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Abstract

Recurrent neural networks (RNNs) have much larger potential than
classical feed-forward neural networks. Their output responses depend
also on the time position of a given input and they can be successfully
used in spatio-temporal task processing. RNNs are often used in the
cognitive science community to process symbol sequences that represent
various natural language structures. Usually they are trained by common
gradient-based algorithms such as real time recurrent learning (RTRL) or
backpropagation through time (BPTT). This work compares the RTRL al-
gorithm that represents gradient based approaches with extended Kalman
filter (EKF) methodology adopted for training the Elman’s simple recur-
rent network (SRN). We used data sets containing recursive structures in-
spired by studies of cognitive science community and trained SRN for the
next symbol prediction task. EKF approach, although computationally
more expensive, shows higher robustness and the resulting next symbol
prediction performance is higher.

1 Introduction

Feedforward neural networks are unable to process data with time dependent
information. A network has to be provided with some kind of memory. One
possibility of how to accomplish this task is to incorporate feedback connections
between units. Network’s hidden or output units can be provided with an ex-
tended input that is composed of current input activities together with activities
from previous time steps. Because of these recurrent feedback connections we
call this type of dynamical neural networks, recurrent neural networks (RNNs).

Common algorithms usually used for the RNNs training are based on gra-
dient minimization of error. One of such algorithms, backpropagation through
time (BPTT) [15, 19], consists of unfolding a recurrent network in time and
applying the well-known backpropagation algorithm directly. Another gradient
based approach, where estimates of derivatives needed for evaluating error gra-
dient are calculated in every time step, is called the real time recurrent learning
algorithm (RTRL) [18].
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In the cognitive science community researchers often try to use recurrent
neural networks to establish links between human ability to process linguistic
structures and the potential of RNNs [2, 3, 6]. One example of connectionist
processing of artificial languages reflecting recursive real-language structures can
be found in the work of Christiansen and Chater [2]. Authors trained SRN on
three simple artificial languages with recursive structures similar to those found
in human speech. They showed correspondence between empirically observed
limited ability of humans to process recursive structures and results obtained
by experimenting with SRN.

Data sets used in our work are inspired by these artificial languages. We
compare two methods of training recurrent neural networks. RTRL represents
common gradient-based approaches to weight modification. Other approach is
the adaptation of the extended Kalman filter into the RNNs training framework.

2 Recurrent Neural Network Architecture

In this work we used the first order simple recurrent network (SRN) [3]. It is
an example of multilayer perceptron with feedback connections (Fig. 1). In our
experiments, symbols from input alphabet are encoded using one-hot encoding
scheme: all input unit’s or target activities are fixed to be inactive but one unit
corresponding to the input or target symbol. Hence, the number of input and
output units is equal to the number of symbols in the alphabet of a given data
set.
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Figure 1: Simplified and more detailed representation of Elman’s SRN.

Units of the input layer I and the recurrent layer R and the output layer
O are fully connected through weights W and WOPE  respectively, as in the
feedforward multilayer perceptron (MLP). Time delay connections feed back
current activities of recurrent units R®) to the context layer so that C(0) =
R(*=1), Hence, every recurrent unit is fed by activities of all recurrent units from
previous time step through recurrent weights W%¢, Recurrent units’ activities
from previous time step can be viewed as an extension of input to the recurrent
layer. They represent the memory of the network, since they hold contextual
information from previous time steps.

Given input pattern in time ¢, I*) = (Il(t), ...,I](t),...,I‘(It‘)), and recurrent
activities R(Y) = (Rgt), ...,R;t), cny R‘(It%)‘), the recurrent unit’s net input Rgt) and
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output activity Rl(t) are calculated as

Rgt) — Z WiRII(t)“‘ Z WRCR(t 1) (1)
B = f(R"). 2)
Output unit k calculates its net input ONZ(t) and output activity Oz(t) as
O =3 W R, (3)
J
0{" = 1(0"), (4)

where |I|, |R| and |O| are the number of input, hidden and output units, re-
spectively, and f stands for the activation function. In this work we used the
logistic sigmoid function f(z) = (1 + e*””)_1

