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Abstract: Support Vector Machines are classifiers with architectures determined by
kernel functions. In these proceedings we propose a method for selecting the best
SVM kernel for a given classification problem. Our method searches for the best
kernel by remapping the data via a kernel variant of the classical Gram-Schmidt
orthonormalization procedure then using Fisher’s linear discriminant on the remapped
data. By specializing to the Veronese kernel we can also perform feature selection
with this method. We perform both feature and kernel selection on a materials design

problem. Copyright (©) 2000 IFAC.
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1. INTRODUCTION

Support Vector Machines (Vapnik, 1998; Burges,
1998) are classifiers (Duda and Hart, 1973; Schiir-
mann, 1996) designed around an optimal separat-
ing hyperplane. This hyperplane is known as the
mazimal margin hyperplane and is illustrated in
Figure 1.

To handle nonlinearly separable data, SVMs use
nonlinear maps ® : R™ — F to preprocess
the data, where F' is a Hilbert space with inner
product (e,e). This idea is best illustrated using
the Veronese map (Shafarevich, 1994) as shown in
Figure 2.

Since F' may be high-dimensional (even infinite-
dimensional) this preprocessing by ® is accom-
plished via a kernel function k£ : R” x R" — R
which satisfies

K(x,y) = (B(x), B(y))-
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Fig. 1. Here we show a linear Support Vector
Machine in the case of separable two class
data. The two classes are depicted by x’s
and o’s, with the maximal margin hyperplane
shown as a solid line separating them. The
two dotted lines run through the support
vectors and are separated by a distance equal
to the margin.
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Fig. 2. Here we use the Veronese map ®(x1,z2) = (2%, 2z 29, x3) to illustrate the advantage of nonlinear
preprocessing. Specifically, our nonlinearly separable data (left) becomes linearly separable (right)
after remapping by ®. We additionally observe that ® has an associated kernel x(x,y) = (x,y)?.

Some kernels (Burges, 1998; Burges, 1999) are:

o the Veronese kernel

k(x,y) = ((x,¥) + )¢, ¢>0, d € Z>y,
e the radial basis function (RBF) kernel

K(x,y) = exp(—|lx — y||*/20®), o #0,
e the neural network kernel

k(x,y) = tanh(a(x,y) +b), a,b > 0.

Using such kernels a Support Vector Machine has
the form

f(x) = sign(}; air(xi, x)
=2, Bik(y;,x) +b),

where X = {x;},Y = {y,} are the two classes,
a;,B3;, and b are computed via a constrained
quadratic programming problem, many of the
o, B are zero (nonzero a;, 3; correspond to sup-
port vectors), and f(X) = {1}, f(Y) = {-1}.

In what follows we propose a method for se-
lecting the best SVM kernel (and hence SVM
architecture) for a given classification problem.
Our method is based on a fast calculation of
the classification ability of a given kernel. This
calculation is based on a kernel variant of the
classical Gram-Schmidt orthonormalization pro-
cedure (Trefethen and Bau, 1997) followed by an
application of Fisher’s linear discriminant (Duda
and Hart, 1973). By specializing to the Veronese
kernel, our method can also be used for feature
selection.

In section 2 we describe our kernel variant of
Gram-Schmidt; in section 3 we provide some back-
ground on Fisher’s discriminant; in section 4 we
combine our kernel variant of Gram-Schmidt with
Fisher’s discriminant to measure kernel classifi-
cation ability; in section 5 we consider feature
selection using the Veronese kernel; in section 6 we
consider kernel selection for Support Vector Ma-
chines; in section 7 we provide symmetric versions
of the SVM kernels for use in our application; and
in section 8 we apply our methods to a problem
in materials design.

2. KERNEL GRAM-SCHMIDT

Suppose we have data Z = XUY = {z;}, C R™.
Denote ®(z;) by z; and assume that {z;}", is a
linearly independent set of vectors in F'. The goal
of kernel Gram-Schmidt is to produce a matrix

(ZAiaul) (ﬂn;ul)

(z~17um) (i:rjnaum)
where uy,...,u,, form an orthonormal basis for
the subspace in F' spanned by 71,...,Z,,.

