
Lazy Home-Based Protocol: Combining
Homeless and Home-Based Distributed Shared

Memory Protocols

Byung-Hyun Yu, Paul Werstein, Martin Purvis, and Stephen Cranefield

University of Otago, Dunedin 9001, New Zealand
{byu, werstein}@cs.otago.ac.nz,

{mpurvis, scranefield}@infoscience.otago.ac.nz

Abstract. This paper presents our novel protocol design and imple-
mentation of an all-software page-based DSM system. The protocol com-
bines the advantages of homeless and home-based protocols. During lock
synchronization, it uses a homeless diff-based memory update using the
update coherence protocol. The diff-based update during lock synchro-
nization can reduce the time in a critical section since it reduces page
faults and costly data fetching inside the critical section. Other than the
update in lock synchronization, it uses a home-based page-based memory
update using the invalidation coherence protocol. The protocol is called
“lazy home-based” since the home update is delayed until the next barrier
time. The lazy home update has many advantages such as less interrup-
tion in home nodes as well as less data traffic and a smaller number of
messages. We present an in-depth analysis of the effects of the protocol
on DSM applications.

1 Introduction

Parallel programming by means of distributed shared memory (DSM) has many
advantages since it can hide data communication between nodes. The ease of
programming is in contrast to message passing in which a programmer con-
trols data communication between nodes explicitly. Parallel programming with
message passing can be very cumbersome and complicated when a programmer
deals with fine-grained data structures. However, the programming convenience
in DSM comes with the extra cost of achieving memory consistency over all
nodes. In a page-based shared virtual memory system, the extra data traffic for
memory consistency becomes worse due to the large granularity of the memory
unit, which can cause false sharing. Therefore, it is more challenging to imple-
ment an efficient page-based DSM system.

Weak memory consistency models can reduce the data traffic and the number
of messages required for memory consistency by relaxing the memory consistency
conditions. For example, Entry consistency (EC) [1] and Scope consistency (ScC)
[2] models provide the most relaxed memory consistency conditions by taking
advantage of the relationship between a synchronization object and data that

L.T. Yang et al. (Eds.): HPCC 2005, LNCS 3726, pp. 733–744, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

734 B.-H. Yu et al.

are protected by the synchronization object. With more relaxed models, more
optimized implementations of DSM are possible in terms of less data traffic,
fewer messages transferred, less false sharing and fewer page faults, though they
create more restrictions on the conditions for a correctly executing program.

2 Homeless Versus Home-Based DSM Protocol

Apart from the relaxed memory models, it is also important to implement the
models in an efficient way in order to take advantage of the relaxed constraints
that the models can provide. For example, a homeless [3] or a home-based proto-
col [4] can be used to implement the memory models. In the homeless protocol,
the required up-to-date memory is constructed by distributed diffs which contain
all the write history of the shared pages. A diff can be identified by its base page
number, creating node and vector time-stamp. The vector time-stamps are used
in order to apply diffs in the manner of the happens-before partial order. In the
home-based protocol, each shared page is assigned a home node. The home node
takes responsibility for keeping the most up-to-date copy of the assigned pages.
Non-home nodes should send diffs of the page to the home node in order to keep
the home pages up to date.

The two protocols have their strengths and weaknesses. In page-based DSM
systems, the fine-grained diff-based update used in the homeless protocol has an
advantage since unnecessary data in a page are less often transferred. Although
it is dependent on an application’s memory access patterns, by the nature of the
protocol, the homeless protocol has less data traffic since it is not necessary to
update a home node at synchronization points. However, a diff in the homeless
protocol cannot be removed until all nodes have the diff. This will require more
memory space to store unnotified diffs. Ultimately, garbage collection is required
when the memory size for the diffs exceeds the predetermined threshold, which
is very costly due to global diff exchange. Also diffs created from the same page
could be accumulated in a migratory memory access pattern, which makes the
homeless protocol less scalable. In terms of coherence-related load balance, the
homeless protocol is more susceptible to having one node service requests from
many other nodes [5], which is known as a hot spot. A hot spot in the homeless
protocol makes it more difficult to be scalable.

