
A Performance Comparison of
DSM, PVM, and MPI

Paul Werstein
University of Otago

Dunedin, New Zealand
Email:werstein@cs.otago.ac.nz

Mark Pethick
University of Otago

Dunedin, New Zealand
Email:mpethick@cs.otago.ac.nz

Zhiyi Huang
University of Otago

Dunedin, New Zealand
Email:hzy@cs.otago.ac.nz

Abstract— We compare the performance of the Treadmarks
DSM system to two popular message passing systems (PVM
and MPI). The comparison is done on 1, 2, 4, 8, 16, 24, and
32 nodes. Applications are chosen to represent three classes
of problems: loosely synchronous, embarrassingly parallel, and
synchronous. The results show DSM has similar performance to
message passing for the embarrassingly parallel class. However
the performance of DSM is lower than PVM and MPI for the
synchronous and loosely synchronous classes of problems. An
analysis of the reasons is presented.

I. INTRODUCTION

A number of computational problems cannot be solved in
a reasonable time on currently available computers. Parallel
computing provides a method to increase the performance
of computationally intensive programs by distributing their
execution across multiple processors. Traditionally this parallel
processing was done on expensive purpose-built multiproces-
sor systems. An alternative which is becoming more popular
is the use of multicomputer or cluster computer systems.

A cluster computer system consists of a collection of
computers connected by a network. Typically the computers
are standard off-the-shelf personal computers. An example of
such a system is a Beowulf cluster [1].

Each node in the cluster has its own memory, accessible
only to the processes running on that node. Programs running
in parallel on different nodes require some way to commu-
nicate. The most common solution is the use of libraries
which provide primitives to enable the parallel processes to
communicate. Many of these libraries run in user space so no
alteration of the operating system is required.

To date, most of the libraries are based on the message
passing paradigm. This requires a programmer to specify
explicitly the data to be passed between processes and the time
when the communications should take place. An alternative
approach provides the abstraction of a single memory address
space available to all processes running in the cluster. This
approach is known as distributed shared memory (DSM).
It frees a programmer from having to deal explicitly with
data exchange, and therefore, provides an easier method of
programming. The DSM library is responsible for memory
consistency maintenance and ensures each process has access
to the most recent version of data.

Since cluster computers are fairly new, relatively little is
known about the performance of DSM compared to message

passing systems on them. This report details the results of
a series of tests carried out to compare the performance of
a DSM system to two popular message passing systems on
cluster computers.

In [2], the performance of DSM is compared with that of
PVM (Parallel Virtual Machine) [3] on an 8-node cluster. Our
tests show the scalability of DSM, PVM and MPI (Message
Passing Interface) [4] on 1, 2, 4, 8, 16, 24, and 32 nodes.
Our tests show the number of nodes becomes significant when
more than 8 nodes are present.

The DSM system used is Treadmarks (version 1.0.3.3)
developed at Rice University [5]. The messages passing
systems are PVM (version pvm3.4.3) [3] and the MPICH
implementation [4] of the MPI standard. We used MPICH,
version 1.2.4, developed at the University of Chicago and
Mississippi State University [4]. Tests were carried out on a
cluster of 32 PC’s running Linux.

Three programs were used representing a range of ap-
plications. One program is mergesort which is a loosely
synchronous problem. Another program is a Mandelbrot Set
generator which is an embarrassingly parallel application
and gives an indication of performance under almost ideal
conditions. The last program is a back propagation neural
network which is a synchronous application, giving an indi-
cation of the performance of the systems in the general case.
The terms, loosely synchronous, embarrassingly parallel, and
synchronous, are from [6].

The next section outlines the parallel programming environ-
ments and the libraries used in these tests. Section III describes
three applications used in the tests. Section IV describes the
methodology used. The results are presented and discussed in
Section V. Conclusions are in Section VI.

II. PARALLEL PROGRAM ENVIRONMENTS

There are two kinds of programming environments for
cluster computers: message passing and distributed shared
memory. These environments are based on libraries running in
user space. Thus they require no alterations to the underlying
operating system. Each library provides a set of functions
or primitives, allowing a programmer to create distributed
programs.