3 RTRL Algorithm for SRN

RTRL is based on approximate on-line gradient computation and was de-
scribed in details in [18], however for an RNN architecture different from SRN.
Here, we describe in detail the RTRL equations for SRN. Network weights are
updated in every time step in order to minimize the current output error with
respect to the calculated approximate gradient. In a given time ¢, modifications
of weights connecting output and recurrent units are calculated as:

AWFE = a(D{ = 0 f (OB, (5)
where D) = (Dgt), very D( ) DI(Ct))I) is the desired output pattern and « is the
learning speed. Modiﬁcatlons of weights connecting recurrent and input units
are calculated as:

|O| (t) (t) |R| ) R(t)
RI RC
AW;i' =a Z Z Wih 6wRI ) (6)
where
|R| (t—1)
oRr\ 40 ro ORY Y
= = (’7) 0" + Z Wi (7)
ow it OWET

In a similar way one can calculate the modifications of weights connecting con-
text and recurrent units:

. . |R| aRt
AW —aZ (D = ONF O Wil | )
where { _|
|R| (t—1)
8R§Lt) (1) (t=1) ¢k CaR
— 6 ’I“On .
oW iC A )[R +ZW’” aWﬁCJ )

65;0” is the Kronecker’s delta and 6,’%70” = 1if h = i, otherwise 65;0” =0.



Neural Network World, 13 (3), pp. 223-234. http://www.nnw.cz/obsahy03.html#3-2003

4 Extended Kalman Filter Algorithm for SRN

The Kalman filter is a set of equations describing a recursive solution of the
discrete-data linear filtering problem. It is an effective solution to the least-
square minimization problem. Good tutorials covering this topic are [8, 14] and
the first chapter of [7].

Assume a system governed by a linear stochastic difference equation called
the state or process equation

Tp1 = Frap + wy. (10)

Unobservable state of the system zj, in the step k is calculated by applying the
known state transition matrix from time k to k + 1, F}, to the previous state
zr, and the white Gaussian noise wy is added. The measurement equation is
given by

2z = Hyxp + vg, (].].)
where zj stands for an observed measurement, Hj, for the known measurement

matrix and vy, is the white Gaussian noise. Covariance matrices () and Ry, of
the process and measurement noise

Qu = Bwenf], (12)

Rk =F [Uk’l),z;] (13)

have zero off-diagonal elements. Note, that the state transition matrix F} and
the measurement matrix Hj, can change over time.

The aim of the Kalman filter is to obtain the best state estimate # from an
observed noisy measurements z. We can define the state estimate error e, and
an estimate error covariance Pj as

e = T — :i‘k, (14)

Pk =F [ekekT] . (15)

The Kalman filter works in the two step cycle. The first step, the time update
step, is a simple prediction of the so-called a priori state estimate £, and an
estimate error covariance P, based on previous #; and FP,. Superscript ”—"
indicates the a priori estimates. Thus,

Z, = Fp 121, (16)

Pk_ = Fk*lpklelzﬂ—l + Qkfl- (17)

The second, measurement update step, performs corrections of the state es-
timate and estimate error covariance based on an actual measurement. The
Kalman gain K is calculated as

Ky =P HF (Hy P H + Ry) ™1, (18)
and a posteriori state estimate Z; and estimate error covariance Pj are calcu-
lated as

Py, =P, — KyH, P, (19)
T :i‘lz -f-Kk(Zk—Hk:i’];) (20)
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A standard Kalman filter can be applied to linear system affected by white
Gaussian zero mean noise. If we loosen this assumption and consider nonlinar
system such as SRN with sigmoidal units, the Kalman filter looses its optimal-
ity properties and the so-called extended Kalman filter (EKF) can be applied.
Consider the time update and measurement update equations expressed by

Tr1 = fr(Tr) + wr, (21)
Zp = hk(l‘k) + v, (22)

where f; and hy are nonlinear vector functions of the state. By linearisation of
these equations, using the Taylor series, we can derive the time update equations

