Markovian Architectural Bias
of Recurrent Neural Networks

Peter Tino"2, Michal Cernansky?, and Lubica Befuskov4?

! Neural Computing Research Group, Aston University,
Birmingham, B4 7ET, UK
p.tinoQ@aston.ac.uk, http://www.ncrg.aston.ac.uk/~tinop
2 Department of Computer Science and Engineering FEI, Slovak Technical
University, Ilkovicova 3, 812 19 Bratislava 1, Slovakia
cernans@dcs.elf.stuba.sk, http://www.dcs.elf.stuba.sk/~cernans
% Institute of Informatics FMFI, Comenius University, Mlynsks dolina,
842 48 Bratislava 4, Slovakia
benus@ii.fmph.uniba.sk, http://www.ii.fmph.uniba.sk/~benus

Abstract. Several studies in the cognitive science community (see [1-3])
reported that when training recurrent neural networks (RNNs) to process
language structures, activations of recurrent units display a considerable
amount of structural differentiation even prior to learning. Following [3],
we refer to this phenomenon as the architectural bias of RNNs. In this
paper, we show, that when initialized with small weights, RNNs produce
recurrent activations that cluster according to a Markovian strategy: i.e.
subsequences sharing a long common suffix are represented as points in
a dense cluster. Prediction states that naturally arise in such networks
loosely correspond to states of variable memory length Markov models
(VLMM). After training RNNs, the main effort in related studies is con-
centrated on analyzing activation patterns in the recurrent layer. Given
a (trained, or non-trained) RNN and a training stream, we test use-
fulness of recurrent representations by constructing predictive models,
called neural prediction machines (NPM), that directly employ state-
space dynamics of the network. Based on comparison with the so-called
fractal prediction machines (FPMs), we demonstrate that NPMs of non-
trained RNNs are closely related to VLMMs. Reports on learning and
processing linguistic structures using RNNs that concentrate on state-
space representations in trained networks should, prior to making any
conclusion about the importance of detected recurrent representations,
compare RNN results with those of NPMs extracted from untrained nets
and/or Markovian models.

1 Introduction

There is a considerable amount of literature devoted to connectionist process-
ing of complex language structures. One of the main driving forces behind such
studies has been formulating models of human performance in processing lin-
guistic patterns of various complexity (e.g. [3]). Also, the analysis of state space

In: Intelligent Technologies - Theory and Applications. Frontiers in Al and Applications, vol. 76.
P. Sincak, J. Vascak, V. Kvasnicka and J. Pospichal (Eds),
10S Press, Amsterdam, pp. 17-23, 2002. ISBN 1-58603-256-9.

2 P. Tino, M. Ceriiansky, L. Beiiuskovd

trajectories in recurrent neural networks (RNNs) has provided new insights into
the types of processes which may account for the ability of learning devices to
acquire and represent language, without appealing to traditional linguistic con-
cepts [4, 5]. To gain an additional insight into what the networks have learned,
trained networks were sometimes used as generators by transforming their out-
puts to “probabilities”* of possible sentence continuations. One of these possible
continuations is then chosen stochastically and fed back as the next input to the
network [3, 6].

Yet, several researches issued a note of caution: When training RNNs to pro-
cess language structures, activations of recurrent units display a considerable
amount of structural differentiation even prior to learning. We refer to this phe-
nomenon as the architectural bias of RNNs [3]. In this paper we provide an expla-
nation of this phenomenon and issue an additional note of caution that the link
between the quality of trained RNNs as language generators and the complexity
of dynamical state-space scenarios inside the networks is less straightforward
than might have been previously thought.