The home-based protocol can solve much of the scalability problem of the
homeless protocol. A diff created can be removed immediately after it is known to
the home node, so garbage collection is not needed. There is no diff accumulation
since each diff is incorporated into the page of the home node immediately at
the synchronization time. Moreover, an efficient implementation is possible with
the home-based protocol at synchronization points, with each node updating
home nodes with one message containing aggregated diffs created from different
pages but belonging to one home node. This optimization reduces the number of
messages thus avoiding many send and receive network operations which would
be very inefficient. With the same scenario in the homeless protocol, each node
just waits until other nodes ask for the diff of a faulting page. In case of multiple

Lazy Home-Based Protocol 735

writer applications, these diff requests are sent to many nodes which have a diff
of the page. This is inefficient compared to one round trip page request in the
home-based protocol.

The weaknesses of the home-based protocol are also well known. First, with-
out good home assignment the home-based protocol may suffer. In particular,
DSM applications that have regular and exclusive memory access patterns are
very sensitive to good home assignment. Second, upon a page fault, even if one
byte of data is needed, the whole virtual page, which is 4096 bytes in Linux
must be transferred. Therefore, a dynamic home assignment scheme and more
fine-grained diff-based update are needed to avoid these weaknesses.

3 Lazy Home-Based Protocol

3.1 Protocol Design

To combine the advantages of the homeless and home-based protocols, we adopt
ScC as the memory consistency model and use a hybrid protocol. During lock
synchronization, the update protocol is applied but during barrier synchroniza-
tion, the invalidation protocol is applied. The reason for the hybrid coherence
protocol is that during lock synchronization a data access pattern is relatively
predictable and fine-grained, but during barrier synchronization, it is more un-
predictable and large. Therefore the update protocol can selectively send the
data updated inside a critical section. More efficiently, the data are piggybacked
with the lock ownership transfer. Also, page faults inside the next critical section
of the next lock owner are significantly reduced. During barrier synchronization,
stale data are invalidated so that the most up-to-date data can be obtained from
a home node.

Compared with previous implementations of the home-based protocol, our
protocol is more “lazy” because it does not send diffs at a lock release time
in order to update home nodes but delays home update until the next barrier
time. To illustrate this laziness, Figure 1 compares previous home-based protocol
implementations with our lazy home-based implementation. As seen in Figure 1,
our lazy home-based protocol implementation eliminates two home update diff
messages sent by N0 and N1 and two page faults in N1 as compared with previous
home-based ScC protocol implementations.

Our implementation takes advantage of ScC more aggressively than previous
ones in a sense of “laziness”. The lazy home update is still correct under the ScC
model since other nodes should not read diffs made in non-critical sections before
the next barrier and sufficient diffs created in critical sections are transferred to
the next lock owner by the update protocol.

3.2 Implementation

To implement the LHScC protocol, we distinguished a non-critical section (NCS)
diff and a critical section (CS) diff. A NCS diff is a diff created in a non-critical
section, and a CS diff is a diff created in a critical section. Intuitively, according to

736 B.-H. Yu et al.

N0

N1

(current home of x,y,z)

N2

w(x) acq(1) w(y) w(z) rel(1)

update y,z

acq(1)

update y,z

acq(1) r(y) w(y) r(z) w(z) rel(1)

