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Abstract. This paper compares the implementations and performance of two 
computational methods, hierarchical clustering and a genetic algorithm, for 
inference of phylogenetic trees in the context of the artificial organism 
Caminalcules. Although these techniques have a superficial similarity, in that 
they both use agglomeration as their construction method, their origin and 
approaches are antithetical. For a small problem space of the original species 
proposed by Camin (1965) the genetic algorithm was able to produce a solution 
which had a lower Fitch cost and was closer to the theoretical evolution of 
Caminalcules. Unfortunately for larger problem sizes its time cost increased 
exponentially making the greedy directed search of the agglomerative 
clustering algorithm a more efficient approach. 
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1 Introduction 

Phylogenetic trees are a diagrammatic representation of the evolutionary relationships 
between taxonomic units (TU). They can be inferred using a variety of methods (Cotta 
2002, Felsenstein 2004): supervised optimization methods based on cost (Guindon 
2003), unsupervised distance methods (Russo 1996) and probability models of evolution.  

Recent research has centered on probability models (Sullivan 2005) and clustering. 
Tamura (2004) has encouraged the use of clustering algorithms even for large 
taxonomies and these neighbour-joining methods form the basis of an integrated software 
package ‘MEGA’ (Tamura 1994). By contrast, genetic algorithms seem to have been 
neglected or only implemented for small problems (Lewis 1989). Moreover, Hudson and 
Bryant (2006) have suggested that tree structures do not have the flexibility required to 
represent complex phylogenies and that networks are better suited. 

Joseph Camin invented the Caminalcules species in 1965 as a means of evaluating 
phylogenetic inference methods (Camin 1965). They are used in many universities for 
teaching phylogenetics (Gendron 2011, Ausich 2011). There are 29 ‘currently existing’ 
species and 48 ‘fossil’ species. Each individual has 85 morphological characteristics: a 
variety of Boolean, nominal and ordered numeric attributes. Sokal published an 
extensive four-part article on the Caminalcules in 1983 (Sokal 1983). A cladistic 
approach to phylogenetic analysis is usually based on evolutionary relationships, 
which include idiosyncratic heuristic information from the ‘fossil’ records. However, a 
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strict computational approach to the phylogenetic analysis can be applied using just 
morphological differences (phenetics) between the ‘existing’ species. 

This paper aims to directly compare two different computational methods of 
inference in the construction of a phylogenetic tree for the Caminalcules species. 
Although other authors have considered which varieties of genetic algorithm are best 
suited for phylogenetic inference (Cotta 2002), as far as we are aware this is the first 
direct comparison of a clustering and a genetic algorithm approach for inference of the 
same Caminalcules phylogeny. 

2 Implementations 

Agglomerative hierarchical clustering was chosen as a distance method and a genetic 
algorithm as an optimization method. Both applications were implemented using 
object-oriented design in C++ and share support classes representing a phylogenetic 
(binary) tree: an abstract parent TU_Node class that is extended in its children 
OTU_Node (observed taxonomic unit) and HTU_Node (hypothetical taxonomic unit). 
The data members for each of the Node classes include: an identifier and the three 
tree pointers (parent, left and right child). 

The Caminalcules data vectors were initially read from a text file of character 
vectors into bit fields. Non-applicable characteristics ‘x’ were represented as binary 
0001, ‘0’ was represented as binary 0010, ‘1’ was represented as binary 0100, ‘2’ was 
represented as binary 1000, and so on. 

Two methods were implemented for calculating the tree cost metric: the 
Fitch/Hamming distance and a combined Fitch/Manhattan distance to better adjust for 
continuous characteristics. The former method measures the minimum number of 
substitutions required to change one string into the other. The later method finds the 
difference between two bit fields using intersection and converts the difference into a 
scaled ordinal distance. The result is a semi-quantitative cost. The advantage of this 
metric is that continuous measurements such as ‘flange-length’ are treated as ordinals. 
The disadvantage is that nominal characteristics such as ‘top-of-head’ (depressed, flat 
or crested) may be treated incorrectly if there are more than two values. The cost 
metric was converted to a fitness metric: fitness = constant – cost. The range of values 
for the Fitch costing was experimentally determined and a constant value sufficient to 
maintain a positive value for the fitness was used. 

The phylogenetic trees produced by the applications were output in two standard 
formats: Newick format (wikipedia.org 2012) as text and GraphViz Dot format 
(graphviz.org 2011) for a diagrammatic tree. 

