiprotein complex contains 77 proteins out of which
19 participate in NMDAR signaling [54.48]. These
signaling proteins mediate the effect by differential
activation of different downstream effector pathways
leading to the genome, for instance different mitogen-
activated protein kinase (MAPK) pathways, depending
on a particular signal [54.49]. Thus, in principle each
protein in a cell has a way to influence transcription of
genes through cascades of reactions leading to differ-
ent transcriptional factors. This is the molecular basis
for construction of different gene regulatory networks
(GRNs) from gene expression data [54.50, 51].

54.3 Computational Neurogenetic Model

Here, we would like to mathematically formulate an
extension of our computational neurogenetic model
introduced in [54.43, 44], which was based on a dis-
crete dynamics of gene regulatory network. Current
extension takes into account different time scales and
different time delays in the continuous dynamic system.

54.3.1 Gene–Protein Regulatory Network

Let us formulate a set of general equations for the gene–
protein dynamic system (Fig. 54.3). As a first gross
simplification, we will assume that every neuron has
the same gene–protein regulatory network (GPRN) –
that is, interactions between genes are the same in every
neuron.

The following set of nonlinear delay differential
equations (DDEs) was inspired by the mathematical
model of Chen and Aihara, who also proved the gen-
eral conditions of its stability and bifurcation for some
simplifying assumptions [54.52]. Particular terms on
the right-hand side of equations were inspired also by
the rough network models from [54.53]. An equation
similar to (54.2) for the protein (gene product) dynam-
ics was used by [54.5] to model early neurogenesis in
Drosophila. The linear difference form of (54.1) with-
out decay was used by [54.54] to model mRNA levels
during the rat CNS development and injury. In the fol-
lowing, we will consider the dynamics of genes and
proteins to be continuous that is, we can describe their
changes in a continuous time. We will speak about gene
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Fig. 54.3 Schematic illustration of
the gene–protein regulatory network
(GPRN). The edges represent reg-
ulatory interactions that lead either
to up-regulation or down-regulation
of expression of the target gene.
These regulatory interactions are
expressed as coefficients of the in-
teraction matrix W. Protein properties
and concentrations are linked to neu-
ronal parameters, like, for instance,
magnitude of excitation or inhibition.
GPRN illustration was inspired by the
network illustration in [54.52]

families rather than individual genes. By gene families
we understand the set of genes that have a coordinated
transcription control and code for different subunits
of one protein. These subunits have to be synthesized
in concert in order to produce a functional protein.
We will represent the mRNA levels of all the relevant
gene families with the vector m = (m1,m2, . . . ,mN )
and the corresponding protein levels with the vector
p = (p1, p2, . . . , pN ). The level of mRNA of the gene
family i changes as

dmi

dt
= Amiσmi

⎡

⎣
n∑

j=1

wij p j (t − τp j )

+
K∑

k=1

vikxk(t − τxk )+bmi

⎤

⎦−λmi mi (t) ,

(54.1)

where mi (t) is the total level of mRNA for the i-th gene
family at time t, σmi is a nonlinear sigmoid regulation-
expression (activation) function for the i-th gene family,
Ami is the amplitude of this activation function, wij
are the regulatory coefficients between the i-th and j-th
gene families, while the regulatory interaction is me-
diated through proteins p j , p j is the level of the jth
protein, τp j is the delay, with which the j-th protein in-
fluences the transcription of the i-th gene family, vik is
the influence of the k-th external factor upon the gene
(hormone, drug, etc.), xk is the concentration of the k-th
external factor, τxk is the delay with which the k-th ex-
ternal factor influences the transcription of the i-th gene

family, bmi is the bias, i. e., the basal expression level of
the i-th gene family, and λmi is the degradation rate of
the mRNA of the i-th gene family.

Analogically, protein levels change as

dpi

dt
= Api σpi

⎡

⎣mi (t − τmi )

+
K ′
∑

k=1

uik yk(t − τyk )+bpi

⎤

⎦−λpi pi (t) ,

(54.2)

where pi (t) is the level of a fully functional protein
coded for by the i-th gene family, σpi is a nonlinear sig-
moid synthesis function for the i-th protein (note, we
consider that one protein is coded for by only one gene
family), Api is the amplitude of this synthesis function,
mi is the total expression level of the i-th gene family,
τmi is the delay from initiation of transcription of the i-
th gene family till the end of synthesis of the i-th protein
(on the order of tens of minutes), uik is the influence of
the k-th external factor upon the protein (hormone, drug,
etc.), yk is the concentration of the k-th external factor,
τyk is the delay with which the k-th external factor in-
fluences the i-th protein level, bpi is the bias, i. e., the
basal level of the i-th protein, and λpi is the degradation
rate of the i-th protein.

If we, instead of gene families, worked with
genes coding for ns individual subunits, then the
first term on the right-hand side of (54.2) would
read

∑ns
j (proportion of subunits) × m j (t − τm j ) instead
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of mi (t −τmi ). Second terms in (54.1) and (54.2) enable
us to investigate the effect of drugs and other factors
like neurotransmitters or hormones, which are known
to influence gene–protein interactions.