Our Lazy Home−based ScC Protocol Implementation

Page 1 Page 2

x y z a

N0

N1

N2

(static home of x,y,z)

w(x) acq(1) w(y) w(z) rel(1)

apply diffs of x,y,z

acq(1) r(y) w(y) r(z) w(z) rel(1)

invalid y,z

acq(1)

fetch P2fetch P1 apply y,z

Previous Home−based ScC Protocol Implementations

Fig. 1. Difference between Previous Home-based and Our Lazy Home-based Imple-
mentations

our memory model, NCS diffs made between two consecutive barriers should be
mutually exclusive to one another. NCS diffs are kept until the next barrier when
non-home nodes send their non-home NCS diffs to corresponding home nodes.
In this way, all NCS diffs are safely preserved at the corresponding home nodes.
As for CS diffs, they are sent to the next lock owner during a lock ownership
change. Intuitively, the last lock owner before a barrier should have the most
up-to-date data that the lock protects. Therefore, the CS diffs from the last lock
owners are sufficient to construct the most up-to-date CS data. Upon arrival at
a barrier, the last owner of each lock sends its CS diffs to corresponding home
nodes unless a node is the home of the CS diffs. In the case that a node owns the
same lock consecutively, diffs created from a same page are numbered so that
they are applied at the next lock owner in the happens-before partial order.

We developed a diff integration technique to reduce data traffic [6]. Since we
used fine-grained diff update during lock synchronization, a diff accumulation
problem can arise as in the homeless protocol. The diff accumulation problem can
be found in a migratory application in which each node writes on the same page
in sequence. The diff integration technique incorporates multiple diffs created
from the same page during a critical section into one diff, which solves the diff
accumulation problem.

To add a dynamic home assignment feature, we also developed a dynamic
home assignment scheme [6]. Our scheme is different from others [7,8,9].
Our protocol updates home nodes after all nodes have a knowledge of
optimum home locations. This guarantees minimum data traffic related to home
page updates by non-home nodes. On the other hand, other dynamic home

Lazy Home-Based Protocol 737

assignment schemes predict optimum home locations based on previous memory
access patterns. This prediction would work well for applications showing reg-
ular and coarse-grained memory access patterns without a migratory pattern.
However, for applications showing irregular, fine-grained or migratory memory
access pattern these schemes do not work since a future memory access pattern
would be different from the previous patterns.

4 Performance Evaluation

Our purpose for the performance measurements is to measure the benefits and
side effects of LHScC. We chose seven applications to evaluate our LHScC proto-
col. The applications are obtained from the TreadMarks application suite except
PNN which was implemented by us. The problem sizes and sequential execu-
tion times of the applications can be found in Table 1. Note that each appli-
cation tested over the different protocols is identical. We briefly describe the
applications.

– Parallel Neural Network (PNN) is a parallel implementation of two
neural network algorithms: forward and backward propagations. The data
set we trained is the shuttle set obtained from the University of California,
Irvine machine learning repository. The data set is divided and allocated to
each node to be trained in parallel. In the main loop, each node trains part
of the data in parallel. Then the local weight changes calculated in parallel
previously are summed sequentially through lock synchronization in order to
create the global new weight changes. Since each node’s local weight changes
are transferred and summed, the memory access pattern is migratory during
the lock synchronization.

– Barnes-Hut is a simulation of gravitational forces using the Barnes-Hut
N-Body algorithm. Our Barnes-Hut application uses only barrier synchro-
nization. The memory access pattern of Barnes-Hut is known to be irregular
and fine-grained.

– Integer Sort (IS) ranks numbers represented as an array of keys by using
a bucket sort. Two different implementations of IS were tested— one has

Table 1. Problem Sizes, Iterations and Sequential Execution Times (secs.)

Application Problem Size Iterations Execution Time
PNN 44,000 235 613.56
Barnes-Hut 64k Bodies 3 79.58
IS-B 224x215 20 71.61
IS-L 222x213 30 16.39
3D-FFT 64x64x64 50 45.10
SOR 4000x4000 50 49.58
Gauss 1024x1024 1023 15.26

738 B.-H. Yu et al.

only barrier synchronization (IS-B) in the main loop and the other has lock
and barrier synchronizations (IS-L) in the main loop.

– 3D-Fast Fourier Transform (3D-FFT) solves a partial differential equa-
tion using forward and inverse FFTs. In the main loop only one barrier syn-
chronization happens at the end of each loop. The memory access pattern
of each loop is regular.