By solving for (z;,u;) in the classical Gram-
Schmidt orthonormalization procedure (Trefethen
and Bau, 1997) we obtain the formula

G) = —— (7,7} — (5, ;1) (w51
(Ziauj)*(z'vj,lij)(( 15 J) (]7 Jj— )( 75 ]*)

7(2}7 uj*Q)(zi; uj72) — (ZA}a ul)(iia ul))
This method can be generalized to a set of (pos-

sibly) linearly dependent vectors {z;} to get a
recursive algorithm for computing the matrix

(Z~1; 111) e (2‘"’“ ul)
B = ,
(Z~17 uq) U (i";lv uq)
where uy,...,u, form an orthonormal basis for
the subspace in F spanned by z1,...,Z,.

This method, which we call kernel Gram-Schmidt,
has several important properties. First and fore-
most, it is expressed entirely in terms of inner
products in F' so can be computed using kernels.
Second, it entirely avoids actually computing the
orthonormal set {ui,...,u,}. This is necessary
since F' may be infinite dimensional. Third and
last, but very important, the generated matrix B
represents the data {z;} in F' in exactly the same
manner that it would be represented in R?. Thus
we can apply any standard algorithm from linear
algebra to B.



3. FISHER’S DISCRIMINANT

Fisher’s linear discriminant uses a separating hy-
perplane located by optimizing Fisher’s criterion
function J : R™ — R given by

(m1 — ma)?

J(@) = ——5—

(@) = T
where my, my are the means of the (orthogonal)
projections of X, Y respectively onto a, and 0%, 03
are the variances of the projections of X,Y onto
a.

Fisher’s criterion function provides a useful mea-
sure of the linear separability of X and Y. By its
definition, we see that larger values of J indicate
better separation of X and Y. In particular, a
value of one indicates a separation of the projected
means by one standard deviation of the projected
values of X plus one standard deviation of the
projected values of Y. Similarly, if J = 4 the
means are approximately separated by two stan-
dard deviations, et cetera.

By maximizing Fisher’s criterion we can locate a
good separating hyperplane for X, Y. Maximizing
J is accomplished by first rewriting Fisher’s crite-
rion as T

Ja) = 2,

al'S.a

where Sj, is the between class scatter and S, is the
within class scatter (see Duda and Hart, 1973).
By setting VJ(a) = 0 we see that J(a*) is a
maximum when a* = S (m; — my).

The resulting separating hyperplane
02m1 + 01M2

H(x) = (x.a7) - 200

Ja*|| = 0
yields a classifier known as Fisher’s linear discrim-
inant. Using Fisher’s linear discriminant, a point
x € R"™ is classified as a member of X if H(x) and
H(m;) have the same sign, and a member of Y
otherwise.

4. KERNEL CLASSIFICATION ABILITY

Combining Fisher’s discriminant with nonlin-
ear preprocessing and computation using kernel
Gram-Schmidt, we have a fast method for testing
the classification ability of a given SVM kernel.

Specifically, suppose we want to evaluate the clas-
sification ability of a given kernel . Performing
kernel Gram-Schmidt using x on our data Z =
X UY we obtain B = (A T'), where A,T" are
matrices containing the implicitly mapped (via k)
data X,Y. (More precisely, the columns of A, T
are the coefficients of the vectors ®(X), ®(Y) pro-
jected onto an orthonormal basis for the subspace
spanned by ®(Z), where ® is the map associated

with the kernel x.) Calculating Fisher’s discrimi-
nant using A, I" we obtain a separating hyperplane
H* with normal vector a* and associated criterion
value J(a*). Finally, we calculate the percentages
p and t of data and test data correctly classified
using H*. The values J(a*),p and ¢ allow us to
rank different kernels. (Higher values are generally
better.)

We note that the previous calculations are fast
since applying kernel Gram-Schmidt is O(mg?)
and computing Fisher’s discriminant is O(g?),
where generally n < ¢ << m. (Recall X,Y C
R", Z =XUY ={z;}",, and uy,...,u, form an
orthonormal basis for the subspace spanned by the
vectors ®(Z2).)