We solve (54.1) and (54.2) numerically and inter-
pret one iteration as 1 s of the real time. Equations
(54.1) and (54.2) are the so-called delay differential
equations (DDEs). DDEs are similar to ordinary differ-
ential equations, but their evolution involves past values
of the state variable. The solution of delay differential
equations therefore requires knowledge of not only the
current state, but also of the state a certain time previ-
ously [54.55]. For DDEs we must provide not just the
value of the solution at the initial point, but also the
history, that is the solution at times prior to the ini-
tial point [54.56]. As of MATLAB 6.5 (Release 13),
the DDEs solver dde23 is part of the official MATLAB
release.

54.3.2 Proteins and Neural Parameters

Let Pj denotes the j-th parameter of a model neuron.
Let p j ∈ (0, 1) be the normalized level of protein con-
centration obtained by the solution of (54.1) and (54.2)
above. Then the value of parameter Pj is directly pro-
portional to the concentration of the (functional) protein
p j , in such a way that

Pj (t) = p j (t)
(

Pmax
j − Pmin

j

)
+ Pmin

j , (54.3)

where Pmax
j and Pmin

j are maximal and minimal val-
ues of the j-th parameter, respectively. If p j → 0 then
Pj → Pmin

j , and if p j → 1 then Pj → Pmax
j . Other, e.g.,

nonlinear relations between protein levels and parame-
ter values are also possible. The linear relationship in
(54.3) is justified by findings that protein complexes,
which have clearly defined interactions between their
subunits, have highly correlated levels with mRNA ex-
pression levels [54.57,58]. Subunits of the same protein
complex show significant co-expression, both in terms
of similarities of absolute mRNA levels and expression
profiles, e.g., subunits of a complex have correlated pat-
terns of expression over a time course [54.58]. This
implies that there should be a correlation between
mRNA and protein concentration, as these subunits
have to be available in stoichiometric amounts for the
complexes to function [54.57]. This is exactly the case
of proteins in our model, which are receptors and ion
channels, comprised of respective ratios of subunits.
Equation (54.3) links the gene/protein dynamics to the
dynamics of neural model. Values of neuronal param-

eters will not be constant anymore, but instead their
values will depend on the levels of synthesized pro-
teins [54.59, 60]. In such a way the system of (54.1) to
(54.3) allows for investigation of how deleted or mu-
tated genes can alter the activity of a neural network.

54.3.3 Thalamo-Cortical Model

We use the same spiking neural network as a thalamo-
cortical model as we investigated in our previous studies
of the cortical local field potential (LFP) and its depen-
dence upon genes and proteins [54.43, 44]. The cortical
local field potential (LFP) is calculated at each time in-
stant as the total sum of current membrane potentials
of all neurons in the network model of cortex, i. e.,
Φ(t) =Σui (t).

Spiking Neuron
The spiking model of the cortical neuron is an
integrate-and-fire neuron [54.61, 62]. The total somatic
postsynaptic potential (PSP) of neuron i is denoted as
ui (t). We update ui every millisecond (as opposed to
the gene–protein dynamics that is updated every sec-
ond). When ui (t) reaches the firing threshold ϑi (t), the
neuron i fires, i. e., emits a spike (Fig. 54.4). The mo-
ment of the threshold ϑi (t) crossing from below defines
the firing time ti of an output spike. The value of ui (t) is
the weighted sum of all synaptic PSPs, εij

(
t − t j −Δax

ij

)
,

such that

ui (t) =
∑

j∈Γi

∑

t j∈Fj

Jijεij

(
t − t j −Δax

ij

)
. (54.4)

The weight of synaptic connection from neuron j to
neuron i is denoted by Jij . It takes positive (negative)
values for excitatory (inhibitory) connections, respec-
tively. Δax

ij is an axonal delay between neurons i and
j, which linearly increases with Euclidean distance
between neurons. The positive kernel expressing an in-
dividual postsynaptic potential (PSP) evoked on neuron
i when a presynaptic neuron j from the pool Γi fires at
time t j has a double exponential form, i. e.,

ε
type
ij (s) = Atype

[

exp

(

− s

τ
type
decay

)

− exp

(

− s

τ
type
rise

)]

,

(54.5)

where τ
type
decay/rise are time constants of the fall and

rise of an individual PSP, respectively, A is the
PSP’s amplitude, and type denotes one of the follow-
ing: fast excitation, fast inhibition, slow excitation, and
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t1 t2

a)

b)

Time (ms)

Time (ms)

c)
Δax

tj Time (ms)

ui(t)
(t – t2)

0

0

Fig. 54.4 (a) Suprathreshold summation of PSPs in the
spiking neuron model. After each generation of postsynap-
tic spike there is a rise in the firing threshold that decays
back to the resting value between the spikes. (b) Subthresh-
old summation of PSPs that does not lead to the generation
of postsynaptic spike, but can still contribute to the gener-
ation of LFP. (c) PSP is generated after some delay of the
presynaptic spike to travel from neuron j to neuron i

slow inhibition. Fast excitation in excitatory synapses
is mediated through the AMPA receptor-gated ion
channels for sodium [54.18, 63]. Slow excitation in
excitatory synapses is mediated through the NMDA
receptor-gated ion channels for sodium and cal-
cium [54.18,63]. Fast inhibition is mediated through the
somatic GABAA receptor-gated ion channels for chlo-
ride, and slow inhibition is mostly mediated through
the dendritic GABAB receptor-gated ion channels for
potassium [54.16] as well as by the dendritic GABAA
receptor-gated ion channels for chloride [54.17,21]. Im-
mediately after firing the output spike at ti , neuron’s
firing threshold ϑi (t) increases k-times and then returns
to its resting value ϑ0 in an exponential fashion