– Successive Over-Relaxation (SOR) calculates the average of neighbour-
ing cells’ four values (up, down, left and right). The shared matrix is divided
into N blocks of rows on which N processors work. Only the values in bound-
ary rows that two nodes share are sent to each other. Therefore the memory
access pattern is very regular, coarse-grained and exclusive.

– Gauss solves a matrix equation of the form Ax = b. In the main loop,
only one node finds a pivot element. After finding the pivot element, all the
nodes run Gaussian elimination in parallel. The memory access pattern is
very regular and exclusive.

To evaluate our protocol efficiency, we compared our lazy home-based ScC
DSM implementation (LHScC) with TreadMarks, which is regarded as the state
of the art homeless LRC implementation, and our home-based LRC implemen-
tation (HLRC). Note that performance comparisons between LRC and EC [10]
or LRC and ScC [2] have been presented previously. Adve et al. [10] concluded
that there is no clear winner between EC and LRC. Rather, performance dif-
ference between them is not because of the model adopted but because of the
unique memory access pattern of each application and coherence unit size. How-
ever, Iftode et al. [2] concluded that a ScC-adopted DSM implementation showed
better performance than an LRC-adopted DSM implementation in applications
that have a false sharing memory access pattern inside a critical section. The
applications we chose have no false sharing memory access pattern inside a crit-
ical section. Therefore, performance improvements under LHScC have nothing
to do with reduction of false sharing due to ScC.

Our dedicated cluster network consists of 32 nodes, each one having a 350
MHz Pentium II CPU and running Gentoo Linux with gcc 3.3.2. All nodes are
connected with a 100 Mbit switched Ethernet. Each node is equipped with a 100
Mbit network interface card (NIC) and 192 MB of RAM except Node 0 which
has a 1 Gbit NIC and 318 MB of RAM. In previous experiments [5], N0 had a
100 Mbit NIC — the same as the rest of the nodes. After we found out that N0
can cause a hot spot due to the nature of the homeless protocol, we replaced
the 100 Mbit NIC with a 1 Gbit NIC. The replacement will benefit the homeless
protocol most since the home-based protocol is less susceptible to a hot spot.

4.1 Overall Speedups

As can be seen in Table 2, LHScC retains the scalability of the home-based
protocol and avoids most of the poorer performances of HLRC for SOR and
Gauss, even though Gauss over LHScC with 32 nodes is slightly worse than over
HLRC. LHScC also avoids the poorer performances of TreadMarks in PNN,

Lazy Home-Based Protocol 739

Table 2. Comparison of Speed-ups between TreadMarks (TM), Home-based LRC
(HLRC) and Lazy Home-based ScC (LHScC)

Apps 4 nodes 8 nodes 16 nodes 32 nodes
TM HLRC LHScC TM HLRC LHScC TM HLRC LHScC TM HLRC LHScC

PNN 3.9 3.9 3.9 7.1 6.9 7.5 8.8 9.5 13.0 4.8 8.2 17.2
B-H 2.1 2.0 2.1 2.4 2.4 2.7 1.8 2.7 3.1 1.5 3.0 3.4
IS-B 3.4 3.6 3.6 4.1 6.0 5.6 2.5 8.3 7.3 0.9 7.7 6.9
IS-L 2.3 2.9 2.7 1.4 2.6 2.9 0.5 1.6 2.0 0.1 0.9 1.1
FFT 1.4 0.9 1.3 2.1 1.2 2.0 2.9 1.9 2.9 2.9 3.2 3.2
SOR 3.4 1.9 3.2 6.0 2.4 5.4 11.3 3.4 9.4 15.5 3.9 13.4
Gauss 2.1 0.2 1.3 1.6 0.3 1.0 0.9 0.5 0.7 0.4 0.5 0.4

Barnes-Hut, IS-B and IS-L over more than 16 nodes. In particular, LHScC has
shown significantly better performance with applications showing coarse-grained
migratory memory access patterns in a critical section such as PNN and IS-L.