2 Neural Prediction Machines

We work with Elman-type 1lst-order randomly-initialized recurrent networks
trained using RTRL. The networks consist of 1 input layer, I(t), and 1 output
layer O() | each with A units corresponding to the symbols from A = {1,2,..., A}
appearing in the training and test sequences. There are 2 hidden layers, R® and
H® and 1 context layer, C®¥) = R(*~1) connected through a unit time delay to
the first (recurrent) hidden layer (Fig. 1(f)). The second (non-recurrent) hidden
layer, H(Y) | was used to increase the flexibility of the maps between the hidden
representations in the recurrent portion, R®), and the activations at the output
layer, O®). A logistic sigmoid activation function was used, the learning rate
and momentum were set to 0.05, and the training sequence was presented at the
rate of one symbol per clock tick. The networks were trained to predict the next
item in a sequence given the previous context [3, 7]. At the beginning of each
training epoch the network is re-set with the same initial state C(!). The initial
state is randomly chosen prior to the training session.

After training RNNs on linguistic data, the main effort is often concentrated
on analyzing the resulting activation patterns in the recurrent layer R(®). We
make explicit use of the induced state-space trajectories in RNNs by formulat-
ing prediction models, called neural prediction machines (NPM), that inherit
state-space dynamics from RNNs. They differ from RNNs only in that they ig-
nore the network output mapping R® — H® — O® and instead, based on
the network dynamics [I¥), C®] — R(®), use their own predictive probabilities
PNPM((J,|R(t)), ac A.

* By normalizing the sum of outputs to 1.

In: Intelligent Technologies - Theory and Applications. Frontiers in Al and Applications, vol. 76.
P. Sincak, J. Vascak, V. Kvasnicka and J. Pospichal (Eds),
10S Press, Amsterdam, pp. 17-23, 2002. ISBN 1-58603-256-9.

Architectural Bias of RNNs 3

While the RNN output probabilities are determined, using the map R®) —
H® — O® at the network output

oY)
A DK
Zb:l OIE)

calculation of the corresponding NPM predictive probabilities involves estima-
tion of the relative frequencies of symbols, conditional on RNN state R®*). In-
stead of the map R(®) — H® — OW — Pryn(-[R1), we have a piece-wise
constant map, R(®) — Pypa(|R®), estimated on the training sequence. Re-
gions of constant probabilities are determined by vector quantizing recurrent
activations that result from driving the network (weights are fixed) with the
training sequence. In the following, we give a more rigorous description of the
NPM construction.

Prnn(aRY) = (1)

1. Given a training sequence S = s152...sy over an alphabet A = {1,2,..., A},
first re-set the network to the initial state C(*), and then, while driving the
network with the sequence S, collect the recurrent layer activation vectors
in the set 2 = {RY|1<t< N}

2. Run a vector quantizer with M codebook vectors By, ..., By, on the set (2
(we used K-means clustering). Vector quantization partitions the space of
recurrent activations into M regions Vi, ..., Vs, that are Voronoi compart-
ments of the codebook vectors Bq, ..., By,

Vi={R[d(R,B;) = mind(R, B;)},
J

where d(-,) is the Euclidean distance. All points in V; are allocated® to the
codebook vector B;.

3. Re-set the network again with the initial state C().

4. Set the [codebook-vector, next-symbol] counters N(i,a), i = 1,....M, a =
1,..., A, to zero.

5. Drive the network once more with the training sequence S.
For 1 <t < N, if R®) € V;, and the next symbol s;1; is a, increment the
counter N (i,a) by one.

6. With each codebook vector (or, equivalently, quantization compartment)
Vi, ..., Var, associate the next symbol probabilities

N(i,a)

P(G|Vi)=m> a€ A (2)

Given a sequence u1,us, ..., u, over the alphabet A, the NPM makes a pre-
diction about the next symbol w41 as follows:

1. Re-set the network with the initial state C(1).

® Ties as events of measure zero (points land on the border between the compartments)
are broken according to index order.

In: Intelligent Technologies - Theory and Applications. Frontiers in Al and Applications, vol. 76.
P. Sincak, J. Vascak, V. Kvasnicka and J. Pospichal (Eds),
10S Press, Amsterdam, pp. 17-23, 2002. ISBN 1-58603-256-9.

