
A Job Brokering Shell for Interactive Single System Image Support

Cameron R. Kerr
University of Otago

New Zealand
ckerr@cs.otago.ac.nz

Paul Werstein
University of Otago

New Zealand
werstein@cs.otago.ac.nz

Zhiyi Huang
University of Otago

New Zealand
hzy@cs.otago.ac.nz

Abstract

When users interact with computers, programs are run
on a local machine and display on the local machine. Sin-
gle System Image (SSI) is about taking a cluster of comput-
ers, and making them appear and behave as a single ma-
chine. SSI systems are typically non-interactive, batch sys-
tems. This paper introduces a Job Brokering Shell model for
SSI which allows running interactive processes on worker
nodes while having them appear to run on the cluster’s
gateway. The assumed environment is a computer science
student laboratory where students can log in remotely to a
gateway and their programs are distributed evenly to the
laboratory workstations.

1. Introduction

It is perhaps an ironic side effect of modern computing,
that with faster workstations, computers are both idle for
long periods, and overburdened at other times. Distributed
computing helps to relieve this pressure by using lightly
loaded workstations as computational facilities.

This form of clustering is an active area of research. To-
day we see it being used in projects such as SETI@home[4]
and distributed.net[1]. Such clusters are often used for batch
processing. It also is desirable to run processes on other ma-
chinesinteractively. This is especially the case on systems
where you log in remotely (into agateway), and then log
into one of the interior workstations (node, in cluster terms)
in order to do work.

The environment we envision is a computer science stu-
dent laboratory. Students are not assigned to any particular
machine and can use any available computer. They may re-
motely login. However it is not possible to determine which
machines are in use prior to logging in remotely. Thus the
loading of processes and users on any particular machine is
not predictable or uniform.

For both remote logins and for some types of processing,
it would be desirable to view the machines in the lab as a

single computer. This concept is known asSingle System
Image(SSI)[6]. Ideally with SSI, the remote user has no
knowledge of the machines in the cluster. Users interact
with the gateway machine which assigns tasks to worker
nodes. The key points of SSI systems are often given as
listed below.

Transparency The user should not be able to discern that
their jobs are being run on different computers.

Minimising load on the gateway This is a key goal be-
cause all programs, whether executed remotely or lo-
cally, take up resources on the gateway. In addition,
remote jobs incur load by the transport mechanism to
execute and interact with the programs.

Cost Increasingly clusters are being built with COTS
(Commodity Off The Shelf) components, often mean-
ing x86 based machines running a Linux operating
system. This significantly reduces costs over other
solutions such as a true massively parallel processor
(MPP). However, something is needed to create the il-
lusion of a single powerful machine. That bond is pro-
vided by an SSI solution.

Interconnect A high speed interconnecting network is re-
quired.

A gateway based SSI system is beneficial to users be-
cause jobs are automatically sent to the most appropriate
machine. In a true SSI environment, users do not need to
be concerned about the existence of the cluster. Instead, the
gateway appears as a single powerful machine. The envi-
ronment is also beneficial to the other machines in the clus-
ter since the workload is spread more evenly.

In the next section, SSI models are introduced. Section 3
describes our job brokering shell model. Its implemntation
is given in Section 4. Section 5 give the results of perfor-
mance tests on the prototype. Finally we give some areas
of future research and conclusions. In the remainder of the
paper, we use the termgatewayto refer to the gateway ma-
chine which is the computer accessed by remote users of the



cluster.Worker noderefers to machines in the cluster which
are available for user jobs, but users do not directly log into
them.

2. Single system image models

The design of a SSI system is a tradeoff between trans-
parency and time/effort costs. Not all operating systems are
designed to facilitate clustering, and it can take a significant
effort to implement such a system. Issues to consider in the
design of SSI include:

• Degree of transparency

• Shared resources

• Portability

• Scalability

2.1. Degree of transparency

A SSI system can be implemented at many layers, de-
pending upon how transparent the system is to the user and
the cost of implementation. On systems with weak trans-
parency, a programmer must be aware of the system’s true
nature, else programs may not execute as expected.