Ty = fe-1(%k-1), (23)
Py =F 1P FL o+ Qs (24)
and the measurement update equations
Ky =Py HF (HP;H + Ry) ™", (25)
P, =P, — K H,P,, (26)
Ty :CE;—FK]C(Zk—hk(Zﬁ;)). (27)
where F}, and H;, are Jacobian matrices
Ofk(Zk)
F, = """ 28
o=, (28)
Ohy (2,)
H, = ——"%2, 29
k ox (29)

Elman’s SRN and generally any other feedforward or recurrent multilayer
perceptron network can be described as a nonlinear system by

Tgy1 = Tk, (30)

ZE = hk(xk,uk) + vy, (31)

instead of eqn. 21 and 22, where the state xj is a vector of network weights.
The weights of the trained network do not change and thus the state transition
matrix F' = I where I is an identity matrix. The measurement z; stands for
the desired output values. The measurement function hj is a nonlinear function

of network weights x; and input ug. Jacobian matrix Hy, is calculated in every
time step k as

i, = i, u) (gz’“’“), (32)
using equations 7 and 9. Extended Kalman functions are simplified to
Ky, = Py_i (Hp Pyt HY + Ri)™", (33)
Py =P — KpHpPy1 + Qy, (34)
T = Tp—1 + Ki(zr — hi(Zr—1, ur)). (35)

Note, that the small state transition noise with covariance matrix @)y, is still
considered. In the described version of an EKF-based training, the state x is a
concatenation of network’s weights. The state x can also include activities of
the context units as described in [16, 17]. This approach leads to the simpler
Jacobian matrix Hjy calculation but the state transition equation cannot be
omitted, and the matrix Hy has a higher dimension.
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5 Description of Data Sets

We performed experiments on two artificial languages that exhibit recursive
structures found in natural languages. The first language is taken from the work
of Christiansen and Chater [2]. Language symbols belong to four categories:
Np,Vp,Ng,Vs, where N stands for a noun, V for a verb, P for a plural and
S for a singular. Language involves two kinds of recursive structures: one is
a complex center-embedding recursion (CER) that cannot be generated by a
finite state machine, and the other one is a right-branching recursion (RBR)
that can be produced by a simple iterative process carried out by a finite state
machine. Thus, this language contains the combination of context-free and
regular language features, similarly like the natural languages do. RBR can
be generated by a simple generative process described by the production rule
X — NpVpX|NsVsXle, where e is the empty string, to obtain constructions
like NpVpNgVs. The center embedding recursion (CER) can be defined by the
following production rule: X — NpXVp|NgXVgle. Starting with X we can
generate the strings like NpNgVsVp, NpNsNsNpVpVsVsVp, etc. The strings
of this first language contained both CER and RBR structures. At the beginning
of a string it is impossible to know whether the string will involve CER or RBR.
Once the second word is encountered, a verb indicates RBR whereas another
noun indicates CER. A CER structure may end after the first noun/verb pair,
or continue with one or more embeddings. With another noun, it is not possible
to predict how many nouns will follow. However, after encountering the first
verb, it is possible to predict the number and type of verbs, provided the system
can learn the number and the type of nouns.

We use a sixteen word vocabulary with four singular nouns, for plural nouns,
four singular verbs and four plural verbs. Words representing given category
were chosen with equal probability. They were encoded by ”one-hot” encoding.
Thus, the SRN had 17 input and output units, with one unit devoted to the end
of a string marker. The training sequence consisted of 5000 strings of variable
length, and the test set of 500 novel strings that were not contained in the
training set. Sets contained 50 % of RBR strings interleaved with 50 % of CER
strings in a random way. The distribution of string lengths of both types of
recursion was the same and is described in the Table 1.

Length | Percent | RBR Examples CER Examples
2 15.0% | NsVs,NpVp NgVs, NpVp
4 275 % | NpVpNgVs NgNpVpVg
6 7.0 % NpVpNpVpNgVg NgNpNpVpVpVsg
8 0.5% | NsVsNpVpNpVpNsVs | NsNsNpNpVpVpVsVs

Table 1: Distribution of string lengths in the CERandRBR data set. Examples
are given in categories. In actual data sets, every category was replaced by one
of four ”true” words.