When a program is parallelised and run on multiple pro-
cessors, it is necessary to share some part of the program



memory space. Examples of this shared data include shared
variables and arrays. This leads to the concept of distributed
memory. The most common approach for distributed memory
is message passing. The supporting libraries provide message
passing primitives which use a network to pass data between
nodes. Since the processes do not share memory, they do not
need memory sharing primitives such as locks or semaphores.
However the processes still require some way to synchronise
themselves. This can be done with process synchronisation
primitives such as barriers. Unfortunately, ensuring that all
message passing is correct places an extra burden on program-
mers and increases the chance for errors.

An alternative to the message passing paradigm is dis-
tributed shared memory (DSM). In the DSM paradigm, a
portion of each processors’ memory appears as shared memory
which is available to all processes in a parallel program.
This reduces the burden on programmers. DSM provides the
illusion of shared memory [7]. Each processor has its own
memory in which the DSM system stores a copy of the shared
memory. The primary role of the DSM system is to maintain
the consistency of each copy of the shared memory as well
as provide a means to ensure the correct execution of the
program. A DSM library typically provides a full range of
synchronisation primitives, including locks, semaphores, and
barriers.

The two message passing systems used in our tests are Par-
allel Virtual Machine (PVM) and Message Passing Interface
(MPI). The distributed shared memory system used is Tread-
marks. These systems are detailed in the next subsections.

A. Treadmarks Distributed Shared Memory

Treadmarks was developed at Rice University for research
into DSM systems. It provides locks and barriers as prim-
itives. Other synchronisation primitives such as semaphores
can be simulated using locks, barriers, and shared variables.
Treadmarks uses lazy release consistency which is a weak
consistency model. It takes advantage of the fact that in a
data race-free program the synchronisation primitives divide
the program into non-overlapping blocks. If a shared variable
is accessed by process A in a given block, it is guaranteed that
no other process will access that variable until process A has
left the block that protects the shared variable [8].

The granularity of shared data in Treadmarks is a page.
Treadmarks uses the virtual memory system of the host
machine to invalidate modified copies of shared pages. A page
fault on a shared page causes an invalid page fault signal
(SIGSEGV) to be raised, which is caught by the library. The
lazy release consistency protocol uses invalidation to achieve
time and processor selection. When a process acquires a lock
or exits a barrier, it learns of any changes to shared memory
from the process which last released the lock, and invalidates
modified pages. When a process first accesses an invalidated
page, a page fault is generated. This scheme reduces the
amount of data being transferred by only sending pages that
are accessed.

B. Parallel Virtual Machine

The PVM library is developed around the concept of a vir-
tual machine that provides a single logical machine across the
distributed memory cluster. From a programmer’s perspective,
all processes appear to be on a single machine. A virtual
machine is associated with the user that starts it. The virtual
machine exists as a daemon on each of the nodes in the cluster.
Processes communicate via the daemon, which is responsible
for handling communication between nodes [3].

Within PVM, resource management is dynamic. PVM in-
cludes a console program to manage the virtual machine. The
console allows nodes to be added to or deleted from the virtual
machine and provides process management utilities.

C. Message Passing Interface

The second message passing system is an implementation
of the Message Passing Interface (MPI) standard. The MPI
specification was defined by the MPI Forum in the mid 1990s
to provide a standard message passing interface for system
vendors [9].

The specification is primarily concerned with providing
communication primitives. It defines a large set of functions
for point to point and group communications.

III. APPLICATIONS

Three programs were used in the performance tests: merge-
sort, Mandelbrot set generator, and a back propagation neural
network. Each is described below.

A. Mergesort

Mergesort sorts data items by recursively dividing the items
to be sorted into two groups, sorting each group, and merging
them into a final sorted sequence. Given the recursive nature
of this algorithm, the parallelisation strategy used is divide
and conquer. Each node in the cluster sorts a subsection of the
list. Subsequently, for each pair of nodes, one node merges the
sorted subsections for the two nodes. This process continues
until one node has the fully sorted list. Synchronisation only
occurs between pairs of nodes. Thus Mergesort belongs to the
loosely synchronous class of problems.

B. Mandelbrot Set

A Mandelbrot set contains all complex numbers which do
not run to infinity when iterated through some function [10].
The most commonly used function, and the one used in this
article, is

���������	��
����

where



is a point in the complex

plane and
������� ��� �

.



is presumed to not run to infinity
if its size is less than two after � iterations of the function.
The value used for � is these tests is 1000. Two is used as
the limit for



since it is known that no points with



greater

than two belong in a Mandelbrot set.
The Mandelbrot program not only determines which points

are in the set, but also how quickly points not in the set
run to infinity. This determines the colouring of pictures in
a Mandelbrot set. Thus the result of calculating a Mandelbrot
set is the colour of each pixel representing points in the visible



Fig. 1. A Mandelbrot Set

part of the complex plane. Figure 1 gives an example of a
Mandelbrot set.

