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Abstract

Transparent propositional languages containing variables are
enriched by the addition of the quanti�ers �for all�and �for some�.
Local, global, and universal versions of the notion of model are
distinguished. Rei�cation is introduced in the context of the sit-
uation calculus.

1 Quanti�ers

Let us contrast blueprintable and unblueprintable systems, from the
point of view of knowledge representation.
In the case of a blueprintable system, it is in principle possible

to use a transparent propositional language in which every component
of the system has a name. The prototypical example is the Light-Fan
System, for which we might use a language based on an alphabet which
includes the set Cons = fL; Fg and the set Pred = f(P; 1)g with the
intention that P should stand for the predicate �is on�. Semantically,
states of the system can be represented by term interpretations. Syntac-
tically, states such as 10 can be represented by state descriptions such
as P (L)^:P (F ). Furthermore it is possible to express the ideas of �all�
and �some�by conjunctions and disjunctions respectively. For example,
to express that all the components of the Light-Fan System are on, the
agent may write P (L) ^ P (F ). Similarly, to express the idea that some
component is on, the agent may write P (L) _ P (F ).
In the case of an unblueprintable system, it is not possible (or for

some reason is unattractive) to include a name for every component, so
that we cannot restrict consideration to term interpretations and cannot
represent states syntactically by state descriptions. Moreover, it is no
longer possible to express �all�by conjunction or �some�by disjunction. In
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the absence of names for all components, we introduce variables. In order
to enable the language to express �all�and �some�we shall now enrich
the language further by adding quanti�ers. This is done as follows. For
every variable x, we add the universal quanti�er 8x, which may be read
�for all x�or �for every x�, and we add the existential quanti�er 9x, read
as �for some x�or �there exists an x such that�or �for at least one x�.
(In the case of a sorted language, 8x� is read �For every x of sort ��and
9x� is read �For at least one x of sort ��.) Languages with quanti�ers
are called �rst-order languages, whereas languages without quanti�ers
are propositional languages.

De�nition 1 Suppose that A is the set of atoms induced by an alpha-
bet comprising sets Sort, Cons, Fun, (each of which may possibly be
empty), V ar and Pred.
The �rst-order language LA is the set of all well-formed formulae

(w¤s) � where a string � is a w¤ i¤ one of the following is the case:

� � 2 A

� � = :� for some previously constructed w¤ �

� � = (� � 
) for some previously constructed w¤s � and 
 and for
some � 2 f^;_;!;$g

� � = 8x(�) or � = 9x(�) for some x 2 V ar and some previously
constructed w¤ �.

What is the e¤ect of adding quanti�ers to a language? Quanti�ers
bind variables. We shall presently de�ne the di¤erence between bound
and free variables, but for the moment we may view binding from the
perspective of vagueness. Intuitively, the change from a sentence like
P (L) (i.e. the light is on) to a w¤ like P (x) (i.e. x is on) introduces
a degree of vagueness. This vagueness can be reduced in two ways.
Semantically, we may use a variable assignment s in some domain D
to say what x denotes. Syntactically, we may change the w¤ P (x) by
applying a quanti�er to produce a new and less vague w¤, say, 9xP (x)
(i.e. some component is on).
We are using the word �vagueness�here in the sense of �having many

possible meanings�. A w¤like P (x1) is vague because what it means, and
hence its truth or falsity, is sensitive to the choice of variable assignment
� typically, it would be satis�ed in an interpretation by some variable
assignments but not by others. But a quanti�ed w¤ such as 9x1P (x1) is
not vague, does not depend for its meaning on any variable assignment,
and turns out to be satis�ed either by all assignments or by none. For
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example, if we have an interpretation (D; den) in which den(P; 1) 6= ?,
the w¤ 9x1P (x1) will be satis�ed by all variable assignments in D. If
we have an interpretation (D; den) for which den(P; 1) = ?, the w¤
9x1P (x1) will be satis�ed by none. We might therefore say that a quan-
ti�ed w¤ like 9x1P (x1) has just one meaning in an interpretation.
Here is another way to think about the e¤ect of quanti�ers. In a

transparent propositional language having suitable function and predi-
cate symbols we can formulate equations like x2+2x+1 = 0 and by con-
sidering variable assignments we can �nd values of x that solve the equa-
tion. Such an equation is like a question that asks whether an interpre-
tation possesses members capable of satisfying the relevant constraints.
But there is a second possible use for equations. Once quanti�ers are
available, we can formulate identities like 8x(x2 + 2x + 1 = (x + 1)2),
which represent laws holding across an entire interpretation. Whereas
an unquanti�ed equation is like a question, an identity is a powerful
assertion.

