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ABSTRACT

Motivation: Identifying protein enzymatic or pharmacological activi-

ties are important areas of research in biology and chemistry.

Biological and chemical databases are increasingly being populated

with linkages between protein sequences and chemical structures.

There is now sufficient information to apply machine-learning

techniques to predict interactions between chemicals and proteins

at a genome scale. Current machine-learning techniques use as

input either protein sequences and structures or chemical informa-

tion. We propose here a method to infer protein–chemical interac-

tions using heterogeneous input consisting of both protein sequence

and chemical information.

Results: Our method relies on expressing proteins and chemicals

with a common cheminformatics representation. We demonstrate

our approach by predicting whether proteins can catalyze reactions

not present in training sets. We also predict whether a given drug

can bind a target, in the absence of prior binding information for that

drug and target. Such predictions cannot be made with current

machine-learning techniques requiring binding information for

individual reactions or individual targets.

Availability and Contact: For questions, paper reprints, please

contact Jean-Loup Faulon at jfaulon@sandia.gov. Additional informa-

tion on the signature molecular descriptor and codes can be

downloaded at: http://www.cs.sandia.gov/�jfaulon/publication-

signature.html

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Molecular recognition is the primary event involved in the
interaction of proteins with other proteins and with small

molecules such as metabolites and therapeutics. The ability to
predict these interactions on a genome-wide scale is vital in

determining the enzymes that catalyze a given metabolic
reaction, the reactions a given enzyme catalyzes, the targets a
particular drug binds and the drugs that will bind a given

target. Predicting these interactions has direct application when

completing genome annotations, finding enzymes for synthetic

chemistry, and predicting drug specificity, promiscuity and

polypharmacology.

Molecular recognition has been studied using a variety of

approaches. At the molecular level, biophysical simulation

techniques ranging from ab inito quantum calculations

(Fukuzawa et al., 2005) to rapid virtual screening (Warren

et al., 2006) have been used. These techniques can be very

accurate but require knowledge of the three dimensional

structure of the chemical–protein interface and can be

computationally expensive, giving them limited applicability

at the whole genome level. On the other hand, statistical

machine-learning approaches can be applied on a much larger

scale. The increasing amount of information linking chemical

and biological data (Austin et al., 2004; Brooksbank et al.,

2005; Kanehisa et al., 2006; Wishart et al., 2006) has provided

the required input for these machine-learning tools. Machine-

learning approaches are computationally efficient, and they

do not necessarily require three-dimensional structural

information.
To date, machine-learning methods have been applied to

molecular recognition questions based on whether they are used

with biological sequences or with chemical connectivity data.

In bioinformatics, for instance, there are techniques making use

of Enzyme Commission (EC) numbers to predict the metabo-

lites a given sequence can catalyze (Borgwardt et al., 2005; Cai

et al., 2003; Kunik et al., 2005). There are also sequence and

structure-based methods for locating homologous ligand

binding sites (Johnson and Church, 2000; Kalinina et al.,

2004). In cheminformatics, methods have been developed to

find compounds binding to a given target (Gasteiger and Engel,

2003), as well as to predict the EC number of a given metabolic

reaction (Kotera et al., 2004). However, none of these

techniques take advantage of the increasing linkage between

biological sequences and molecular information. Further, there

are no methods available that can predict when an unclassified

(in the EC nomenclature) chemical reaction will be catalyzed by

a given enzyme, or when a chemical will bind to a sequence in

the absence of binding information for either the sequence or*To whom correspondence should be addressed.
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the chemical. To overcome these problems, we have developed

an approach making use of a Support Vector Machine

(Noble, 2006) (SVM) kernel-based method that operates on

both protein and chemical information.
Our approach uses a graph-based representation of mole-

cules known as signature (Faulon, 1994). This representation

describes a molecular graph by decomposition into canonical

subgraphs (Faulon et al., 2004). Using this type of representa-

tion, the similarity between two molecules can be evaluated by

comparing their subgraphs (Bender et al., 2004). Similar

comparisons have been previously used by exploiting graph

kernel SVMs (Gartner et al., 2003; Kashima et al., 2003; Mahe

et al., 2006; Swamidass et al., 2005) for the prediction of

mutagenecity, toxicity and anti-cancer activities (Swamidass

et al., 2005).

In our case, we are interested in chemicals as well as proteins.

Perhaps unsurprisingly, functional predictions using protein

sequences are also based on pair-wise comparison. These

comparisons are typically made using sequence homology, as

computed by sequence alignment algorithms, or, in the case of

SVMs, remote homology detection with string kernels (Leslie

et al., 2002). Protein sequence- based approaches and in

particular sequence alignment are routinely used to assign EC

numbers in newly sequenced genomes (White, 2006).

The similarities between the chemical-based and sequence-

based approaches described above provided the motivation for

combining the different methods into a general framework. To

accomplish this goal, we used molecular signature as a common

representation for both chemicals and protein sequences.

Chemicals cannot be coded as linear sequences of well-defined

units, but protein sequences are molecules and as such can be

represented by molecular graphs. A common representation

should thus come from cheminformatics. Our choice of

molecular signature (among the myriad cheminformatics

descriptors) is motivated by the fact that signatures are

molecular fragments. When applied to proteins, these frag-

ments correspond to short sequences, and short sequences

correspond to protein domains, which are extensively used in

bioinformatics applications (Mulder et al., 2007).