LHScC showed better scalability compared with the homeless protocol in
TreadMarks. For example, over 4 nodes LHScC has no clear performance su-
periority over the other two protocols. However, over 32 nodes, the LHScC
implementation was 3.6 times, 1.7 times, 7.7 times, and 11 times faster than
TreadMarks in PNN, Barnes-Hut, IS-B and IS-L, respectively, and 3.4 times
faster than HLRC in SOR.

The better performance of SOR and Gauss in TreadMarks can be explained
by the lazy diffing technique [3]. The lazy diffing technique, which does not
create a diff unless it is requested, is very effective for single writer applications
without migratory memory access patterns. But this low protocol overhead is
only applied to applications such as SOR or Gauss which have a very regular and
exclusive memory access pattern. Migratory applications such as PNN and IS
showed much better performance under the home-based protocol. In particular,
significant improvements can be achieved in PNN and IS-L under LHScC by
diff integration and efficient implementation of the update protocol during lock
synchronisation.

The super slow-down shown in PNN, Barnes-Hut and the two IS over a large
number of nodes in TreadMarks proves that the homeless protocol is vulner-
able to the scalability problem. Up to 8 nodes, the homeless protocol showed
relatively comparable performance with the two home-based protocols. However
over 32 nodes, TreadMarks showed rapid slow-down except for FFT and SOR.
A hot spot, garbage collection and diff accumulation are three major hindrances
to scalability in the homeless protocol [5]. SOR and Gauss have the most benefit
from the dynamic home migration technique, even though Gauss over 32 nodes
showed the adverse effect of the technique due to its frequent barrier synchroni-
sation use.

Generally, Table 3 indicates that the larger the data traffic, the poorer the
performance, as strongly suggested in the two IS applications over TreadMarks,
and SOR over HLRC. The exceptions are the difference between PNN over
TreadMarks and HLRC, and Barnes-Hut over TreadMarks and the two home-
based protocols. The reason for the exception of PNN is a frequent occurrence of
a hot spot. The reason for Barnes-Hut is that even though it produced less data

740 B.-H. Yu et al.

Table 3. Comparison of Data Communication Traffic between TreadMarks (TM) and
Two Home-based Protocols — HLRC and LHScC

16 Processors 32 Processors
Apps. Number of Amount of Number of Amount of

Messages(K) Traffic(MB) Messages(K) Traffic(MB)
TM HLRC LHScC TM HLRC LHScC TM HLRC LHScC TM HLRC LHScC

PNN 114.2 159.4 102.4 277.6 191.2 97.2 228.1 325.8 204.7 1011.0 403.9 190.3
B-H 2809.5 413.4 594.7 622.9 891.9 858.5 8696.5 792.2 1142.3 1211.0 1635.8 1595.4
IS-B 62.0 65.5 66.8 604.3 118.7 79.7 200.5 158.9 159.1 2327.6 285.6 166.0
IS-L 23.9 26.3 26.3 247.4 44.8 44.2 68.7 54.3 54.2 987.6 93.6 91.4
FFT 134.5 152.2 159.5 223.1 612.5 219.4 320.7 408.4 323.8 453.9 838.6 441.3
SOR 45.5 57.0 69.1 65.6 221.8 87.8 63.1 148.2 96.6 76.0 297.2 118.5
Gauss 120.7 321.5 123.7 124.4 1502.0 130.1 250.4 950.3 253.9 259.2 1756.0 263.7

traffic in the homeless protocol than in the home-based protocol, the number of
messages produced was much more, for example nearly ten times more for 32
nodes compared with the home-based protocol. This shows that write-write false
sharing applications such as Barnes-Hut over the homeless protocol will produce
many diff requests sent to many nodes in order to construct the up-to-date copy
of an invalid page. On the contrary, with the home-based protocol, only one page
request sent to a home node of the page is sufficient to have the up-to-date copy
of the page, which is much more efficient.