Listed below are layers where transparency could be im-
plemented. Higher level implementations generally have
weaker transparency, while lower level implementations
have more robust transparency.

Program Each program that is to be run remotely is con-
tained in a wrapper program or script that starts the
program on a remote machine. This is a simple tech-
nique for a few programs that must run on another host,
but does not scale well.

For example, using the following command at work
allows me to check and read my news at home.

ssh -2 -t cameron@myhome.net rtin

rtin is a script that starts news on my home com-
puter.

Shell The shell receives the command from the user (for
example to start Netscape). Then the shell logs into an
appropriate worker node and starts the program on that
node.

API The programmer uses a special API (application
programming interface) to distribute the tasks to
worker nodes. Two examples are MPI (Message
Passing Interface)[2] and DSM (Distributed Shared
Memory)[8] systems.

System Library The application is compiled with (or
linked at run–time to) a library that implements RPC-
like techniques. This can be network intensive since
all system calls get routed through local/remote stubs.
The Condor System[9] uses this technique.

Kernel A kernel implementation uses a modified kernel
such as the Mosix kernel[5] (modified Linux kernel).
Kernel level SSI is fully transparent to applications, but
it requires a homogeneous environment.

In environments where the machines may be used in-
teractively, it may be impractical to go lower than the sys-
tem library level since kernel level implementations tend to
turn the machines into a computational facility rather than a
workstation.

2.2. Shared resources

Shared resources are the filesystem, I/O devices, mem-
ory, and the process space. The filesystem must be shared
by all machines in a SSI cluster to provide a uniform envi-
ronment. In the case of a heterogeneous set of machines, a
common filesystem layout needs to be emulated, depending
upon the level of transparency desired. I/O devices refer
to devices such as terminals and printers which are often
shared in a networked environment and are not a concern in
an SSI environment.

Shared memory is implemented in DSM (distributed
shared memory) systems, where each node shares part of
its memory space with other nodes, forming a block of
shared memory. Software DSM requires programs to be
written in a special way or to be recompiled in order to use
DSM. Making the process space transparent requires any
processes, started by the gateway on a worker node, to be
mirrored in the gateway’s process table. Thus the remote
process appears to be running on the gateway itself.

As well as appearing as though a process is running on
the gateway, it must also respond to local events such as sig-
nals. Not all signals can be caught (SIGKILL, for example)
so the SSI system must be able to monitor the mirrored pro-
cess entries and send fatal signals to the real remote process.

2.3. Portability

Ideally, a SSI system should work well on a cluster of
heterogeneous machines, though how important that is, is a
matter for the local policy makers.

2.4. Scalability

If everyone uses the same gateway machine as the point
of entry, the gateway could get heavily loaded and become
a bottleneck. It may be possible to use more than one point



Run Locally

Scheduler

Run Remotely

Statistics
Gathering
Daemon

Transport
Agent

Load
Calculating

Daemon

Job Brokering
Shell

End User

History

User’s
Program

Outside the network
Cluster Gateway

Cluster Worker Node

Figure 1. Job Brokering System Model

of entry. Load balancing solutions, such as Round Robin
DNS[6], could be used to log the user onto an appropriate
gateway.

3. Job brokering shell model

The Job Brokering Shell model is shown in Figure 1. The
user interacts with a modified shell, called a Job Brokering
Shell, on the gateway system. Ideally, the user should not
be aware that commands they enter may be run on other ma-
chines. Thus the Job Brokering Shell acts as an interactive
job submission agent.

Not all programs can be run on another machine. For ex-
ample, thelogout shell command must be run locally. In
addition, the system administrator may elect to assign some
programs to run on only certain machines. Determining the
best machine for a given command is done by theSched-
uler.

The user’s command may be a command pipeline which
is a string of connected processes. Ideally, the pipeline
should be executed on a single host to reduce network traf-
fic due to the Unix pipe. However, it is possible that a com-
mand pipeline has to be run on different machines due to
application assignment. The Job Brokering Shell must be
able to start such a command.

