
COSC462 Lecture 13:
Transparent languages

Willem Labuschagne
University of Otago

Abstract

We introduce the analogues of nouns and verbs into the object
language. The interpretation of sentences now involves denota-
tion in a domain. The expressive power we gain is incremented by
successively introducing variables, function symbols, and sorts.

1 Opaque atoms

Consider the simple Light-Fan System with its two components, the light
and the fan. On previous occasions we were interested in states of the
system determined by which (if any) of two basic facts hold � whether
the light is on, and whether the fan is on. It was su¢ cient to use a
language generated by two atoms, p and q.
Now consider the slightly more complicated Control Room System.

There are still two components, a light and a fan, but there are more
things we want to say about them. Imagine that the light is on a control
panel in the control room, and tells the agent whether the fan, which is
elsewhere, is on. Of course, bulbs can wear out, wires can short-circuit,
and in general things can go wrong. So the states of the system are
determined by four basic facts that may or may not be the case:

� The light may be on (i.e. may be shining) or it may not.

� The fan may be on (i.e. may be spinning) or not.

� The light may be functioning properly (shining when it is supposed
to and being dark when it is supposed to) or the light may be
malfunctioning (may fail to shine when it should shine, or may
shine when it shouldn�t).

� The fan may be functioning properly or may be malfunctioning.

1

If we apply our familiar technique of representing knowledge to the
Control Room System, we discover a weakness of opaque propositional
languages � the language does not make it easy to see when di¤erent
sentences are about the same component or concern the same property.
Take, for example, a propositional language based on the four atoms

in A = fp; q; r; sg, where p stands for the light being on, q for the fan be-
ing on, r for the light functioning correctly, and s for the fan functioning
correctly. This is a straightforward way to represent knowledge about
the Control Room System, precisely analogous to the way in which we
treated the Light-Fan System. But notice that certain things the agent
might know are hidden in this language. For instance, the agent surely
knows that the same component of the system (the light) is involved in
both the fact expressed by p and the fact expressed by r. However, the
letters �p�and �r�are opaque � they don�t let anyone peep inside and
see that they are both asserting something about the light.
In the metalanguage it is possible to say �The light is on�and �The

light is functioning normally�, and these sentences make it explicit that
the same component is involved. Can the agent�s knowledge represen-
tation language be modi�ed to make it a bit more like English, more
transparent?

2 Transparent atoms

To build a transparent language suitable for representing information
about the Control Room System, we need names for the components.
Perhaps we could equip the language with names like �L�for the light
and �F�for the fan. In order to make sentences, the language would need
more than names � it has to have the equivalent of verbs. The verbs of
interest for the Control Room System could be built into the language
as the strings �IsOn�and �IsNormal�. Now the four atomic facts about
the system could be expressed by putting together the names and verbs
as follows.

� IsOn(L) expresses the idea that the light is shining, and is a trans-
parent version of the atom p;

� IsOn(F) expresses the idea that the fan is spinning, and is a trans-
parent version of the atom q;

� IsNormal(L) expresses the idea that the light is functioning prop-
erly, and is a transparent version of r;

� IsNormal(F) expresses that the fan is functioning properly, and
is a transparent version of atom s.

2

Names such as F are called constant symbols, while verbs such as
IsOn are called predicate symbols. A transparent propositional language
is the simplest kind of predicate language, and is really just the usual
sort of propositional language, with a single change � the set of atoms
is A = fIsOn(L), IsNormal(L), IsOn(F), IsNormal(F)g instead of
fp; q; r; sg. As before, compound sentences may be built up by combin-
ing the atoms in familiar ways, using the connectives :, ^, _, !, $
(and if required modal operators like �). Note that although the new
atoms are strings of symbols, these strings cannot be confused with com-
pound sentences, because the atoms themselves contain no occurrences
of connectives and do not have parentheses enclosing them. Thus the
sentences of the language remain unambiguous.

De�nition 1 Let Cons be some set, and let Pred be a function consist-
ing of ordered pairs (P; n) such that the second co-ordinate n is a natural
number.
The set A of atomic sentences induced by Cons and Pred consists

of all strings P (c1; c2; : : : ; cn) such that

� (P; n) 2 Pred

� c1; c2; : : : ; cn 2 Cons.

The members of Cons are the constant symbols of the language we
are building, and they provide names for at least some of the things we
want to talk about in the system of interest. Each ordered pair in Pred
consists of a predicate symbol P together with its arity n, and is the
name of an n-ary relation that is of interest to us.

Example 2 For the Control Room system, we may take Cons = fL; Fg
and Pred = f(IsOn; 1); (IsNormal; 1)g.

In an atom P (c1; c2; : : : ; cn), the constant symbols c1; : : : ; cn are the
arguments of the predicate symbol P , and there are exactly as many
arguments in the atom as the arity of P demands. In the special case
where the arity n of a predicate symbol P is 0, the predicate symbol
takes no arguments. An opaque propositional language may be regarded
as having its set of atoms built up from Cons = ? and a set Pred
whose pairs are all of the form (P; 0). Thus the 0-ary predicate symbols
themselves form the atoms. Clearly, opaque propositional languages are
a special case of the class of transparent propositional languages we are
now in the process of describing.

3

De�nition 3 Let A be a set of atomic sentences induced by sets Cons
and Pred. Then � is a sentence over A i¤ one of the following is the
case:

� � 2 A

� � = (:�) where � is already a sentence over A

� � = (� �) where � and are already sentences over A and � 2
f^;_;!;$g.
The transparent propositional language LA generated from A is the
set of all sentences over A.

The idea is that, in order to build a transparent propositional lan-
guage, one begins by specifying some set of constant symbols and some
set of predicate symbols together with their arities. Then one builds
the atomic sentences of the language by combining each predicate sym-
bol with all possible combinations of the correct number of constants
as arguments. Finally one uses the standard connectives to construct
compound sentences just as one would in any propositional language.

Example 4 Here is a simple language. Take Cons = fa; bg and Pred
= f(P; 1)g. Then A = fP (a); P (b)g. Example sentences of the language
LA are :P (a), P (a) ! P (b), and :P (a) ^ (P (a) ! P (b)). As always,
we omit parentheses where this harmlessly enhances readability.

Predicate languages, or transparent languages, come in various �avours
but they all start with a set of predicate symbols. Using such a language
allows us to understand the allocation of truth values in terms of the
meanings of the constant and predicate symbols. We always have some
intended meaning in mind. A knowledge representation language, to an
applied logician, is not merely a set of strings built up according to some
grammar. Instead we typically start with some system of interest, and
build a language speci�cally to talk about that system. Our attitude
may be summarised by McCarthy�s Axiom:

Axiom 5 No notation without denotation.

So what do we mean when we speak of denotation? How do the
strings of our language get meaning? Recall that the semantics of an
opaque propositional language is provided by an ontology (S; V), where
S is some set of states and V : S �! WA connects S with the set WA of
valuations v : A �! f1; 0g associated with the language. In the case of
a predicate language, we can say a lot more about what states are and
how the valuations arise.

4

3 Interpretations

We arrive at valuations by �rst interpreting the language. To interpret
a predicate language, we specify the denotations of the constant and
predicate symbols. One speci�es the denotation of a symbol by indi-
cating some object, named by that symbol, inside some collection of
things. This collection of things the language is talking about is called
the domain of the interpretation, or the universe of discourse. Usually
we would have created the language to talk about some speci�c domain
of things, namely the components of the system we�re interested in, and
we will call this the intended interpretation.

De�nition 6 Let LA be the transparent propositional language gener-
ated from A, where A is the set of atomic sentences induced by some
Cons and Pred.
An interpretation of LA is a pair D = (D; den) where D is a non-

empty set (the domain) and den is a function (the denotation function)
assigning

� to each constant c 2 Cons a member den(c) 2 D

� to each (P; n) 2 Pred a subset den(P; n) � Dn.

What might be an example of an interpretation? Well, here is a very
simple possibility for our language about the Control Room System.
Take, as domain, the set f0; 8g. Why? Well, because the number 0
resembles the light and so reminds me of what it represents, and because
the number 8 reminds me of the blades of a fan. Thus it seems reasonable
to take the iconic representation 0 as the denotation of the constant
symbol Light and the iconic representation 8 as the denotation of Fan.
Of course, if all we want is a domain in which there are two things

which remind us of the light and the fan respectively, then there is
nothing to stop us from taking the domain to be just the set of constant
symbols fL; Fg.
What we don�t do is to take the domain to be the �real� light and

�real�fan of the system. There are two reasons. In the �rst place, there
may not be a real system � we may want to able to reason about totally
imaginary systems containing winged horses or non-fattening chocolate
cake. But even if the system is real, we cannot exhibit the real com-
ponents to everyone with whom we may wish to discuss the system, so
we would in any case have to represent the system by something more
convenient � and this cannot simply be the sentences of the knowledge
representation language, because that would not give us any certainty
that we understand the sentences in the same way. Think of it like this.