Exercise 2 1. Consider the �rst-order language with Cons = fag
and Pred = f(P; 1); (Q; 1)g.

� What are the atoms of this language?
� How would you express the idea that everything has both the
property P and the property Q? Is this intuitively the same
as saying that everything has property P and everything has
property Q?

� How would you express the idea that everything has property
P or property Q? Is this intuitively the same as saying that
everything has property P or everything has property Q?

� Think of the predicate symbol P as standing for �is a man�, Q
for �is mortal�, and the constant a as being an abbreviation
for �Socrates�. Write down a w¤ expressing the idea that if
all men are mortal and Socrates is a man then Socrates is
mortal.

2. Consider the �rst-order language with Cons = fa; bg, Fun =
f(f; 1)g, and Pred = f(P; 2)g:

� What are the atoms of this language?
� Think of the function symbol f as an abbreviation for �the
mother of� and think of the predicate symbol P as standing
for the relationship �is an ancestor of�. How would you ex-
press the idea that there is someone who is an ancestor of b�s
mother?
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3. An alien spaceship has crashed in the desert and you have been
called in as consultant to a nearby military base, where the wreck-
age has been locked away from public scrutiny in order to prevent
mass hysteria and the Moral Decay of the Youth. (Presumably you
are su¢ ciently decrepit not to be so sensitive to moral decay, or
perhaps you are just expendable.) Before your eyes there is a com-
plicated mechanism. It has one readily identi�able component � a
light � but for the rest it is not obvious what the components are.
You are interested, for the time being, in two things. Since the light
shines intermittently, it would seem that some of the components
are �on�, utilising energy. And so you are interested in whether
components are on or o¤. Also, bits of the wreckage look badly
twisted, so that it seems likely that some of the components may be
broken. So you are interested in whether components are defective
or not.

� Describe suitable sets Cons and Pred and write down a sen-
tence expressing the idea that all components which are on,
are functioning correctly.

4. Here is a description of a biological system taken from a problem
called Schubert�s Steamroller, which is named after Len Schubert
and appeared in Pelletier FJ (1986): 75 Problems for testing au-
tomatic theorem provers, Journal of Automated Reasoning 2:191-
216 (and see also errata in Pelletier (1988): Journal of Automated
Reasoning 4:235-236). It is actually a benchmark problem for auto-
mated reasoning algorithms, but o¤ers a good exercise in knowledge
representation for humans.

Here is the puzzle:

Wolves, foxes, birds, caterpillars, and snails are animals,
and there exist some of each. Also there exist some grains,
and grains are plants. Every animal either likes to eat all
plants or all animals much smaller than itself that like to
eat some plants. Caterpillars and snails are much smaller
than birds, which are much smaller than foxes, which are
in turn much smaller than wolves. Wolves do not like to
eat foxes or grains, while birds like to eat caterpillars but
not snails. Caterpillars and snails like to eat some plants.

If we were doing automated reasoning algorithms, the challenge
would be to get your algorithm to prove that there exists an an-
imal that likes to eat a grain-eating animal. However, let�s
stick to knowledge representation.
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Write down w¤s that express the information provided, and a �nal
w¤ expressing the existence of an animal that likes to eat a grain-
eating animal. (Some of the English sentences are ambiguous, and
you will have to decide for yourself how to resolve the ambiguity.)

