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Network Enumeration

In order to search for robust networks, we have systematically generated all activation/inhibition 
networks with up to five nodes. Undirected graphs were first enumerated using McKay’s orderly 
enumeration algorithm [5]. Next, for each enumerated graph, the two possible edge directions 
and the activation/inhibition labels were added in all possible ways. All resulting non-isomorphic 
networks were then run using Boolean dynamics. Each run was performed over all possible 
initial conditions until an attractor was reached. A binary string was compiled representing the 
Boolean states of the nodes within the attractors. That string was canonized considering all node 
permutations. Finally, networks were clustered according to their dynamical canonical string. 
Figure 2(a) plots the number of clusters versus cluster sizes.

Figure 2. One the left (a), we show the number of dynamics vs. the dynamical 
robustness for activation/inhibition networks, and on the right (b) we show the dynamic 
multiplicity vs. the number of attractors. 

Figure 2(a) demonstrates that most networks do not share their steady state dynamics with others, 
while a few networks are highly robust.  Precisely, the number of different steady state dynamics 
versus the dynamic robustness seems to follow a power law with exponent 2.5.  This result is 
surprising, since according to the theory of random graphs, network characteristics should follow 
Poisson distributions. We hypothesize that power law behavior observed in biological networks 
is a consequence of dynamic robustness. We also  note that the number of attractors decreases 
with dynamical robustness, this result illustrated in Figure 2(b).

To further test our hypothesis we analyzed the dynamics of three activation inhibition networks: a 
transcriptional regulation network for E-coli [6], and two Yeast gene regulatory networks ([7], 
and a network we inferred from microarray data [8]).  In all of these networks, we found that the 
number of subgraphs (or modules) with up to five nodes increased with the dynamical
robustness. As illustrated in Figure 3, we also found that dynamical robustness increased with 
node degree.

Conclusions

These results can be explained by considering that biological networks are composed of 
modules connected together [9], and that networks composed of modules can be constructed 
with a power law degree distribution, P(k), if the modules have a fitness (robustness in the 
present case) also following a power law, ρ(r). Precisely, Caldarelli et al. [10] have shown 
that networks of N modules can be constructed with the following distribution of node 
degrees P(k) = rM

2/(N<r>)ρ[rM
2/(N<r>)  k], where <r> and rM

2 are the averaged and 
maximum robustness of the modules. Note that P() follows a power law as long as ρ() does. 
The growth of such networks is simply carried out by linking modules, one with robustness 
r and the other with robustness s, with probability rs/rM

2. Figure 4 was compiled for a 
network of 150,000 modules grown using the above probability and following the 
robustness distribution of Figure 2(a). Clearly both figures follow the same power law 
distribution.  Thus, we conclude that the distribution of module robustness can be used to 
explain the node degree distribution found in gene regulatory networks.

Figure 4. Degree distribution for networks generated using ρ(r) ~ r -2.5 and edge 
probability rs/rM
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Abstract

We investigate the robustness of biological networks, emphasizing gene 
regulatory networks.  We define the robustness of a dynamical network as 
the magnitude of perturbation in terms of rates and concentrations that will 
not change the steady state dynamics of the network. We find the number of 
dynamical networks versus their dynamical robustness follows a power law. 
We observe module robustness to increase with node degree in published 
gene regulatory networks. Finally, based on dynamical robustness, we 
propose a growth model for producing networks with power law degree 
distributions.

Introduction

Many biological, social and technological networks are scale free, that is, 
the degree of the nodes follows a power law distribution. This differs from 
random networks where node degrees follow a Poisson distribution. In order 
to generate random graphs with power law distributions, specific schema 
have been developed, such as growth through preferential attachment [1], or 
node duplication followed by edge deletion [2]. There is still much debate 
about whether or not these growth models are appropriate when dealing with 
gene and protein networks. In addition, these models do not take dynamics 
into account, even though dynamical robustness is an important aspect of 
gene and protein networks. Quoting Uri Alon [3], biological networks are 
robust to component tolerance and this should impose severe constraints on 
their design. Furthermore, it has been shown that power law networks 
exhibit robust behavior for power law exponents greater than two [4], and 
such exponent values are generally observed in most published protein and 
gene networks.  In this poster, we further explore the relationship between 
dynamical robustness and scale free properties.

Robustness

We focus on gene regulatory networks and define the robustness of such 
networks as the magnitude of perturbation (in rates and concentrations) that 
can be carried out without changing the steady state dynamics of that 
network. If the network is limited to the Boolean activation/inhibition 
model, robustness becomes the number of different networks having the 
same set of attractors. Indeed, as illustrated in Figure 1, different networks 
can lead to the same steady state dynamics. 

Figure 1. Networks with identical attractors. Both networks cycle in 
the attractor composed of states (000,100,111,010).
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