ϑi (t − ti ) = k ×ϑ0 exp

(

− t − ti
τϑdecay

)

, (54.6)

where τϑdecay is the time constant of the threshold de-
cay. In such a way, absolute and relative refractory

Table 54.2 List of neuronal parameters and initial values
used in computer simulations

Neuron’s parameters Value range

Fast excitation: amplitude
rise/decay time constants

0.5–3.0
1–5 ms/5–10 ms

Slow excitation: amplitude
rise/decay time constants

0.5–4.0
10–20 ms/30–50 ms

Fast inhibition: amplitude
rise/decay time constants

4–8
5–10 ms/20–30 ms

Slow inhibition: amplitude
rise/decay time constants

5–10
20–80 ms/50–150 ms

Resting firing threshold, decay time
constant/rise k

17–25
5–50 ms/1–5 fold

periods are modeled. Table 54.2 contains the values of
neuron’s parameters used in our simulations. These val-
ues were inspired by experimental and computational
studies [54.18, 21, 64, 65] and were further adjusted by
experimentation.

We assume that all three parameters in (54.5) for
the fast excitation, i. e., amplitude, rise, and decay time
constants are proportional according to (54.3) to the
concentration of the protein called amino-methylisoxa-
zole-propionic acid receptor or AMPAR in short. All
three parameters describing slow excitation are propor-
tional to the concentration of the N-methyl-d-aspartate
acid receptor or NMDAR. All three parameters describ-
ing fast inhibition are proportional to the concentration
of the gamma-aminobutyric acid (GABA) receptor A or
GABAAR for short. The slow inhibition parameters
are proportional to the levels of GABA receptor B (or
GABABR). Concentration of the sodium voltage-gated
channel (SCN) protein is inversely related to the firing
threshold parameters, its resting value, and the decay
constant. This inverse relationship is a trivial modifi-
cation of the relation in (54.3). We could have made
only the amplitudes dependent on the protein concen-
trations and we could have included more ion channel
proteins to affect the firing threshold parameters. We
do not claim particular assumptions above are the most
appropriate. They do, however, serve our purpose to de-
velop a model of SNN that has dynamically changing
values of neuronal parameters that depend on levels of
proteins which in turn depend on the dynamics of in-
ternal GPRN described by (54.1) and (54.2). Thus the
values of parameters in Table 54.2 are initial values that
change dynamically according to (54.3).

Spiking Neural Network
Figure 54.5 illustrates the architecture of our spiking
neural network (SNN). Spiking neurons within the net-
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Table 54.3 List of SNN parameters and values used in
computer simulations

SNN Parameter Value

Number of neurons 120

Proportion of inhibitory neurons 0.2

Probability of external input fiber firing 0.015

Peak/sigma of external input weight 5/1

Peak/sigma of lateral excitatory weights 10/4

Peak/sigma of lateral inhibitory weights 40/6

Probability of connection 0.5

Grid unit delay for excitatory/inhibitory 1/2 ms

spike propagation

work that represents the cerebral cortex can be either
excitatory or inhibitory. There can be as many as about
10–20% of inhibitory neurons positioned randomly on
the rectangular grid of N neurons.

Lateral connections between neurons in the model
cortex have weight values that decrease in strength with
the distance from neuron i according to a Gaussian
formula

Jij (dist(i, j)) = Jexc/inh
0

σexc/inh
exp

(

−dist(i, j)2

σexc/inh2

)

(54.7)

while the connections are established at random with
the probability equal to 0.5. The same distribution of
weights and connectivity probability is applied to the
feedforward connections from the input layer that repre-
sents the thalamus. External inputs from the input layer
are added to the right-hand side of (54.4) in each time
step. Each external input has its own weights Jext input

i
and the PSP evoked by the fast AMPAR-dependent ex-
citation, i. e.,

uext input
i (t) = Jext input

i εfast excitation
i (t) . (54.8)

a)

b)

Cortex

Gaussian lateral and
input weights

One-to-many feedforward
input connections

Spiking
neural
network

Input
layer

Thalamus

Jij

σij

Fig. 54.5 (a) Simple neural network model of the thalamo-
cortical (TC) system. (b) SNN represents the cortex and the
input layer represents the thalamus. 20% of N neurons are
inhibitory (filled circles). Units in both layers form a rect-
angular grid. The model does not have a feedback from the
cortex to the thalamus

To stimulate the model cortex, we employed a uni-
formly random input with an average firing frequency
of 15 Hz, since a tonic, low-frequency, nonperiodic and
nonbursting firing of thalamocortical inputs with the
frequency of 10–20 Hz is typical for the state of vig-
ilance [54.66]. Table 54.3 contains the values of SNN
parameters used in our simulations. Values of parame-
ters like weight distributions and strengths and grid unit
delays were adjusted by experimentation.

54.4 Dynamics of the Model

Figure 54.6 illustrates temporal evolution of variables
at three levels, i. e., three dynamic systems that we
combine into one integrated dynamic system – compu-
tational neurogenetic model.

The first dynamic system is the SNN, which
similarly to biological neurons operates on the time
scale of milliseconds (ms). Then we have changes
in protein levels that lag behind the changes in gene
expression/mRNA levels by the order of tens of min-
utes, even hours, due to the process of transcription,

translation, and post-translational modification. Protein
levels are directly related to parameters of neuronal sig-
naling, like excitation and inhibition. Gene expression
levels (expressed as mRNA levels) change slowly – on
the order of tens of minutes, even hours.