2 Satisfaction

We now want to discuss how truth values are assigned to w¤s.
Given a �rst-order language LA, the w¤s without quanti�ers are fa-

miliar things � they form the transparent propositional language (with
variables) generated by A. Only the w¤s in which quanti�ers occur are
new. Accordingly, an interpretation of the �rst-order language LA is
precisely the same kind of pair D = (D; den) as before, but we need to
think carefully about the way truth values ought to be allocated to w¤s
with quanti�ers. Since variables are involved, we would expect variable
assignments to play a crucial role in this allocation. As before, variable
assignments are functions from V ar to the domain of interpretation D.
The intuition that guides the de�nition of satisfaction may be illus-

trated as follows. We want to say (roughly) that 9xP (x) is true in D if
there is at least one value of x such that P (x) is true, in other words if
there is at least one variable assignment in D satisfying P (x). And we
want to say (roughly) that 8xP (x) is true in D if all values of x make
P (x) true, i.e. if every variable assignment in D satis�es P (x). What
makes things more complicated than this is that there may be other
variables besides x.
Consider the system of integers f: : : ;�1; 0; 1; : : :g and the w¤9x(y+

x = 0). The w¤ says �There is at least one value of x which is a solution
to the equation y + x = 0�. Bearing in mind that x is not the only
variable lurking in the equation, when should 9x(y+ x = 0) be satis�ed
by a variable assignment s relative to the interpretation D? Well, if some
value for x can be found, not necessarily that which s itself assigns to
x, so that an assignment giving this value to x and in all other respects
behaving like s will satisfy y + x = 0. For example, if we have the set
of integers D = f: : : ;�1; 0; 1; : : :g and s is the assignment which gives
to every variable the value 113, then s satis�es 9x(y + x = 0) because
the assignment s0 which gives x the value �113, and gives every other
variable (including y) the value 113, satis�es the shorter w¤ y + x = 0.
Similarly, for the w¤ 8x(x + y = y + x) to be true, every value of x

should make the w¤true, because the universal w¤8x(x+y = y+x) says
�Every value of x satis�es the equation x+ y = y+ x�. Thus 8x(x+ y =
y+x) should be satis�ed by an assignment s in D if every possible value
of x allows x + y = y + x to be satis�ed, provided additionally that
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the assignment of values to other variables is strictly according to the
original assignment s.
Let us formalise this intuition.

De�nition 3 An interpretation D = (D; den) and variable assignment
s : V ar �! D together determine a valuation v : A �! f0; 1g which
assigns to an atom P (t1; t2; : : : ; tn) the truth value 1 i¤ (d1; d2; : : : ; dn) 2
den(P; n) where each di is the denotation of ti and is calculated in the
usual recursive way.
Assignment s is said to satisfy the atom P (t1; t2; : : : ; tn) in D i¤ the

valuation v assigns to P (t1; t2; : : : ; tn) the truth value 1.
Nonatomic w¤s of LA are satis�ed by assignment s in the interpre-

tation D according to the following:

� s satis�es � = (:�) i¤ s does not satisfy �

� s satis�es � = (� ^ 
) i¤ s satis�es both � and 


� s satis�es � = (� _ 
) i¤ s satis�es at least one of � and 


� s satis�es � = (� ! 
) i¤ s satis�es 
 or fails to satisfy �

� s satis�es � = (� $ 
) i¤ s satis�es both � and 
 or else satis�es
neither

� s satis�es � = 9x(�) i¤ � is satis�ed by some assignment s0 such
that if y 6= x, then s(y) = s0(y)

� s satis�es � = 8x(�) i¤ � is satis�ed by every assignment s0 such
that if y 6= x, then s(y) = s0(y)

An ontology for a �rst-order language LA is a pair (S; V ) where
S is some set of states (D; s) and V is the obvious labelling function
mapping states to the valuations in WA determined by them.
The state (D; s) is a local model of �, written (D; s) 2M(�), i¤ �

is satis�ed by s in D.
D is a global model of � i¤ � is satis�ed by every assignment s in

D.

As you might suspect, we could now de�ne two di¤erent kinds of
classical entailment, one based on local models and the other on global
models. We shall keep things simple and use local models only, since
they correspond to states and thus to valuations.