5. FEATURE SELECTION

We can use our measure of the classification
ability of a Support Vector Machine kernel for
both feature and kernel selection. (By features
we mean physical properties which distinguish
between our two classes.) For feature selection we
use the Veronese kernel ((x,y) + 1)%. We proceed
as follows:

(1) For a given choice of features and a given
degree d for the Veronese kernel we apply
kernel Gram-Schmidt to our data X,Y to
obtain a ¢ X m matrix B. We then calculate
using B

e The vector a* € R? that maximizes
Fisher’s criterion J : R? — R and the
actual maximum J(a*),

e The percentage p of points in XY cor-
rectly classified using Fisher’s discrimi-
nant with separating hyperplane deter-
mined by a*,

e The percentage t of points in our set of
test data correctly classified.

(2) We record the results of (1) for different fea-
ture combinations and degreesd =1,2,...,r
of the Veronese kernel. In the materials prob-
lem, we perform this step first on a single
feature, then on two features, with one being
from the list of single best features. It is
because kernel Gram-Schmidt and the opti-
mization of J are computationally inexpen-
sive that we can calculate so many combina-
tions.

(3) We rank the effectiveness of the feature com-
binations using the optimal values of J and
the percentages recorded in step (2). More
precisely, we order the features by averag-
ing the values J(a*),p, and ¢ calculated in
step (1) over the Veronese degrees 1,2,...,r
in step (2). We denote these averages by
J(a*),,p, and t and we use J(a*), to rank
the features.




To see why this algorithm provides a valid rank-
ing of features combinations consider two fixed
features Fi, F5. In this case our data X,Y lies
in the plane R%2. What does our algorithm mea-
sure? For each degree d = 1,2,3,...,r of the
Veronese kernel we apply nonlinear preprocessing
implicitly via kernel Gram-Schmidt to our data
X,Y. Next using Fisher’s criterion and Fisher’s
discriminant we measure the linear separability of
our implicitly mapped data. By a special property
of the Veronese kernel (see Martin et al., 2000),
we are measuring the linear separability of our
data (d = 1), the quadratic separability of our
data (d = 2), the cubic separability of our data
(d = 3), et cetera. By using Fisher’s discriminant
in combination with the Veronese kernel, we are
measuring the linear and increasingly nonlinear
separability of our data for our given features
Iy, Fs.

We remark that other kernels could also be used
for feature selection, although they may result in
different feature rankings. In addition to being
more easily interpreted than the RBF and neural
network kernels, we chose the Veronese kernel be-
cause it generally yields the fastest computations
and is the least sensitive to the peculiarities of a
given data set.

6. KERNEL SELECTION

Upon selecting the best features we perform an
algorithm for kernel selection:

(4) For a given kernel and choice of kernel pa-
rameters, we calculate a*, J(a*),p and ¢ as
in (1).

(5) We record the results of (4) for different
kernels and kernel parameters. In the mate-
rials problem we use the kernels mentioned
in section 1 along with discretizations of
the corresponding kernel parameters. For the
Veronese kernel we generally take d from 1 to
10, for the radial basis function (RBF) kernel
k(x,y) = exp(—|x —yl||?/20?%) we consider
o € (0,1], and for the neural net kernel
k(x,y) = tanh(a(x,y) +b) we let 0 < a,b <
20.

(6) We compare the kernels using the values of
J(a*),p and t recorded in step (4). Here we
generally use the maximum values of J(a*),p
and ¢ to compare the kernels, as opposed to
the averages used in step (3).

7. SYMMETRIC KERNELS

Before presenting our results we provide some
symmetric versions of the SVM kernels which we
use in our application. These kernels are designed

to exploit the component order symmetry in the
materials problem.

When using the Veronese kernel, there is a nat-
ural way to enforce component order symmetry.
Specifically, we preprocess the data using the ele-
mentary symmetric polynomials

s1(x) =z1+ T2+ -+ Ty

52(X) = x122 + X123 + -+ + T1Tp,
+x223 4+ + Tn—12n

Sn(X) =122 Xy

in the variables x = (z1,%2,...,%,). This is
accomplished by replacing our data (x1,...,x,) €
R™ by the data (s1(x),...,s,(x)) € R™. Details
on this approach can be found in Martin et al.
(2000).

We can also enforce component order symme-
try for a general kernel k : R®™ x R — R.
Denote by o1,...,0, the various permutations
of (z1,...,2,). In the case of R? for example,
we have o1(z1,22) = (21,22) and oa(x1,22) =
(x2,21). Then k induces a symmetric kernel &y :
R™ x R™ — R defined by

,‘Qs(X, Y) = H(Ul(x)aY) + K(UQ(X)aY)
+ -+ H(Un!(x)ay)'

8. APPLICATION TO MATERIALS DESIGN

Here we apply our methods to a classification
problem in materials design. Specifically, a large
number of chemical element combinations have
been collected (by Villars, 1999) which through
different processes either form or fail to form com-
pounds. We want to use these examples to predict
when other chemical element combinations will
form compounds.