We implemented our approach within the framework of

SVMs by developing a kernel that uses the signature descriptor

in the context of protein–chemical pairs. Our kernel is based on

the signature product kernel developed for protein–protein

interaction (Martin et al., 2005) and encompasses ideas related

to string kernels (Leslie et al., 2002), graph kernels (Gartner

et al., 2003; Kashima et al., 2003; Mahe et al., 2006; Swamidass

et al., 2005) and pairwise kernels (Ben-Hur and Noble, 2005;

Martin et al., 2005). Details of our techniques are found in

the Methods section. The Results section presents enzyme-

metabolites binding predictions based on metabolic reaction

information, sequence information and the product of both.

Next, enzyme–metabolite and drug–target interactions are

predicted for independent test sets. In these two latter cases,

we investigate the possibilities of predicting enzyme–metabolite

and drug–target interactions in the absence of prior binding

information in the training sets for the metabolites, enzymes,

drugs or targets of the test sets.

2 METHODS

2.1 Molecular signature

The signature of a molecule is a vector whose components correspond

to atomic signatures (Faulon, 1994). Each component of a molecular

signature counts the number of occurrences of a particular atomic

signature in the molecule. An atomic signature is a canonical

representation of the subgraph surrounding a particular atom. This

subgraph includes all atoms and bonds up to a predefined distance from

the given atom. This distance is called the signature height. Formally,

we let hS¼ZN (h), where N (h) is the number of possible atomic

signatures of height h and the unit basis vectors ZN (h) correspond

uniquely to the possible atomic signatures. If G¼ (V, E) is a molecular

graph, with vertex (atom) set V, and edge (bond) set E, then the

molecular signature of G is given by

h�ðGÞ ¼
X

x2V

h�GðxÞ ð1Þ

where h�G (x) is the unit basis vector of hS corresponding to the atomic

signature in G rooted at x of height h.

Algorithms and codes to compute atomic and molecular signatures

have been previously documented (Faulon et al., 2004). Examples of

atomic and molecular signatures are provided in Supplementary

Figures S1 and S2. The signature heights used for chemicals typically

range between 0 and 6. The signature height used for proteins ranges

between 6 and 18 and corresponds roughly to amino acid strings with

1–7 residues. Computationally, the most expensive step in computing a

molecular signature is the subgraph canonization step (Faulon et al.,

2004). While the computational complexity for canonizing subgraphs

(and graphs in general) is unknown, a computational running times

study for various types of chemical structures indicate the running time

to be linearly proportional to the input size (Faulon et al., 2004). This

computational efficiency allows us to process large chemical structures

such as proteins with more than 100 000 atoms. We find the

computational complexity to only slightly increase with the signature

height as on average it takes 6 s CPU time (on a Dual 2.3GHz PowerPC

Macintosh) to compute protein signatures for height 6 and 8 s for height

18. We were thus able to process datasets of 1000 proteins (which was

the maximum training and test set size used in this study) in less than

3 h. While not applied in the present study, further saving in running

time could potentially be gained by computing signature only for

specific atoms along the protein backbone (only C-� atoms, for

instance).

2.2 Reaction signature

Reaction signatures are computed for enzymatic reactions. We assume

that all enzymatic reactions take the general form R: s1 S1þ s2
S2þ . . .þ sn Sn! p1 P1þ p2 P2þ . . .þ pm Pm, where si and pj are the

stoichiometric coefficients of substrates Si and products Pj. The height h

signature of reaction R is then defined by

h�ðRÞ ¼
X

j

pj
h�ðPjÞ�

X

i

si
h�ðSiÞ ð2Þ

where h� (Pj) and h� (Si) are the height h molecular signatures of

substrate Si and product Pj computed using Equation (1).

2.3 Support vector machines

Support Vector Machines (Noble, 2006) (SVMs) are classifiers that

have been widely used in both bioinformatics and cheminformatics.

Relevant to this study, SVMs have been used to predict the EC numbers

of protein sequences (Borgwardt et al., 2005; Cai et al., 2003; Kunik

et al., 2005). In the chemistry literature, SVMs have been used to make
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property predictions based on molecular connectivity (Kashima et al.,

2003; Swamidass et al., 2005).

A SVM can be described as follows. Suppose our data are given as

pairs xi,yið Þ
� �

� Rnf�1g. In other words, suppose our data consists of

two classes with labels 1 and �1. Using this notation, a SVM assumes

the form: fðxÞ ¼
P

i �iyikðxi,xÞ þ b where f : Rn ! R is a decision

function [x belongs to class 1 if f (x) is greater than some threshold b, or

to class –1 otherwise], k : Rn �Rn ! R is a kernel function, otherwise

known as a dot product in some vector space, and the constants b and

�i are obtained by solving a quadratic programming problem.

A kernel function should measure the similarity between two inputs

as a dot product. For sequences, the most commonly used kernels are

string kernels (Leslie et al., 2002). A string kernel is a dot product

between two vectors containing occurrence numbers of short sub-

sequences within the main sequence. In addition to string kernels,

kernels based on feature vectors are also used (Bock and Gough, 2001).