De�nition 4 � j= � i¤ M(�) �M(�) and � � � i¤ M(�) =M(�).
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Exercise 5 1. Recall the �rst-order language with Cons = fag and
Pred = f(P; 1); (Q; 1)g:

� Describe four interpretations D1, D2, D3, and D4 such that
the domainD1 is a set with one element, D2 has two elements,
D3 has one thousand elements, and D4 has in�nitely many
elements.

� For each of the four interpretations, give an example of a
variable assignment.

� For each of the four variable assignments, work out whether
it satis�es the following w¤s in the relevant interpretation:

(a) Q(x1)
(b) 9x1P (a)
(c) 9x1P (x1)
(d) 9x1P (x2)
(e) 8x1P (x1)
(f) Q(a) _ :8x3Q(x3)

2. Recall the �rst-order language with Cons = fa; bg, Fun = f(f; 1)g,
and Pred = f(P; 2)g:

� Describe four interpretations E1, E2, E3, and E4 such that the
domain E1 is a set with one element, E2 has two elements,
E3 has one thousand elements, and E4 has in�nitely many
elements.

� For each of the four interpretations, give an example of a
variable assignment.

� For each of the four variable assignments, work out whether it
satis�es the following w¤s in the corresponding interpretation:

(a) P (x1; f(x1))
(b) 9x1P (a; x1)
(c) 8x1P (a; x1)
(d) 9x1P (b; f(x1))
(e) 9x1P (f(x1); f(f(b)))

3. You are a versatile individual, not limited to the analysis of �y-
ing saucers. As a political consultant, you are keeping a keen eye
on the forthcoming election of the President of Upper Slimeria.
There are two o¢ cial candidates, the rotund lawyer Sacher Tort
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and the reformed serial murderer and smoker Pu¤y Hackenslice.
You are interested in who will vote for whom. Unfortunately Slime-
ria last had a census a century ago, before the civil war, so it
is unclear how many voters there are (not to mention what their
names might be). Sadly, Slimerian schools have concentrated their
curriculum on practical subjects such as the maintenance of au-
tomatic weapons, so the electorate are rather fuzzy about electoral
procedure, and as likely to vote for the local gunsmith or butcher
as for an o¢ cial candidate.

� Describe suitable sets Cons and Pred and write down a w¤
expressing the hope that no voter will vote for themselves and
that every voter will vote for exactly one of the two o¢ cial
candidates. Give an example of a global model of this w¤.
Also give an example of an interpretation that is not a global
model of this w¤.

4. Having made your fortune as a consultant on aliens and politicians
(not as incongruous a combination as it might seem, because both
harbour the same ambition, namely to take over the world, and then
the galaxy), you decide to retire to Auckland and apply the insights
into deviant personalities you have so painfully gained over the
years to the training of used-car salespersons. Being a �exible sort
of individual, you don�t mind that �uctuations in the job market
result in trainees dropping out to become real estate agents instead
or in redundant real estate agents joining your classes, so that you
are unable to keep a �xed roster of students. Your course empha-
sises three golden rules. Always treat the customer with the sort of
familiarity that the rest of society reserves for intimate friendships.
Never try to sell a customer two di¤erent cars simultaneously. And
never become involved in acrimonious disputes with customers, al-
though disputes with your fellow salespersons are of course to be
expected.

� Describe a many-sorted language that allows you to distin-
guish between cars, salespersons, and customers. Equip the
language with a set Pred that includes equality. Write down a
w¤ expressing each of the three golden rules. Give an example
of a global model of the three w¤s. Also give an example of
an interpretation that is not a global model of the set of three
w¤s.

5. Your training of salespersons doesn�t occupy much of your time,
and you decide to indulge a dormant interest in mathematics by
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exploring the system of natural numbers (non-negative integers).
Having failed to master the usual numerals to the base ten, you
are relieved to learn that every natural number can be described as
being either zero or the successor of a smaller natural number. You
�nd yourself fascinated by the relationship �is smaller than�.