Our work on this problem includes feature and
kernel selection on two, three, and four element
combinations (1333, 4963, and 4278 examples,
respectively) using a list of 88 possible features.
This data was organized by Pao (1999a) and
includes his N1 and N2 orderings (Pao, 1999b) in
the list of features.

We organize our findings using the notation of
sections 5 and 6. That is, we use J(a*) to denote
the optimal value of Fisher’s criterion obtained
using training data, p to denote the percentage
of training data correctly classified using Fisher’s
discriminant, and t to denote the percentage of
test data correctly classified. In addition, we use
J(a*),,p, and t to denote the averages of the
values J(a*),p, and ¢ over the Veronese degrees

1,2,...,7.



Table 1. Top 3 Binary Features

Name J(@*)10 p t
1 M13 Paos N2 3.14 85.76  83.82
2 M2 M. H t-d st. rt. 2.77 85.27  84.78
3 M6 M. Pettifor 2.69 85.03 83.77
Table 2. Top 3 Binary Feature Pairs
Names J(a*), D t
p  MI13 Paos N2 6.40  90.56 88.58

G2 val. elect. #

M4 M. H d-t st. rt.
2 G2 val. elect. % 5.44 90.28  89.49

M5 M. Pettifor
3 G2 val. elect. # 5.41 90.05 87.88

Table 3. Kernel Comparisons for Top 3
Binary Features

F. Best Kernel J(a*) P t
Veronese 3 2.42 84.77  82.80
1 M13 RBF .5 5.61 92.27 9147

Net 7.7,5.2 1.35 76.22 73.41
Veronese 3 2.18 85.22  84.68

2 M2 RBF .25 7.38 92.12 91.47
Net 4.4,4.7 1.18 7194 70.81
Veronese 3 2.10 84.44  82.51
3 M6 RBF .45 5.08 91.82  90.03

Net 18.1,3 1.15 76.97  75.87

These values are calculated and used to produce
ranked lists of features and kernel comparisons as
specified in sections 5 and 6.

8.1 Binary Case

Feature selection in the binary case yields Tables 1
and 2. These tables were obtained using steps (1)-
(3) in section 5, where symmetric Veronese de-
grees 1, ..., 10 were considered in the case of single
features, and degrees 1,...,7 were considered in
the case of feature pairs.

Kernel selection in the binary case yields Tables 3
and 4. These tables were obtained from steps (4)-
(6) in section 6 using the symmetric versions of
the Veronese, RBF, and neural network kernels.
We include for the best three features and feature
pairs the best of each type of kernel considered.
We use notation such as Veronese 3 to denote the
Veronese kernel with d = 3 and Net 7.7,5.2 to
denote the neural net kernel with a = 7.7,b = 5.2.

Of the three cases in the materials problem, the
binary case offers the best opportunity for im-
provement in prediction rates. This may be due to
the fact that the binary data is the most complete
data set, i.e., that the binary data includes a
higher percentage of the possible combinations
than either the ternary or quaternary sets. As
such, there are fewer “degrees of freedom” to use

Table 4. Kernel Comparisons for Top 3
Binary Feature Pairs

F.P. Best Kernel J(a*) D t

1 M13 Veronese 3 3.97 91.00 89.88
G2 RBF .65 12.1 95.87  93.06
Net 14.8,6.4 1.50 83.57 82.94

2 M4 Veronese 3 3.71 90.02  90.46
G2 RBF .25 26.2 98.35 92.20
Net 16.8,7 739 76.67 76.88

3 M5 Veronese 3 3.50 89.00 88.87
G2 RBF .2 35.0 95.42  91.91
Net 7,5 1.07 85.25  80.64

Table 5. Top 3 Ternary Features

Name J(a*), D t
1 M13 Paos N2 14.02 95.30 95.51
2 M2 M. H t-d st. rt. 11.24 94.98  94.86
3 M5 M. Pettifor 10.86 94.64 94.98

Table 6. Top 3 Ternary Feature Pairs

Names J(a*), D t
M13 Paos N2

L &1 proup 4 21.0  95.76  95.59
M13 Paos N2

2 oAt o 101 95.00 9581

3 MI3 Paos N2 187 96.07  96.09

E2 electroneg.

when classifying the binary data. By including
more features in our classifier, we may be able to
introduce the needed degrees of freedom for clas-
sifying the binary data. Here we have introduced
feature pairs and already see an improvement
over single features. In the future we will perform
feature triple selection with the hope of further
improvement.