These vectors compile physico-chemical parameters collected for each

amino acid in a sequence. Various kernels for chemicals have been

proposed including path and tree kernels (Swamidass et al., 2005),

marginalized kernels (Kashima et al., 2003) and pharmacophore kernels

(Mahe et al., 2006). Path and tree kernels count the occurrence of paths

and trees and in a molecular graph, the marginalized kernel is based on

random walks in a graph, and the pharmacophore kernel takes into

account the three dimensional structure of the chemicals. The above

kernels have been used to classify chemicals for mutagenicity, toxicity

and anti-cancer activities (Swamidass et al., 2005). While kernels

already exist for protein sequences and chemicals, our goal in this

article is to develop a kernel that will process both simultaneously.

2.4 Signature kernels

Different kernels based on signatures are used for comparing chemicals,

reactions and sequences. In all cases, kernels are scalars while signatures

are vectors. In the case of chemicals, the kernel function computes the

similarity between two chemicals represented by their molecular

signatures. In this article, to measure similarity we use a simple dot

product between the molecular signature vectors. In the case of

chemical reactions, the kernel function computes the similarity between

the signatures of the reactions. In the case of protein sequences, the

sequences are first transformed into molecular graphs by replacing the

amino acids with their chemical structures. The proteins are then

processed as chemicals.

When using both chemicals and proteins, as in the case of a drug

binding to a target, or a metabolic reaction catalyzed by an enzyme, the

kernel is defined for two pairs of chemical–protein interactions. It is

the product of the signature kernel between the two chemicals and the

signature kernel between the two proteins. We define all of these kernels

in Equations. (3–4) below.

For a given height h, the signature kernel between two chemical

structures A and B is defined by:

hkðA,BÞ ¼
h�ðAÞ � h�ðBÞ
h�ðAÞ
�� �� h�ðBÞ

�� �� ð3Þ

where h� (A) and h� (B) are computed using Equation (1), and | h� (A)|

denotes the norm of h� (A). This kernel also applies to proteins

considered as atomic structures and reactions, where reaction signatures

are used instead of molecular signatures. Examples of signature kernels

are given in Supplementary Figure S2.

Let P be a protein and C be a chemical. The height l signature of P

can be expressed as: l�ðPÞ ¼ ðp1,p2, . . . ,pnÞ where n¼ | l� |. Similarly the

height h signature of C can be written as: h�ðCÞ ¼ ðc1,c2, . . . ,cmÞwhere

m¼ | hS |. Following the definition found in Martin et al. (2005) and

Ben-Hur and Noble (2005) for protein–protein interaction kernel,

we define the signature of the complex P� C as the tensor product of

the signatures of P and C:

l, h�ðP� CÞ ¼ ðp1c1, . . . , p1cm, p2c1, . . . , p2cm, . . . , pnc1, . . . , pncmÞ

If we let (P,C) and (Q,D) be two pairs of chemical–protein

interactions, using simple algebra we have:

l, h�ðP� CÞ � l, h�ðQ�DÞ

¼ ðp1c1, . . . , p1cm, p2c1, . . . , p2cm, . . . , pnc1, . . . , pncmÞ

� ðq1d1, . . . , q1dm, q2d1, . . . , q2dm, . . . , qnd1, . . . , qndmÞ

¼ p1q1ðc1d1 þ . . .þ cmdmÞ þ p2q2ðc1d1 þ . . .þ cmdmÞ

þ . . .þ pnqnðc1d1 þ . . .þ cmdmÞ

¼ ðp1q1 þ p2q2 þ . . .þ pnqnÞðc1d1 þ c2d2 þ . . .þ cmdmÞ

¼ ðl�ðPÞ � l�ðQÞÞ ðh�ðCÞ � h�ðDÞÞ

Similarly it can easily be shown that:

l, h�ðP� CÞ
�� �� l, h�ðQ�DÞ

�� �� ¼ l�ðPÞ
�� �� l�ðQÞ

�� �� h�ðCÞ
�� �� h�ðDÞ

�� ��

Thus the signature product kernel between two pairs (P,C) and (Q,D) of

protein–chemical interactions, is simply defined as:

l, hkp ðP,CÞ, ðQ,DÞð Þ ¼ lkðP,QÞhkðC,DÞ ð4Þ

where lk (P,Q) is the signature kernel of height l for the protein pair (P,

Q) and hk (C,D) is the signature kernel of height h for the chemical pair

(C,D). Both kernels are defined using Equation (3). In other words, the

similarity of two protein–chemical pairs is simply the product of the

similarity between the two proteins and the similarity between the two

chemicals. An example of signature product kernel is given in

Supplementary Figure S3.

2.5 Cross-validation

Several metabolite-enzyme and drug-target datasets were processed in

this study, these are detailed in the Result sections. Once a dataset was

generated, prediction accuracy was assessed using cross-validation.