� Describe a set Cons and a set Fun that would allow you to
restrict attention to term interpretations (regrettably not �nite
ones) and a set Pred that would allow you to write down w¤s
expressing your knowledge of the following properties of the
system:

�No natural number is smaller than itself.
�Every natural number is smaller than its successor.
� If one natural number is smaller than another, the second
number is not smaller than the �rst.

� If one natural number is smaller than a second, which in
turn is smaller than a third, then the �rst natural number
is smaller than the third.

�For every pair of distinct natural numbers, one is smaller
than the other.

�Zero is not the successor of any natural number.
�Di¤erent natural numbers have di¤erent successors.

� Give an example of a term interpretation that is a global model
of the set of w¤s. Give an example of a global model which
is not a term interpretation. Write down a w¤ which is true
in your �rst global model (the term interpretation) but not in
the second.

6. Assume a �rst-order language LA having a constant a and a pred-
icate symbol (P; 1). Show that

� P (a) j= 9x1P (x1)
� 8x1P (x1) j= P (a)
� 8x1P (x1) � :9x1:P (x1)

7. Assume a �rst-order language LA having no constants and a binary
predicate symbol (Q; 2).

Show that 8x19x2Q(x1; x2) 2 9x28x1Q(x1; x2).
(Hint: Construct an interpretation in which some assignment sat-
is�es the former w¤ but not the latter. Keep it simple.)
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3 Sentences

Previously, in languages without quanti�ers, sentences were w¤s in which
no variables occurred. The introduction of quanti�ers adds a new kind
of sentence in which variables do occur but are bound.

De�nition 6 An occurrence of a variable x in � is free i¤ one of the
following cases applies:

� � is P (t1; : : : ; tn) and x occurs in a term ti

� � = :� and x occurs free in �

� � = (� � 
) where � 2 f^;_;!;$g and x occurs free in � or 


� � = 9y(�) and x occurs free in � but x 6= y

� � = 8y(�) and x occurs free in � but x 6= y

An occurrence of a variable which is not free is bound. If no variable
occurs free in the w¤ �, then � is a �rst-order sentence:

Thus a �rst-order sentence is a w¤ all of whose variable occurrences
(if any) are bound. For example, 9x1(9x2(P (x1)^:P (x2)) is a sentence.
To see that 9x1(9x2(P (x1) ^ :P (x2)) is a sentence, note �rstly that x1
occurs free in P (x1) and x2 occurs free in P (x2). Thus x1 and x2 occur
free in P (x1)^:P (x2). But only x1 occurs free in 9x2(P (x1)^:P (x2)),
the occurrence of x2 in P (x2) now being bound by the quanti�er 9x2.
And no variable occurs free in 9x1(9x2(P (x1) ^ :P (x2)).
Every quanti�er has a scope, namely the previously constructed w¤

to which the quanti�er applies. A w¤ like 9x2(P (x1)^:P (x2)) is of the
form 9x(� ^ 
), with the scope of the quanti�er extending over � ^ 
.
In contrast a w¤ like 9x2(P (x1)) ^ :P (x2) has the form 9x(�) ^ 
, and
so the scope of 9x2 is now limited to � = P (x1), which means that the
occurrence of x2 in P (x2) is free.
Recall that in a propositional language, two valuations that agree on

the atoms in a sentence � will both satisfy � or neither satisfy � (see
Lemma 3 of Lecture 3). First-order languages have an analogue of this
useful fact.

Theorem 7 Let D be an interpretation and s; s0 assignments which
agree at all variables (if any) occurring free in the w¤ �. Then s satis�es
� in D i¤ s0 satis�es � in D.
Proof. The proof is by induction on the number of steps in the

construction of w¤ �.
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Suppose � is an atom P (t1; : : : ; tn). Let s and s0 be two assignments
that agree on all the variables occurring free in �. Then s(x) = s0(x)
for every variable x that occurs in P (t1; : : : ; tn), because every variable
in an atom occurs free. The denotations d1; : : : ; dn in D of the terms
t1; : : : ; tn are thus the same, whether calculated using s or s0. And so
(d1; : : : ; dn) 2 den(P; n) or not, independently of whether it is s or s0
that is used. It follows that s and s0 both satisfy the atom P (t1; : : : ; tn)
or both fail to satisfy P (t1; : : : ; tn). In other words, s satis�es � i¤ s0

