Neural Network World, 13(3), pp. 267-276 http://www.nnw.cz/obsahy03.html#3-2003

ANALYSIS OF STATE SPACE OF RNNs
TRAINED ON A CHAOTIC SYMBOLIC
SEQUENCE
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Abstract

We investigate solutions provided by the finite-context predictive model
called neural prediction machine (NPM) built on the recurrent layer of the
two types of recurrent neural networks (RNNs). The first type is the first-
order Elman’s simple recurrent network (SRN) trained for the next symbol
prediction by the technique of extended Kalman filter (EKF'). The second
type of RNN is an interesting unsupervised counterpart to the “classi-
cal” SRN, that is a recurrent version of the Bienenstock, Cooper, Munro
(BCM) network that performs a kind of time-conditional projection pur-
suit. As an experimental data we chose a complex symbolic sequence with
both long and short memory structures. We compared solutions achieved
by both types of RNNs with Markov models to find out whether train-
ing can improve initial solutions reached by random network dynamics
that can be interpreted as an iterated function system (IFS). Results of
our simulations indicate that SRN trained by EKF achieves better next
symbol prediction than its unsupervised counterpart. Recurrent BCM
network can provide only Markovian solution that is not able to cover
long memory structures in sequence and thus beat SRN.

1 Introduction

Recurrent neural networks (RNNs) represent a powerful computational model
for time series processing. Training of such networks is performed by well-known
gradient-based algorithms such as back propagation through time (BPTT) or
real time recurrent learning (RTRL) [13]. In each training time step the correct
output is presented to the network in order to calculate error signal and perform
weight adjustments. Another approach is the technique of extended Kalman fil-
ter (EKF) that can be applied to training of RNNs [6, 12]. However, there is
no direct correspondence of this kind of error backpropagation with learning in
biological neural networks.

On the other hand unsupervised learning, where no error signals are back-
propagated and training is based only on input statistics, represents biologi-
cally plausible type of weight adjustment. In the category of RNNs, one of the
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unsupervised alternatives can be a recurrent Bienenstock, Cooper and Munro
(BCM) network [1]. It was constructed from the feedforward BCM network
by extending its input with a copy of neurons’ activations from the previous
time step. Training rule for the feedforward BCM network was introduced to
explain self-organization in the developing visual cortex [3]. It was shown that
the feedforward BCM neural network can perform projection pursuit on input
data. Because a recurrent version of the BCM (RBCM) network has an ex-
tended input with neurons’ activations from previous time step, it can perform
a sort of time conditional projection pursuit.

In previous works, it has been shown that the 1st- and 2nd-order RBCM
networks give comparable predictive performance on chaotic sequences as their
counterpart RNNs trained by RTRL [8, 9]. In this paper we use an EKF based
training for SRN. It was demonstrated that EKF is more effective in RNN
training than RTRL (see the paper of M. Cernansky and L. Befiugkovd in this
issue), thus it might improve solution performed by SRN. We focus on simple
original analysis of solutions provided by SRN and RBCM and compare them
with variable length Markov model (VLMM) [7] that was shown to be equivalent
to solutions performed by randomly initialized RNNs [4, 10].

2 The First-Order Recurrent BCM Network

Recurrent BCM network has an extended input that contains a copy of recur-
rent neurons’ activations from previous time step (Fig. 1a). In our experiments
we use the first-order recurrent BCM network where the ith recurrent neuron
activation for the next time step is calculated as

ci(t+1) :U(Zwij (t)-d +Zmzk r (8) + 09t )) (1)

where o(xz) = 1/(1 + exp(—X - z) is the sigmoid activation function with slope
A, 9§ is the bias, and wi; and my, are feedforward and recurrent weights,
respectively. The binary input vector d(t) = {d; (t)}j:1 at time ¢ codes one
input symbol. Adaption of weights is derived by means of the gradient descent
minimization of the loss function L(t) = Y L; (t), where

L = {3d 0 - 7 012 0 &

while E [¢? (t)] = 6%, (t) is the moving synaptic modification threshold of the
ith neuron, in our case calculated as
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where 7 is the averaging period. Definition of the synaptic modification thresh-
old as an average square value of the neuron’s activity guarantees the correct
behavior of the BCM network. The weight changes are determined by
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Neural Network World, 13(3), pp. 267-276 http://www.nnw.cz/obsahy03.html#3-2003

where 7 is the learning rate and ¢, (t) is defined as ¢, (t) = cq () [ca (t) — 0, (2)]
and represents the synaptic modification function for ath neuron. When the
neuronal activity 0 < ¢, (t) < 0%, (¢), all neuron’s active synapses weaken.
However, when 6%, (t) < cq4 (t), all neuron’s active synapses potentiate. Thus,
each neuron is trying to divide its activities by its modification threshold to be
greater for some inputs and smaller for the others. For the partial derivates of