5

If we want to talk to someone about London, it may be impractical to
show them the city itself, but useful to show them photographs or a map
of the city. The interpretation of a language is like a map of the system
rather than the system itself.
There are thus three things for us (the logicians) to keep separate in

our minds �

� the real system of interest (e.g. the real city of London or a pow-
erplant),

� a �map�or iconic representation of the system (typically a mathe-
matical structure, called an interpretation), and

� sentences of the agent�s knowledge representation language.

Interpretations allow agents to have a common ontology, so that they
can be sure they�re talking about the same things. There is a special
kind of interpretation that is often convenient to use, namely term in-
terpretations.

De�nition 7 If D = Cons and for each c 2 Cons, we have den(c) = c,
then D = (D; den) is called a term interpretation.

But why might we want to take the constants of the language as the
objects in the domain of interpretation? Well, imagine that you want
to talk to a friend about something that happened to you in London.
So London is the system of interest. Your intended interpretation may
be a map of London, or even a collection of photographs you took while
on holiday there. But suppose it is not convenient to use your intended
interpretation because you left the photos or map at home. You may
still be able to draw a rough sketch labelled by street names and names
of buildings to remind him of the area, so that he can visualise your
adventure. The rough sketch is a term interpretation.
Here�s a second example. Suppose you are arranging an exhibition of

butter�ies in the museum and have a meeting with the curator. You�d
like to show him your intended interpretation of the system, which is a
brochure with nice coloured pictures of the butter�ies. Unfortunately,
at the time you discuss the arrangements with the curator the brochure
may still be at the printers. So you draw a rough diagram showing the
arrangement of exhibits, making use of the fact that each exhibit is la-
belled with the name of the species so that you can use the labels instead
of accurate pictures of the butter�ies. (The species names are the con-
stants in the scienti�c language used for talking about the butter�ies.)
The rough sketch is a term interpretation.

6

The moral is that term interpretations of a language are very easy
to form, because the language gives you the objects of the domain. And
term interpretations are fairly close to the intended interpretation, be-
cause it was on the basis of the intended interpretation that you would
have chosen the set of names, Cons.
Let us return to our description of how one interprets a language. We

�rst specify the domain � for example, the set Cons = fL; Fg or the set
E = f0; 8g. The second step is to say what the constant symbols of the
language denote, in other words which objects in the domain correspond
to which constants in the language. In the case of Cons, this is obvious
� we let each constant symbol denote itself. So the constant symbol
L of the language is taken to denote the element L 2 Cons. Similarly
the constant symbol F of the language is taken to denote the element
F 2 Cons. Nothing could be simpler. In the case of E, we let L denote
0 and F denote 8. Also very simple.
The third step in interpreting a predicate language is to say what

the �verbs�mean, in other words what the predicate symbols denote. (If
you think of an interpretation as a sort of sketch, then this part has to
do with drawing the lines to connect labelled things.)
The key di¤erence between constant symbols and predicate symbols

is that a constant denotes an individual object while predicate symbols
always denote sets of things. These sets may be small, for instance hav-
ing just a single member or even no members at all (the empty set). Or
the sets may be large. And the things inside the sets may be individual
objects in the domain, or they may be ordered pairs of such elements, or
triples, or more complex things even than that. Di¤erent choices of de-
notations give di¤erent interpretations of the language. In order to make
sensible choices, one must keep in mind the arity of predicate symbols.
The arity of a predicate symbol is the number of arguments that

the predicate symbol expects to be given. Recall how constant symbols
and predicate symbols were combined to form atoms � each predicate
symbol had to be combined with a speci�c number of constant symbols.
The predicate symbol IsOn was combined with the single constant F
to give the atom IsOn(F). In another language there may be predicate
symbols such as IsLessThan which would be combined with two con-
stants at a time, for instance with Zero and Three to form the atom
IsLessThan(Zero; Three). Thus the arity of IsOn is 1, while the arity
of IsLessThan is 2.
Now when we interpret a language and reach the stage of assigning

denotations to the predicate symbols, the rule is the following. A pred-
icate symbol like IsOn which has arity 1 must receive as its denotation
a subset of the domain. A predicate symbol of arity 2 must receive a set

7

of ordered pairs from the domain. A predicate symbol of arity 3 must
receive a set of ordered triples from the domain, and so on. More gener-
ally, the denotation of a predicate symbol P with arity n in a domain D
must be a subset of Dn. By Dn we of course understand the Cartesian
product D �D �D � : : :�D involving n copies of D, so the members
of Dn are n-tuples (d1; d2; : : : ; dn) whose co-ordinates d1; d2; : : : ; dn all
live in D. The cases that are of special interest, because they arise most
frequently, are those in which n = 1 and those in which n = 2. Given
a predicate symbol P of arity 1, the denotation den(P; 1) must be a
subset of D1, and of course D1 is just D. Given a predicate symbol P
of arity 2, the denotation den(P; 2) must be a subset of D2 = D �D =
f(d1; d2) j d1 2 D and d2 2 Dg.
In the case of our illustrative transparent language, both predicate

symbols IsOn and IsNormal have arity 1. Let us choose subsets of
the domain Cons on which we build term interpretations. The domain
Cons = fL; Fg has four subsets, namely ;, fLg, fFg, and fL; Fg. Any
of these may be selected as the denotation of IsOn, and in a similar
fashion any of them may be selected to be the denotation of IsNormal.
In this way we can get di¤erent term interpretations all of which are
built on the same domain.

Example 8 By way of example, let us select fLg as denotation of IsOn,
and fFg as denotation of IsNormal. This gives us one particular term
interpretation of the language, namely D = (D; denD) where

� the domain is the set D = Cons = fL; Fg

� the constant symbol �L�denotes the element L of the domain, writ-
ten denD(L) = L, and the constant symbol �F�denotes the element
F of the domain, written denD(F) = F

� the predicate symbol �IsOn�denotes the subset fLg of the domain,
written denD(IsOn; 1) = fLg, and �IsNormal�denotes the subset
fFg, written denD(IsNormal; 1) = fFg.

Similarly, the domain E = f0; 8g has four subsets, any of which might
be chosen as denotations of IsOn and IsNormal, each choice giving us
a di¤erent interpretation.
We think of the interpretations as picturing the states of a system.

From states we need to go to valuations, so that we can associate truth
values with sentences. Fortunately, every interpretation determines a
particular valuation in a straightforward way. The interpretation is like
a laboratory in which we can go and test which basic facts hold.

8

Let us see how the term interpretation D with domain D = Cons
determines a valuation.
The 4 atoms are IsOn(L), IsOn(F), IsNormal(L), and IsNormal(F).
To check whether the atom IsOn(L) is true relative to the inter-

pretation D, we must �nd out whether the element L of the domain D
belongs to the denotation of IsOn (if it doesn�t, the atom is false relative
to the given interpretation). Since the denotation of IsOn is fLg, and
obviously L 2 fLg, it follows that IsOn(L) is true in D.
On the other hand, the atom IsOn(F) is false relative to D, because

the denotation in D of IsOn is fLg and F =2 fLg.
Similarly, IsNormal(L) is false in D because the denotation in D of

predicate symbol IsNormal is fFg and L =2 fFg.
Finally IsNormal(F) is true in D because denD(IsNormal; 1) =

fFg and F 2 fFg.
So what is the valuation determined by the interpretation? Clearly it

is the function v : A �! f0; 1g given by v(IsOn(L)) = 1, v(IsOn(F)) =
0, v(IsNormal(L)) = 0, and v(IsNormal(F)) = 1. As long as we stick
to the order in which the atoms were displayed above, always mentioning
the light before the fan and the predicate IsOn before IsNormal, the
valuation v can be abbreviated more digestibly as the binary string 1001.

De�nition 9 Let LA be a transparent propositional language and D =
(D; den) an interpretation of LA.
The valuation determined by D is the function v : A �! f0; 1g such

that for every P (c1; : : : ; cn) 2 A,
v(P (c1; : : : ; cn)) = 1 i¤ (den(c1); : : : ; den(cn)) 2 den(P; n).
We write WA for the set of all valuations of LA.

Example 10 Suppose LA is the simple language with Cons = fa; bg
and Pred = f(P; 1)g. The language has four term interpretations D1,
D2, D3, and D4, where

� D1 = (Cons; den1) with den1(a) = a, den1(b) = b, and den1(P; 1) =
?

� D2 = (Cons; den2) with den2(a) = a, den2(b) = b, and den2(P; 1) =
fag

� D3 = (Cons; den3) with den3(a) = a, den3(b) = b, and den3(P; 1) =
fbg

� D4 = (Cons; den4) with den4(a) = a, den4(b) = b, and den4(P; 1) =
fa; bg.