The second, deep recursion data set, with embeddings reaching the value
of 10, is composed of strings of the context-free language L. Its generating
grammar is G = (R, {R},{a,b, A, B}, P), where R is the single non-terminal
symbol which is also a starting symbol, and a,b, A, B are terminal symbols.
The set of production rules P is composed of a single rule: R — aRb|R —
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ARB|R — e where e is an empty string. This language is in [10] called the
palindrome language.

The training and testing data sets consist of 1000 randomly generated con-
catenated strings. No end-of-string symbol was used. Shorter strings were more
frequent in the training set then the longer ones as shown in Table 2. The total
length of the training set was 6156 symbols and the length of the testing set
was 6190 symbols.

Length | Percent | Example
2 350% | ab, AB
4 20.0 % | aABb,aabb
6 140 % | aAABBb, AaabBB
8 100 % | AAAabBBB
10 35 % aAAAABBBBD
12 3.5 % AAaAAabBBbLBB
14 3.5 % AaaaAaabbBbbbB
16 3.5 % aaAaAAaABbBBbBbb
18 3.5 % aAAAaaaaabbbbbBBBb
20 3.5 % aaAaAaAaaabbbBbBbBbb

Table 2: Distribution of string lengths in the context-free language.

6 Methods

RTRL and EKF were used to train Elman’s SRN. Numerous simulations
were performed with different parameters. SRN weights and initial state (start-
ing activation of the context layer) were randomly initialized from intervals
(—0.5,0.5) and (0.0,1.0), respectively, for each simulation. 10 training epochs
(one epoch — one presentation of the training set) for EKF and up to 1000
epochs for RTRL were done when needed. SRN state (i.e. context) units were
reset before training or testing epoch to initial state and 30 dummy steps were
performed (no error calculation or weight updates were done during dummy
steps). Recurrent unit count varied from 4 to 32 but the performance was not
getting better for more than 16 hidden units. Number of input and output units
corresponded to the symbol count in alphabet of a given data set. Unipolar 0-1
sigmoid activation function was used.

Predictive performance was evaluated by means of a normalized negative
log-likelihood (NNL) calculated over symbolic sequence from time step ¢t = 1 to
T as

T
NNL = —% 3" log 4 p (s(t)), (36)
t=1

where the base of the logarithm |A| is the number of symbols in the alphabet
A and the p® (s() is the probability of predicting symbol s(*) in the time step
t. Value p® (s(t)) is obtained by normalizing activities of output units and
choosing normalized output activity corresponding to the symbol s().

Our EKF training was not so sensitive to parameter values as the RTRL
was. Diagonal elements of the state error covariance matrix P were initialized



Neural Network World, 13 (3), pp. 223-234. http://www.nnw.cz/obsahy03.html#3-2003

to value 1000, all other elements were set to 100 [8]. The measurement noise
covariance matrix R was set to R = 1/Pr x I where Pr = 0.01, and the process
noise covariance matrix () was set to ) = Pq * I, where Pqg = 0.0001. These
values were used throughout all experiments. 10 training epochs were sufficient
for reaching the steady state, no significant NNL improvement has occured after
10 epochs in any experiment. Partial derivatives needed for Jacobian matrix H
were calculated by the RTRL algorithm. Although standalone RTRL does not
follow the true gradient and should be used with small learning rate [18], the
EKF with RTRL Jacobian matrix calculation worked very well.

Different RTRL parameters were used for each data set to obtain the best
results. Using high momentum and learning rate causes faster convergence but
significant error increases occur frequently, and the NNL fluctuations are high.
On the other hand, using smaller values makes training slow and susceptible to
local minima. We tried to avoid these problems by using some of the methods
used by Lawrence et al. [6]. After detecting a significant error increase, the
network weights were restored from the previous epoch and were randomly
perturbated to prevent updating to the same point. Finding parameters for this
method seemed to be difficult. Small weight perturbations were not sufficient
to prevent a significant error increase. On the other hand, perturbing weights
too much caused loosing information aquired up till then and error increased
immediately. An easier way to improve training phase was to use the scheduled
learning rate. We used linearly decreasing learning rate in predefined intervals.
But no improvements made the RTRL training as stable and fast as the EKF
training (taking into account the number of epochs). The momentum rate
for the context-free language with deep recursion was disabled (set to 0) and
the learning rate was set to initial value of 0.05. It decreased linearly during
presentation of first 600000 symbols until it reached value of 0.001. For the
CERandRBR data set, the momentum rate was set to 0.90 and learning rate to
0.05.