In the case of IS-B over 16 nodes, even though TreadMarks produces fewer
messages compared to the other two systems, it produces much more data
traffic—more than 7.6 times compared with LHScC. The data traffic statistics
of IS-B over TreadMarks means that the average size of a message is quite large
due to diff accumulation. For example, the average size of a packet in Tread-
Marks over 32 nodes is 11605 bytes, compared to 1043 bytes in LHScC. This
data shows that in IS-B over TreadMarks, when a node requests the required
diffs of a stale page from the last writers, the diffs received can be large due to
diff accumulation.

To better identify the benefits of LHScC, we measured the times taken during
lock synchronization (lock acquire and release) and critical sections in PNN over
the three different protocols. As shown in Figure 2, Node 0 (N0) over TreadMarks
suffers the most from lock contention due to a hot spot in N0. The hot spot in
N0 occurs since only N0 writes on the shared pages at the end of barrier in
each loop and those pages are accessed after the barrier by all nodes. Therefore
all nodes request the pages from the last writer (N0) at the same time, which
makes a hot spot. The hot spot becomes worse due to a migratory access pattern
in PNN causing diff accumulation. Meanwhile, a hot spot is removed in HLRC
since the shared pages are assigned evenly to the nodes. In PNN pages 1 to
4 are most written by all nodes. Since home assignment in HLRC is statically
performed, nodes 1 to 4 share the responsibility of sending the most up-to-date
four pages. However, eager home update after lock synchronization interrupts
the main computation in nodes 1 to 4. Also nodes 1 and 2 which are two lock
manager nodes have another interruption due to lock requests from other nodes.
That is why nodes 1 to 4, and in particular, nodes 1 and 2, have relatively long
lock synchronization times as shown in Figure 3 (note that the vertical scale in

Lazy Home-Based Protocol 741

Fig. 2. Lock Synchronization and CS
Times in PNN over TreadMarks

Fig. 3. Lock Synchronization and CS
Times in PNN over HLRC

Fig. 4. Lock Synchronization and CS Times in PNN over LHScC

Figure 3 is different from that in Figure 2). Finally, LHScC greatly reduces the
time taken for lock synchronization and critical section execution compared with
the two other protocols as shown in Figure 4 (again, the vertical scale is reduced).
The critical section execution time in LHScC is negligible, just 0.04 seconds on
average, compared with 4.46 seconds and 1.29 seconds in TreadMarks and HLRC,
respectively. In PNN over LHScC, N0 is a hot spot node as in TreadMarks, but
this time the hot spot effect is weakened thanks to our diff integration technique.

5 Related Work

As far as we know, there are two all-software ScC DSM implementations similar
to LHScC: Brazos and JiaJia. JiaJia [11] employs a home-based protocol. On
the other hand, Brazos [12] is essentially a homeless DSM system. There are also
several LRC DSM implementations that have similar ideas to LHScC. Below, we
present the comparisons between those systems and LHScC.

Brazos is a homeless page-based all-software ScC DSM system. In Brazos,
stale data are made up-to-date by receiving diffs from other nodes efficiently by
exploiting multicast communication, compared to LHScC that uses both diffs

742 B.-H. Yu et al.

and pages in order to update stale data without multicast support. Since Brazos
uses multicasting for memory coherence during lock and barrier synchronisation,
it reduces many complexities of implementing a ScC homeless DSM system. Even
though Brazos claims that it uses an adaptation technique to update stale data
between homeless and home-based protocols, it is dependent on a page’s memory
access pattern, and it still has to pay the adaptation and page ownership finding
overheads since it uses essentially a homeless protocol. On the contrary, LHScC
is much more efficient in combining the two protocols, as it is essentially a home-
based protocol with the lazy home update and there is no overhead of combining
the two protocols.