9

LA has two atomic sentences, namely P (a) and P (b). So the valua-
tions vi determined by the interpretations Di are given by

� v1(P (a)) = 0 and v1(P (b)) = 0, since den1(P; 1) = ;

� v2(P (a)) = 1 and v2(P (b)) = 0, since den2(P; 1) = fag

� v3(P (a)) = 0 and v3(P (b)) = 1, since den3(P; 1) = fbg

� v4(P (a)) = 1 and v4(P (b)) = 1, since den4(P; 1) = fa; bg.

If we agree to think of P (a) as the �rst atomic sentence and P (b) as
the second, then the valuations v1, v2, v3, v4 may be abbreviated by 00,
10, 01, and 11 respectively.

We have seen that every interpretation determines a valuation, and
indeed every valuation can be obtained from some interpretation. So as
long as we have either an interpretation or a valuation, we can allocate
truth values to sentences.

De�nition 11 Let D = (D; den) be an interpretation of LA and let v
be the valuation determined by D.
We say that D (or v) satis�es (or makes true) a sentence � of LA

according to the following rules:

� if � 2 A, i.e. � is an atom P (c1; : : : ; cn), then D (or v) satis�es �
i¤ (den(c1); : : : ; den(cn)) 2 den(P; n), which is the same as to say
that v(�) = 1

� D (or v) satis�es :� i¤ D fails to satisfy �

� D (or v) satis�es � ^ i¤ D satis�es both � and

� D (or v) satis�es � _ i¤ D satis�es at least one of � and

� D (or v) satis�es � ! i¤ D satis�es or fails to satisfy �

� D (or v) satis�es � $ i¤ D satis�es both � and or neither.

De�nition 12 An ontology for a transparent propositional language
LA is a pair (S; V) where S is some set of interpretations of LA and the
labelling function V : S �! WA is the obvious one taking an interpreta-
tion D 2 S to the valuation v determined by D.

In other words, we don�t have to work with all the possible interpre-
tations of language LA, we just pick out those we�re interested in and put
them into S. For example, we could stick to just the term interpretations
if we wanted.

10

De�nition 13 If D (or the valuation v determined by D) satis�es � we
say that D (or v) is a model of �.
We writeM(�) for the subset of S consisting of all the models of �

(and also for the subset of WA consisting of all v = V (D) where D is a
model of �). If u 2 WA is a valuation that satis�es � but u 6= V (D) for
any interpretation D 2 S, then we will call u a spurious model of �.

The idea of a spurious model is that there may be more valuations
in WA than realisable states of the system in S, and so we want to be
able to say of a valuation that, yes, technically it would satisfy � but it
can be ignored because it doesn�t correspond to any interpretation we�re
interested in. (We saw this sort of situation earlier, when we encountered
the 3 Card System.)

Example 14 Consider the language LA where A is induced by Cons =
fa; bg and Pred = f(P; 1)g. Let S consist of the four term interpretations
D1, D2, D3, and D4.
Now D1 =2M(P (a)) since den1(P; 1) = ; and so den1(a) =2 den1(P; 1).

We may equally well say that v1 =2 M(P (a)) since v1 is the valuation 00
and we have agreed to think of the atomic sentences in the order P (a)
�rst and P (b) second.
On the other hand, D2 2 M(P (a)) since den2(P; 1) = fag. Equally,

we may say that v2 2M(P (a)) since v2 is the valuation 10.
Moving to a more interesting sentence, D4 2M(P (a)$ P (b)) since

den4(P; 1) = fa; bg so that D4 satis�es both P (a) and P (b), and we may
equally well say that v4 2M(P (a)$ P (b)).

Let�s look at some other important ideas and see whether they are
easy to formalise.
Firstly, there is an important predicate symbol we may want to use

in our language, namely (=; 2). The idea is that this binary predicate
symbol stands for equality.

De�nition 15 If (=; 2) 2 Pred then we call LA a language with equal-
ity and insist that, in every interpretation D = (D; den) of the language,
den(=; 2) must be the identity relation ID = f(d; d) j d 2 Dg.

There are also special properties sentences may possess.

De�nition 16 Let X � S and let � 2 LA.

� � is valid i¤ M(�) = S

� � is a tautology i¤ every v 2 WA satis�es �

11

� � axiomatises X i¤ X =M(�)

� � is a contradiction i¤ M(�) = ?

Since S may be smaller than WA, we may have sentences that are
satis�ed by all the interpretations in S but which are not tautologies,
and so we introduce the term �valid�to describe them. One of the most
important ideas in logic is that of having some subset of interpretations
(or valuations) and being able to describe those particular interpretations
(or valuations) in the language, at least well enough to distinguish them
from any other bunch of interpretations (or valuations. This is what
axiomatisability is about. By way of example, we might say that P (b)
axiomatises fD3;D4g above.
This brings us to the most important logical concept of all � en-

tailment. We restrict consideration to classical entailment, but there is
nothing except lack of space that prevents us from talking about defea-
sible entailment as well.

De�nition 17 Let �; � 2 LA. Then � � � i¤ M(�) � M(�) and
� � � i¤ M(�) =M(�).

For example, P (a) $ P (b) � P (a) ! P (b) but it is not the case
that P (a) $ P (b) � P (a) ! P (b). We may think of equivalence (the
relation �) as being derived from entailment, because � � � i¤ both
� � � and � � �.

Exercise 18 1. Consider LA where A is induced by Cons = fag and
Pred = f(P; 1); (Q; 1)g.

� Write down the atomic sentences and the term interpretations
of LA. Give the valuation determined by each term interpre-
tation (you may write valuations as binary strings). Do any
other valuations exist, i.e. are there any other functions from
A to f0; 1g?

� Write down a tautology and a contradiction.
� Find a sentence entailed by P (a), another sentence that en-
tails P (a), and a third sentence equivalent to P (a).

2. Consider LA where A is induced by Cons = fa; bg and Pred =
f(P; 1); (Q; 1)g.

12

� Write down the atomic sentences and the term interpretations
of LA. Give the valuation determined by each term interpre-
tation (you may write valuations as binary strings). Do any
other valuations exist, i.e. are there any other functions from
A to f0; 1g?

� Write down a tautology and a contradiction.
� Find a sentence entailed by P (a)^Q(b), another that entails
P (a) ^Q(b)), and a third equivalent to P (a) ^Q(b).

3. Consider LA where Cons = fa; bg and Pred = f(=; 2)g.

� Write down the atomic sentences and the term interpretations
of LA. Give the valuation determined by each term interpre-
tation (you may write valuations as binary strings). Do any
other valuations exist, i.e. are there any other functions from
A to f0; 1g?

� Write down a tautology and a contradiction.
� Find a sentence entailed by = (a; a), another that entails =
(a; a), and a third equivalent to = (a; a).

4. Consider LA where Cons = f: : : ;�2;�1; 0; 1; : : :g and Pred =
f(P; 2)g. This language would be suitable for representing knowl-
edge about the set of integers, with the predicate symbol P intended
to stand for the usual order relation �. One of the term interpre-
tations of the language is an accurate representation of the set of
integers. Which one? Give an example of a term interpretation
which is emphatically not an accurate representation of the set of
integers. Give a sentence which is true in the inaccurate represen-
tation but false in the accurate representation.

5. As exercises in knowledge representation, we describe several �re-
alistic� systems. In each case, decide on suitable sets Cons and
Pred. By �suitable� we mean that the language that results from
your choice should be able to express the basic facts that are rel-
evant but need express no others. For convenience you may use
letters like �a�, �b�, �c� as your constant symbols and letters like
�P�, �Q�, �R�as your predicate symbols.

� Consider the Control Room System having two components,
a light and a fan, each of which may be on or o¤, and each of
which may be normal or defective. We have described suitable
sets Cons and Pred already. Describe a term interpretation

13

that represents the state of the system in which the light is o¤
but functioning correctly.

� Consider a system whose two components are the horses Andy
and Bandy. The horses may or may not need to be fed, and
they may or may not need to be groomed. Describe suitable
set Cons and Pred. Describe a term interpretation that rep-
resents the state of the system in which both horses need to be
fed but neither horse needs to be groomed.

� Consider a system whose two components are the persons
Glawen Clattuc and Bodwen Wook. These persons may or
may not hold themselves or each other in high esteem. De-
scribe suitable sets Cons and Pred. Describe a term interpre-
tation that represents the state of the system in which Glawen
has high self-esteem but neither person holds the other in high
esteem and Bodwin knows that he himself is a twit.

� Consider a variant of the Light-Fan-Heater System. There
are three components � a light, a fan, and a heater. Each
component may be either on or o¤. Each component may
be either normal or defective. Describe suitable sets Cons
and Pred. Describe a term interpretation that represents the
state of the system in which the components are all on and
functioning correctly.