the neuronal activity according to the weights we get

dca (t + 1) _ ! TOoN. (t)
G = (t+1) [sKromd; (1) + Zmaﬁ ?t Y (5)

where 65X is the Kronecker’s delta equal to 1 when i = «, and otherwise
equal to 0. Equations for mg; analogical to 4 and 5 can be written simply by
replacing w;; with myy,.
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Figure 1: (a) Architecture of the first-order recurrent BCM network. (b) “Clas-
sical” first-order SRN. Wide arrows represent feed-forward connecti (i.e. full
neuron interconnection between layers). Dashed arrows represent feedback con-

nections (i.e. one to one time delayed copy of neuron activations).

3 “Classical” First-Order SRN

Layers of SRN are interconnected by connections represented by the weight
matrices v, w, m (Fig. 1b). Output of the mth neuron is

om(t+1)=0 (Z Umi (E+ 1) (E+1) + 192@)) (6)

where 99 is the bias. Recurrent neurons activities for the next time step are

calculated as in eqn. 1, that is
ct+1) =0 | wi(t)d +Zmlk (t) + 95 (t) (7)
J

where d(t) = {d; (¢) J | is the binary input vector and ¥¢ is the bias. In our

experiments, we use the SRN output layer only in the training process. In evalu-
ation process, we aim at the state representation and thus we analyze activations
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of the recurrent layer (i.e. the state of network). Training of SRN is performed

through minimization of the error function E (t) = 1 3 (dy, (t) — op, (t))* by
m

mens of EKF. (For details of the EKF training see the paper of M. Cernansky
and L. Bernugkova in this issue.)

4 Chaotic Symbolic Sequence

As a training sequence we chose a long symbolic sequence of quantized activ-
ity changes of laser in chaotic regime. Data set includes various levels of memory
structures, i.e. relatively predictable subsequences followed by global, harder to
predict events, that require a deeper memory. More precisely, it contains simple
oscillations with increasing amplitude, followed by rapid decays of amplitude of
oscillations with activity collapses (Fig 2).
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Figure 2: Example of 1000 differences A; of the laser activations. Dotted hori-
zontal lines coresponds to 10% and 90% sample quantiles. Letters on the right
vertical axis indicate quantization into four symbols.

Whole sequence!, i.e. 10 000 differences A; between two subsequent activa-

tions, was quantized into a symbolic stream S = { s;} of four symbols from the
alphabet A = {a,b,¢,d}, corresponding to low / high and positive / negative
activity changes

a (low positive) if 0 <A < po
_ )b (high positive) if p2 <A
R (low negative) if pr <A <0 )
d (high negative) if Ar < pr

where p; and py are 10% and 90% sample quantiles, respectively. Entire se-
quence S was divided into the train sequence Si.qin (the first 8000 symbols)
and the test sequence Sges: (the last 2000 symbols).

5 Neural Prediction Machine

In order to compare the state representations of SRN with recurrent BCM
network, we use an abstract model, called neural prediction machine (NPM).

! Taken from http://www-psych.stanford.edu/~andreas/Time-Series/SantaFe.html
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Generally, NPM seeks state clusters in a network state space and associates them
with conditional probabilities for the next symbol prediction. Before building
of NPM we remove the output layer of SRN and thus unify output behavior of
both architectures.

The procedure of building NPM starts after training phase of RNNs with
fixing and storing all weights. For each symbol in the train sequence Siqin
we calculate activations c¢(t) = {¢; (t)} of recurrent neurons, what creates an
activation sequence S?¢ . for the network. In the next step we perform vector

train
quantization on S, by using the K-means clustering algorithm for desired
number of quantization centers. Each center is identified with the prediction
context for the next symbol prediction. In order to obtain context-conditional
probabilities, we associate a set of counters with each context, one counter for
each symbol from input alphabet A. Moving through the train sequence Sg<t,
nearest center C' is found for each activation vector ¢ (t). Then according to the
next symbol spe.t in the sequence Si.qin, the counter for relevant center C' and
symbol Syeq; is increased by one. After checking the whole training sequence,
conditional probabilities P (s|C) are calculated by normalization of counters for
each quantization center C'.

In evaluation of NPM we run network over the test sequence Siest = S1, 82, ...,
Sm, while predicing each next symbol with probability calculated as follows:
each symbol s; € Siest drives network to recurrent activation c(t) = {¢; (¢)},
with the nearest quantization center C;. Probability for the next symbol sy
in sequence is the conditional probability P (s;41|Ct) calculated in the NPM
building phase.