X-fold cross-validation is performed by dividing a dataset into X equal

non-intersecting subsets. A given subset is treated as a test set, and the

complement serves as a training set. A classifier is trained using the

training set and predictions are made on the test set. This procedure is

repeated for each of the original subsets to obtain predictions on the

entire dataset. In this work, we used either leave-one-out (LOO) or

5-fold cross-validation. LOO cross-validation uses each element of the

dataset separately as a test set and 5-fold cross-validation splits the

dataset into five equal subsets.

Statistics were compiled for each dataset using the cross-validation

predictions. Accuracy, sensitivity, specificity and precision were

computed. Using TP, FP, TN and FN to denote true positive, false

positives, true negatives and false negatives, accuracy is defined by

(TPþTN)/(TPþFPþTNþFN), sensitivity is defined by TP/

(TPþFN), specificity is defined by TN/(TNþFP) and precision is

defined by TP/(TPþFP). In addition, we computed the Jaccard

coefficient J¼TP/(TPþFPþFN) and the area under the receiver-

operator-characteristic (ROC) curve. The area under the curve (auc) is

obtained by integrating under the ROC curve. The ROC curve is

obtained by varying the threshold b (see SVM section) separating

positives from negatives and plotting the TP rate (sensitivity) versus the

FP rate (1-specificity). For all of these statistics, a larger number

indicates a better result.

3 RESULTS

Our approach rests on the assumption that we can replace

protein homology calculations based on sequence with similar
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calculations based on the underlying atomistic representation.
Our first result is therefore related to the investigation of this
claim. Next, we compare our approach to existing methods

using only chemical or only sequence information. Then, we
combine both sequence and chemical information for the
prediction of reaction–enzyme and drug–target interactions.

Finally, we investigate the efficacy of our method for
predictions in the absence of prior binding information for

reaction, enzyme, drug or target.

3.1 Signature similarity measurements and sequence

alignment scores

Sequence alignment algorithms such as Altschul et al. (1997)
use substitution matrices to compute similarity scores. The

procedure is straightforward and consists of summing up the
scores found in substitution matrices (such as BLOSUM62) for

the amino acids that are aligned. BLOSUM62 is a 20� 20
matrix of amino acids substitution scores (Henikoff and
Henikoff, 1992). A score between two amino acids is the

logarithm of the ratio of the likelihoods of these two amino
acids to be substituted. In BLOSUM62 the substitution

likelihood between two given amino acids was originally
computed from the frequencies observed for finding the two
amino acids aligned in a large set of trusted alignments having

at least 62% identity.
To investigate the relationship between sequence alignment

scores and similarity obtained using the signature kernel [c.f.

Equation (3)], the kernel was computed for every pair of amino
acids found in BLOSUM62. The results shown in Figure 1

demonstrate a clear correlation, indicating that residues that
are chemically similar generally have a high BLOSSUM62
value and conversely. For example, while the signature kernel

value between Leucine and Isoleucine is 1.0 (c.f. Supplementary
Fig. S2) and its BLOSUM62 value is 2, the BLOSUM62 value
for Glycine and Isoleucine is �4 and the signature kernel value

is 0.42 (c.f. Supplementary Fig. S2). Figure 1 confirms previous
findings relating amino acids substitution scores and their

physico–chemical properties (Atchley et al., 2005). Indeed, since
properties are structure dependent, if BLOSUM62 scores are
related to amino acid properties, some relationship should be

found between BLOSUM62 scores and amino acid atomistic
structures. Our relationship is interesting because it occurs

despite the fact that BLOSUM62 scores were obtained without
regard to the amino acid chemical structures.

3.2 Chemicals classification

To benchmark our signature kernel with other state-of-the-art

kernel we used the Predictive Toxicology Challenge (PTC)
dataset (Helma et al., 2001), which reports the carcinogenicity

of 417 chemical compounds for male mice (MM), female mice
(FM), male rats (MR) and female rats (FR). Because
toxicology is generally hard to predict, this dataset has been

used previously to evaluate various kernel methods (Swamidass
et al., 2005). Supplementary Table S1 gives a comparison of the

signature kernel with a frequent pattern discovery approach
(Kashima et al., 2003), a marginalized kernel (Kramer and De
Raedt, 2001), SMILES string kernels, pathcount-based graph

kernels and a kernel based on three dimensional atomic

distances (Swamidass et al., 2005). Our kernel compares well

with these state-of-the-art kernels for chemical heights ranging

between 1 and 4.

3.3 EC number classification using metabolic reactions

Enzymes are organized according to the Enzyme Commission

(EC) system, a hierarchical classification that assigns unique

four-field numbers to different enzymatic activities (Webb,

1992). The first field of an EC number indicates the general

class of catalyzed reaction: 1 denotes oxidoreductases, 2

denotes transferases, 3 denotes hydrolases, 4 denotes lyases, 5

denotes isomerases and 6 denotes ligases. The second and third

fields depend on different criteria related to the chemical

features of the substrate and the product of the reaction. The

fourth field is substrate and product specific. As an example,

the tripeptide aminopeptidases have the number ‘EC 3.4.11.4’.

Level 1 ‘EC 3’ enzymes are hydrolases. Level 2 ‘EC 3.4’

enzymes are hydrolases that act on peptide bonds. Level 3

‘EC 3.4.11’ enzymes are hydrolases that cleave off the amino-

terminal amino acid from a polypeptide, and level 4 ‘EC

3.4.11.4’ enzymes are those that cleave off the amino-terminal

end from a tripeptide.