� Consider the 3 Card System. There are three players (num-
bered 1, 2, and 3) and three cards (red, green, and blue). Sup-
pose one card is dealt to each player. Such a deal is a state of
the system. Describe suitable sets Cons and Pred. Describe
a term interpretation that does not represent a state of the
system. Which term interpretations represent states?

� Consider an urn containing n balls (numbered so that we
may distinguish between di¤erent balls). Suppose each ball
is painted one of k colours. How would you visualise a state
of the system? Describe suitable sets Cons and Pred. De-
scribe a term interpretation that does not represent a state of
the system. Which term interpretations represent states?

� Consider an urn containing n balls, but assume that the balls
are not numbered, so that balls of the same colour are indis-
tinguishable. Suppose each ball is painted one of k colours.
Now how would you visualise a state of the system? Describe
suitable sets Cons and Pred. Describe a term interpretation
that does not represent a state of the system. Which term
interpretations represent states?

14

4 Variables

We have discussed transparent propositional languages built up from
atomic sentences that were induced by constants and predicate sym-
bols. Such languages may usefully be interpreted in a very simple way,
namely by term interpretations. Term interpretations, and transparent
propositional languages, make sense when the system of interest has a
blueprint.
By a blueprint we mean, intuitively, a way to link each member of

a stable collection of components to a name, for example by drawing
pictures of the components and labelling them. A system can have
a blueprint only if its components are clearly distinguishable and do
not �uctuate erratically the way the members of, say, the class of all
sparrows change over a relatively brief interval due to births and deaths.
The Light-Fan System can be blueprinted, of course. A petrie dish full
of bacteria is not a blueprintable system, because the silly little things
either die or divide every few minutes. A car is a blueprintable system,
because you can imagine it being accompanied by a reference manual
containing pictures of the components showing where they �t in. A town
is a blueprintable system, because you can imagine drawing a map of it
on which every place of interest is identi�ed and its location relative to
other places is shown. A business organisation is a blueprintable system,
because you could design a database listing every employee together with
relevant data about how each �ts into the company hierarchy.
Although we have used the term �blueprint�, we shall not usually

draw pictures or diagrams. Instead we try to represent states by means
of abstract �mathematical�pictures.
A term interpretation is a very simple way to represent a state of

a blueprintable system. But not all systems are blueprintable. What
would an unblueprintable system be like, and what sort of transparent
language would suit it?
A system such as the set of all beetles is unblueprintable. Although

it is a �nite system, it is in a sense open-ended � somehow it seems im-
practical and pointless to attempt to give each component of the system
a name of its own, because components are coming into existence and
�ickering out of existence all the time. The total number of components
at a given moment is a random matter, not a matter of system design.
In fact, design and structure are lacking in the system. To feel this,
just contrast the vague collection of all beetles with the more structured
collection of beetle specimens in a museum. The museum collection has
the necessary stability and structure to be blueprintable � we can paste
a label onto each of the beetles in the display cabinets. But we don�t
have names for all the elements of unblueprintable systems.

15

How do we cope in natural language when talking about objects for
which we do not have names? We typically use pronouns like �it�or �he�
or �she�. We might point at a beetle and say �It is small�or �This is small�.
Occasionally we have a way to uniquely identify the object by a name
or a phrase that serves the same purpose as a name: �Queen Elizabeth�s
pet beetle is small�. But normally we use a variable like �it�or �this�,
whose denotation has to be established by some form of pointing. In the
absence of pointing, it is impossible to decide whether �it is red�is true
or false. Given some form of pointing, we can check whether the thing
denoted by the variable �it�really does have the property in question.
To build a language with variables is not hard. To the set Cons of

constants we add a set V ar of variables, and we allow both constants
and variables to be arguments of predicate symbols.
How many variables? Unblueprintable systems may be either �nite

or in�nite, but even in the former case there is usually no neat upper
limit on the number of components. In order to ensure that there are
enough variables, it is customary to take the countably in�nite set V ar =
fx1; x2; : : :g.
What changes when we add variables to a language? Term inter-

pretations are no longer very useful, because the system of interest is
probably not blueprintable and so there will be components of the sys-
tem that do not have names in the language. To use a general interpre-
tation instead of a term interpretation, the domain has to be carefully
speci�ed. Also, an interpretation on its own will no longer be su¢ cient
to ensure that every grammatically correct string of the new language
has a truth value, because the denotation function doesn�t say what the
variables mean. An additional step is necessary, in which each variable
is given a denotation inside the domain (like pointing to a particular
beetle). Prior to this step, the grammatically correct strings will be of
two kinds. Some strings will get truth values in the familiar way from
the interpretation, and these we continue to call sentences. Others will
be like equations � they contain variables and will be true for certain
values of the variables, false for other values of the variables. We shall
need a word to use for talking about strings of the language that may
or may not be sentences, and we choose well-formed formula.

De�nition 19 Let V ar = fx1; x2; : : :g and let Cons be a set disjoint
from V ar. Let Pred be a function consisting of pairs (P; n).
By a term we understand a constant or a variable, i.e. Term =

Cons [V ar.
By the set of atomic formulas induced by Term and Pred we un-

derstand the set A of all strings P (t1; t2; : : : ; tn) such that (P; n) 2 Pred
and t1; t2; : : : ; tn 2 Term.

16

Example 20 Start with Cons = fa; bg and Pred = f(P; 1)g. Now
add V ar = fx1; x2; : : :g. Then Term = fa; b; x1; x2; : : :g and the set
of atomic formulas is A = fP (a); P (b); P (x1); P (x2); : : :g.

In case you�re wondering, we may still speak of atomic sentences �
these are just the atomic formulas that contain no variables, i.e. that
are built up from Cons and Pred as before.

De�nition 21 Let A be the set of atomic formulas induced by Term
and Pred. Then � is a propositional well-formed formula (abbreviated
w¤ , pronounced �woof�) i¤ one of the following is the case:

� � 2 A

� � = :�, for some previously constructed w¤ �

� � = � � , where � and are previously constructed w¤s and
� 2 f^;_;!;$g.
If � is a w¤ in which no variable occurs, we call � a sentence.

By LA we understand the set of all propositional w¤s.

Example 22 Let A be as before. An example of a w¤ which is not a
sentence is P (b) _ :P (x25), whereas P (b) ^ :P (a) is a sentence.

Our de�nition speaks of �propositional�w¤s, because we have used
only the familiar propositional connectives to build up w¤s from atomic
formulas. We could add new operators to the connectives and in that
way get other kinds of w¤s, such as modal w¤s or (coming up next
lecture) �rst-order w¤s.

De�nition 23 Let LA be the language of propositional w¤s generated
from A, where A is the set of atomic formulas induced by some Term
and Pred.

� As before, an interpretation of LA is a pair D = (D; den) where
the domain D is a nonempty set and the denotation function den
assigns to each constant c 2 Cons a member den(c) 2 D and to
each (P; n) 2 Pred a subset den(P; n) of Dn.

� Given an interpretation D of LA, a variable assignment is a
function s : V ar �! D.

� An interpretation D together with a variable assignment s is called
a state (D; s).

17

A variable assignment is what must be added to an interpretation in
order to ensure that all terms have denotations and that we know what
each w¤ is talking about. Thus a variable assignment is the analog of
pointing at anonymous (unnamed) components of a system. The e¤ect
of adding a variable assignment to an interpretation is to give a context
that makes it clear what each variable means, and this will determine a
valuation. First we practice.

Example 24 Let LA be generated from A = fP (a); P (b); P (x1); P (x2); : : :g
as before. One possible interpretation of LA is D = (D; den) with
D = f1; 2; 3g, den(a) = 1, den(b) = 2, and den(P; 1) = f1; 3g.
Relative to D there are many variable assignments. Some are quite

simple-minded, like the function s1 : V ar �! f1; 2; 3g given by s1(x) = 2
for all x 2 V ar. Others have more variety, like the function s2 : V ar �!
f1; 2; 3g given by s2(xi) = 1 if i is odd and s2(xi) = 2 if i is even. We
notice that neither s1 nor s2 is surjective, which means that there are
elements of D that never get the chance to be values of variables. But
there is nothing to stop a variable assignment from being surjective like
the function s3 : V ar �! f1; 2; 3g given by s3(x1) = 1, s3(x2) = 2, and
s3(xi) = 3 if i > 2.

States are the engines that drive the allocation of truth values.