Performance of NPM was evaluated by means of the normalized negative

log-likelihood (NNL) on the test sequence calculated as

m—1
- t; log| 4) P (st41|Ct)

m—1

NNL (Stest) = 9)
where the base of logarithm is the number of symbols in alphabet A. The value
of NNL(S;est) can be interpreted as the total amount of “statistical surprise”
induced by the NPM [7]. Note, that NPM is not a finite state predictor. It has
finite number of prediction contexts, but its dynamics is completely equal to
the dynamics of an original recurrent network.

6 Simulations and Results

First, we trained recurrent BCM network with various numbers of recurrent
units to obtain the best performance (i.e. the lowest NNL values). We also
tried to use lateral inhibition, however it had no significant influence on network
performance. Finally, we trained both SRN and recurrent BCM network with
similar parameters and performed analysis of the solution provided by optimal
settings.

The values of parameters for both networks were set to: the number of
recurrent neurons 16, number of input and output neurons 4, averaging period
7 =100 (for BCM), learning rate n = 0.01, and a unipolar 0-1 sigmoid with the
slope A = 1. Both weights and initial network state were initialized from uniform
distribution over interval (—0.5,0.5). The number of training epochs was 10 for
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EKF and 40 for BCM training. (For the values of other EKF parameters see
the paper of M. Cerniansky and L. Befuskové in this issue.) Input sequence
was encoded by one-hot coding (i.e. d, = (1,0,0,0), d, = (0,1,0,0), etc.).
All presented values are the averages with standard deviations from 10 runs of
network training and NPM building for both SRN and recurrent BCM network
(Fig. 3).
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Figure 3: Normalized negative log-likelihood (NNL) for neural prediction ma-
chines (NPMs) built from SRN and recurrent BCM network after training. NNL
was calculated for NPMs with different numbers of prediction contexts (i.e. vec-
tor quantization centers, # of contexts). We can see that SRN outperforms
recurrent BCM network in its prediction. Ideal NNL would be equal to 0.

7 Analysis of the State Space

We want to understand what makes SRN to achieve better performance than
a recurrent BCM network. As we mentioned earlier, the dynamics of the NPM
and RNN are equal, thus by analyzing NPM with finite number of prediction
contexts, we can analyze the dynamics of RNN.

It was shown that dynamics of randomly initialized RNN is closely related to
the variable memory length Markov models (VLMM) [10]. The basic property
of classical fixed order Markov models (MM) of the order m is that distribution
of probabilities for each next symbol in the sequence depends on the immediate
predecessors of that symbol. Thus, only sufficient number of symbols (i.e. m) is
relevant for the next symbol prediction. However with increasing m, the num-
ber of prediction contexts and complexity of prediction increase exponentially.
VLMM approach does not use fixed memory depth, but instead it uses deeper
memory for suffixes only when it is really needed [7].

Dynamics of randomly initialized RNN with small weights is quite simple. It
contains a set of attractors, each for one input symbol, located near the center
of the state space. It was shown that the state representation produced by this
attractor dynamics results in fractal structure of the RNN state space [5]. In
this fractal structure, history of seen symbols is encoded in the same way as



Neural Network World, 13(3), pp. 267-276 http://www.nnw.cz/obsahy03.html#3-2003

in the VLMM, i.e. sequences sharing the same suffix lead the network state
to exactly the same cluster in the state space [11]. This property of RNNs to
implement VLMM even without learning is called the architectural bias [4, 10].
In our experiment we choose the VLMM model as a reference to compare quality
of solutions provided by both RNN learning rules.

The basic property of VLMM is the dependency of prediction context on
the suffix in the sequence in the sense that the same suffix leads the network
to the same state cluster. Thus, if identical suffixes in the test sequence lead
to the same prediction context (i.e. quantization cluster) in NPM, the behavior
of original RNN is equal to VLMM. On the other hand, if there are lots of
identical subsequences that lead RNN to different state clusters (i.e. different
prediction contexts in NPM), the network must come up with more complex,
that is non-Markovian dynamics. This simple criterion allows us to determine
whether the internal dynamics of RNN is Markovian (in the sense of VLMM)
or it can extract another, obviously more complex dependencies from the input
sequence.
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Figure 4: Examples of suffix trees for different prediction contexts of NPMs built
from trained (a) recurrent BCM network and (b) SRN. Numbers in squares at
the roots of suffix trees merely denote different quantization centers in the state
space, i.e. different prediction contexts. Interconnected rings show sequences
of input symbols leading NPM to the relevant context (number of sequence
occurrences is in brackets). On average, SRN has much more patulous suffix
trees than recurrent BCM network, thus the SRN state clusters do not encode
only one single sequence of symbols.