The best feature/kernel combination is Pao’s N2
ordering & valence electron number/symmetric
RBF kernel with o = .65.

8.2 Ternary Case

Feature selection in the ternary case yields Ta-
bles 5 and 6 again via steps (1)-(3) in section 5.
In this case we used Veronese degrees 1,...,7 and
1,...,5 respectively.

Kernel comparisons for the top 3 ternary features
are given in Table 7.

The prediction rates in the ternary case are very
good. Any improvement will likely come from
the actual implementation of the Support Vector
Machines with the kernels selected above.

The best feature/kernel combination is Pao’s N2
ordering/symmetric RBF kernel with o = .25.



Table 7. Kernel Comparisons for Top 3
Ternary Features

F. Best Kernel J(a*) D t
Veronese 3 12.6 97.05 97.08
1 M13 RBF .25 80.1 99.37  98.79
Net 12.6,14.8 7.31 95.56  95.96
Veronese 3 9.96 96.70  96.61
2 M3 RBF .3 46.3 98.92 98.24
Net 18.2,19 8.90 95.86  95.92
Veronese 3 9.91 96.24  96.38
3 M5 RBF .25 56.8 99.23  98.42

Net 11.8,15.4 2.55 92.87  92.90

Table 8. Top 3 Quaternary Features

Name J(a*); D t
1 M5 M. Pettifor 53.1 97.37 97.16
2 M13 Paos N2 51.3 97.24 97.10
3  E8 chem. pot. 40.4 97.32 97.60

Table 9. Kernel Comparisons for Top 3
Quaternary Features

F. Best Kernel J(a*) D t
Veronese 2 27.2 98.97  98.93
1 M5 RBF .45 508 99.96  99.88
Net 15.6,13.6 25.3 98.51 98.34
Veronese 3 52.0 99.88  99.80
2 Ml13 RBF 4 656 100 100
Net 7.6,18.4 28.9 98.73  99.21
Veronese 2 38.7 99.56  99.49
3 ES8 RBF .55 299 99.88  99.80

Net 4.4,17.8 34.8 99.03 98.74

8.3 Quaternary Case

In the quaternary case we used the symmetric
Veronese kernel with degrees 1,...,5 for single
feature selection. The results are given in Table 8.

Kernel comparisons for the quaternary case are
given in Table 9.

The prediction rates for the quaternary case are
so good that we didn’t bother to produce results
for the case of feature pairs.

The best feature/kernel combination is Pao’s N2
ordering/symmetric RBF kernel with o = 4.

9. CONCLUSIONS

This work is an extension of our previous efforts
(Martin et al., 2000). In particular, we were previ-
ously constrained to low dimensional/degree cases
(cases in which we first ran up against the memory
constraints of the computer) using the symmet-
ric Veronese map. With the invention of kernel
Gram-Schmidt, we can now handle higher dimen-
sional problems (problems where we first run up
against computational numerical precision con-
straints) using not only the symmetric Veronese

map (via the symmetric Veronese kernel), but any
map with an associated kernel.

We have applied kernel Gram-Schmidt coupled
with Fisher’s discriminant with success to the
materials problem. In particular, we have:

(A) Confirmed the success of Pao’s (1999b) new
orderings of the periodic table in classifying
the materials data.

(B) Achieved prediction rates comparable to
those of Pao.

(C) Selected good features and kernels for use
in training Support Vector Machines on the
materials problem. In particular, we have
discovered that Pao’s N2 ordering with the
symmetric RBF kernel (various parameters)
works well in the binary, ternary and quater-
nary cases of the materials problem.

The main product of this work is of course (C). In
future work we will implement the Support Vector
machines associated with our feature/kernel se-
lections made above. Preliminary work in this di-
rection confirms that these optimal classifiers will
achieve prediction rates even better than those
obtained to date.
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