To predict the EC numbers of metabolic reactions, we

created a training set by downloading the KEGG database. As

of 21 November 2006, this database contained 10 951

compounds and 6556 reactions involving compounds with

molecular structures stored in the database. Positive examples

were compiled using all reactions in the KEGG database

having a specified EC number. Wild cards were allowed in

order to generate datasets at various EC levels. As an example,

EC level 2 ‘1.1.*.*’ consisted of 409 reactions having an EC

Fig. 1. BLOSUM62 score versus signature kernel similarity.

This figure shows the average height 1 signature kernel similarity

[computed using Equation (3)] for every pair of amino acids having a

given BLOSUM62 score. Error bars indicate SD for each averaged

signature similarity value. The elements in the diagonal of the

BLOSUM62 matrix are identical (kernel value¼ 1) but have different

scores. The score for diagonal elements is not related to substitution

frequencies between two different amino acids, but to the abundance of

the amino acids in the set used to build the matrix (Henikoff and

Henikoff, 1992). The regression coefficient omitting the diagonal

elements is r2¼ 0.97.
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number starting with 1.1. Positive example sets having less than
50 elements were not processed. If the positive set included
more than 500 examples, then excess examples were removed at

random. Next, the datasets were completed by taking equal
numbers of negative examples at random. Negative examples
were composed of reactions not present in the positive class.

The fourth EC level could not be processed because it usually
contains only one reaction. The signature reaction kernel

[Equation (2)] was applied in order to classify metabolic
reactions. Cross-validation results are presented in
Supplementary Figure S4a and Table S2. Maximum accuracies

are 91% for level 1, 84% for level 2 and 88% for level 3. These
accuracies, obtained for heights ranging between 1 and 6, are

lower than those published in Kotera et al. (Kotera et al., 2004).
However, the signature kernel can process a larger number of
reactions (c.f. Supplementary Table S2).

3.4 EC number classification using protein sequence

To predict EC numbers using protein sequence, we downloaded
protein sequences from the KEGG database having one or

more EC number assignments, resulting in 308 094 sequences.
Training sets were constructed for all four EC levels as
described in Section 3.3 using protein sequences instead of

reactions. The signature kernel [Equation (1)] was computed
using several heights for each protein sequence using an

atomistic description of the protein. Cross-validation results
are reported in Supplementary Figure S4b. We find the
accuracies peak at height 8 for levels 1, 2 and 3 (values are

60%, 79% and 81%, respectively), and at height 6 for level 4
(value is 95%). These accuracies are generally lower than those
reported using protein structure graph kernels (Borgwardt

et al., 2005), feature vectors [i.e. SVM-PROT (Cai et al., 2003)]
or motifs (Kunik et al., 2005). Nevertheless, the accuracies are

high enough that the signature kernel can be used with protein
sequence alone to predict EC numbers (except for EC level 1).
When both the sequence and the reaction are used, the accuracy

improves as shown in the next section.

3.5 EC number classification using both protein

sequences and metabolic reactions

Using the reactions and sequences with assigned EC numbers in

the KEGG database, a set of 855 772 pairs (out of 3905
reactions and 255 304 enzymes) was compiled. Training sets
were constructed for all four EC levels as described in Section

3.3 taking reaction-protein pairs instead of reaction only.
Signatures of various heights were computed for both the
reactions and the atomistic representations of the proteins. The

signature product kernel [c.f. Equation (4)] was applied for each
EC level. Cross-validation results are reported for classes 1, 1.1,

1.1.1 and 1.1.1.1 in Supplementary Figure S5. We find the
accuracy for class 1 peaks at height 4 for chemicals and height 8
for proteins. For class 1.1, the largest accuracy is obtained at

heights 1 and 8 for reactions and proteins; for class 1.1.1, the
accuracy peaks at heights (3,10) and for class 1.1.1.1, maximum

accuracy is reached at heights (3,6). Taking the above optimum
heights, the signature product kernel is compared with the
protein structure graph kernel (Borgwardt et al., 2005) in

Supplementary Table S3, the SVM-PROT feature vectors

method (Cai et al., 2003) in Supplementary Table S4, the

motifs technique of Kunik et al. (2005) in Supplementary

Tables S5. Additional results are reported for all classes 1.1.1.*

in Supplementary Table S6. Table 1 (which summarized results

reported in Supplementary Tables S3–S6) shows that the

signature product performs comparably with the other compet-

ing techniques. Better sensitivity (accuracy on positives) and

Jaccard coefficient are obtained with the signature product

because the competing techniques were trained on unbalanced

training sets comprising more negatives than positives. This

imbalance appears to increase the number of false negative

predictions thus reducing sensitivity and Jaccard coefficient.