For ilustration we choose NPM with 160 prediction contexts, which were
sufficient for optimal clustering of the state space, because with higher number
of prediction contexts, the number of unused clusters rapidly increases, and
NNL does not decrease significantly (Fig. 3). The test sequence includes 2000
symbols. The first 20 symbols were used for network warming-up and were
excluded from both NNL calculation and our analysis. First, we visualized and
analyzed sequences of symbols that lead NPM to the same prediction context
in the form of suffix trees. Characteristic examples are shown in (Fig. 4).

We also built NPM for randomly initialized networks and analyzed occur-
rences of identical suffixes in different prediction contexts. We ran each test
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ten times and calculated the mean value and standard deviation. Results for
trained and untrained RNNs are shown in Table 1.

NPM built from Number of identical | Average dis- | symmetric
suffixes for different | tance between | Kullback-
centers centers Leibler

distance

Randomly initial- | 112.7 (12.21) 0.000068 0.783 (0.127)

ized network (0.000026)

Trained recurrent | 228.9 (51.12) 0.0635 (0.02416) | 0.83 (0.14)

BCM network

Trained SRN 812.6 (111.8) 0.781037 1.155 (0.120)

(0.109299)

Table 1: Distribution of identical suffixes of length 6 and corresponding cluster
center distances obtained from analysis of NPM built from different RNNs.
Shown values are averages obtained from 10 runs with standard deviations in
parenthesis.

In suffix trees of NPMs built from randomly initialized RNN and from
trained recurrent BCM network, identical subsequences that lead NPM to differ-
ent prediction contexts occurred on average from ~100 to ~200 times. However
for trained SRN, it was more than 800 occurrences, what indicates that dy-
namics performed by SRN is more complex than dynamics of both, trained
recurrent BCM network and randomly initialized untrained RNN. To find out,
why identical suffixes belonging to the same centers occurred in untrained RNN,
we calculated an average Euclidean distance between centers of state clusters
for corresponding prediction contexts (Table 1, column 2). Because the average
distance between centers in the case of randomly initialized RNN and trained
recurrent BCM network is relatively small, duplicating of identical suffixes over
clusters may be caused by the low degree of state space clustering. For the
trained SRN, however, the average distance between centers is much greater,
what can be interpreted in such a way that there can be a lot of identical sub-
sequences that can lead RNN to different states, thus SRN in its state clusters
encodes more information than could be obtained just from short suffixes. To
confirm differences of information encoded in clusters, we calculated symmetric
version of Kullback-Leibler distance of chosen context-conditional probabilities.
Kullback-Leibler distance (also known as relative entropy) is not symmetric,
thus we use its modified symmetric version defined as follows

1
Dsyum (Ci, Cj) = 3 [Dkr (Ci,Cj) + Dk, (Cj, Cy)] (10)

where Dgr,(C;,Cj) is a “classical” Kullback-Leibler distance calculated as

oy = S0 - 1og | £G1C)
Dyt (01,C5) = L P 6100 o8 (Feie) 1)

where C; and C; are chosen contexts (centers). In the last column of Table 1,
there is an average value obtained from all different contexts C; and C; that
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appeared after the same sequence of symbols. Thus, SRN trained by EKF has
such a state space organization that leads network state to different clusters
with different probability distributions after seeing the identical short sequence.
Clusters of trained SRN store the highest amount of information about longer
time dependencies compared to untrained naive RNN, and trained recurrent
BCM network.

8 Conclusion

In order to compare the state representations of SRN with recurrent BCM
network, we use an abstract model, called neural prediction machine (NPM).
Generally, NPM seeks state clusters in a network state space and associates
them with conditional probabilities for the next symbol prediction. Each quan-
tization center is identified with the prediction context for the next symbol
prediction. In this work, we have introduced a novel method for analysis of
the dynamics of RNNs including the gain of information obtained by learning.
Thus, organization of the RNN state space is analyzed using calculations of the
number of identical suffixes leading to different prediction contexts (depending
on the deeper temporal dependencies), evaluation of average distances between
prediction contexts in the state space, and calculation of the information gain
by prediction contexts due to learning.

For chosen symbolic sequence of a very high complexity, SRN trained by
EKF can gain information not only from short suffixes but also from longer time
dependencies. On the other hand, the unsupervised recurrent BCM network
provides solution of Markovian nature, thus it is not able to overcome the well-
known information latching problem in RNNs [2] nor the initial Markovian bias
[10].
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