does.
Now suppose that the theorem holds for w¤s constructed in k or fewer

steps, and let � be any w¤ constructed in k+1 steps. Then � is formed by
using, in the last construction step, one of the connectives or quanti�ers.
We take each case in turn.
Let s and s0 be assignments such that s(x) = s0(x) for every vari-

able that occurs free in � = :�. By the induction hypothesis, if two
assignments agree at all the variables occurring free in � then � is either
satis�ed by both assignments or by neither. Since s and s0 agree at all
variables occurring free in �, either both s and s0 satisfy � or neither do.
In the former case, neither s nor s0 satisfy :�, while in the latter both
satisfy �.
Let s and s0 agree on the variables occurring free in � = �^
. By the

induction hypothesis, for each of � and 
 separately it is the case that
if two assignments agree on the variables occurring free in the w¤, the
assignments either both satisfy the w¤ or neither satisfy the w¤. Since
s and s0 agree at all variables occurring free in � and in 
, either both s
and s0 satisfy � or neither do, and the same holds for 
. Thus s and s0

both satisfy � ^ 
 or neither do.
The cases of � _ 
, � ! 
, � $ 
 are similar to that of � ^ 
.
Let s and s0 agree on the variables occurring free in � = 8x(�).

By the induction hypothesis, if two assignments agree on the variables
occurring free in �, then � is satis�ed by both or by neither. But do
s and s0 agree on the variables free in �? Perhaps not, because x may
occur free in �. After all, s and s0 only have to agree on the variables
occurring free in 8x(�), and these are all those free in � except for x,
which may or may not occur free in � but certainly does not occur free in
8x(�). For each d 2 D, let us indicate by s(x 7! d) the assignment which
assigns to every variable y 6= x the same value as s does, but assigns to
x the value d (which may be di¤erent from the value assigned to x by
s). Similarly s0(x 7! d) is the assignment identical to s0 except possibly
where x is concerned and which gives to x the value d. By the induction
hypothesis, since s(x 7! d) and s0(x 7! d) agree on all the variables that
occur free in �, either both satisfy � or neither do. Now recall that if
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s satis�es 8x(�) then s(x 7! d) has to satisfy � for every choice of d.
So s0(x 7! d) satis�es � for every choice of d. But this means that s0

satis�es 8x(�). The converse direction is similar. Thus s satis�es 8x(�)
i¤ s0 does.
The case of 9x(�) is treated along the same lines, but is simpler

because you only have to worry about a single choice of d.

Corollary 8 Suppose � is a sentence and D an interpretation. Then �
is either satis�ed by all assignments s in D or by none. Hence D is a
model either of � or of :�.

Remark 9 For a sentence �, the distinction between local and global
models disappears � if (D; s) is a local model of �, then D is a global
model of �. Thus, for sentences, we may simply speak of models:

Exercise 10 1. Suppose you have a �rst-order language LA having
no constants and just one predicate symbol, namely (=; 2). You
may use in�x notation to write atoms as x = y rather than = (x; y).
Equality and the quanti�ers can be used to modulate the size of
models. Write down

� a sentence � such that every model of � has at least one ele-
ment in its domain

� a sentence � such that every model of � has exactly two ele-
ments in its domain

� a sentence 
 such that every model of 
 has at most three
elements in its domain.