4 P. Tino, M. Ceriiansky, L. Beiiuskovd

2. Drive the network with the sequence wuy,us,...,ur, i.e. for 1 < ¢ < L, recur-
sively compute the vectors R(®).

3. The next symbol distribution given by NPM is
PNpM(uL+1|R(L)) = P(ur41] Vi), provided RL) e V.

Note, that NPM is not a finite state predictor. The dynamics of NPM is
completely the same as that of the associated RNN. NPM makes use of spatial
representations of symbol histories encoded by the RNN. The history of symbols
seen by the network up to time ¢ is represented by the vector of recurrent acti-
vations R(®). Quantization of RNN state space merely helps us to estimate, on a
(finite) training sequence, the state-conditional predictive probabilities P(-|R®)
by a piece-wise constant map.

2.1 Fractal Prediction Machines

In [8] we introduced a special type of NPM, called fractal prediction machine
(FPM). FPMs are constructed from RNNs with dynamics of an affine itera-
tive function system(IFS). Assuming the network input at time t is a € A =
{1,2,..., A}, the dynamics is defined by

RO = 2(CY +T,), 3)
where Ty, ...,Tyq, T, # Ty, for a # b, are symbol-related vertices of the hy-
percube [0,1]P, and the dimension D is no less than log, A. Note that such
non-autonomous dynamics® is driven by A attractive fixed points T4,..., T4,
corresponding to symbols from the alphabet A.

We showed that FPMs are closely related to variable memory length Markov
models (VLMM) [9], which are Markov models of flexible memory depth, de-
pending on the prediction context. Roughly speaking, VLMMs can utilize deep
memory only when it is really needed, thus avoiding explosion in the number
of free parameters of the fixed-order Markov models. The IFS dynamics, Eq.
(3), driven by attractive fixed points associated with symbols from A, trans-
forms subsequences appearing in the training sequence into a set of points in
Euclidean space, such that points corresponding to blocks sharing a long com-
mon suffix are mapped close to each other. Vector quantization on such a set
partitions histories of seen symbols into several classes dominated by common
suffixes. Quantization centers of FPMs play the role of predictive contexts in
VLMMs. FPMs and VLMMs achieved comparable performances across a col-
lection of symbolic sequences from a wide range of complexity and memory
structures (see [8]).

6 Strictly speaking, FPMs were in [8] constructed as finite-memory sources, where the
IFS dynamics was driven only by the last L recently seen symbols. Typically, L = 20.
However, the distance between recurrent activations resulting from 2 sequences that
share a common suffix of length L is less than 2~“/D (see [11]). So, for long memory
depths L, the dynamics of the FPM introduced above is virtually the same as that
of the FPM described in [8].

In: Intelligent Technologies - Theory and Applications. Frontiers in Al and Applications, vol. 76.
P. Sincak, J. Vascak, V. Kvasnicka and J. Pospichal (Eds),
10S Press, Amsterdam, pp. 17-23, 2002. ISBN 1-58603-256-9.

Architectural Bias of RNNs 5

3 Processing recursive structures

In this section we train RNNs and construct NPMs on three data sets of the type
used by Christiansen and Chater to asses connectionist modeling of recursion in
human linguistic performance [3]. They trained simple recurrent network [7] on
the next-symbol prediction and also assessed the trained networks as sequence
generators.

Each language used in [3] involves one of three complex recursions taken from
Chomsky [10], interleaved with right-branching recursions (RBR). The latter is
generated by a simple iterative process to obtain constructions like: Py Py Sy Sy,
where P stands for plural, S for singular, N for noun and V for verb category.
Example: “girls like the boy that runs”. The three complex recursions are:

(1) Counting recursion (CR): {}, NV, NNVV,NNNVVYV, ..., while ignoring
singulars and plurals.