3.6 Predicting new enzyme–metabolite interactions

To test the ability of the signature product kernel to predict

enzyme–metabolite interactions not present in training sets, all

enzymes and reactions corresponding to EC numbers accepted

in September 2006 by the Nomenclature Committee of the

International Union of Biochemistry and Molecular Biology

(NC-IUBMB) were removed from the KEGG database. Test

sets composed of removed enzymes and reactions were created

for each selected EC numbers. For each test set, a training set

composed of 500 positive examples was constructed from the

remaining KEGG database. An equal number of negative

interactions were added to both training and test sets by

choosing at random interactions between reactions and

enzymes not present in the reduced KEGG database.

SVMs were trained with the signature product kernel using

Table 1. Statistics for the signature product kernel [Equation (4)]

compared with other SVM techniques for predicting EC numbers at the

different hierarchical levels

Level Method Acc. Auc Prec. Sens. Spec. J

L1 Graph 89.9 40.0 99.9

kernel1 �1.3 �7.4 �0.1

Signature 88.0 91.8 87.1 89.6 86.4 79.4

Product �6.1 �4.6 �6.8 �6.1 �7.2 �9.6

L2 SVM- 95.2 97.4 77.4 88.6 70.6

PROT2
�5.4 �3.8 �14.1 �7.6 �13.8

Signature 94.2 96.0 93.6 95.2 93.3 89.6

Product �4.9 �4.0 �5.7 �4.6 �6.3 �8.1

L3 MEX- 89.3

motifs3 �8.0

Signature 97.9 98.9 97.9 97.9 97.9 96.0

Product �2.3 �1.2 �3.1 �2.1 �3.4 �4.1

L4 Signature 99.0 99.2 98.7 95.5 98.7 98.2

Product �2.3 �2.0 �2.7 �2.9 �2.7 �4.1

All values are averaged from Supplementary Tables S3-6, with SDs indicated by

�. Acc. stands for accuracy, Auc for area under the curve, Prec. for precision,

Sens. for sensitivity, Spec. for specificity and J for Jaccard coefficient. All these

statistical parameters are defined in Section 2.5.
1From Borgwardt et al. (2005).
2From Cai et al. (2003).
3From Kunik et al. (2005).
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height 3 for reactions, and heights 6, 8 and 10 for proteins.

These heights were selected because they lead to high accuracies

in cross-validation studies (c.f. Section 3.5). Results are given in

Table 2 using height 3 for reactions and 10 for proteins, similar

results were obtained for heights (3,6) and (3,8). The results

show that it is possible to predict (with accuracies above 80%)

whether or not a given enzyme will catalyze a given reaction,

even when the EC class of the enzyme reaction pair is not

present in the training set.

3.7 Predicting new drug–target interactions

A dataset linking drugs with protein targets was created from

the KEGG database. This dataset contained 873 drug–target

pairs taken from 121 targets and 551 drugs. A training set was

constructed using all 873 positive pairs. An equal number of

negatives were added by selecting random pairs that did not

belong to the set of positives. Cross-validation results were

obtained using 5-fold cross-validation with the signature

product kernel, as reported in Supplementary Figure S6 for

various drug and target signature heights. Best accuracies

(485%) are obtained when the drug height is in the range 2–3

and the target height in the range 10–14.

The same training set was used to predict if any of the drug

target binding pairs stored in the DRUGBANK database could

be predicted using the SVM trained on the KEGG database. As

of 1 December 2006, DRUGBANK was composed of 1133

drugs and 509 targets, with 1849 drug–protein pairs. A test set

was created from DRUGBANK by including drugs having a

KEGG reference name. Drugs having no KEGG references

were removed to avoid discrepancies in chemical structure

representations, e.g. KEGG stores hydrogen suppressed

structures in mol files, while DRUGBANK has full hydrogen

structures. From the initial 1113 drugs, 124 had a KEGG

reference. These 124 drugs were bound to 117 targets resulting

in 298 pairs. Out of the 124 drugs and 117 targets, 24 drugs and

50 targets were present in the training set. Further classification

of the DRUGBANK test pairs, depending on whether or not

the target or the drug were in the KEGG training set, is given in

the caption of Table 3. Negatives were constructed forming

pairs at random between the 124 drugs and 117 targets of the

DRUGBANK test set. Calculations were run using the

signature product kernel [Equation (4)] with a height 2 for

drugs and 10 for targets, these heights were selected because of

their high cross-validation accuracies (c.f. Supplementary

Fig. S6). The prediction efficiencies on this test set are presented

in Figure 2 and Table 3.
Despite the small number of common interactions between

KEGG and DRUGBANK (32), 231� 32¼ 199 additional

interactions not in KEGG predicted by the signature product

kernel were found in DRUGBANK, including 67 interactions

between drugs and targets not present in KEGG (c.f. Table 3).