JiaJia is a home-based all-software ScC DSM system. However, it has no
concept of the lazy home update and only uses the write-invalidate coherence
protocol. Also, the implementation of ScC differs between JiaJia and LHScC. In
JiaJia, a lock manager manages ScC coherence information so that the manager
determines which pages should be invalidated for the next lock owner, whereas in
LHScC each local node determines the required diffs for the next lock owner. In
this way, LHScC can prevent an added burden on a lock manager and is a more
fine-grained implementation of ScC. The implementation of ScC in JiaJia is not
only inefficient compared to LHScC but also cannot prevent write-write false
sharing inside a critical section due to the use of the write-invalidate protocol
and the large page granularity.

ADSM [13] is a homeless all-software LRC DSM system in which two adapta-
tions between single and multiple writer protocols, and write-update and write-
invalidate protocols, are selectively used based on a page’s memory access pat-
tern. Basically it uses the invalidation protocol. However the update protocol
is used for migratory pages inside a critical section and producer/multiple con-
sumer pages during barrier synchronisation. Compared to the update protocol
used in LHScC, CS data transferred by the update protocol in ADSM are limited
to migratory pages only. Also the granularity of the update is the size of a page,
whereas there is a more fine-grained diff size in LHScC.

There have been similar ideas of using the two coherence protocols selectively
in order to implement a more efficient coherence protocol in a software DSM
system. In KDSM [14], instead of using only the invalidation coherence protocol
as in most home-based systems, the update coherence protocol is also used only
at lock synchronisation times to solve an inefficient page fetch process occurring
in a critical section. However, the efficiency obtained by their implementation is
still limited due to the LRC model implementation. For example, at the time of
release a node has to send modified data to the corresponding homes, which is
unnecessary in LHScC. Also, in the case of diff accumulation, the efficiency of
their protocol can be severely diminished.

Another similar use of a hybrid protocol is found in the Affinity Entry Con-
sistency (AEC) system [15] even though the AEC system employs the homeless
protocol only. In their system, a Lock Acquirer Prediction (LAP) technique is
used to predict the next lock owner in order to prefetch required CS data to the
next lock owner. We believe that the LAP technique is not required for most

Lazy Home-Based Protocol 743

lock-based DSM applications since the next lock owner is already determined
many times before the release time. When the next lock owner is not deter-
mined at the release time, employing the LAP technique leads to unnecessary
updating if the prediction is wrong. Rather than updating eagerly based on pre-
diction, it would be better to wait until the next lock owner is determined. In a
similar scenario, at the release time, our implementation first creates diffs mod-
ified inside a critical section but waits until the next lock owner is determined.
Upon receiving a lock request, the diffs previously created and stored are sent
to the lock requester with the lock ownership. That is, LHScC eagerly creates
and stores required CS diffs, but can lazily transfer those diffs when the next
lock request is received after the diff creation.

Finally, Orion [16] is a home-based LRC DSM system. It has a different
approach to other adaptation techniques. It exploits a home node which collects
all data access information from other non-home nodes. When other non-home
nodes are detected as the frequent readers of its home pages, the home node
notifies all non-home nodes about the frequent reader nodes. Next, when a non-
home node sends diffs to the home node, it also updates the frequent reader
nodes, hoping that the diffs are accessed by them.

6 Conclusions

In this paper, we presented the design and implementation of our novel lazy
home-based ScC protocol (LHScC). LHScC is different from a conventional
home-based protocol in that home update time is delayed until the next barrier
time. LHScC combines diff-based update in the homeless protocol and page-
based update in the home-based protocol. Our implementation of LHScC in-
cludes a dynamic home assignment scheme and a diff integration technique in
order to solve wrong home assignment and diff accumulation problems, respec-
tively. Our performance evaluation shows that LHScC retains good scalability
of the home-based protocol and removes a static home assignment problem.