54.4.1 Estimation of Parameters

Ideally we would know all the parameters in (54.1)–
(54.3), that is, ideally we would know all the delays, bi-
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Delays for proteins against genes
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c) RNA

Time (h)

Fig. 54.6a–c Summary of three dynamic systems within one in-
tegrated dynamic system – computational neurogenetic model.
(a) Local field potential (LFP) of SNN, (b) protein dynamics over
time, (c) gene expression/mRNA dynamics over time

ases, shapes of activation functions, amplitudes, degra-
dation rates, and last but not least, the interaction matrix
W = {wij}. We could infer the coefficients of W from
the time course of mRNAs by reverse engineering. To
do so, we would have to proceed in the following steps:

1. Obtain gene expression data (mRNA levels) from
the relevant neural system for discrete sampling
periods.

2. Then use the interpolation technique (for instance
the extended Kalman filter) to interpolate missing
values for mRNA levels for intermediate time inter-
vals. In such a way, we can obtain the values of all
mi for, let us say, every minute.

3. Then we need to calculate the levels of proteins ac-
cording to (54.2) to estimate the values of neuronal
parameters according to (54.3), see Fig. 54.7.

Let us now discuss these steps in more detail. The
first step, i. e., the interpolation, would enable us to work
with the values of mRNAs and consequently parame-
ter values in one-minute intervals. We can assume the

mRNA

Time (h)

Delay 1 Delay 2

Parameters

Time (h)

Fig. 54.7 From the measured and interpolated time evolu-
tion of mRNA levels, filled and empty symbols, respec-
tively, we can derive the values of parameters for model
neurons using (54.2) and (54.3)

values of neuronal parameters being constant during
these short intervals between interpolated values. Dif-
ferent methods can be used for data interpolation, for
instance the Kalman filter [54.67, 68], evolutionary op-
timization [54.69], state space equations [54.70], etc.
Then the biggest challenge is to estimate the delays
from initiation of transcription of the gene families till
the end of synthesis of relevant proteins in the gene–
protein regulatory network, i. e., τmi ’s for (54.2). We
need these delays for updating neuronal parameters to
simulate SNN (or any other ANN model).

Proper updating of neuronal parameters is crucial
for explaining changes in the SNN output – why they
occur and when. We can make rough qualified estimates
of these delays using the information of the length of the
relevant proteins and the time, which is needed for their
genes transcription and the subsequent protein transla-
tion [54.45] and posttranslational modifications [54.46].
After all this, the final computational challenge remains:
the simulation of SNN activity in real time.

54.4.2 Simulation Plan

Another option is that instead of simulating the SNN for
the whole time of evolving gene–protein dynamics, we
can perform the simulations of SNN only at random or
interesting time points of the gene–protein dynamics, as
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Fig. 54.8 Sampling the SNN output at interesting time in-
tervals based on some heuristics. LFP means local field
potential �

is illustrated in Fig. 54.8. For these random or interest-
ing time points, the simulations of SNN will last only
for some minutes of real time. Interesting intervals for
sampling the SNN output can be based on some kind of
heuristics – for instance based on the knowledge that
at that particular time something has happened – for
instance, there was a seizure. Otherwise this sampling
can occur at intervals where the parameters have their
extreme values, at intersections of values, etc.

Protein
level

P1

P2

P3

SNN output behavior: LFP

Sampling at every interesting region of gene-protein dynamics

54.5 Results of Computer Simulations

54.5.1 Dynamics of the Gene–Protein
Regulatory Network

In order to illustrate the approach described above,
we provide an example of an artificially created dy-
namic system described by (54.1)–(54.3). We have
omitted the terms for external factors from both equa-
tions. Thus, we have numerically solved (54.1)–(54.3)
(minus external factors terms) for several randomly
generated interaction matrices Ws, with random co-
efficients wij ∈ (−1, 1) and with randomly generated
delays τp j , τmi ∈ (0 min, 60 min). Other parameters
had these values: σmi (x) = σpi (x) = tanh(x) for each
i, Ami = Api = 0.01 for each i, bmi = bpi = 0.5 for
each i, and λmi = λpi = 0.001 for each i. These con-
stants were chosen in such a way that the oscillations
in gene and protein dynamics were on the orders of
1–2 or more hours [54.71]. The values of mRNAs and
proteins were normalized to the interval (0, 1). The
total number of genes was n = 10, where five genes
were directly related to the signal processing parame-
ters and five genes were not. These five hypothetical
genes directly affecting values of neural parameters
were: AMPAR, NMDAR, GABAAR, GABABR, and
SCN. For better clarity, we present only the curves for
the five genes that are directly related to parameters.
Initial conditions are always the same unless other-

Fig. 54.9a,b Effect of different delays upon the gene dy-
namics for the same GPRN interaction matrix W and the
same initial conditions: (a) the delays are randomly gener-
ated from the interval 0–60 min, (b) all delays are equal to
30 min �

wise stated and that is mi (0) = 0.5 and pi (0) = 0.5 for
all i.