The Mandelbrot set problem belongs to the embarrassingly
parallel class of problems [11] and gives an indication of the
performance of the libraries under near ideal conditions. The
problem is parallelised using data partitioning. The image is
divided into sections, and a node calculates a value for the
colour of each pixel in its section. The time taken to calculate
each section differs. Points lying inside the set require iterating
the function one thousand times, while points outside the set
may require as little as one iteration. Therefore a work pool
is used. The visible part of the complex plane is divided
into at least twice as many sections as there are processors.
Each processor is allocated an initial section. As each process
completes, its section is returned to the primary process, and
another section is assigned.

C. Neural Network

A neural network is an attempt to replicate the way a
biological brain works. Because it simulates the brain, it is able
to solve some problems which humans do well, but computers
perform poorly. Examples include pattern recognition and
motor control [12]. A neural network is represented as a
weighted, directed graph. Weights associated with the edges
of the graph represent the synaptic weights of the brain and
are responsible for storing knowledge. Vertexes in the graph
represent the neurons of the brain and are processing elements
in the network. The input to a neuron is the sum of the inputs
of the edges leading to the neuron. The input is added to a
bias for the neuron and passed through an activation function
to determine the output of the neuron.

One class of neural network is the multilayer perceptron
or back propagation network. The neurons are organised into
at least three layers such that connections only exist between
adjacent layers. The first layer represents inputs to the network.
The last layer represents the output. Intermediate layers are
known as hidden layers. Input is presented to the input layer,
passes through the intermediate layers, and emerges at the
output layer.

The network is trained by a two pass algorithm. In the
first pass, an input pattern is propagated forward through the
network using a sigmoidal activation function. In the second
pass, weights associated with the neurons are updated by
calculating an error between the actual output and the expected
output. The error is then propagated backward through the
network to modify the synaptic weights in the hidden layers.
This is repeated for each pattern in the training set.

The presentation of the complete set of training patterns is
known as an epoch. The neural network is trained for a number
of epochs until the error measure, the sum of the squares of the
difference between the expected and actual outputs, is lower
than a specified value. When batch training the network instead
of applying the update directly to the network, we sum the
changes in a weight change matrix and apply the summed
changes at the end of the epoch.

The most efficient way to parallelise a neural network is to
use data partitioning [13]. Each processor trains the network
on a part of the training set, the changes are combined, and
applied to the network at the end of each training epoch. A
neural network belongs to the synchronous class of problems.
The same operation is carried out for each pattern in the
training set. Synchronisation occurs at the end of each training
epoch. Rogers and Skillicorn in [13] note that data partitioning
provides the best results with large data sets.

D. Summary

The applications created represent the three primary prob-
lem classes described by [6]. They represent the majority of
problems that are typically capable of being parallelised.

Mergesort is a loosely synchronous problem. Loosely syn-
chronous problems are similar to synchronous problems but
with coarser grained synchronisation. The algorithms used
may be temporally different leading to irregular synchro-
nisation points. Loosely synchronous applications are char-
acterised by alternating phases of computation and global
communication.

The Mandelbrot Set generator represents the embarrassingly
parallel class of applications. Embarrassingly parallel prob-
lems are the ideal sort of problem to parallelise. While they
may involve complex computation they can be partitioned with
very little or no communication between sections.

The neural network program represents synchronous class
of applications. Synchronous applications are problems char-
acterised by an algorithm that carries out the same operation
on all points in the data set. Processes in a synchronous
application are synchronised at regular points. Synchronous
computation often applies to problems that are partitioned



using data partitioning. [6] found that 70 percent of the first
set of applications they studied belonged to the synchronous
class of applications.

IV. PERFORMANCE TESTS

The performance tests are made on a cluster of 32 Intel
Pentium III (Coppermine) machines with a clock speed of
800 MHz and 128MB or 256MB of memory. Results are
determined for 1, 2, 4, 8, 16, 24, and 32 machines in the cluster
to demonstrate the scalability of the programs. The operating
system is Red Hat Linux 7.2. The machines are interconnected
with standard 100 Mbps Ethernet. All applications are written
in C and compiled with gcc-2.96 using optimisation flag -O2.