(2) Center—embedding recursion (CER) {}, sy SNPNPst, PNSNSva,
Example: “the boy girls like runs”.

(3) Identity (cross-dependency) recursion (IR): {},..., SNPnSv Py, PnSn
Py Sy, Example: “the boy girls runs like”.

Thus, our three benchmark recursive languages were: CRandRBR, CERan-
dRBR, IRandRBR. Each language had 16 word vocabulary with 4 words from
each category, i.e. 4 singular nouns, 4 singular verbs, 4 plural nouns and 4 plural
verbs. The RNN had 17 input and output units, where each unit represented
one word or the end of sentence mark. There were 10 hidden and 10 recurrent
neurons. The networks were trained in 10 training runs starting from different
random weight initializations (from [—0.5,0.5]). The training set of each lan-
guage consisted of 5000 sentences and the test set of 500 novel sentences. One
half of each set was comprised of RBR constructions and another half of appro-
priate complex recursions. Depths of embedding ranged from 0 to 3, with the
following distributions: depth 0 — 15 %, depth 1 — 27.5 %, depth 2 — 7 %, depth
3 - 0.5 % (together 50 %). The mean sentence length was approximately 4.7
words.

In Fig. 1(a)—(e) we show the mean (across 10 training runs) normalized (per
symbol) negative log likelihoods (NNL) achieved on the test set by FPMs, RNNs
and the corresponding NPMs. In the 2-D plots, we also show the corresponding
standard deviations. Standard deviations in the 3-D plots are not shown, but
generally are less than 5 % of the mean value.

The effect of architectural bias is clearly visible. This is confirmed by com-
paring NPM performances (for 0 training epochs) in Fig. 1(c)—(e) with the FPM
performance in Fig. 1(a), effectively implementing VLMMs [8]. About 40 code-
book vectors in NPMs are sufficient to make full use of the associated RNNs
dynamics. Moreover, NPMs corresponding to non-trained networks achieved
NNL comparable with NNL given by RNNs after 10 epochs of training (Fig.
1(b)). What is the explanation for this, rather surprising, behavior? The dy-
namics of RNNs initialized with small weights is trivial. With a fixed input, it
is completely dominated by a single attractive fixed point close to the center
of the recurrent activation space (RNN state space) [12]. Different input codes

In: Intelligent Technologies - Theory and Applications. Frontiers in Al and Applications, vol. 76.
P. Sincak, J. Vascak, V. Kvasnicka and J. Pospichal (Eds),
10S Press, Amsterdam, pp. 17-23, 2002. ISBN 1-58603-256-9.

6 P. Tino, M. Ceriiansky, L. Beiiuskovd

of symbols 1,2,...,A, form A correspond to A different attractive fixed points in
the RNN state space. Hence, when driving the network with an input sequence
over A, the network codes histories of seen symbols in its recurrent layer in the
same Markovian manner as FPMs do (subsection 2.1). NPMs of non-trained
RNNs, initialized with small weights, are much like FPMs. Before the training,
RNN outputs are driven by randomly initialized weights in the output mapping
R® — H® — O® and it takes some time for the mapping to adjust to the
statistics of the training sequence. Also, since initially the A attractive fixed
points lie in a close neighborhood of the center of the state space, it may be dif-
ficult for the RNN to adjust the smooth output map to the dynamics that takes
place in a rather tiny portion of the state space. But, the “useful” dynamics is
already there, even prior to the training (!), and NPMs are able to make full use
of it, since NPM predictive probabilities are computed as piece-wise constant
maps based on (scale-free) vector quantization of RNN state space.

FPM on recursive languages RNN output on recursive languages

CERandRBR —e— CERandRBR —e—
CRandRBR —+— CRandRBR —=—
1.1 IRandRBR - 1.1 IRandRBR 4

0.6
0 10 20 30 40 50 60 70 80 90100110120130140150 0 10 20 30 40 50 60
Codebook size Epoch

NPM on CRandRBR

®

-

Rr®

!