Table 2. Prediction statistics for reaction–enzyme interactions not classified by an EC number

EC class Number of Pairs Acc. Auc Prec. Sens. Spec. J

EC 1.1.1.290 4-phosphoerythronate dehydogenase 59 88.7 87.8 82.6 98.3 79.1 81.4

EC 1.13.11.52 indoleamine 2,3-dioxygenase 13 76.9 71.4 76.9 76.9 76.9 62.5

EC 1.13.11.53 acireductone dioxygenase (Ni2þ-requiring) 11 86.4 79.4 83.3 90.9 81.8 76.9

EC 1.2.1.71 succinylglutamate-semialdehyde dehydrogenase 55 87.5 88.6 82.3 95.5 79.5 79.3

EC 1.2.1.72 erythrose-4-phosphate dehydrogenase 46 88.0 90.0 80.8 100.0 76.1 80.8

EC 1.8.4.11 peptide-methionine (S)-S-oxide reductase 390 79.5 99.8 99.8 59.1 99.9 59.0

EC 2.6.1.81 succinylornithine transaminase 21 81.0 95.4 72.7 100.0 61.9 72.7

EC 3.1.3.77 acireductone synthase 160 89.4 96.1 82.5 100.0 78.8 82.5

EC 3.3.2.9 microsomal epoxide hydrolase 17 84.3 90.5 82.3 88.2 80.4 73.9

EC 3.5.1.96 succinylglutamate desuccinylase 49 88.6 84.7 81.6 100.0 77.1 81.6

EC 3.5.3.23 N-succinylarginine dihydrolase 51 90.2 91.9 83.7 100.0 80.4 83.7

EC 4.2.1.109 methylthioribulose 1-phosphate dehydratase 12 87.5 92.9 80.0 100.0 75.0 80.0

Average 85.7 89.0 82.4 92.4 78.9 76.2

�4.3 �7.7 �6.3 �12.6 �8.4 �7.9

All reactions and enzymes corresponding to the EC numbers listed in the first column were removed from the KEGG database and stored in test sets (c.f. Table 1 for

definition of statistical parameters).

Table 3. DRUGBANK test set predictions

Class POS NEG TP FP TN FN

I 32 0 32 0 0 0

II 11 40 9 10 30 2

III 145 144 118 64 80 27

IV 16 26 5 7 19 11

V 94 88 67 46 42 27

All 298 298 231 127 171 67

The table reports prediction results for an FP rate of 0.42. This rate maximizes the

overall accuracy (67.5%). The results are divided into five possible cases,

depending on whether or not the targets or the drugs from the DRUGBANK test

set were present in the KEGG training set. Class I is composed of the 32

interactions common between KEGG and DRUGBANK. Class II contains cases

where both the drug and the target are in the training set, albeit with different

partners. Class III contains cases where the targets are in the training set, but the

drugs are absent. Class IV contains cases where the drugs are in the training set,

but not the targets. Finally, class V contains cases where neither the target nor the

drug is in the training set.
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Some of the predictions made by the signature product

kernel even when the drugs and the targets are not present in

the training set (class V in Table 3) are rather obvious. As

shown in Figure 3, predicting that Quetiapine binds serotonin

receptor 2B could have easily been guessed from the training

set pair Quetiapine Fumarate binds serotonin receptor 2A.

However, this is not the case when predicting Tretinoin binds

to retinoic acid receptor alpha since the closest homolog in the

training set (Baclofen binds GABAB1-receptor agonist) is

rather dissimilar to the tested pair. To systematically evaluate

all class V predictions made by the signature product kernel,

we computed for each of the 67 pairs its closest homolog in

the training set. Precisely, for each pair we searched the pair

in the training leading to the highest Tanimoto coefficient (Tc)

between the drugs, and the lowest BLAST E-value between

the targets. Tc is a widely used measure of similarity between

two chemicals (Gasteiger and Engel, 2003); Tc ranges

between 0 and 1 and the closer to 1 the more similar are

the chemicals. In this study, Tc was evaluated using a standard

procedure (Swamidass and Baldi, 2007), which consists of

computing 512 bits fingerprints counting paths up to 7 atoms.

BLAST E-values were returned running BLASTP (Altschul

et al., 1997) using BLOSUM62 as the scoring matrix. Two

examples of homologous pairs are given in Figure 3. Results

for all 67 tested pairs are listed in Supplementary Table S7.

Setting up rather weak thresholds of Tc� 0.50 and E-value 	

10, to maximize the number of potential homologs, we find

that 17 of the 67 predictions could have been guessed from

similarity and homology calculations. The fact that the

signature product kernel can find interactions even when

homologs cannot be found in the training set should not come

as a surprise. First, the signature product kernel is used in a

supervised learning context, where learning is performed on

protein–chemical pairs, while homology and similarity calcu-

lations are unsupervised. Second, related kernels such as the

string kernel (Leslie et al., 2002) and the motif kernel (Kunik

et al., 2005) are known to perform well to classify remote

homologues (c.f. Table S5 where motifs kernel is compare

with sequence alignment).

4 DISCUSSION

We have proposed a unified method for predicting protein–

chemical interactions based on the representation of a protein

using its atomistic structure. We found by a comparison with

sequence alignment scores that our method could be used to

detect protein homology, even though (strictly speaking) we

ignore sequence information in favor of molecular structure.

Looking at the atomistic structures of the amino acids, it can be

demonstrated that a height 2 atomic signature can uniquely

characterize each amino acid, every dimer can be characterized

using a height 8 atomic signature, every trimer with a height 9,

every tetramer with a height 11 and so on. Thus, when two

proteins have many signatures in common, they share many

amino acid strings and thus should have some degree of

homology. Sharing strings certainly increases alignment score,

but there are some instances where strings made of different

amino acids can lead to high homology scores. Sequence

alignment algorithms incorporate this information in substitu-

tion matrices such as BLOSUM62. The surprising implication

of our comparison with the sequence alignment score is that an

atomistic structure representation of proteins encompasses

information stored in substitution matrices. This is the key

observation that underlies our method.

