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Examples

PCA and APCA on a parabolic dataset (PCA basis vectors are 
black line, APCA basis vectors are red X’s).  Neither are able to 
explain the parabola.

AKPCA is able to decipher parabolic nature of dataset.  The first 
two basis vectors give arms of parabola, and the third basis vector 
gives noise (in the y direction).

AKPCA is able to identify three clusters using an RBF kernel.  
From left to right the first three basis vectors give the cluster 
centers and the plot on the far right shows the relative importance 
of all basis vectors identified (only the first three are important).

Taylor-Couette flow occurs in fluid trapped between two 
independently rotated cylinders.  APCA was used to determine the
most frequently occurring flow patterns.  The 1st to 4th basis vectors 
are shown from left to right.

APCA was used with a Leukemia microarray dataset to identify a 
group of anomalous patients, shown here in red, as well as the gene 
most relevant to distinguishing the cluster (x-axis, or RPS5).

Conclusions

AKPCA provides nonlinear capabilities for data analysis and is 
easier to interpret than standard PCA and kernel PCA.  It is also 
easier to use on very large datasets because it is iterative and can be 
made parallel.

An Approximate Version of PCA (APCA)

We can use the inner product version of Gram-Schmidt in 
combination with PCA to select a linearly independent subset 
{xi1, xi2, …, xim} of {x1, x2, …, xn} with properties similar to 
those of PCA

The vectors {xi1, xi2, …, xim} give the Approximate PCA 
(APCA) basis vectors.

The black lines show the PCA basis vectors and the red X’s 
show the APCA basis vectors (actual data points).

The primary advantage of APCA over PCA is that the APCA 
basis vectors are easier to interpret than the PCA basis 
vectors, due to the fact that the APCA basis vectors are in fact
instances of the original dataset.

Support Vector Machine (SVM) Kernels

A Support Vector Machine (SVM) kernel is a function
with an associated map 

such that

where F is an inner product space.  Kernels act to introduce 
nonlinear interactions in the original space       while 
maintaining linear relations in the higher dimensional space F.

Examples of kernel functions include

SVM kernel functions can be used to make any linear 
algorithm expressed in terms of inner products into a non-
linear algorithm.

An Approximate Version of Kernel PCA (AKPCA)

We replace the inner products in APCA with kernel functions 
to obtain a nonlinear approximate version of PCA, which we 
call Approximate kernel PCA, or AKPCA.

The primary advantage of AKPCA over APCA is that we can 
now examine datasets with nonlinear relationships.  Since 
AKPCA is based on APCA, we inherit the advantage of 
interpretability.  AKPCA basis vectors are still vectors that 
have occurred in the original dataset.
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Abstract

We propose an analog of kernel Principal Component 
Analysis (kernel PCA).  Our algorithm is based on an 
approximation of PCA which uses Gram-Schmidt 
orthonormalization.  We combine this approximation with 
Support Vector Machine kernels to obtain a nonlinear 
generalization of PCA.  By using our approximation to PCA 
we are able to provide a more easily computed (in the case 
of many data points) and readily interpretable version of 
kernel PCA.  After demonstrating our algorithm on 
some examples, we explore its use in applications to fluid 
flow and microarray data.

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) can be described as a 
procedure for successively capturing the maximal variance 
in a dataset.  If {x1, x2, …, xn} is a dataset of rank m then the 
PCA basis can be computed as

where {u1, u2, …, um} are also required to be orthonormal, 
and (x, y) represents the inner product between x and y.

The black lines show the PCA basis vectors.

Gram-Schmidt Orthonormalization

Gram-Schmidt orthonormalization is a procedure for 
transforming a set of linearly independent vectors {x1, x2, 
…, xm} into an orthonormal basis {u1, u2, …, um}.  This 
basis is constructed iteratively by projection, where

Gram-Schmidt can also be re-written in terms of inner 
products only, as
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