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Overview of Work

Cyclo-Octane has been studied as a model problem in

computational chemistry for over 40 years.
— Multiple conformations of similar energy. L

Qo na 2
— Complex energy landscape. 9o-g

We used/developed new methods from dimension reduction,
computational algebraic geometry, and computational
topology to better understand cyclo-octane.

As a result, we have completely characterized the
conformation space of cyclo-octane:

— The energy landscape, together with the topology of the conformation
space, explains experimental observations that boat-chair is the
dominant conformation of cyclo-octane.



Cyclo-Octane

Eight membered ring CgH, studied
as a model problem for over 40

years in computational chemistry. Qo mJ o Crown

“Cyclo-octane is unquestionably

the conformationally most complex

cycloalkane owing to the existence

of so many forms of comparable % _ © Boat

energy. (Hendrickson, 1967). OaYd

Three stable conformations: boat,

boat-chair, and crown. Y .
(g) G Chair

Conformation space thought to be
2D due to ring closure constraint.



Enumerating Cyclo-Octane Conformations

Cyclo-octane conformation can be
described analytically using
kinematic loop closure (Coutsias et
al., 2005) or distance geometry
(Portas et al. 2007).

— Bond lengths and angles are fixed,
while torsions are varied.

— Algebraic equations (degree 16 for
cyclo-octane) are solved to enumerate
solutions.

— At least 6 torsions are required,
otherwise we have s — 6 degrees of
freedom (s = 8 for cyclo-octane).
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Enumerating Cyclo-Octane Conformations
(Example using Distance Constraints)

Define:
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where r; ; = ||p; — p4||*. The constraints are given by

D(1,2) >0 D(R,i) =0
D(1,2,3) <0 D(R,j) =0
D(1,2,3,4) >0 D(R,%,7) =0

where R =1,...,4.




Dimension Reduction of Cyclo-Octane*

We applied nonlinear dimension reduction methods to the space
of cyclo-octane conformations.
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*W. M. Brown, S. Martin, S. N. Pollock, E. A. Coutsias, and J.-P. Watson (2008),

"Algorithmic Dimensionality Reduction for Molecular Structure Analysis," Journal of
Chemical Physics 129(6):064118.



Dimension Reduction of Cyclo-Octane

* In(Brown etal., 2008), we applied Principal Component
Analysis (PCA), IsoMap, Locally Linear Embedding, and an
Autoencoder (neural network).

— Best results were obtained using Isomap (Tenenbaum et al., 2000).
— Embedding dimension of conformation space was estimated to be 5.
— Intrinsic dimension was estimated to be 2.
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Questions Raised by
Dimension Reduction of Cyclo-Octane

This is a 3D visualization of a 5D
object —what is in the other 2
dimensions?

Are apparent intersections actually
intersections (or just “singularities of
projection”)?

What is the topology of this object?

What does this mean (in terms of
molecular conformation)?



Triangulation of Cyclo-Octane

* Need triangulation to compute topological invariants such as
homology (more later).

e Problems:

— Existing surface reconstruction methods are limited to 3D, except
incremental projection algorithm (Freedman, 2007).

— (Freedman, 2007) assumes manifold surface.

— We have non-manifold surface in 24 (ring atoms) or 72 (all atoms)
dimensions.




Triangulation of Cyclo-Octane™

e Solution:
— Model non-manifold neighborhoods as two intersecting planes in 3D.
— Decompose non-manifold neighborhood into an intersecting line and
two isolated planes
— Triangulate intersections then use (Freedman, 2007) to triangulate
surface.

*S. Martin and J.-P. Watson (2010), “Non-Manifold Surface Reconstruction from High
Dimensional Point Cloud Data,” accepted in Computational Geometry: Theory and

Applications.



Fitting Two Intersecting Planes

e (Qverview:

We use PCA to project a non-manifold neighborhood into xyz coordinates.

We fit a quadratic polynomial to the data using a least squares fit subject to
the constraint that it must factor.

We factor the polynomial, find the intersection of the two planes, and split the
neighborhood accordingly.

e Details:

Denote a polynomial by
flr,y. 2) = ap12° + 2a100y + 201502 + 20140 + asy+
2(123}_]3 -+ 2(!2_“_/ -+ (!33.32 + 2(!3_1.: -+ add = 0.
Write 4 = (a;)), denote by 45 the 3x3 upper left submatrix of A, and let

Tzz(ffllffzz - ”fz) + (”11”33 — ”f:g) + (”22”33 — ”33)

Let m; = [r7 215y, 2052 205 y7 2y;2; 2y; 27 22 1) and M = [m,].

We must solve

min, alMTMa
s.t. rank(A) =rank(As) = 2,
T, <0, ||As]|lp = 1.




Fitting Two Intersecting Planes
(More Details)

We re-write the minimization

min, alMTMa
s.t. rank(A) =rank(Asz) = 2.
15 <0, ||As]|lp = 1.

By observing that

( 1 A # 0, )
rank(A) = 2, ;\\é iz}\?_ |
Al rank(A43) =2, » =< \quq! +Aoqeqi | LT T 8
A3l =1 *| 1= ldal =1
| \ qi 2 =0 ,

so that we can minimize the following equivalent problem

milg,gae 2o (Ard] Xjan + Aod; Xjq2)?
st [l = l|@l = 1,afa, =0,

Ty =37 ey det(Miana) + Aaaaas i) <0,

where X is a matrix of quadratic monomials in xyz coordinates for data point .