De�nition 25 Let LA be the language of propositional w¤s generated
from A, where A is the set of atomic formulas induced by some Term
and Pred.
Let D = (D; den) be any interpretation of LA and s : V ar �! D a

variable assignment.
The valuation determined by (D; s) is the function v : A �!

f0; 1g such that for every P (t1; t2; : : : ; tn) 2 A, v(P (t1; t2; : : : ; tn)) = 1
i¤ (d1; d2; : : : ; dn) 2 den(P; n) where, for every i � n, di = den(ti) if
ti 2 Cons and di = s(ti) if ti 2 V ar.
By WA we mean the set of all valuations of LA.

The idea is that den is used to �nd the denotations of constants and
s the denotations of variables. Consider in turn the examples of variable
assignments given above.

Example 26 The valuation v1 determined by D and s1 makes v1(P (a)) =
1 since den(a) = 1 2 den(P; 1), makes v1(P (b)) = 0 since den(b) =
2 =2 den(P; 1), and for each xi 2 V ar, makes v1(P (xi)) = 0 since
s1(xi) = 2 =2 den(P; 1).
The valuation v2 determined by D and s2 makes v2(P (a)) = 1 since

den(a) 2 den(P; 1), makes v2(P (b)) = 0 since den(b) =2 den(P; 1), and

18

for each xi 2 V ar, makes v2(P (xi)) = 0 if i is even, since then s2(xi) =
2 =2 den(P; 1), while v2(P (xi)) = 1 if i is odd, since then s2(xi) = 1 2
den(P; 1).
The valuation v3 determined by D and s3 makes v3(P (a)) = 1 since

den(a) 2 den(P; 1), makes v3(P (b)) = 0 since den(b) =2 den(P; 1), and
for each xi 2 V ar, makes v3(P (xi)) = 1 if i = 1, since s3(x1) = 1 2
den(P; 1), makes v3(P (xi)) = 0 if i = 2, since s3(x2) = 2 =2 den(P; 1),
while v3(P (xi)) = 1 if i > 2, since then s3(xi) = 3 2 den(P; 1).

Once we have a valuation, we know how truth values are allocated
to w¤s. Of course, we are interested only in the valuations determined
by states.

De�nition 27 Let LA be the language of propositional w¤s generated
from A, where A is the set of atomic formulas induced by some Term
and Pred.
Let D = (D; den) be any interpretation of LA and let s : V ar �! D

be a variable assignment in D. Let v be the valuation determined by the
state (D; s).
We say that the state (D; s) satis�es a w¤ �, or that s satis�es � in

D, or that v satis�es �, according to the following rules:

� s satis�es an atomic formula P (t1; t2; : : : ; tn) in D i¤ (d1; d2; : : : ; dn) 2
den(P; n) where, for every i � n, di = den(ti) if ti 2 Cons and
di = s(ti) if ti 2 V ar

� s satis�es :� i¤ s fails to satisfy �

� s satis�es � ^ i¤ s satis�es both � and

� s satis�es � _ i¤ s satis�es at least one of � and

� s satis�es � ! i¤ s satis�es or failed to satisfy �

� s satis�es � $ i¤ s satis�es both � and or neither.

Note that if � is a sentence, i.e. has no variables occurring in it,
then the truth value assigned to � relative to an interpretation D is
independent of the choice of variable assignment � if any variable as-
signment satis�es � in D, then all variable assignments satisfy � in D.
(To see this, observe that in atomic formulas it is only the variables
whose denotations are a¤ected by the choice of variable assignment.)

19

Example 28 Returning to our previous example, s1 satis�es :P (x100)
in D and s3 satis�es P (a)^P (x100) in D. The sentence P (a) is satis�ed
by every variable assignment in D, since den(a) = 1 and 1 2 den(P; 1)
regardless of the variable assignment.

Now that we have de�ned satisfaction, we need to de�ne the notions
of ontology and model.

De�nition 29 Let LA be the language of propositional w¤s generated
from A, where A is the set of atomic formulas induced by some Term
and Pred.
An ontology for LA is a pair (S; V) where S is some set of states

(D; s) and V : S �! WA is the obvious labelling function taking a state
(D; s) to the valuation v determined by (D; s).
Let D = (D; den) be any interpretation of LA and let � 2 LA.
If s : V ar �! D is a variable assignment satisfying � in D, then

(D; s) is a local model of �, and so is the valuation determined by
(D; s).
We write M(�) for the subset of S consisting of all local models of

� (or equivalently we may write M(�) for the subset of WA consisting
of all valuations determined by states in S that satisfy �).
If every variable assignment s : V ar �! D satis�es � in D, then we

call D a global model of �.

Why do we have two notions of model? Local models are more closely
associated with valuations. But global models are interesting too. Just
for a moment forget about the object languages we�ve de�ned and think
of what one does with equations in mathematics. Equations are used in
two ways. Given an equation like x2 = 9 we may seek the values of x
which �satisfy�the equation. This is like �nding the variable assignments
or local models that satisfy a w¤. We use local models when we have
a w¤ and want to �nd out under what conditions that w¤ will be true.
On the other hand, given an equation like x + y = y + x, we are most
likely going to use it as an �identity�, in other words we have in mind
some domain like the set of integers in which the equation is satis�ed
for all values of x and y. We would use global models (as opposed to
local models) when we have a w¤ and would like to �nd out under what
interpretations the w¤ will be �identically�true.
Let�s explore the new notion of global model.

Example 30 Returning to our previous example, D is a global model of
:P (b) since every variable assignment satis�es the w¤ :P (b) in D. To
verify this is not hard. Whatever the assignment, say s, the satisfaction

20

of P (b) depends on whether den(b) 2 den(P; 1), which resolutely refuses
to be the case quite independently of s, and so s satis�es :P (a) in D.
Is D a global model of P (a)? Indeed it is, because every assignment

satis�es P (a) in D. As in the case of b above, a is a constant and
den2(a) = 1 2 den2(P; 1) irrespective of the assignment.
On the other hand, D is not a global model of P (x1). Some assign-

ments do satisfy this w¤, for instance s2 where s2(xi) = 1 if i is odd
and s2(xi) = 2 if i is even, because s2(x1) = 1 2 den(P; 1). But not
every assignment will satisfy P (x1) in D. For instance, if we de�ne s4
by requiring that s4(xi) = 2 for i � 1000 and s4(xi) = 3 for i > 1000,
then s4 fails to satisfy P (x1) in D.

When variables occur in a w¤, it becomes possible for the choice
of assignment to change the truth value assigned to the w¤. But the
examples illustrate a surprising and satisfying fact � the truth value
of a sentence (a w¤ without variables) depends only on the interpreta-
tion and is una¤ected by the choice of assignment. We see a di¤erence
between states and interpretations echoing the di¤erence between w¤s
and sentences. A sentence divides the set of all interpretations into two
complementary subsets consisting respectively of the global models of
the sentence and those that are global models of its negation. Similarly
a w¤containing variables divides the set of states into a set of local mod-
els and the complementary set of local nonmodels. But a w¤ containing
variables divides the set of interpretations into three disjoint subsets �
those that are global models of the w¤, those that are global models of
its negation, and those that are �undecided�.
The notions of local model and global model would allow us to de-

�ne two di¤erent classical entailment relations by analogy with previous
de�nitions in simpler languages, but we shall stick to local models.

De�nition 31 � � � i¤ M(�) �M(�).

Exercise 32 In each of the following, assume that the language contains
variables.

1. Suppose Cons = fa; bg and Pred = f(P; 1)g so that Term =
fa; b; x1; x2; : : :g and A = fP (a); P (b); P (x1); P (x2); : : :g. Describe
an interpretation of LA in which the domain has just one element.
Write down all variable assignments. Write down a w¤ of which
the interpretation is a global model. Give details of your reasoning.

2. Suppose Cons = fag and Pred = f(=; 2)g, in other words the
predicate symbol is intended to represent equality. Write down a
w¤ � such that every global model of � is an interpretation whose
domain contains exactly one member.

21

3. Suppose Cons = fag and Pred = f(P; 1); (Q; 1)g.

� Describe an interpretation D1 = (D1; den1) which is a global
model of P (a)^:Q(a) but not of P (x1)^:Q(x2). Give details
of your reasoning.

� Describe an interpretation D2 = (D2; den2) which is a global
model of P (x1) ^ :Q(x2). Give details.

� Let D = (D; den) be the interpretation with D = f0; 1; 2; : : :g,
den(a) = 0, den(P; 1) = fn j n is eveng, and den(Q; 1) =
fn j n is oddg. Find variable assignments s and s0 which
respectively satisfy and fail to satisfy the w¤ P (x4) in D. Is
D a global model of the w¤ P (x4)_Q(x4)? What about P (x4)_
Q(x5)?

4. Suppose Cons = fa; bg and Pred = f(P; 2)g.

� Describe an interpretation D1 = (D1; den1) which is a global
model of P (a; b) ^ :P (b; a).

� Describe an interpretation D2 = (D2; den2) which is a global
model of P (x1; x1)^:P (a; b). Give details of your reasoning.