In Fig. 54.9 we illustrate the effect of different de-
lays upon the steady state gene dynamics for the same
random W and the same initial conditions. The inter-
val for numerical solving of (54.1) and (54.2) was equal
to 1 s. We can see that delays can completely change
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Fig. 54.10a–d A typical example of (a) mRNA dynamics (54.1), (b) protein dynamics (54.2), and (c) parameter dynamics
(54.3) for one randomly generated GPRN interaction matrix W and one set of randomly generated delays. All delays are
different and randomly generated from the interval (0 min, 60 min).(d) Temporal dynamics of the neuron’s parameter
values after the knock out of hypothetical genes for GABAAR. Parameters related to fast inhibition are missing entirely
and the other ones have changed their time course

the time course of mRNAs for the same values of other
parameters. Therefore, in simulations of real experi-
ments it would be very important to estimate the delays
carefully.

In the next Fig. 54.10 we present a typical exam-
ple of mRNA dynamics (54.1), protein dynamics (54.2),
and related neuronal parameter dynamics for one of
the randomly generated gene–protein regulatory ma-
trices W and a set of randomly generated delays. All
delays are different and randomly generated from the
interval (0 min, 60 min). The time scale is in hours, and
the whole simulation illustrates the gene and protein
levels over 24 h. The update interval for the gene–
protein dynamics was 1 s. We can see in Fig. 54.10a,b
that the protein dynamics is essentially copying the gene
dynamics, however with corresponding delays. The typ-
ical steady state of our model system resembles chaotic
or quasi-periodic behavior. Constant or periodic steady
states are rare.

54.5.2 Dynamics of GPRN
After Gene Knock Out

In our artificial GPRN, we can delete or mutate genes
one after another, and in various combinations, and ob-
serve the effect upon the parameter and consequently
upon the SNN dynamics. In the model, we can ma-
nipulate also the genes that are not directly related to
neuronal parameters, but that influence them through
regulatory interactions W. In such a way, a computa-
tional model can aid an experimental search for various
genetic conditions. For illustration, we will knock out
one hypothetical gene, let us say that one responsible
for GABAA receptors mediating fast inhibition in our
model. GABAA receptor mRNA and protein levels as
well as related parameters are all set to zero for the
whole time of the simulation. The resulting parameter
dynamics after GABAAR gene deletion is illustrated in
Fig. 54.10d. All the coefficients of the interaction ma-
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trix W are the same as for the dynamics illustrated
in Fig. 54.10a–c, except of course all the links from
knock out gene GABAAR are missing. We can see in
Fig. 54.10d even with the naked eye that for the same
initial conditions, the parameter dynamics governed by
genes–protein network has changed compared to the
complete GPRN. The curves corresponding to parame-
ters related to fast inhibition are missing entirely, timing
of others has changed. The prominent peaks in both
graphs c and d belong to the decay constant of slow in-
hibition. After the knock out of GABAAR four peaks
are missing in the dynamics of this slow inhibition pa-
rameter and a new peak appears after 20 h. The same
holds for other parameters of slow inhibition. Although
they have different values, they follow the same time
courses because that is the time course of the concen-
tration of NMDAR. We can conclude, not surprisingly,
that the temporal evolution of all neural parameters has
changed more or less as a consequence of the knock out
of the hypothetical gene for GABAAR.

54.5.3 Dynamics of the Cortex

The question arises now what the spiking activity of
the SNN is like. Figure 54.11 illustrates the spiking of
SNN over 1 min at some arbitrary time point of param-
eter dynamics of parameters illustrated in Fig. 54.10c.
When the small artificial genome is complete, many
random gene interaction matrices actually lead to an
asynchronous spiking of SNN with very low frequen-
cies and low spike count, like the one illustrated in
Fig. 54.11.

54.5.4 Dynamics of the Cortex
After Gene Knock Out

Now, we are interested in the effect of the gene knock
out upon the SNN local field potential and spiking
activity. We performed the SNN simulations and the
LFP activity analysis for the same time intervals as
in the case of a complete GPRN. Interestingly, most
of the time, the spiking activity of SNN was low and
asynchronous, like in the normal case illustrated in
Fig. 54.11, in spite of the fact that the GABAAR gene
and thus the fast inhibition were entirely missing. It
seems that for this particular interaction matrix W there
was a compensation for the missing fast inhibition most
of the time. However, sometimes all the neurons in the
SNN spontaneously synchronized. This behavior is il-
lustrated in Fig. 54.12. Such behavior is reminiscent of
a spontaneous epileptiform activity that spontaneously

Inhibitory neurons Excitatory neurons
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Fig. 54.11a,b Illustration of the output behavior of SNN for the
complete artificial genome: (a) The spiking behavior. The x-axis
is time and the y-axis is the index of a neuron. The spikes of exci-
tatory neurons are marked by red blobs and the spikes of inhibitory
neurons are marked by the blue blobs. Neurons spike on average
with very low frequency of 0–0.5 Hz. At any millisecond interval
only 0–4 neurons emit a spike. (b) The graph shows the correspond-
ing local field potential (LFP), which is the sum of all membrane
potentials of all neurons

arises and then ceases again. The SNN entered the
synchronized state and left it spontaneously based on
the underlying parameter dynamics. Most of the time
however, the spiking was asynchronous like the one il-
lustrated in Fig. 54.11, in spite of the fact that the gene
for GABAAR was missing from the artificial genome.