When the Scheduler decides to run a command remotely,
it must choose the best suited worker node. The model has
monitoring software consisting of aLoad Calculating Dae-
monand aStatistics Gathering Daemon. Load Calculating
Daemons, running on each worker node, determine local
loading. They report the loads to the Statistics Gathering
Daemon running on the gateway. Using these statistics, the
scheduler determines the most appropriate worker node. It
would also be possible to maintain some type of history to
aid in the determination.

Run Target?

Run on
any node

Run on one
of a named

group

Startup Script

REMOTE
GROUP

Remote
Login

Facility

Transport
Agent

Host List

End User

Host Statistics

Node
Statistics

Load
Calculating

Daemon

Reporting
Agent

Shell

Users
Program

Host Statistics

Group List

Statistics
Gathering
Daemon

Job Brokering
Shell

Run LocallyLOCAL

REMOTE

Outside the network
Cluster Gateway

Cluster Worker Node

Runtime Target Determination

Figure 2. Overview of the Job Brokering Sys-
tem

Once the Scheduler determines the target worker node,
the Job Brokering Shell uses theTransport Agentto log into
the worker node and execute the user’s program. Before the
command starts execution, the environment on the worker
node is made to match the user’s current environment on the
gateway.

4. Implementation

The implementation of our Job Brokering Shell model
is shown in Figure 2. We modified the popularbash [7]
command-line shell to provide basic job brokering capabil-
ities. In addition, load determination and reporting were
developed. With the exception of the modified shell (called
jbash ), which is written in C, all other code is presently
implemented as Bourne shell scripts. Each of the compo-
nents is described below.

4.1. Worker–node services and daemons

Load calculating daemon The Load Calculating Daemon,
called jbstatpd, determines the system and network
utilisation. The system load is defined as some abso-
lute value representing the performance of the system,
where memory and CPU utilisation are the main fac-
tors.



In the prototype implementation, the load average
given by the kernel is used. This load average is the
number of processes waiting in the kernel ready queue,
averaged over the last one minute. As an aside, it might
be a worthwhile to include some metric for the maxi-
mum performance expected from the system, such as
the “bogomips”[10] rating that Linux gives a CPU, the
number of CPUs in the system, and the amount of
memory.

The network load is characterised by four parameters:
actual traffic into and out of the interface, maximum
capacity of the interface, and whether the interface is
half-duplex or full-duplex. Determining these param-
eters from the network interface is fairly complicated.
For the prototype, they were manually set based on an
observed average.

The system and network load is written to a file so that
theReporting Agentcan return the statistics to the gate-
way on request. The contents of the file are:

1.22 eth0:2,2/100000-HD

The first entry is the system load. Then, for each net-
work interface, the entries are: interface name, incom-
ing and outgoing data rate in kbps, followed by the
maximum channel capacity of the interface in kbps.
The last entry is the duplex setting of the interface.

We feel that it is more appropriate to give the network
statistics in this form, rather than, say, the percent util-
isation of an interface, since it results in the possibility
of a more intelligent statistics gatherer.

Reporting agent The Reporting Agent, calledjbreport,
outputs the worker node’s statistics to the gateway. It
is activated throuthinetd or xinetd .

Remote login facility The Remote Login Facility uses
OpenSSH in the prototype. OpenSSH provides X11
forwarding and tunnelling as well as non-interactive,
secure user authentication. Thus the worker nodes can
have private IP addresses and data appears to come
from the gateway.

4.2. Gateway services and daemons

Job brokering shell The Job Brokering Shell is the pro-
gram the user interacts with on the gateway machine.
In the prototype, it is calledjbash and is a modified
version ofbash .

The modification required for our prototype involves
applying some logic to the requested command to de-
termine where to run the command. This is done by
matching the command line to some regular expres-
sions to determine whether to run the program locally

or on a worker node. In general, commands dealing
with the local system such aslogout are run locally.
Otherwise any program with more overhead that the
transport agent should be run on a worker node.