� Let D = (D; den) be the interpretation with D = f0; 1; 2; : : :g,
den(a) = 0, den(b) = 1, and den(P; 2) = f(n;m) j n � mg.
Find variable assignments s and s0 which respectively satisfy
and fail to satisfy the w¤ P (b; x1). Is D a global model of the
w¤ P (a; x1)? What about P (b; x1) _ P (x1; b)?

� Find an example of w¤s � and � such that � � �.

5 Function symbols

Next we consider a way in which to represent knowledge of dependency.
The trick applies to both blueprintable and unblueprintable systems, but
for simplicity we begin by considering the blueprintable case. Imagine
that the simple Light-Fan System, which has just two components, is
augmented by the addition of two software switches that allow you to
control the light and fan via the Internet. The new Light-Fan-Switches
System has four components � the light, the fan, a (software) switch to
put the light on or o¤, and a (software) switch to put the fan on or o¤.
It would be possible to represent knowledge about this new sys-

tem by employing the approach described in previous sections. We
could take Cons to be a set of names for the four components, say
Cons = fL; F; SL; SFg. Together with the predicate symbol IsOn four

22

atoms are generated, and the sixteen term interpretations of the lan-
guage determine the various ways in which truth values can be allocated
to these atoms.
But consider � the new augmented system was not obtained by

adding two arbitrary new components. Each of the new components
in some sense �belongs�to one of the old, i.e. depends for its existence
upon one of the old components. Also, the new components were added
in a uniform way, each old component being supplemented by the same
sort of thing, namely a switch. So there is a single relationship of de-
pendence of new components upon old, rather than a random collection
of di¤erent relationships. And �nally, each of the new components can
be uniquely identi�ed by mentioning which old component it depends
upon. Thus the relationship of dependence between new components
and old is, mathematically speaking, a function.
To each old component, there is assigned exactly one new component.

This assignment may be represented by the function f where f(L) = SL
and f(F) = SF . Functional notation provides convenient alternative
names for the switches, for we may write f(L) as an alternative name
for SL and f(F) as an alternative name for SF . Not only do these
alternative names make explicit the dependence of the new component
upon the old, but we can talk about, say, the fan�s switch without even
knowing that it is component named SF that we are talking about. This
is a subtle trick routinely used in everyday life, as when we speak of �The
chap whose o¢ ce is opposite the �re escape�without needing to know his
name, or �The capital of Sri Lanka�without needing to consult an atlas
to �nd out that it is called Colombo. This is particularly convenient
for discussions of global politics, as we may speak of �the president of
the USA�or of �the prime minister of Britain�without knowing which
morally challenged intellectual pygmy is currently desecrating that o¢ ce.
Phrases such as �the fan�s switch�or �the capital of Sri Lanka�are

de�nite descriptions. In natural languages like English, de�nite descrip-
tions are noun phrases that involve the de�nite article �the�, and which
therefore pick out a single object of some kind. A noun phrase using
the inde�nite article, such as �a noun phrase�would not be a de�nite
description, because it doesn�t pick out a unique thing. Functions o¤er
a simple way to include de�nite descriptions in the knowledge repre-
sentation language, though not the only way. The notation f(L) is a
formal analog of the English phrase �the light�s switch�. More generally,
such notation makes it possible to write f(x) as an analog of the English
phrase �its switch�, which prepares the way for the expression of such
potentially useful but slightly vague ideas as �Some component�s switch
is o¤�.

23

Before stipulating precisely how the object language is to be equipped
with symbols that will furnish analogs for de�nite descriptions in the
metalanguage, let us look at three more examples of systems in which
some components have this kind of functional relationship with other
components.
Let�s model the local government of some town. Voters have repre-

sentatives on the town council, elected according to a system of neigh-
bourhoods or precincts, so that a number of voters have the same repre-
sentative. The relationship between voters and councillors is functional,
each voter being represented by a unique councillor. And the councillor
depends on her voters, for Councillor Smith represents the voters of one
precinct while Councillor Crowe represents a di¤erent precinct. Suppose
the function g indicates the relationship of dependence. Then we can
speak of the councillor representing a particular voter without needing
to know that councillor�s name. If the constant d1 in the object language
stands for the elderly Mrs Mackenzie of the quiet suburb Victoria Park,
then g(d1) is her councillor, whomever that may be.
Or suppose you inherit vast wealth and decide to breed racehorses.

You will wish to keep track of the sires and dams of your horses. Each
horse has exactly one sire, so that the relationship between horses and
their sires can be encoded as a function. Similarly, each horse has exactly
one dam, giving another functional relationship.
Suppose, �nally, that you while away the hours between visits to your

stables by pursuing an interest in mathematics, and that your interest is
in the set of integers. For every integer n there is a next integer, bigger
by 1, called the successor of n. The relationship between integers and
their successors is functional. A similar functional relationship obtains
between integers and their immediate predecessors. And the relationship
between pairs of integers and their sum is also functional.
Having established that systems often contain functional dependen-

cies, let us now consider how to encode these in the object language.

De�nition 33 Let the sets Cons, V ar, and Pred be given. Let Fun
be any function consisting of ordered pairs (f; n), where n is a natural
number called the arity of the function symbol f .
The set Term of terms consists of all strings t such that one of the

following is the case:

� t 2 Cons

� t 2 V ar

� t = f(t1; t2; : : : ; tn) where (f; n) 2 Fun and t1; t2; : : : ; tn are previ-
ously generated terms.

24

Given the set Term, the next step is to de�ne the set of atomic
formulas and then the set of well-formed formulas. This is routine.

De�nition 34 An atom is a string of the form P (t1; t2; : : : ; tm) where
(P;m) 2 Pred and t1; : : : ; tm are terms.
W¤s are built up from the atoms by connectives in the usual way.

If the intention were to construct a knowledge representation lan-
guage for a blueprintable system, the set V ar would be omitted and
neither the terms nor the atoms of the resulting language would contain
variables. The inclusion or omission of function symbols is independent
of the inclusion or omission of variables, and depends only on whether
we, the logicians, want to take advantage of a functional relationship
between components.
Let us examine an example of a language with function symbols.

Example 35 Take Cons = fag, V ar = fx1; x2; : : :g, Pred = f(P; 1)g,
and Fun = f(f; 1)g. The set of terms is built up in stages. In the �rst
stage, the following are included: a; x1; x2; : : : During the second stage the
following more complex terms are added to those constructed previously:
f(a); f(x1); f(x2); : : : The third stage adds f(f(a)); f(f(x1)); f(f(x2)); : : :
In this fashion terms of tremendous complexity may be built up, in a mil-
lion steps or more. The set Term consists of all the terms that can be
constructed in �nitely many steps, no matter how long it may take to
actually do so. Using Term, the atoms of the language are the follow-
ing, where we arrange them according to the complexity of the terms
appearing in them:
P (a); P (x1); P (x2); : : :
P (f(a)); P (f(x1)); : : :
P (f(f(a))); P (f(f(x1))); : : :
And so on.

In the de�nition of Term we have permitted Fun to contain pairs of
the form (f; 0). What is a function of arity 0?
Well, let�s put it in perspective �rst. A binary function is a function

f : X �! Y where X = Y1 � Y2 for some sets Y1 and Y2. In general an
n-ary function is a function of the form f : X �! Y where X = Y1 �
Y2� : : : Yn so that the inputs to the function are n-tuples (y1; y2; : : : ; yn)
with yi 2 Yi. Often we are interested in the special case of Y = Y1 =
Y2 = : : : = Yn. A function f : Y n �! Y is called an n-ary operation on
Y , and it is easy to �nd examples in which n = 1; 2; or even 3. In order
to attach meaning to the case where n = 0 we need to know that in
set theory Y 0 = f?g, no matter what the set Y may be. So a function

25

f : Y 0 �! Y has just one (uninteresting) input, and in e¤ect selects
a member of the set Y (the output value f(?)). Note that the 0-ary
function f doesn�t actually take a member of Y as input argument.
Why might 0-ary functions be useful? Well, the basic idea is that

a term is an expression of the language that, when the language is in-
terpreted, will denote an individual object in the domain. For function
symbols of arity n � 1, the terms built up with their aid depend for
their denotations upon the denotations of other terms. For example, the
term f(a) depends for its denotation upon a previous decision about the
denotation of the constant a. But, like a constant, a 0-ary function f is
interpreted directly, its denotation being independent of the denotations
assigned to other terms. Thus you may think of constants as really be-
ing 0-ary functions, so that languages containing constants constitute a
special case of languages containing function symbols.
Let us formalise the idea that terms should denote individual mem-

bers of the domain of interpretation.