2.1 Agglomerative Clustering 

The implementation of bottom-up agglomerative clustering is from O’Keefe [2006]. 
The algorithm is deceptively simple: starting with the matrix for distances between 
single OTU clusters it successively merges the closest clusters by forming a tree with 
an HTU node as the new root, it re-calculates the distances from the new cluster to all  
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the existing clusters and reduces the matrix by moving the last cluster (row/column) up 
until all the clusters are included in a single tree. The matrix is symmetric around the 
diagonal, so only one half of the matrix needs to be calculated. 

O’Keefe recommends using an average linkage criterion, since this includes a 
contribution from each of the vectors within a cluster. The maximal and minimal 
linkage criteria use only one vector difference, which may not be representative of the 
overall inter-cluster distance. The basis of the clustering algorithm is reported in Sokal 
[1983] and Murtagh [1984]. A segment of pseudo-code for the clustering 
agglomeration is shown in Figure 1. 

 
Find the two closest existing clusters a & b 

size ab = size a + size b 
//Calculate all distances to the new cluster 
for every existing cluster x { 

calculate its distance to the new cluster 
based on average linkage: distance ab-x = 
(dist a-x * size a + dist b-x * size b) / size ab 

} 
//Make new tree from cluster - join a & b with an HTU 
tree a = new HTU_Node (HTU_node, tree a, tree b); 
//Move last cluster up the matrix, last row/col -> 

row/col b 
 
for every column in the matrix { 

make the distance at [col][b] & [b][col] = 
the distance at [col][last] 
and then clear the distance at [col][last] 

} 
tree b = tree last; 

size b = size last; 

Fig. 1. Pseudo-code for the Clustering Algorithm agglomeration 

2.2 Genetic Algorithm 

The base process of any genetic algorithm is identical, it repetitively selects and breeds 
individuals within the population. Only the individual chromosome representation, 
which underlies breeding and the fitness/selection metric, are specific to the particular 
problem.  

In this case a chromosome representation outlined by O’Keefe [2009] was used. 
Here, the chromosome consists of pairs of sub-tree indices. The agglomerative process 
for building the new subtrees is very similar to the clustering algorithm. Initially Pairs 
of OTUs are successively merged with a new HTU at the root to form the new sub-
trees, as the process continues the indices in the chromosome will apply to 
progressively larger trees until a single tree is formed. The difference between the 
algorithms is that the sub-tree indices for agglomeration by the genetic algorithm are  
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chosen randomly on creation of the chromosome, whereas the clustering algorithm 
chooses clusters dynamically based on shortest distance. A segment of pseudo-code for 
the tree building is shown in Figure 2. Both the clustering algorithm and the genetic 
algorithm use the same overloaded constructor in the support class. 
 

tree_build() { //method in Phylogeny Class 

//using an array of sub-trees 

//start at the bottom, from the leaves 

bottom = number of OTUs - 1 

for each allele in the chromosome { 

//get the pair of node indices p & q 

p = chromosome->x 

q = chromosome->y 

//combine these as a new sub-tree 

tree p = new HTU_Node (bottom, tree p, tree q) 

//reduce the array 

bottom – 1 

} 

//make a new node at the root 

tree 0 = new HTU_Node (bottom, tree 0, tree 1); 
} 

Fig. 2. Pseudo-code for the Genetic Algorithm agglomeration 

The chromosomal representation used is robust and has closure because:  

• It is able to represent every tree in the problem space,  
• It is well formed and does not require any correction to the chromosome after 

crossover or mutation 
• And it is modular in that changes produced by crossover or mutation are locally 

limited. 

The framework of the genetic algorithm itself is more complex than a single 
execution of clustering; it requires a separate support class to manage the individuals 
within the population. The Phylogeny class keeps track of the raw and scaled fitness 
of each individual and its chromosome representation. 

Two different selection methods were tried. The more complex method, 
proportional selection based on scaled fitness over the whole population was not a 
very strong driver for selection. Most of the random trees created were in the same 
fitness range, 400 – 800. The simpler method of just sorting the population by fitness 
and transfering a proportion into the next generation (truncation selection) was more 
effective. This is a common lay-person’s (or ‘breeder’) method but suffers from the 
impurity of the attribute selection (Voigt & Muhlenbein, 1996), ie. it may reduce the 
fitness for some attributes. 

Most of the methods in the Phylogeny class are just wrappers for methods within 
the Node classes: Newick and GraphViz Dot print methods and Fitch costing methods 
are shared with the clustering algorithm. However, the crossover and mutation 
methods are only required for the genetic algorithm and use an iterative loop to permit 
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greedy algorithm; it chooses only the best current subtrees (at the lower levels). It 
misses the optimization that occurs at a higher level in the phylogeny.  