All experiments are carried out while the cluster and net-
work are not being used for other purposes. The run-times of
the applications are determined by the gettimeofday() function.
Total run-time is the difference between the start and finish
times of the applications.

The results reported are the time taken to complete the core
algorithm only. The time required for initialisation of processes
is not considered. This is done for two reasons. First, the
method of initialisation is different for each library so the time
cannot be calculated for all of them. Second, the applications
being tested have relatively short run-times compared to more
complex applications which may run for days or weeks. In the
case of long running applications, initialisation time becomes
negligible. Including initialisation time may lead to a distortion
of results for a library which has slower initialisation.

V. RESULTS

This section compares the performance of each of the
libraries for the test applications and discusses the results.

A. MergeSort

The result of parallelising mergesort was poor for the three
libraries. The complexity of this problem is ���������
	��
� which
is similar to the complexity of communications. This causes
communications between nodes to override the increased
performance of adding additional nodes.

Figure 2 shows the speedup achieved when sorting five
million integers, and Figure 3 shows the speedup achieved
for ten million integers. We see a small speedup for all three
libraries with two nodes when sorting five million integers,
however this quickly falls off with the performance for DSM
falling more rapidly. When sorting ten million integers only
MPI shows any improvement as nodes are added. While PVM
maintains a constant performance, the performance of the
DSM program degrades rapidly. This is due primarily to virtual
memory paging.

Treadmarks generates a copy of modified pages to allow it to
create a page differential. The differential is then run-length
encoded to compress the data before transmission over the
network. Thus Treadmarks maintains two copies of modified
memory on a given node. Since a sorting algorithm tends
to modify much of the data allocated to a node, a large
number of page differentials are created. Such action creates a

Fig. 2. Speedup for mergesort for five million integers

Fig. 3. Speedup for mergesort for ten million integers

large memory requirement causing Treadmarks to use all the
available memory faster than the message passing libraries.

Furthermore a DSM program will allocate the total amount
of memory required on every node, even if it only accesses a
subset of that memory. In comparison, the message passing li-
braries allow us to manage more carefully memory allocation.
On each node, we only need to allocate enough memory for
the largest subset of the dataset that the node will be required
to handle.

Increasing the amount of available memory improves the
performance of the Treadmarks mergesort program. Figure 4
shows the times for the DSM and MPI programs running on



Fig. 4. Comparison of performance of DSM with 128MB and 256MB of
memory

Fig. 5. Data sent by mergesort with five/ten million integers

the cluster with 128MB and 256MB of memory. While the
MPI program only shows a small increase in performance,
the DSM program shows a major improvement.

However as the number of nodes increases, the DSM pro-
gram still performs poorly compared to the message passing
programs. Profiling of the libraries shows that the DSM
program generates significantly more network traffic than the
message passing libraries. Figure 5 shows the amount of traffic
generated by all nodes involved in the computation for the
DSM and MPI programs. While both programs send a similar
amount of data when run on two nodes, the DSM program

Fig. 6. Speedup for Mandelbrot set for 1000x1000 image

Fig. 7. Speedup for Mandelbrot set for 2000x2000 image

sends approximately sixty percent more data when run on eight
nodes. The cause of the extra data is the false sharing effect
whereby logically different data items are shared because they
reside on the same physical memory page.

B. Mandelbrot Set

Figures 6 and 7 show the speedup of the Mandelbrot set for
a 1000x1000 pixel and a 2000x2000 pixel image, respectively.

All three libraries performed similarly, with a greater
speedup with the 2000x2000 pixel images. This is expected
as parallel programs generally perform better on larger data
sets. The speedup scales almost linearly up to 24 processors.



After that point, adding additional machines has a decreasing
performance gain. The near linear speedup reflects the embar-
rassingly parallel nature of this problem.

MPI has the best overall performance, with the fastest times,
and the best speedup. While PVM has a better speedup than
DSM, and similar to MPI, for 24 and 32 nodes both DSM and
PVM run in a similar time. The increase in speedup for PVM
is due to a slower time for a small number of nodes. This
appears to be due to the overhead in the use of the “virtual
machine” which is most noticeable with a small number of
nodes.

The Treadmarks DSM program consistently generates ap-
proximately twice as much network traffic as the message
passing programs. Thus it avoids the accelerating increase in
data sent that is the main cause of the poor performance, with
a high number of nodes, of the mergesort and neural network
programs.