To summarize, the observed behavior before and af-
ter the simulated knock out of the hypothetical gene
for GABAAR from our artificial gene–protein regula-
tory network resulted from several randomly generated
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interaction matrices W. Most of the randomly gener-
ated regulatory matrices either produced no spiking in
the SNN or the neurons were synchronized all the time.
We did not perform any optimization of the interac-
tion matrix W like we did, for instance, in our previous
work by means of an evolutionary algorithm where
the fitness function was particular spectrum of LFP or

EEG [54.43,44]. Rather, we adopted an exploratory ap-
proach of investigation of many randomly generated
interaction matrices out of which we kept those that
generated interesting dynamics. This naïve brute force
approach served us to explore the potential application
of computational neurogenetic model in relation to gene
knock-out experiments.

54.6 Discussion and Future Directions

With the advancement of molecular research technolo-
gies more and more data and information will be made
available about the genetic basis of neuronal functions
and genetically based epilepsies and other brain ge-
netic diseases. This information will then be utilized
for the models of brain functions and diseases that in-
clude models of gene and protein interaction within
neurons. Although the data are not yet available, we
have started to conceive a new computational method-
ology that will be able to incorporate such knowledge
into the existing models of neurons and neural net-
works. This new approach integrates knowledge from
computer and information science, neuroscience, and
molecular genetics. We call it computational neuro-
genetic modeling [54.43]. In this chapter we describe
this novel computational approach to brain neural net-
work modeling which integrates dynamic gene–protein
networks with a neural network model. The bridging
system is the protein network, in which individual pro-
teins that are coded for by genes are related to neuronal
parameters. Interaction of genes and proteins in model
neurons thus affects the dynamics of the whole neu-
ral network through neuronal parameters, which are no
longer constant, but change as a function of gene ex-
pression. For simulation of real experiments we would
need real gene expression data to infer the parameters
of GPRN. Then, through optimization of the gene in-
teraction network, initial gene/protein expression values
and neural parameters, particular target states of the
neural network operation can be achieved. At present
however, no such data are available. Therefore we have
adopted an exploratory approach to demonstrate this
new computational methodology by means of a simple
neurogenetic model of a spiking neural network which
generates LFP and we have shown some interesting be-
havior of this simple model.

Recently, Thomas et al. [54.72] adopted a kind of re-
verse approach. Using a computational model of dentate
gyrus with mossy fiber sprouting they addressed these

three questions: (1) What voltage-gated ion channels
have the biggest influence on network excitability? (2)
What changes in their electrophysiological properties
have the biggest influence on network excitability? (3)
What is the magnitude of these changes that leads to
epileptiform activity? They call this approach a ge-
netic sensitivity analysis to predict which genes are best
positioned to increase risk as well as to predict func-
tionally how variants in these genes might increase
network excitability. Based on computer simulations
they predicted that variants in sodium and delayed rec-
tifier channels are likely to confer risk for development
of epilepsy. This prediction is consistent with findings
that mutations in genes coding these channels can cause
generalized epilepsies (see, e.g., Table 54.1), although
generalized epilepsy syndromes predominantly involve
cortical and thalamic networks (like we simulated in
this chapter albeit with only feedforward connectivity)
and not dentate gyrus. Notable is the used model of
the neural network. Thomas et al. [54.72] used a model
of the dentate gyrus that contains morphologically re-
alistic models of granule cells, and other excitatory
and inhibitory neurons developed using the software
NEURON [54.73, 74]. Neuron models had between 9
and 17 compartments describing the actual dendritic
arborization and realistic conductances including the
fast sodium and potassium channels that directly form
the action potential, an A current, L-, N-, and T-type
calcium channels, hyperpolarization-activated, cyclic
nucleotide-gated (HCN) current, and slow-voltage and
calcium-gated potassium channels. Similarly, a detailed
neural network model of the relevant brain areas in con-
nection with computational neurogenetic modeling will
allow us to ask more detailed questions and simulate
more detailed situations than we have shown in this
chapter. At the time of writing of this chapter more than
600 of such detailed computational models were pub-
licly available at the ModelDB website of the NEURON
simulation environment [54.75].
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54.6.1 Q and A for Neurogenetic Modeling

Computational neurogenetic modeling is a new area of
research that has many open questions, for example:

1. Which real neuronal parameters are to be included
in an ANN model and how to link them to activities
of genes/proteins?
In our model presented in this chapter, we have
chosen those parameters that are relevant to neu-
ronal excitation and inhibition as our goal was to
model LFP and the consequence of gene knock out
(or mutation) upon the changes in LFP that would
resemble epileptiform activity. Thus, the general an-
swer to this question would be to include those
parameters that are relevant for the phenomenon
modeled. We have linked the chosen parameters to
the levels of proteins via (54.3). This linkage is
based on the assumption that the magnitude of exci-
tation/inhibition is proportional to the concentration
of corresponding receptors for excitatory/inhibitory
neurotransmitters, respectively. Or in other words,
this assumption means that if the gene expression
for particular receptor is increased/decreased, then
there is probably an increased/decreased demand for
it in the cell due to changes in synaptic transmis-
sion or due to effects of other genes. However, in
addition to this relationship a more sophisticated
relation is possible to model. Different variants of
relevant genes are linked with variations in receptor
or ion channels functions and that can be taken into
account as well.