7 Results

We present mean and standard deviations of NNL results of 10 simulations
with fixed parameters and different initializations. Although few simulations
have been suppressed because of high NNL fluctuation (some RTRL and also
EKF simulations), final results represent general behavior for the parameters
described in the previous section. Fig. 2 shows results obtained on the center-
embedding and right-branching recursion data (CERandRBR) and context-free
languages, respectively. Generally, NNL performances of RNNs trained by EKF
are better, although not dramatically. We were able to train few RNNs by RTRL
to have similar performance as the networks trained by EKF, but it usually
required much more overhead (i.e. choosing only few from many networks, more
than one thousand of training epochs, extensive experimenting with learning and
momentum rates).

RNNs behave as iterated function system [5] and have properties of Markov
models even before training [1, 4, 12, 13]. Thus, it is important to compare
results obtained by RNNs with results given by fixed order Markov models
(MM) and variable length Markov models (VLMM) [11]. NNL results of Markov
models as a function of number of context are shown in Fig. 3.
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(a) RNN output on CERandRBR (b) RNN output on context-free language
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Figure 2: NNL performance of the output layer of SRN trained either by RTRL
or EKF on the CERandRBR and context-free languages.

(a) Markov models on CERandRBR (b) Markov models on context-free language
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Figure 3: NNL performance of Markov models with fixed (MM) and variable
length memory (VLMM) on the CERandRBR and context-free languages.

For the CERandRBR data set, both RTRL and EKF reached similar results.
This data set is inspired by Christiansen and Chater’s simulations in the cogni-
tive field. If we take into account the size of the input alphabet (17 symbols),
then the length of the training data set (23366 symbols) is small. NNL per-
formance of trained SRN is better then NNL obtained by Markov models, and
decreases almost down to an ideal NNL of 0.59 (estimated by means of Monte
Carlo simulations).

Training SRN on context-free deep recursion data set also improves NNL
performance compared to MMs. Recursions require sort of counting mechanisms
that are not present in MMs. Estimated ideal NNL of our context-free language
obtained by means of Monte Carlo simulations is equal to 0.41. Comparing the
results of trained SRN with the results obtained with Markov models reveals
that SRN can acquire some amount of information during training, although
for very deep recursions it is difficult to reach an ideal NNL. Thus, in this case
the performance of RNN is similar to the human performance, which are known
not to be able to process deep recursions [2].
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8 Conclusion

In this paper we describe in detail the equations of RTRL and EKF training
for Elman SRN. We experimented with two kinds of complex symbolic time
series to find out which of the two training methods can bring better results.
Center-embedding and right-branching recursion language (CERandRBR) com-
bines context-free and regular features of natural languages [2]. The second
artificial language, was entirely context-free with deep recursions of up to 10
embeddings and was designed by us. EKF can show a significantly faster con-
vergence in terms of number of epochs. Resulting NNLs are reliably better
than for RTRL, although not dramatically. Standard deviations of results ob-
tained by RTRL algorithm can get quite high revealing RTRL’s sensitivity to
the weight initialization. For each data set, different RTRL learning parame-
ters had to be found — what is not the case of EKF. Although computationally
more demanding, EKF approach to training RNNs on symbolic sequences shows
higher robustness and better resulting performance (see also the paper of M.
Makula and L. Benugkovd in this issue). It is easy to implement and should
be considered when choosing appropriate algorithm for RNN training. Similar
results were obtained by using the decoupled variant of EKF (DEKF) to train
long short-term memory networks (LSTM networks) on artificial grammars [9].
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