Statistics gathering daemonThe Statistics Gathering
Daemon, calledjbstatgd, polls thejbreport programs
on the worker nodes to gather their statistics. It uses
the statistics to compute a desirability rating for each
worker node. The desirability rating is a number from
0 to 7 where a seven means a node is very lightly
loaded. The results are written to theHost Statistics
file.

Runtime target determination The scheduler is respon-
sible for determining which worker node(s) will run
a user’s request. This part of our implementation is
shown inside the dotted box markedRuntime Target
Determination. There are two modes in the prototype,
REMOTE andREMOTE GROUP.

In the REMOTE mode, the program,jbquery, deter-
mines which of the active hosts has the highest desir-
ability rating. That host’s name is passed to the Trans-
port Agent to run the command.

In the REMOTE GROUPmode, the program,jbqueryg,
uses the Group list file along with the host statistics
to determine the most desirable machine in a group
of machines. Again, that host’s name is passed to the
Transport Agent.

Transport agent The Transport Agent is responsible for
loging into the target worker node and running
the user’s command. The prototype uses ssh
(OpenSSH[3], in particular), since it has the capabil-
ity to authenticate without the use of a password, as
well as being able to run both interactive and non-
interactive programs.

4.3. Limitations

Some limitations exist in the prototype system, related to
the tools that we used and design limitations of the system.

The load imposed by the transport agent will be one
of the defining performance characteristics of the system.
Given thatssh is the transport agent in the prototype, it
only makes sense to off-load heavier programs, such as
emacs and netscape, or those that need to run on an applica-
tion server. In an isolated environment, the overhead ofssh
could be reduced if it could be used without encryption. It
is worth noting that the SSH2 product has a non-encrypted
mode as a compile-time option but was not available for the
prototype.

High-level SSI systems have practical limitations with
regards to transparency. Some of these limitations are in



making the process space transparent between machines.
However, the approach taken in the prototype is very useful
because less code is modified, and it should work well on
any POSIX based operating system.

The current implementation considers all worker nodes
to be of equal capability. Issues related to worker nodes
with different capabilities will be addressed in a future ver-
sion.

5. Results

To measure the preliminary performance of our proto-
type, a set of eight identical PCs, incorporating an 800 MHz
Pentium III processor with 128 MB memory, were config-
ured as a SSI cluster. One of the machines was designated
as the gateway.

A user was simulated by means of anexpect script.
The script runs a combination ofgcc , netscape , and
latex .

Two metrics were selected to be measured against the
number of users in the cluster. The metrics are:

• Load on the gateway

• Network traffic

These metrics are discussed below.

5.1. Load of the gateway

To measure the load of the gateway, we use the same load
calculating program used to measure the desirability of the
worker nodes. For brevity, this metric is called Desirability.

The results are shown in Figure 3. The vertical bars show
the minimum, average, and maximum desirability of each
worker node, indicating a large variation in the loading on
the worker nodes. This is a result of the simple scheduling
algorithm presently used. Because the Linux kernel gives
us a one minute sliding average of the system load, starting
n programs within a few seconds of each other means the
load statistics have not changed sufficiently to reflect the
most recently used processor from the current scheduling
decision. A more desireable scheduling algorithm is being
explored.

Figure 3 shows the performance of the gateway (solid
line) declining gracefully when the jobs are distributed to
worker nodes. This is in contrast to the rapid decline
(dashed line) when all users are running on the gateway ma-
chine.

