

Predicting Building Contamination Using Machine Learning

Shawn Martin and Sean McKenna

Sandia National Laboratories Albuquerque, NM

12/13/2007

Why Model Building Contamination?

- In the event of disaster ...
 - Should building be evacuated or should residents shelter in place?
 - Should ducts be closed or purged?
 - Where is contamination, and where is it going?
- After the disaster ...
 - Where should measurements be taken?
 - Where is residual contamination?
 - What is the best way to clean up the building?
- Before the next disaster ...
 - Models can be used to design new buildings to minimize future events.

Current Building Models

- Models are used to predict airflow throughout a building.
 - Predict Heating, Ventilation, and Air Conditioning (HVAC) operation.
 - Predict how smoke would travel through a building.
 - Predict how biological or chemical contaminants would travel in an attack.
- Computational Fluid Dynamics (CFD)
 - Very precise, but computationally intensive.
 - Can be used for single rooms or small buildings.
- Multizonal Methods
 - Models air flow between rooms with well-mixed air.
 - Widely used, best current compromise between accuracy and speed.
- Statistical Methods
 - Kriging, Kalman Filtering, Bayesian Monte Carlo.

Machine Learning Building Model

- Proceeds in two steps:
 - Train Support Vector Machine (SVM) using multiple contamination events.
 - Use SVM model to predict results of a given event.
- Advantages:
 - Most of the computational effort is in training the model.
 - Predictions can be made in real-time.
- Disadvantages:
 - Loss of accuracy compared to CFD-type models.
 - Large training sets required.
- Similar to statistical methods, especially Bayesian Monte Carlo approach.

Building Simulation Data

- Due to lack of real world data, we generated simulations of a simple 2-D office building using particle transport model.
- We generated two datasets
 - Dataset A: 120 simulations with randomly chosen configurations of the building (open/closed doors, advection, diffusion) but same source location.
 - Dataset B: 250 simulations with randomly chosen configurations with different source locations.

Support Vector Machines (SVMs)

Support Vector Machines are well known classifiers.

Given a dataset $\{(\mathbf{x}_i, y_i)\} \subseteq \mathbb{R}^n \times \{\pm 1\}$

We solve the quadratic problem

$$\max_{\alpha} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} y_{i} y_{j} \alpha_{i} \alpha_{j} k(\mathbf{x}_{i}, \mathbf{x}_{j})$$

s.t. $0 \le \alpha_{i} \le C, \sum_{i} y_{i} \alpha_{i} = 0$

to obtain the SVM decision function

$$f(\mathbf{x}) = \sum_{i} \alpha_{i} k(\mathbf{x}, \mathbf{x}_{i}) + b$$

Graph Kernels

- To use SVMs with buildings, we represent building topology using graphs.
- We use weighted graphs to represent states, such as doors open/closed.
- Our SVM kernel is then a graph kernel

$$k(H_i, H_j) = \frac{1}{3} \sum_{k=1}^{3} \frac{G_i^k \cdot G_j^k}{|G_i^k| |G_j^k|},$$

where $H_i = (G_1, G_2, G_3)$ is a hypergraph representing three graph states: doors, advection, and diffusion.

Building Contamination Prediction

- We trained a SVM using Dataset A with 120 simulations and an invariant source location.
- We tested our predictions using 10-fold cross-validation for each room.
- For an exact contaminant prediction we used

$$q^{2} = 1 - \frac{\sum (y_{i} - \hat{y}_{i})^{2}}{\sum (\hat{y}_{i} - \overline{y})^{2}}$$

where y_i are target values, \hat{y}_i are the predicted values, and \overline{y} is the average target value.

• For classification prediction of contaminated vs. noncontaminated, we used accuracy, sensitivity, and specificity.

Contamination Prediction Results

- Average q² was 0.64 over the 23 rooms in the building.
- Accuracy was ~90% depending on threshold value for contamination.

Incorporating Partial Knowledge

- To predict source location, we need to have contaminant measurements (partial knowledge) in addition to building configuration.
- Suppose
 - $-\sigma$ denotes room with contaminant measurements.
 - c_i^{σ} denotes contaminant values in rooms σ for simulation *i*.
- A SVM kernel incorporating these contaminant values is given by

$$k(\mathbf{c}_i^{\sigma}, \mathbf{c}_j^{\sigma}) = \frac{\mathbf{c}_i^{\sigma} \cdot \mathbf{c}_j^{\sigma}}{|\mathbf{c}_i^{\sigma}| |\mathbf{c}_j^{\sigma}|}.$$

• A SVM kernel combining building configuration and contaminant values is given by

$$k((H_i, \mathbf{c}_i^{\sigma}), (H_j, \mathbf{c}_j^{\sigma})) = \frac{1}{2}k(H_i, H_j) + \frac{1}{2}k(\mathbf{c}_i^{\sigma}, \mathbf{c}_j^{\sigma}).$$

Source Location Prediction

- We trained a SVM using Dataset B with 250 simulations and randomly varied source locations.
- We tested our predictions using 10-fold cross validation for each room.
- We used q^2 to assess our predictions of initial contaminant level in each room.
- We used accuracy, sensitivity, and specificity to assess our classification accuracy using a contaminant threshold of 0.

Source Prediction Results

Conclusions

- Demonstrated feasibility of using machine learning for modeling building contamination.
 - Requires compilation of a database of potential events for a given building.
 - Once trained, the SVM-based model is much faster than an equivalent physics-based model and is usable in real-time.
 - Can also produce SVM-based models for predicting source location.
- Future possible improvements include
 - Improve accuracy through better selection of SVM parameters.
 - Combine room predictions using structured output SVM.