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Principal Component Analysis (PCA)
PCA is a procedure for successively capturing the maximal variance in a 
dataset {x1, x2, …, xn}:

where (x, y) is the inner product between x and y and {u1, u2, …, um} are 
orthonormal.



Gram-Schmidt

Gram-Schmidt orthonormalization is a procedure for 
transforming linearly independent {x1, x2, …, xm} into an 
orthonormal basis {u1, u2, …, um}:



Inner Product Gram-Schmidt
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Gram-Schmidt can be re-written in terms of inner products:



Approximate Version of PCA (APCA)

By combining PCA with the inner product version of Gram-
Schmidt we obtain Approximate PCA (APCA):



APCA
The primary advantage of APCA over PCA is that APCA is 
easier to interpret than PCA, due to the fact that APCA basis 
vectors are instances of the original dataset.



Support Vector Machine (SVM) Kernel Functions

A Support Vector Machine (SVM) kernel is a function
with an associated map 

such that

where F is an inner product space.  Kernels act to introduce 
nonlinear interactions in the original space       while 
maintaining linear relations in the higher dimensional space F.

Examples of kernel functions include:

   k : ° d × ° d → ° Φ : ° d → F
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( , ) ( , )                                   (linear)
( , ) (( , ) ) ,                 (polynomial)
( , ) exp( 2 ), 0    (Gaussian).
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Kernel PCA (kPCA) (Scholkopf, 1998) is obtained by using 
kernels with PCA:

Kernel PCA can discover nonlinear relationships in a dataset.

Kernel PCA (kPCA)



Approximate Kernel PCA (AKPCA)

Kernel PCA can be difficult to interpret because basis 
vectors are members of the high dimensional space F.  

One possible solution is to use APCA with kernels 
(AKPCA).  Then:
– AKPCA can discover nonlinear relationships in a dataset.
– AKPCA is interpretable because basis vectors are members 

of original dataset.
– AKPCA can be computed on larger datasets than kPCA

because it is iterative and parallelizable.



AKPCA Applied to Parabola

Neither PCA or APCA can discover 
nonlinear structure in the parabola.

AKPCA discovers parabolic structure and provides 
explanation in terms of basis vectors.  First two basis vectors 
are arms of parabola.  Third basis vector is noise.



AKPCA Applied to Clusters

AKPCA basis vectors locate the cluster centers of 
three clusters.  AKPCA “singular values” show these 
are the most important features of the dataset.



APCA Applied to Taylor-Couette Flow

Taylor-Couette flow occurs in fluid trapped between two 
concentric rotating cylinders. APCA was used to find the first 
four most typical flow patterns.



APCA Applied to Microarray Data

APCA was used with a Leukemia microarray dataset to 
identify a group of anomalous patients, shown here in red.  
APCA also identified the gene most relevant to distinguishing 
the cluster (x-axis, or RPS5).



Conclusions

• We developed an inner product (kernel) version of Gram-
Schmidt.

• We applied this version of Gram-Schmidt to obtain an 
approximation to PCA (APCA) which is easier to interpret 
than standard PCA.

• We used kernels to provide an approximate version of kernel 
PCA (AKPCA).

• AKPCA provides nonlinear capabilities for data analysis and 
is also easier to interpret than kernel PCA.

• AKPCA can be used on very large datasets because it is 
iterative and can be made parallel.