De�nition 36 Let LA be the set of propositional w¤s built up with the
aid of the usual connectives from A, where A is the set of atomic formulas
induced by Term and Pred, and Term is built up with the help of Fun.
An interpretation of LA is a pair D = (D; den) where the domain D

is a nonempty set and the denotation function den is such that

� den assigns to every c 2 Cons a member den(c) 2 D

� den assigns to every (f; n) 2 Fun an n-ary operation den(f; n) :
Dn �! D

� den assigns to every (P;m) 2 Pred a subset den(P;m) � Dm.

Given an interpretation D = (D; den), a variable assignment is, as
before, a function s : V ar �! D. We continue to refer to a pair (D; s)
as a state.

An interpretation tells us what the constants denote, and in fact does
more � it tells us what the denotations are of all �ground�terms, the
terms built up without the use of variables. As one would expect, the
denotations of terms containing variables are determined by a variable
assignment s.

Example 37 Let LA be the language built up from Cons = fag, V ar =
fx1; x2; : : :g, Pred = f(P; 1)g, and Fun = f(f; 1)g. We can give two
very di¤erent interpretations D and E of LA.

26

Take D = (D; denD) to haveD = f113g and denD such that denD(a) =
113, denD(P; 1) = ;, and denD(f; 1) : D �! D the function f(113; 113)g.
Thus the domain D has a single member, the number 113. And so the
denotation function denD must make the constant a act as a name for
113. Note also that there is only one function from f113g to f113g,
namely that which assigns the output 113 to the input 113. Thus denD
has no alternative but to make this function the denotation of the func-
tion symbol f . Now we can say what the denotation of a term like f(a)
is � we simply go to the function denoted by f , feed it the thing denoted
by a, and see what it spits out. In this case, denD(f; 1) is the func-
tion which assigns to the input denD(a) = 113 the corresponding output
denD(f; 1)(113) = 113. So f(a) denotes 113 too. So does f(f(a)). So
does f(f(f(a))). And so forth.
In contrast, let E = (E; denE) be such that E = f: : : ;�2;�1; 0; 1; 2; : : :g,

the set of all integers, and denE such that denE(a) = 0, denE(P; 1) =
fn j n is eveng, and denE(f; 1) : E �! E is the successor function
f(n; n + 1) j n 2 Eg. What does the term f(a) denote in this new
interpretation? Well, go to the function denoted by f , and feed it the
thing denoted by a. The function symbol f denotes the successor func-
tion f(n; n + 1) j n 2 Eg, and the constant a denotes the number 0, so
f(a) denotes the successor of 0, namely the number 1. Similarly f(f(a))
denotes 2, f(f(f(a))) denotes 3, and so on.
As far as terms containing variables are concerned, the procedure

is similar but relative to a particular assignment. Consider again the
interpretation E, and let s be the assignment assigning to every variable
xi the element i � 100 in E. What does the term f(x1) denote? Well,
s(x1) = 1 � 100 = �99, and denE(f; 1) is the successor function, so
f(x1) denotes the number �99 + 1 = �98.

From states we get valuations in the usual way.

De�nition 38 The valuation determined by a state (D; s) is the func-
tion v : A �! f0; 1g de�ned as follows:
For every P (t1; t2; : : : ; tm) 2 A, the valuation v assigns the truth

value 1 i¤ (d1; d2; : : : ; dm) 2 den(P;m), where each di is the member
of D denoted by the term ti and is calculated by distinguishing between
three cases:

� if ti is a constant, say c, then di = den(c)

� if ti is a variable, say x, then di = s(x)

� if ti is a complex term of the form f(r1; : : : ; rn), where r1; : : : ; rn
are terms and (f; n) 2 Fun, then we �rst calculate the denotations
of r1; : : : ; rn and then apply the function den(f; n) to them.

27

The de�nition looks more complicated than it really is. Just keep
�rmly in mind that complex terms are built up recursively, starting from
constants and variables. The denotations of constants are revealed to us
by den, and the denotations of variables are revealed by s. With this as
starting point, we can work out the denotation of any complex term just
by recapitulating the steps by which the complex term was constructed.

Example 39 Let LA be the familiar language built up from Cons =
fag, V ar = fx1; x2; : : :g, Pred = f(P; 1)g, and Fun = f(f; 1)g. Take
the interpretation E = (E; denE) with E = f: : : ;�2;�1; 0; 1; 2; : : :g,
denE(a) = 0, denE(P; 1) = fn j n is eveng, and denE(f; 1) : E �! E
the successor function f(n; n + 1) j n 2 Eg. Let s be the assignment
sending each variable xi to the number i� 100.
What truth value does the corresponding valuation v assign to the

atom P (a)? The term a denotes the number denE(a) = 0, and 0 2
denE(P; 1) because 0 is even, so v(P (a)) = 1.
What about the truth value of P (f(x2))? Well, does the number

denoted by f(x2) belong to the set denE(P; 1) = fnjn is eveng? Since
s(x2) = 2 � 100 = �98, and denE(f; 1) is the successor function, the
denotation of f(x2) is �97, which is not even and so does not belong to
denE(P; 1). Thus v assigns to P (f(x2)) the truth value 0.

Next we de�ne local models and global models.

De�nition 40 As before, an ontology is a pair (S; V) where S is a col-
lection of states (D; s) and V : S �! WA is the obvious labelling function
that takes a state to the valuation it determines.
Truth values are allocated to the w¤s of LA in usual manner, starting

from the truth values allocated to atomic formulas by the valuation v
determined by D and s, and treating the connectives in the familiar way.
If the truth value 1 is assigned to a w¤ �, then the assignment s

satis�es � in the interpretation D and we call (D; s) a local model of �
(and we so call also the valuation v).
M(�) is the subset of S consisting of local models of �.
If every assignment s satis�es � in D, then D is a global model of �.

So the conditions for satisfaction are the same as for languages with-
out function symbols. The additional complexity introduced by function
symbols has its e¤ect at the level of atomic formulas and valuations, be-
cause the assignment of a truth value to an atomic formula requires us
to �nd out what the terms denote, and this becomes more of an e¤ort
when there are function symbols around. Once truth values have been
allocated to atomic formulas, everything proceeds as normal.

28

Exercise 41 In each of the following, assume that the language has
variables.

1. Let LA be the language with Cons = fa; bg, Pred = f(P; 1); (Q; 1)g,
and Fun = f(f; 1); (g; 1)g.

� Describe, as best you can, the terms of LA.
� Describe, as best you can, the atomic formulas of LA.
� Give an interpretation D of LA whose domain has exactly 3
members.

� Give an assignment s in D and the valuation determined by
(D; s).

� Give one example of a w¤ having D as a global model.

2. Let LA be the language with Cons = fag, Pred = f(P; 2)g, and
Fun = f(f; 2)g.

� Describe, as best you can, the terms of LA.
� Describe, as best you can, the atomic formulas of LA.
� Give an interpretation D of LA having as domain a set with
in�nitely many members.

� Give an assignment s in D and the valuation determined by
(D; s).

� Give an example of a w¤ satis�ed by all assignments in D, an
example of a w¤ satis�ed by some assignments in D but not
by others, and an example of a w¤ satis�ed by no assignment
in D.

6 Sorts

The use of function symbols to build complex terms has a sometimes
inconvenient aspect � a function symbol is applied over and over, per-
haps producing more new terms than needed or wanted. Let us contrast
two systems.
Suppose the system of interest is the set of natural numbers. One

of the most characteristic features of the system is the functional rela-
tionship between natural numbers and their successors. If we represent
this relationship by a function symbol (s; 1), then complex terms like
s(s(s(x))) can be built, and these make perfect sense. For example,
s(s(s(x))) stands for �the successor of the successor of the successor of

29

x�, which we know is just the number obtained by adding 3 to x, what-
ever x may be.
On the other hand, consider the augmented Light-Fan-Switches Sys-

tem which contains a switch for each of the two original components. An
important feature of the system is the functional relationship between
each of the �old�components (the light and the fan) and the �new�com-
ponents (their switches). If we represent this relationship by a function
symbol (f; 1), then the language not only gains terms like f(x) standing
for �the switch of x�but also terms like f(f(f(x))) which have no obvi-
ous meanings as far as the intended system is concerned. After all, the
switch of the fan doesn�t itself have a switch that in turn has a switch.
A nice way to prevent such meaningless repetition is to use a many-

sorted language. In a many-sorted language there are di¤erent �sorts�or
�types�of constants and variables, which may be thought of as denoting
di¤erent categories of things. Function symbols also have a sort asso-
ciated with them, stipulating the sort of input argument to which the
function symbol may be applied and the sort of term which results from
the application. Since the input and output sorts may be di¤erent, it
follows that iterated application can be blocked.
As an illustration, consider the Light-Fan-Switches System. We build

a many-sorted language for it. Let us agree that there are two sorts of
terms, either �old component�or �new component�. Let constants L and
F be of sort �old component�and let Fun consist of a function symbol
(f; 1) that eats arguments of sort �old component�and spits out terms
of sort �new component�. Now f(L) is a legitimate term of sort �new
component�, and it becomes illegal to apply f again to produce terms
like f(f(L)); f(f(f(L))); : : :