2. Which genes/proteins are to be included in the
model and how to represent the gene interaction
over time within each neuron?
In our simple model we worked with the gene
families that code for subunits of receptors or ion
channels. We have also suggested how to extend
the model to include individual genes. In addition
to the genes that are directly related to neuronal
parameters, there are also many other genes that in-
fluence them. These other genes can be found in the
available literature and bioinformatics databases.
For instance, the Ingenuity Pathway Analysis (IPA)
system can be used to investigate interaction-based
relationships between the genes and proteins based
on their own Ingenuity Knowledge Base [54.76].
Then the choice of a particular computational model
of gene–protein interaction should depend on the
information that is available about the modeled sys-
tem. There are many available theoretical models

of gene–protein interaction networks, e.g., differen-
tial equations, stochastic models, weight matrices,
Boolean models, etc.

3. How can we integrate in time the activity of genes,
proteins, and neurons in an ANN model, as it is
known that neurons spike in millisecond intervals
and the process of gene transcription and transla-
tion into proteins takes minutes or even hours?
This is really a computational issue that depends
on the computational power available. Ideally one
would simulate at the same time the internal gene–
protein regulatory network and its effect upon neural
parameters in the real time. An alternative solution
is to run the GRN dynamics separately, store the
results and feed the values of protein levels to the
neural model only for some interesting intervals of
gene–protein dynamics. We have adopted this ap-
proach in this chapter. As we did not know which
periods of gene–protein dynamics were interesting,
we just picked several intervals at random. This ap-
proach has the disadvantage that some interesting
events in the dynamics of the model can be easily
missed.

4. How can we integrate internal and external vari-
ables in a CNGM (e.g., genes and neuronal param-
eters with external signals acting on the brain)?
The basis for this integration can be the second
terms in (54.1) and (54.2). These terms express the
effect of chemical agents be it drugs or upon the
levels of mRNA and proteins. Our model can, in
principle, be extended to include also the activity-
dependent changes in neural parameters [54.42] and
synaptic plasticity [54.20].

5. How can we measure brain activity and the CNGM
activity in order to validate the model?
Although our neural network is a model of LFP,
since EEG is the sum of many LFPs [54.77], the
EEG record like in Fig. 54.1 can serve as a valida-
tion of the model of epilepsy. For instance, we can
see in Fig. 54.1 that there are about five epileptic
slow-wave discharges starting at second 10, which
then spontaneously cease. It seems another series
starts between 20 and 25 s of the EEG record but
the record suddenly ends. If we compare this behav-
ior with the model spiking in Fig. 54.12, we can see
it is, indeed, very similar in that each time there is
an epileptiform behavior there are only few waves
of global synchronization of neurons that sponta-
neously emerge and then cease and there is an
inter-ictal interval of 20 s. Duration of periods be-
tween seizures is, however, highly variable in our
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Fig. 54.12 After the knock out of the gene coding for GABAAR,
the SNN behavior was reminiscent of a spontaneous intra-ictal
and inter-ictal activity. This is one particular illustration when the
seizure-like synchronizations occurred in close succession within
1 min of simulated time. In general intervals between seizure-like
activities varied widely

model and depends on the underlying GPRN dy-
namics that is relatively slow compared to neural
dynamics.

6. What is the effect of connectivity? How does it in-
teract with the effects of GPRN?
In each SNN simulation, the particular connectiv-
ity was different, albeit constructed according to
the same statistics. It would be interesting to in-
vestigate whether connectivity can compensate for
gene defects, or vice versa, or whether connectiv-
ity can lead to pathology even when the genome is
complete with no mutations. We would need more
information on variations of interneuronal connec-
tivity between individuals and between the healthy
subjects and subjects with epilepsy to be able to
carry out this investigation.

7. What useful information can be derived from
CNGM?
What happens if the nucleotide sequence of the gene
encoding the protein is altered or deleted? Such
changes in the DNA sequence, called mutations,
can lead to the loss of the encoded protein or to
a change in its structure, thereby altering its func-
tion. For instance, gene mutations may decrease or
increase the activity of a given gene product or they
may result in setting a new activity of the gene prod-
uct [54.78]. Even when only one gene is mutated,
the expression of other genes in the whole GRN

may be more or less affected. Sometimes a gene
mutation matters and sometimes it does not. Every-
thing depends on the function of its product and
on its interactions with other genes in the GRN.
Moreover, there can be mutations in the DNA se-
quence outside the gene region that correspond to
the various gene expression regulation sites. While
mutation of an activator-binding site leads to de-
creased expression of the linked gene, mutation of
a repressor-binding site leads to increased expres-
sion of the gene. In our simple model we simulated
the gene knock out in such a way, that the expres-
sion of the corresponding gene was set to zero and
all the interactions to and from this gene were set to
zero. In the case of the mutated gene, these interac-
tions may remain intact and just the expression level
can be modified, either increased or decreased. This
will have an effect upon other genes in the network,
and we can observe how the dynamics of the neural
network changes. Thus, the computational neuroge-
netic approach has great potential in modeling gene
dynamics and its changes due to DNA mutations
and the consequences upon the neural dynamics.

These and many more questions remain to be ad-
dressed in the future. Although we are speaking about
brain diseases and functions, having in mind mammals
and higher vertebrates, the approach suggested in this
chapter is applicable also to simpler organisms to aid the
explanation of the genetic basis of their behaviors. An-
other system that can be used to validate our approach
could be brain slices taken from normal and genetically
modified brains.