These two implementations of a phenetic classification (clustering and genetic 
algorithm) may seem similar, they both construct trees by aggregation of subtrees, but 
the similarity is superficial because most trees are commonly constructed by 
aggregation. In fact, the approaches come from entirely different branches of science. 
Agglomerative clustering is an engineering approach. It aims to provide a single fast 
concise solution based on an exact as possible mathematical measurement of distance. 
This exact measurement intentionally drives the process of construction. The genetic 
algorithm comes from biology. It is inexact; most of its ‘solutions’ are poor. No plan is 
applied during construction of the trees. In fact, it is not aiming to find a solution, only 
explore the problem space. There is no driving force, except chance. It is only after 
construction that selection and time filter the results; by its nature it is a slow process. 

After testing the algorithms on the base Caminalcules phylogeny, four ideas 
emerged for further investigation and comparison of these phylogenetic inference 
methods. 

4.1 Including the Fossil Evidence 

The first idea was: could the algorithms be extended to produce a cladistically based 
phylogenetic tree? Given all the available fossil evidence (48 additional taxons) could 
the tree published by Sokal (1983) be duplicated exactly? It is perhaps easier to see 
how the genetic algorithm could be adapted to use this additional information. A 
separate randomly shuffled array of fossil HTUs could be added to the implementation. 
As each chromosome pair is aggregated, the next of these random HTUs would be 
used as the parent node. This would leave 20 terminating fossil lines but still might 
achieve a result close to Sokal’s. Crossover of the chromosome representation would 
require some structural fix. However, for the agglomerative clustering algorithm, 
adaption would be more difficult. The fossil HTUs could not just be added to the 
original distance matrix, as there has to be some distinction between them and the 
OTUs which cannot be parent nodes. A separate distance matrix for the HTUs as a 
mid-point between clusters might be needed, but this would greatly increase the 
complexity of the algorithm. 

4.2 Extending the Time for Evolution 

The second idea was hinted at previously, in Section 3 Results. If the genetic algorithm 
was given sufficient time would mutation produce further improvement in the 
phylogenetic tree? This idea was interesting enough to check immediately. A change 
was made in the statistical sampling, to look for a particularly ‘lucky’ run of the 
algorithm (Fitch cost <= 270) and to continue it for up to 18,000 generations. After 
hundreds of runs the tree in Figure 7 was discovered. It had a Fitch cost of only 262, 
thus confirming our hypothesis. The last reduction in the cost of this tree was produced 
by a mutation after 10,000 generations. 
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genetic algorithm solutions were deteriorating in comparison to those of the clustering 
algorithm because the algorithm was not optimally tuned for these larger problems. 
Satisfactory tuning of the genetic algorithm for some of these larger problem sizes was 
attempted, by for example proportionately increasing the population size, in addition to 
experimenting with the other parameters. This experimentation was unable to improve 
the quality of the genetic algorithm solutions but did result in an exponential increase 
in the time cost. 

 

Fig. 8. Comparison of real time costs for the genetic and clustering algorithms 

 

 

Fig. 9. Comparison of solution quality for the genetic and clustering algorithms 
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4.4 Extending the Comparisons 

If space permitted, it would have been possible to include the results of comparisons 
for other data sets. However, based on our current experiments, we felt these were 
likely to show the same difficulties with scaling of the genetic algorithm and would 
not have altered the conclusion. 

Currently, the more modern approaches to phylogenetic inference are based on 
probabilistic models of evolution; see Ronquist & Huelsenbeck (2003) and 
Drummond & Rambaut (2007) implemented in the software "MrBayes" and "Beast", 
respectively. It would be very interesting and informative to compare the phylogeny 
trees for Caminalcules inferred based on a probabilistic model of their evolution, but 
this work is beyond the scope of the present article. 

5 Conclusion 

Although these techniques have a superficial similarity, in that they both use 
agglomeration as their construction method, their origins and approaches are antithetical. 
The genetic algorithm permits more thorough exploration and for a small problem space, 
such as the 29 original Caminalcules species, it achieves a solution which has a lower 
Fitch cost and is closer to the theoretical evolution proposed by Sokal (1983). However 
there is a time cost for this exploration and tuning the algorithm for larger problems is 
exponentially less efficient than agglomerative clustering. A directed search even though 
greedy and unable to guarantee an optimal solution, may be advantageous. 
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