References

1. Bershad, B., Zekauskas, M., Sawdon, W.: The Midway distributed shared memory
system. In: Proc. of the IEEE Computer Conference (Compcon). (1993) 528–537

2. Iftode, L., Singh, J.P., Li, K.: Scope consistency: A bridge between release consis-
tency and entry consistency. In: Proc. of the 8th ACM Annual Symp. on Parallel
Algorithms and Architectures (SPAA’96). (1996) 277–287

3. Keleher, P., Dwarkadas, S., Cox, A.L., Zwaenepoel, W.: Treadmarks: Distributed
shared memory on standard workstations and operating systems. In: Proc. of the
Winter 1994 USENIX Conference. (1994) 115–131

4. Zhou, Y., Iftode, L., Li, K.: Performance evaluation of two home-based lazy release
consistency protocols for shared memory virtual memory systems. In: Proc. of the
2nd Symp. on Operating Systems Design and Implementation (OSDI’96). (1996)
75–88

744 B.-H. Yu et al.

5. Yu, B.H., Huang, Z., Cranefield, S., Purvis, M.: Homeless and home-based lazy
release consistency protocols on distributed shared memory. In: Proceedings of the
27th Conference on Australasian Computer Science, Australian Computer Society,
Inc. (2004) 117–123

6. Yu, B.H., Werstein, P., Cranefield, S., Purvis, M.: Performance improvement tech-
niques for software distributed shared memory. In: Proceedings of the 11th Inter-
national Conference on Parallel and Distributed Systems (ICPADS 2005), IEEE
Computer Society Press (2005)

7. Hu, W., Shi, W., Tang, Z.: Home migration in home-based software DSMs. In:
Proc. of the 1st Workshop on Software Distributed Shared Memory (WSDSM’99).
(1999)

8. Fang, W., Wang, C.L., Zhu, W., Lau, F.C.: A novel adaptive home migration
protocol in home-based DSM. In: Proc. of the 2004 IEEE International Conference
on Cluster Computing (Cluster2004). (2004) 215–224

9. Cheung, B., Wang, C., Hwang, K.: A migrating-home protocol for implementing
scope consistency model on a cluster of workstations. In: The 1999 International
Conference on Parallel and Distributed Processing Techniques and Applications
(PDPTA’99), Las Vegas, Nevada, USA. (1999) 821–827

10. Adve, S.V., Cox, A.L., Dwarkadas, S., Rajamony, R., Zwaenepoel, W.: A compar-
ison of entry consistency and lazy release consistency implementations. In: Proc.
of the 2nd IEEE Symp. on High-Performance Computer Architecture (HPCA-2).
(1996) 26–37

11. Hu, W., Shi, W., Tang, Z.: JIAJIA: An SVM system based on a new cache co-
herence protocol. In: Proc. of the High-Performance Computing and Networking
Europe 1999 (HPCN’99). (1999) 463–472

12. Speight, W.E., Bennett, J.K.: Brazos: A third generation DSM system. In: Proc.
of the USENIX Windows NT Workshop. (1997) 95–106

13. Monnerat, L., Bianchini, R.: Efficiently adapting to sharing patterns in software
DSMs. In: HPCA ’98: Proceedings of the The Fourth International Symposium
on High-Performance Computer Architecture, Washington, DC, USA, IEEE Com-
puter Society (1998) 289–299

14. Yun, H.C., Lee, S.K., Lee, J., Maeng, S.: An Efficient Lock Protocol for Home-
Based Lazy Release Consistency. In: Proceedings of the 3rd International Work-
shop on Software Distributed Shared Memory System, Brisbane, Australia, IEEE
Computer Society (2001) 527–532

15. Seidel, C.B., Bianchini, R., de Amorim, C.L.: The affinity entry consistency proto-
col. In: ICPP ’97: Proceedings of the international Conference on Parallel Process-
ing, IEEE Computer Society (1997) 208–217

16. Ng, M.C., Wong, W.F.: Orion: An adaptive home-based software distributed shared
memory system. In: 7th International Conference of Parallel And Distributed
System (ICPADS 2000), Iwate, Japan, IEEE Computer Society (2000) 187–194

	Introduction
	Homeless Versus Home-Based DSM Protocol
	Lazy Home-Based Protocol
	Protocol Design
	Implementation

	Performance Evaluation
	Overall Speedups

	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