‘ G

N
N
\
\
1

/4
‘ c® = rt-1) ‘

Fig. 1. Normalized negative log likelihoods (NNL) achieved on Christiansen and Chater
recursion data sets by (a) FPMs, (b) output of RNNs and (c)—(e) NPMs. (f) RNN.

In: Intelligent Technologies - Theory and Applications. Frontiers in Al and Applications, vol. 76.
P. Sincak, J. Vascak, V. Kvasnicka and J. Pospichal (Eds),
10S Press, Amsterdam, pp. 17-23, 2002. ISBN 1-58603-256-9.

Architectural Bias of RNNs 7

4 Conclusion

We have offered an explanation of the phenomenon known to the cognitive sci-
ence community as the architectural bias in recurrent neural networks (RNNs).
RNNs initialized with small weights are biased towards the class of Markov mod-
els known as variable memory length Markov models. We constructed predictive
models, called neural prediction machines (NPM), that share the state-space dy-
namics of RNNs, but are not dependent on the RNN output map. Using NPMs
we were able to test the usefulness of state space representations in RNNs for
building probabilistic models of linguistic data. Experiments on recursion data of
Christiansen and Chater confirmed our Markovian architectural bias hypothesis.
Although not reported here, we obtained very similar results on a minimal-pair
linguistic data set based on the University of Pennsylvania ‘Brown’ corpus.

Acknowledgements: Supported by VEGA 1/9046/02.

References

1. Kolen, J.F.: The origin of clusters in recurrent neural network state space. Proc. 16th
Annual Conf. Cognitive Sci. Soc., Lawrence Erlbaum Assoc., Hillsdale, NJ (1994)
508-513

2. Chater, N., Conkey P.: Finding linguistic structure with recurrent neural networks.
Proc. 14th Annual Meet. Cognitive Sci. Soc., Lawrence Erlbaum Assoc., Hillsdale
(1992) 402-407

3. Christiansen, M.H., Chater, N.: Toward a connectionist model of recursion in human
linguistic performance. Cognitive Science, 23 (1999) 157-205

4. Parfitt, S.: Aspects of anaphora resolution in artificial neural networks: Implications
for nativism. PhD thesis, Imperial College, London (1997)

5. Servan-Schreiber, D. et al.: Graded state machines: The representation of temporal
contingencies in Simple Recurrent Networks. In Advances in Neural Information
Processing Systems. Morgan-Kaufmann (1989) 643-652

6. Mozer, M., Soukup T.: Connectionist music composition based on melodic and stylis-

tic constraints. In Advances in Neural Information Processing Systems 3. Morgan-

Kaufmann (1991) 789-796

Elman, J.L.: Finding structure in time. Cognitive Science 14 (1990) 179-211

8. Tino, P., Dorffner, G.: Predicting the future of discrete sequences from fractal rep-
resentations of the past. Machine Learning 45 (2001) 187-218

9. Ron, D., Singer, Y., Tishby, N.: The power of amnesia. Machine Learning 25 (1996)
138-153

10. Chomsky, N.: Syntactic Structures. Mouton, The Hague (1957)

11. Tifno, P.: Spatial representation of symbolic sequences through iterative function
systems. IEEE Tran. Syst., Man, and Cyber. Part A: Systems and Humans 10
(1999) 284-302

12. Tifo, P., Horne, B.G., Giles, C.L.: Attractive periodic sets in discrete time recurrent
networks (with emphasis on fixed point stability and bifurcations in two-neuron
networks). Neural Computation 13 (2001) 1379-1414

=

In: Intelligent Technologies - Theory and Applications. Frontiers in Al and Applications, vol. 76.
P. Sincak, J. Vascak, V. Kvasnicka and J. Pospichal (Eds),
10S Press, Amsterdam, pp. 17-23, 2002. ISBN 1-58603-256-9.