Fitting Two Intersecting Planes
(Still More Details)

We can obtain a very good initial estimate for the minimization using the
following procedure:

Get unconstrained solution by setting a* to be the right singular vector of M.
Form matrix 4* = (a;*) and normalize such that ||4;*[|z= 1.

Decompose A;* = \ ¢ q; + \qqh

Solve for q; = [q; 7. qs = [q2 s]T
. (!l_Ik
Ardr A2q2] { ] = | aof
S "
(134

Now re-set a* = A\ qiq + \aqaqs

This estimate works without further optimization for cyclo-octane!

Not shown: how to factor a*.



Triangulation of Cyclo-Octane

Performed surface reconstruction 5 times using randomly
selected subsamples (at least ¢ distance apart) of 24
dimensional (ring atom only) cyclo-octane data.
— 6,040 samples (e =.12)
— 7,114 samples (e = .11)
— 8,577 samples (¢ =.10)
— 10,503 samples (¢ = .9)
— 13,144 samples (¢ = .8)

Verified local topology in each case as homotopic to a point.



Primer on Algebraic Topology

Recent development in computational algebraic topology

allow us to investigate the topology of triangulated/point set
data.

— Available tools such as Plex (comptop.stanford.edu) and Chomp

(chomp.rutgers.edu) can compute topological invariants known as
Betti numbers.

— Betti numbers count number of connected components (5,), number
of loops (£,), number of voids (5,), etc. using algebraic homology.

Torus Betti Numbers: 1,2,1

Sphere Betti Numbers: 1,0,1



Topology of Cyclo-Octane*

 We used computational topology
tools to compute Betti numbers of

cyclo-octane conformations.

— Plex (comptop.stanford.edu) to
compute boundary maps and Laplacian
operators.

— Linbox (www.linalg.org) to compute
ranks of Laplacians.

— Afra Zomordian’s persistence codes
(not publicly available).

 We computed the Betti numbers for
each of the 5 triangulations.

- bo=1,p,=1,5,=2.

*S. Martin, A. Thompson, E. A. Coutsias, and J.-P. Watson (2010), “Topology of Cyclo-
Octane Energy Landscape,” J. Chem. Phys. 132(23):234115.



Decomposition of Cyclo-Octane

Betti numbers (1,1,2) are uninformative, due to the non-
manifold nature of the conformation space.

However, we can use our triangulation to decompose the
space into two components via the self-intersections.

Hourglass: Betti #s (1,1,0)
Sphere: Betti #s (1,0,1)



Cyclo-Octane Canonical Basis

To resolve the identity of the hourglass, we derived a
canonical basis from the distance constraints which gives an
analytical version of the Isomap coordinates.

— The canonical basis in torsion coordinates is given by

c, = (u, —u, u, —u,u, —u, u, —u)"

o °
b, = (0,v,0,—v,0,v,0, —v)"
T )
by = (v,0, —v,0,v,0,—v,0) ' 8000 b,
= (v, 0, —,0,v, —w)?
® S
= (v, —w, v, 0, v,w,—v,O)T, %5% b,
where 92
¢o %9 ¢
cosu = (1 — /2 —cosb) /(14 cosb) o
cosv = cos” B/ sin® O, P,

cosw = (3cos* O, — 1)/ sin? . ¢¢



Analytic Cyclo-Octane Decomposition
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* Triangulation allowed decomposition of conformation space into a sphere
and a Klein bottle intersecting in two rings.

* Klein bottle is a unigue discovery in the field of molecular conformation.



Understanding Cyclo-Octane Conformations

Structure of conformation space
can be explained by the geometry of
the cyclooctane molecule.

There are ten “canonical
conformations” which can be
grouped into three families: Crown
(Cr), Boat (B), and Boat-Chair (BC).

There are twice as many BC
conformations as there are Cr
conformations, which causes a twist
in the conformation space.

The twist forms a Mobius strip.

The Klein bottle forms because
there are two Mobius strips (due to
symmetry by reflection) joined at
their edges.
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Cyclo-Octane Energy Landscape
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 The energy landscape, together with the topology of the
conformation space, explains experimental observations that BC is
the dominant conformation of cyclooctane.



Conclusions

Our work on cyclo-octane has revealed novel discoveries in field of molecular
motion.

We have used new tools from computational algebraic geometry/topology to
complete characterize a 40 year old model problem.

Algebraic singularities are evidence of previously unsuspected mathematical
complexity.

Klein bottle evidence of previously unassumed non-orientable structure.

In addition, the cyclo-octane data has motivated the need for better data
analysis algorithms.

Previous algorithms assume a manifold structure. For certain datasets this
assumption is inadequate, and such algorithms will fail.

We need a new class of algorithms that can handle algebraic structure, including
singularities.

The algorithms that we developed to analyze cyclo-octane are just one small step
towards this new class of algorithms.

Future challenges include data set size, dimension of structure, different types of
singularities, etc.