5.2. Network traffic

The metric measures the amount of network traffic cre-
ated by the job brokering system. For this metric, we de-
termined the average network traffic of the cluster without

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8 9 10

D
es

ira
bi

lit
y 

R
at

in
g

Number of Job Brokering Users

Gateway using Job Brokering

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8 9 10

D
es

ira
bi

lit
y 

R
at

in
g

Number of Job Brokering Users

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8 9 10

D
es

ira
bi

lit
y 

R
at

in
g

Number of Job Brokering Users

Gateway not using Job Brokering

Figure 3. Gateway desirability vs number of
users



0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 N
et

w
or

k 
T

ra
ffi

c 
(T

x/
R

x)
 to

 W
or

ke
r 

N
od

es
 (

M
bp

s)

Number of Job Brokering Users

Figure 4. Network traffic vs number of users

any users on the worker nodes or the gateway. The user
expect scripts were then run and the background network
activity was subtracted. The result is the network traffic in-
duced by the job brokering system sending jobs to worker
nodes. It is shown in Figure 4. Only a small amount of
traffic is caused by distributing the jobs to worker nodes.

5.3. Transparency

The prototype is not as transparent as a system imple-
mented at a lower level. For example, theemacs program,
when run in its X11 mode, will display the hostname as
part of the title–bar since it uses thegethostbynamecom-
mand. Other transparency leakages involve process names
and process IDs of child processes not being visible on the
gateway.

Currently, signals can not be passed through the trans-
port agent to the remotely running program. These prob-
lems could be resolved using lower layer implementation
techniques. One way would be to employ shadow pro-
cesses, which would essentially be a proxy, and provide lo-
cal PIDs for the remote processes. Since not all signals can
be trapped, such as SIGKILL, the shell will need to monitor

the shadow children and send these signals to the appropri-
ate remote process.

5.4. Further work

There are ample avenues for further research and work
on the prototype. A more intelligent scheduling algorithm is
needed. Such an algorithm would look at a smaller time in-
terval or perhaps take into account the fact that jobs were re-
cently introduced and have not yet influenced the load aver-
age being reported. Alternatively, the scheduler could main-
tain a history of its allocation of jobs to worker nodes or
distribute jobs to machines of equal desirability in a round
robin fashion.

As explained above, work needs to be done so jobs ac-
tually appear to be running on the gateway. At the present
time, users have no way of monitoring the status of their
jobs on the worker nodes.

In addition, the file system needs to be made more uni-
formly available. The prototype is able to distribute jobs
easily because its environment uses a NFS file server for
the uniform copy of the/home file system.

6. Conclusions

This paper has presented a model for running processes
(or rather, command pipelines), on the least loaded ma-
chines in an cluster. The implementation allows load shar-
ing in an environment where many people log into a gate-
way machine to do their work.

While the current implementation is rather basic, it does
have several advantages. Since it operates at a high level,
changes and upgrades to the kernel have no effect on the im-
plementation, and no software must be changed. It provides
an environment with which users are familiar so training is
not a concern.

It allows the administrator to more easily control external
access to the lab machines. At the same time, it prevents
the accessed machines from being heavily loaded while idle
machines are available.

References

[1] distributed.net. http://www.distributed.net/.
[2] MPI Forum. http://www.mpi-forum.org/.
[3] OpenSSH. http://www.openssh.org/.
[4] SETI@home. http://setiathome.ssl.berkeley.edu/.
[5] The MOSIX Kernel. http://www.mosix.org/.
[6] R. Buyya. High Performance Cluster Computing, vols 1

and 2. Prentice Hall PTR, Upper Saddle River, New Jersey
07458, 1999.

[7] T. F. S. Foundation. GNU Bash.
http://www.gnu.org/software/bash/bash.html/.



[8] Z. Huang, C. Sun, S. Cranefield, and M. Purvis. View-based
Consistency and its Implementation. InProceedings of the
1st IEEE/ACM International Symposium on Cluster Com-
puting and the Grid (CCGrid 2001), pages 74–81. IEEE
Computer Society, May 2001.

[9] M. J. Litzkow, M. Livny, and M. W. Mutka. Condor: A
Hunter of Idle Workstations. InProceedings of the 8th Inter-
nation Conference on Distributed Computer Systems, 1988.

[10] W. van Dorst. BogoMips mini HOWTO.
http://www.linuxdoc.org/.