C. Neural Network

Testing of the neural network application was done using
two data sets obtained from the UCI machine learning repos-
itory [14]. The first is the shuttle data set drawn from sensor
data recorded during NASA space shuttle missions. Each item
contains nine numerical attributes, with 44,000 items in the
set. The neural network is a three layer 9x40x1 network. The
total number of epochs taken to train the networks for the tests
is 235.

The second training set is the forest cover data set. This data
set contains 54 environmental attributes. The neural network
is required to determine the type of forest cover. The data
set contains a total of 581,012 items from which a random
subset of 72,000 items is used. The neural network is a three
layer 54x160x1 network. It takes 3542 epochs to train this
data set resulting in a run time of approximately 25 hours for
one processor. To simplify our tests, the network was trained
for only 50 epochs.

Figures 8 and 9 show the speedup of the neural network with
the shuttle and forest data sets respectively. With the shuttle
data set, both the message passing libraries perform well, with
the speedup scaling almost linearly up to sixteen nodes before
falling off to achieve a speedup of approximately 21 and 23
with 32 nodes for PVM and MPI respectively. DSM performs
well up to eight nodes after which its speedup drops to less
than one.

With the forest data set, MPI provides the best performance
with a speedup of 21 on 32 nodes. PVM performs similarly
to MPI up to 24 nodes before slowing down a little on 32
nodes. DSM performs comparatively better with the forest data
set obtaining a reasonable speedup with up to 16 nodes then
reducing to a speedup of three with 32 nodes.

The slowdown of the DSM program is primarily due to the
increase in network traffic which saturates the network. As the
number of nodes is increased the volume of network traffic
required also increases. The total network traffic of the MPI
and DSM neural networks is shown in Figures 10 and 11. In
the message passing libraries, where we can explicitly control

Fig. 8. Speedup for Shuttle Data Set

Fig. 9. Speedup for Forest Cover Data Set

the amount of data sent, this increase is linear. In a DSM
environment we do not have direct control of the data being
sent. Since the system must determine which data to send,
extra messages can be generated. This leads to an exponential
increase in the amount of data being transmitted for the neural
network application.

The major cause of the extra traffic is due to the poor
performance of a gather style operation. The changes that need
to be applied to the neural network calculated at each node
are stored locally while processing the epoch, and added to
a global weight change matrix at the end of the epoch. One
process then applies the summed weight change to the weight



Fig. 10. Data sent by neural network with shuttle data set

Fig. 11. Data sent by neural network with forest data set

matrix. This is done to avoid the high level of synchronisation
required if each node updates the global weight change matrix
for each input pattern.

This results in a gather operation in the message passing
libraries where the process which applies the changes gathers
the partial changes calculated at each node (processor). In
the DSM program this is achieved by each node updating
the global weight change matrix. For DSM, this causes the
occurrence of the differential accumulation problem described
by [2]. Each node typically modifies all the values in the
weight change matrix which spans multiple memory pages.
Thus the differential generated for each of those pages by

each node has nearly the same size as that of the page, and
the number of differentials generated for each page equals
to the number of processors. Consequently, the data injected
into the network traffic is N times as much as MPI at this
stage, where N is the number of nodes (processors) involved.
Therefore, the accumulation of these differentials generates
a significant amount of extra traffic especially with a high
number of nodes. This problem is exacerbated from 16 nodes
as the size of the accumulated differentials exceeds the size of
a UDP packet requiring the message to be split into multiple
packets.

Treadmarks also generates a large number of messages
compared to the message passing libraries. This impacts
performance due to the latency associated with each message.
The cause is that Treadmarks generates a new message for
each page that needs to be sent. For the forest data set, the size
of the weight change matrix is approximately 72 kilobytes,
while a page size is 4096 bytes. Thus updating the weight
change matrix requires approximately eighteen messages to
achieve what the message passing libraries achieve in a single
message.

This theory was tested by creating a hybrid version of
the DSM neural network program which used PVM to send
directly the partial weight change from each node to the
process which applies the changes. The speedups for this
program are shown in Figures 8 and 9. The relevant data is
designated as Hybrid in those figures. The network traffic is
shown in Figures 10 and 11.