De�nition 42 Suppose a set Sort is given, and that its members are
called sorts (or types). A many-sorted alphabet has sorts allocated to the
sets Cons, V ar, Fun, Term, and Pred as follows:

� for each sort � 2 Sort, there is a (possibly empty) subset of Cons
containing the constant symbols of sort �

� for each sort � 2 Sort, there are in�nitely many variables of sort
�

� for every k+1-tuple h�1; : : : ; �k+1i of sorts, there is a (possibly
empty) subset of Fun containing the k-ary function symbols (f; k)
of sort h�1; : : : ; �k+1i

� if the terms t1; t2; : : : ; tk are of sorts �1; �2; : : : ; �k respectively, and
the function symbol (f; k) has the sort h�1; : : : ; �k+1i, then the com-
plex term f(t1; : : : ; tk) has the sort �k+1

30

� for every n-tuple h�1; : : : ; �ni of sorts, there is a (possibly empty)
subset of Pred containing the n-ary predicate symbols (P; n) of sort
h�1; : : : ; �ni.

Sorts are merely labels, and so the elements of Sort may be anything
� numbers, names, whatever.
To keep track of the di¤erent sorts of variables, we may either use

di¤erent letters, with x1; x2; : : : for one sort and y1; y2; : : : for another
sort, or we may write the sort as a superscript: x�1 ; x

�
2 ; : : :

The sort h�1; : : : ; �k+1i associated with a function symbol (f; k) tells
us the sorts �1; : : : ; �k of the k input arguments and the sort �k+1 of the
output.

Example 43 In order to represent knowledge of the Light-Fan-Switches
system, we might use a set Sort with two members, O (for �Old�) and
N (for �New�). Let Cons = fL; Fg where both L and F are of sort
O. Let V ar consist of x1; x2; : : : of sort O and y1; y2; : : : of sort N .
Let Fun = f(f; 1)g and, in order to re�ect the intention that f should
stand for �the switch of�, associate with f the sort hO;Ni. Let Pred
= f(P; 1); (Q; 1)g and associate with P the sort O, with Q the sort N ,
where the intention is that P tells us whether the light and fan are on,
and Q tells us whether the switches are on. So P (L) says that the light
is shining, and Q(f(F)) says that the fan�s switch is in the �on�position.
Note the sort of the complex term f(F). Since f is of sort hO;Ni and
the input argument F is of sort O, the output f(F) is of sort N . Further
application of f to produce terms such as f(f(F)) is blocked, since the
sort of f(F) is not that of input arguments to which f may be applied.

We have not yet said what the purpose is of the sort h�1; : : : ; �ni of
a predicate symbol (P; n).

De�nition 44 The set A of atomic formulas induced by a many-sorted
alphabet consists of all strings P (t1; t2; : : : ; tn) where (P; n) is a predicate
symbol of sort h�1; : : : ; �ni and each term ti is of sort �i.

We notice that the use of sorts not only tends to cut down on the
proliferation of complex terms, it also has a constraining e¤ect on atoms,
because we can no longer attach a predicate symbol to arbitrary terms.

De�nition 45 A many-sorted transparent propositional language is the
set of all well-formed formulae over the set of atomic formulas A induced
by a many-sorted alphabet, where a (propositional) w¤ is a string � which
is one of the following:

31

� an atomic formula

� of the form :� where � is a w¤

� of the form (� �) where � and are w¤s and � 2 f^;_;!;$g.

Next we de�ne interpretations, and it is here that the e¤ect of sorts
is seen most clearly. In the domain of interpretation, there will be sub-
domains corresponding to the sorts and a term of sort � will denote an
object in the appropriate subdomain.

De�nition 46 An interpretation of a many-sorted language is a pair
D = (D; den) such that for every sort � 2 Sort there is a nonempty
subset D� � D, and

� every constant symbol c of sort � denotes an element den(c) 2 D�

� every function symbol (f; k) of sort h�1; : : : ; �k+1i denotes a func-
tion den(f; k) : D�1 � : : :�D�k �! D�k+1

� every predicate symbol (P; n) of sort h�1; : : : ; �ni denotes a subset
den(P; n) � D�1 � : : :�D�n.

Given D, a variable assignment is a function s : V ar �! D such
that if x is a variable of sort �, then s(x) 2 D�.

Example 47 Here is an interpretation of the many-sorted language of
the Light-Fan-Switches System. Let D = f1; 2; 3; 4g. Since Sort =
fO;Ng, we need to specify two subdomains of D. Let DO = f1; 2g and
let DN = f3; 4g. Now let den be such that den(L) = 1 and den(F) =
2. Moreover let den(f; 1) be the function from DO to DN given by
den(f; 1)(1) = 3 and den(f; 1)(2) = 4. And let den(P; 1) = ; and
den(Q; 1) = ;.

This interpretation is a semantic picture of the Light-Fan-Switches
system in a particular state. The light and the fan are modelled by
the elements 1 and 2 of DO, the subdomain of old components. Their
switches are modelled by 3 and 4 respectively. The denotations of P and
Q tell us that the light is not shining, the fan is not spinning, and the
switches are both in the �o¤�position. Intuitively, this interpretation
makes w¤s like P (L) and Q(f(L)) false. In order to allocate a truth
value to a w¤ such as P (x1) we would need to specify an assignment s.
Let us formalise our intuition regarding the allocation of truth values.

32

De�nition 48 An interpretation D and an assignment s together de-
termine a valuation v : A �! f0; 1g which assigns to an atomic formula
P (t1; t2; : : : ; tn) the truth value 1 i¤ (d1; d2; : : : ; dn) 2 den(P; n) where
each di is the denotation of ti and is calculated in the usual recursive
way.
The truth values of w¤s built up from the atomic formulas are allo-

cated as before, and if a w¤ � receives the truth value 1 relative to D
and s, then s satis�es � in D and (D; s) is a local model of �.
Should � be satis�ed by every s in D, D is a global model of �:

Exercise 49 For simplicity,assume that the languages of these exercises
are built up without using any variables (since the intended interpreta-
tions are blueprintable).

1. Consider the many-sorted language for the Light-Fan-Switches Sys-
tem and the interpretation with D = f1; 2; 3; 4g in which 1 and 2
stand for the light and fan while 3 and 4 stand for the light�s switch
and the fan�s switch respectively. Describe denotations of (P; 1)
and (Q; 1) such that the resulting interpretation is a model of a
sentence (w¤ without variables) saying �The light�s switch is in the
on position but the light is not shining�. What is the sentence?

2. The 3 Card System: There are three players (numbered 1, 2, and
3) and three cards (red, green, and blue). Suppose one card is dealt
to each player. Such a deal is what we want to represent by a state
of the system.

� Describe a many-sorted alphabet for a language in which to
represent knowledge about the 3 Card System. The language
should have atomic formulas of the form �Player so-and-so
has a card of colour such-and-such�.

� Give an interpretation representing the state in which player
1 gets the red card, player 2 the blue, and player 3 the green.
Give a sentence of which this interpretation is a model.

� Give an ontology for the language, i.e. say which interpreta-
tions correspond to states.

7 Glossary

� blueprintable system � a nice sort of system to work with, in
which it is obvious what the components are and so each compo-
nent can get a name.

33

� constant symbol � the formal analogue of a name.

� equality � the very useful predicate symbol (=; 2).

� interpretation � a domain D of objects plus a function den
assigning denotations to constant, predicate symbols, and (if rele-
vant) also to function symbols.

� model � a local model of � is a state (D; s) that satis�es �, and
a global model of � is an interpretation D such that every pair
(D; s) satis�es �.

� predicate language � a language in which atoms are built up
from predicate symbols.

� predicate symbol � the formal analogue of a verb, usually rep-
resented by a pair (P; n).

� satisfaction � the word we use to indicate that a state (or the
valuation determined by the state) makes a w¤ true.

� state � an interpretation D = (D; den) together with a variable
assignment s in D.

� term � an expression in the language that denotes an object;
the expression may be a constant or a variable or a more complex
term built up from constants and variables by means of function
symbols, e.g. something like x+ 3.

� term interpretation � a particularly simple kind of interpreta-
tion, in which the domain D is the set Cons of constant symbols.

� transparent language � a predicate language, called �transpar-
ent�because the structure of the atoms is visible.

� variable assignment � a function s : V ar �! D giving every
variable a denotation in some domain, rather like pointing to show
what �it�is.

� well-formed formula (w¤) � the kind of thing a language has
when there are variables.

34