54.6.2 Hypothesis

It is interesting to note that in our illustrative example
that, in spite of the fact that the artificial gene–protein
network has been altered due to one gene knock out,
the dynamics of SNN in terms of spiking activity was
most of the time very similar to the result obtained
with the complete GPRN (Fig. 54.12). However, from
time to time the neurons spontaneously temporarily
synchronized their spiking as illustrated in Fig. 54.12.
Thus, the knock out of a hypothetical gene for fast
inhibition in our artificial genome has led to an epilep-
tiform activity. In our model, the fluctuations in the
values of neuronal parameters led to spontaneous devel-
opment of seizure-like global synchronizations. These
very same fluctuations also led to termination of the
seizure-like neural activity and maintenance of the inter-
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ictal normal periods of activity. Our hypothesis does
not rule out other mechanisms of seizure development,
maintenance, and cessation, like for instance activity-
dependent changes in neural parameters [54.42] and/or
synaptic entraining [54.20], or other mechanism(s) like
the processes in the thalamocortical recurrent loop,
which we did not include in our model at all [54.34].
Based on our model, however, we would like to sug-
gest a hypothesis that the parameter changes due to
the gene–protein dynamics should also be included as
a serious factor that determines transitions in neural dy-
namics, especially when the cause of disease is known
to be genetic. This hypothesis can be tested, for in-
stance, in slices or neuronal cultures from the wild type
and gene knock out mice.

54.6.3 Robustness of Gene Regulatory
Networks

Even in the presence of a mutated gene in the genome
that is known to cause the brain disease, the neurons
can still function normally provided a certain pattern
of interaction between the genes is maintained [54.79].
It seems the expression regulation between genes is so
robust that it can compensate, at least to some extent,
for mutations in the genes. In fact, in our computer
experiments, we observed that several different gene dy-
namics, i. e., several different regulatory matrices Ws
can lead to very similar SNN LFPs and spiking ac-
tivities. This observation relates to the hot topic of
robustness versus evolvability of gene regulatory net-
works. It seems that our system manifests a certain
robustness. We do not mean the robustness against noise
or stochasticity in gene expression because our model
system is fully deterministic. What we have discovered
in our exploratory simulations is a certain robustness
with respect to different regulatory interactions between
the same set of genes leading to the same phenotype
expressed as the spiking activity of the model SNN.

Biochemical parameters that determine the behavior
of cellular systems – from proteins to genome-scale reg-
ulatory networks – change continually. These changes
have two principal sources. One of them is genetic and
consists of mutations. The other is not genetic and is re-
lated to noise internal to the organism and/or induced
by environmental change. Much of the noise consists of
stochastic variation in gene expression and expression
regulation. Such noise makes all biochemical param-
eters affecting the cell’s behavior appear to fluctuate
randomly. Environmental change, such as a change in
temperature, salinity, or nutrient availability, can simi-

larly affect many parameters at once in random manner.
Such observations suggest that biological circuits are
not fine-tuned to exercise their functions only for pre-
cise values of their biochemical parameters. Many
biochemical parameters driving circuit behavior vary
extensively and are thus not fine-tuned. Instead, biolog-
ical circuits including gene regulatory networks must be
able to function under a range of different parameters. In
other words, they must be robust to parameter change.
Current genetic and modeling research tries to eluci-
date the robustness of gene regulatory networks with
respect to transcriptional mechanisms that cause robust
versus stochastic gene expression and their relationship
to phenotypic robustness and variability [54.80, 81].

In addition, it seems that organisms are robust to
a great variety of genetic changes. Aldana et al. [54.82]
addressed a problem of robustness and evolvability
of the attractor landscape of genetic regulatory net-
work models under the process of gene duplication
followed by divergence. They showed that an intrinsic
property of this kind of network is that, after the diver-
gence of the parent and duplicate genes, with a high
probability the previous phenotypes, encoded in the
attractor landscape of the network, are preserved and
new ones might appear. The above is true in a va-
riety of network topologies and even for the case of
extreme divergence in which the duplicate gene bears
almost no relation with its parent. Their results indicate
that networks operating close to the so-called critical
regime exhibit the maximum robustness and evolvabil-
ity simultaneously.

Ciliberti et al. (2007) argue that the topology of gene
regulatory networks, that is who-interacts-with-whom,
is the key to understanding their robustness to both mu-
tations and noise [54.83]. The latter authors performed
theoretical and computational investigation for a weight
matrix model of transcriptional regulation networks,
in which they explored millions of different network
topologies. Topology is synonymous with the structure
of the matrix W, where each of W’s nonzero entries
corresponds to one regulatory interaction among the
network’s genes. Changes in topology correspond to the
loss of a regulatory interaction, or to the appearance of
a new regulatory interaction that was previously absent.
The robust feature is the network’s equilibrium gene ex-
pression pattern. Robustness to mutations corresponds
to robustness of changes in regulatory interactions, ei-
ther as a change in network topology, or as a change
in the strength of regulatory interaction. Robustness to
noise corresponds to robustness of equilibrium gene ex-
pression pattern to random changes in gene expression
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patterns. First, they showed that robustness to muta-
tions and noise were correlated in these networks. They
showed a skewed distribution, with a very small number
of networks being vastly more robust than the rest. More
importantly, they also showed that highly robust topolo-
gies can evolve from topologies with low robustness
through gradual topological changes. Thus, they argue
robustness is an evolvable property and that evolvability

of robust networks may be a general principle of evolu-
tionary process. This result is general and thus applies to
gene regulatory networks in the brain as well. It is con-
gruent with the results of our exploratory simulations of
spiking behavior of model SNN whose neuronal param-
eters of excitation and inhibition are dynamically varied
due to the dynamics of internal gene–protein interaction
network.
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