The hybrid version obtains a speedup through to 32 nodes
for both tests. However the performance beyond eight nodes
for the shuttle data set, and sixteen nodes for the forest data
set is less than the message passing libraries. With 32 nodes
the performance is almost as good as PVM for the forest data
set as PVM begins to slow down. The cause for the increased
performance is the reduction in the amount of network traffic.
Instead of the exponential increase seen for the DSM version,
the hybrid version maintains a linear increase in the amount
of traffic, at approximately 30-60 percent greater than the MPI
version.

The cause of the reduced performance of the PVM version
of the neural network compared to the MPI version is due to
the poor performance of the broadcast operation with PVM.
Figure 12 shows the broadcast performance of both libraries
with message sizes of 16 kilobytes and 1024 kilobytes. These
represent the size of a message containing the weight matrix,
and one containing a section of the dataset respectively. In
both cases the broadcast time for PVM is significantly longer
than the time for MPI, with PVM taking 20 and 10 times
longer to broadcast the small and large messages respectively,
to 32 nodes.

VI. CONCLUSION

The performance of the Treadmarks DSM system was
compared to the PVM and MPI message passing systems. Ap-
plications were chosen to represent three classes of problems
commonly run on distributed computing systems. Mergesort



Fig. 12. Broadcast Performance of MPI and PVM (Note: MPI (16KB) is
along the horizontal axis)

represented the loosely synchronous class. A Mandelbrot set
represented the embarrassingly parallel class, while a neural
network was used for the synchronous class.

The performance of DSM is poorer than PVM and MPI with
mergesort especially as the number of nodes increases. This is
due to virtual memory paging and is helped by increasing the
amount of memory. With the Mandelbrot set, the performance
of DSM is almost as good as PVM and MPI.

For the neural network, DSM shows an improvement as
nodes are added. However after a point, adding nodes reduces
performance. This is the result of a large increase in network
traffic caused by two factors. First, there is false sharing since
Treadmarks shares memory based on entire memory pages.
The second reason is the gather operation involved in updating
the weight matrix.

REFERENCES

[1] R. Brown, “Engineering a Beowulf-style computer cluster,” Jan-
uary 2002, http://www.phy.duke.edu/brahma/beowulf online book/beo
wulf book.html.

[2] H. Lu, S. Dwarkadas, A. Cox, and W. Zwaenepoel, “Quantifying the
performance differences between pvm and treadmarks,” Parallel and
Distributed Computation, vol. 43, no. 2, pp. 65–78, June 1997.

[3] W. Jiang, A. Beguelin, J. Dongarra, A. Geist, R. Mancheck, and
V. Sunderam, PVM 3 Users Guide and Reference Manual, Oak Ridge
National Laboratory, Oak Ridge, Tennessee, USA, 1994.

[4] W. Gropp, E. Lusk, and A. Skjellum, “A high-performance, portable
implementation of the MPI message passing interface standard,” Parallel
Computing, vol. 22, pp. 789–828, 1996.

[5] C. Amza, A. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony,
W. Yu, and W. Zwaenepoel, “Treadmarks: Shared memory computing
on networks of workstations,” IEEE Computer, vol. 29, no. 2, pp. 18–28,
1996.

[6] G. Fox, R. Williams, and P. Messina, Parallel Computing Works. San
Francisco: Morgan Kaufmann, 1994.

[7] Concurrent Programming with Treadmarks, ParallelTools L.L.C, 1996.
[8] Z. Huang, C. Sun, M. Purvis, and S. Cranefield, “A view-based con-

sistency model based on transparent data selection in distributed shared
memory,” Operating Systems Review, vol. 35, no. 2, pp. 51–60, April
2001.

[9] G. Geist, J. Kohl, and P. Papadopoulos, “PVM and MPI: A comparison
of features,” US Department of Energy, Tech. Rep., 1996.

[10] A. Dewdney, “Computer recreations,” Scientific American, pp. 16–24,
1985.

[11] B. Wilkinson and M. Allen, Parallel Programming, 1st ed. New Jersey:
Prentice Hall, 1999.

[12] S. Haykin, Neural Networks: A Comprehensive Foundation. New
Jersey: Prentice Hall, 1994.

[13] R. Rogers and D. Skillicorn, “Strategies for parallelizing supervised and
unsupervised learning in artificial neural networks using the BSP cost
model,” Queens University, Kingston, Ontario, Tech. Rep., 1997.

[14] C. Blake and C. Merz, “UCI repository of machine learning databases,”
1998, http://www.ics.uci.edu/m̃learn/MLRepository.html.