Because of the key observation just discussed, we find that

the signature kernel and the product kernel can be used to

predict whether a given enzyme sequence will catalyze a given

reaction. This problem can be solved by other machine-learning

methods depending on the database available to construct the

training sets. There are five cases. In the first case, both

the sequence and the reaction are in the database and they have

the same EC number; then the problem is solved and no

Fig. 3. Homologous drug–target pairs between DRUGBANK test set

and KEGG training set. (Top) The closest homolog of the test pair

(Quetiapine, Serotonine receptor 2B) is the training set pair (Quetiapine

Fumarate, Serotonine receptor 2B). KEGG compound names and

target names are indicated in parentheses. (Bottom) The closest

homolog of the test pair (Tretinoin, retinoic acid receptor alpha) is

the pair (Baclofen, GABAB1-receptor agonist). Tc stands for Tanomito

coefficient and Eval is the expected value of BLASTP alignment score

(computational details for Tc and Eval are given in the text).

Fig. 2. ROC curve for predicted DRUGBANK drug–target interac-

tions using a drug-target KEGG training set. The ROC curve in

this figure was generated by varying the threshold for calling a test pair

positive or negative. The area under the ROC curve is 0.74.
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prediction is needed. In the second case, the sequence and the
reaction are in the database albeit with different EC numbers.
Note that this situation can arise because enzymes can process

several reactions. In such an instance, a training set can be
collected taking all the enzymes known to catalyze the given
reaction and testing using machine learning the given sequence

of interest. If the given reaction has several known enzymes
then sequence-based bioinformatics techniques (Borgwardt
et al., 2005; Cai et al., 2003; Kunik et al., 2005) can perform

the task. The third case arises when the reaction is in the
database but not the sequence; as in second case, sequence-
based bioinformatics techniques can be used, provided several

enzymes are known to catalyze the reaction. The last two cases
correspond to situations where the sequence is in the database
set but not the reaction, or neither the sequence nor the reaction

are in the database. In such instances, training sets cannot be
constructed because no enzymes are known to catalyze the
reaction, and classical bioinformatics techniques cannot be
used. The signature product kernel can process all five cases, it

has accuracies comparable to other techniques (c.f. Table 1) in
the first three cases and reaches accuracies above 80% in cases
where other techniques cannot be used (c.f. Table 2).

The traditional method for constructing a metabolic map of
a newly sequenced organism is to assign EC numbers to its
proteins. Many proteins remain un-annotated not only because

their sequences have not been mapped to an already classified
enzyme, but also because the reactions catalyzed by the proteins
have not been characterized in the EC nomenclature. EC

number assignment requires published evidence and full
characterization of the enzymatic reaction. For this reason
many reactions, although occurring in various pathways, do

not have an assigned EC number. Again as shown in Table 2
our method can predict when an enzyme will catalyze a
metabolic reaction, even in the absence of any EC nomencla-

ture information.
A similarly important result, again following from our key

observation, is that signature and signature product kernels can

be used to predict drug–target interactions. The fact that the
signature kernel can predict when a new drug will bind to a
given target when other binders are known is not unexpected.

Indeed, it has previously been demonstrated that signature and
signature-like descriptors can be used to derive structure–
activity relationships, and thus predict other drugs binding to a

specific target (Churchwell et al., 2004; Faulon et al., 2003). The
real strength of the signature product kernel is its ability to
detect new interactions when the targets and the drugs are not

present in the training set (c.f. Table 3 and Fig. 3). Such
predictions cannot be made with classical cheminformatics
techniques such as chemical similarity and structure–activity

relationships.
As already mentioned, several cheminformatics and bioinfor-

matics methods exist to predict protein-chemical binding. When

used in a machine-learning context, traditional cheminfor-
matics methods require training sets composed of chemicals
binding to the same protein; bioinformatics methods require

sequences catalyzing the same chemicals. The technique we
have presented here does not outperform these traditional
methods provided training sets can be constructed and the

methods can be applied (c.f. Sections 3.1 and 3.2 for

cheminformatics methods and Sections 3.4 and 3.5 for

bioinformatics methods). The real strength of the proposed

technique is its ability to handle both proteins and chemicals

using a common representation (e.g. the signature). This

common representation allows us to train machine learning

directly on protein–chemical pairs, rather than on protein

sequences and chemical structures alone.
While the technique we have proposed deals with situations

where traditional bioinformatics and cheminformatics methods

fail, it has its own limitation. First, the technique requires

training, and its accuracy depends on the quality and complete-

ness of the training set. Second, as we have shown, the technique

makes use of the signature product kernel for measuring simi-

larity between protein–chemical pairs. The similarity between

two chemicals (or two proteins) is based on the number of

signatures the chemicals (or proteins) have in common. Thus, a

given protein–chemical pair can be predicted accurately only

when proteins and chemicals can be found in the training set

having signatures in common with the tested pair.
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