4 Situations

Consider the Light-Fan-Switches System, in which there is a switch for
the light and another for the fan. It is possible for an agent to change
the state of the system by depressing one of the switches. In order to
represent dynamic knowledge (knowledge of how the system changes as
a result of actions), the agent may wish to use a special kind of many-
sorted �rst-order language called a situation calculus.1

A situation calculus has several sorts.
1The original situation calculi were invented by John McCarthy and did not re-

semble very closely the languages discussed so far. McCarthy was the inventor of
LISP, the �rst functional programming language, and this seems to have in�uenced
his notation. The rest of the logic-based AI community, led by Vladimir Lifshitz,
soon recast the situation calculi in a more orthodox way.
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The name tells us we need a sort that we will call Situation. The idea
is that a situation term denotes a state of the system, in other words
stands for a �snapshot�of the system at some moment in time. This is
quite a big jump from using terms merely to denote components like the
fan or its switch. By way of a concrete example, recall that the Light-
Fan-Switches System has four components and therefore (assuming that
we are interested only in whether components are on or o¤) has 16
possible states: the state in which all four components are on, 4 states
in which exactly three components are on, 6 states in which exactly
two components are on, 4 states in which exactly one component is on,
and the state in which zero components are on. (We may wish to rule
out some of these states because the system blueprint reveals it to be
impossible for, say, the light to be on when its switch is o¤, and so on,
but for the moment we are concerned with the logically possible states
rather than the application of �xed information to exclude states.) And
so we could put into the agent�s knowledge representation language 16
constants of sort Situation, each representing a di¤erent state of the
system. Let us suppose these constants to be S1; : : : ; S16.
A situation calculus also has a sort that we will call Action. Terms

of this sort are intended to denote the actions an agent may perform to
change the state of the system. In the case of the Light-Fan-Switches
System, we may suppose that the agent can do two things: press the
light�s switch and press the fan�s switch. We ignore as irrelevant a mul-
titude of other possible actions such as taking a hammer to the system
in a paroxysm of rage, painting the components in pastel colours, or
reconnecting the wires in novel ways. Let us put into the language two
constants of sort Action, each representing one of the actions we regard
as relevant: A1 and A2.
A situation calculus has a special function symbol that we will call

Result. Since an agent can change the state of the system by performing
an action, it is essential that the language be able to express descriptions
such as �the state that results from performing action A1 in state S5�.
By putting a binary function symbol Result of sort (Action, Situation,
Situation) into the language, we make it possible to use a term like
Result(A1; S5) to denote the situation that results from applying the
action called A1 when the system is in the state called S5.
A situation calculus has a sort that we will call Fact. The idea

is that states of a system can be distinguished from one another by
their properties. Consider for example the state in which the the light
is on, the light�s switch is on, the fan�s switch is on, but the fan is
o¤. These basic facts distinguish this particular state from all 15 of the
other possible states. By cleverly including terms of sort Fact, we make it
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possible to di¤erentiate between situations by referring to the di¤erent
facts that obtain in each case. In the case of the Light-Fan-Switches
System, we would need a term representing the fact that the light is on,
a term saying that the light�s switch is on, a term saying that the fan is
on, and a term saying that the fan�s switch is on. Let us put into the
language four constants of sort Fact : F1; F2; F3; F4.
Let us pause to remark that we have again taken a big step. Previ-

ously, we would have expressed the fact that the light is on by a w¤ of
our language. Now we are proposing to express the same fact by a term,
not by a w¤. To appreciate the novelty, recall that when a language
is interpreted, the terms denote objects in the domain of interpretation
whereas w¤s do not. Something very abstract, namely a proposition ex-
pressing that the light is on, will now be included in every interpretation
as a member of the domain, whereas the domain has hitherto consisted
of elements representing such concrete things as the light itself. This
trick of including, amongst the terms of the language and amongst the
members of the domain, representations not merely of concrete compo-
nents but also of abstract properties, is called rei�cation. The word is
derived from the Latin �res�, meaning �thing�, and so rei�cation is the
process by which we thingify some abstract property.
A situation calculus has a special predicate symbol that we will call

Holds. The idea is that if we wish to use terms of sort Fact to distinguish
between situations, then the language needs to have the capacity to
express that a fact does or does not hold in a situation. The predicate
symbol Holds is binary and has sort (Fact, Situation). To express, for
instance, that fact F2 holds in the situation that results when the agent
performs action A1 in situation S5, the atom Holds(F2; Result(A1; S5))
su¢ ces.
We now have the basis for a language in which an agent can represent

the knowledge that may be needed for planning how to manipulate the
Light-Fan-Switches System in order to achieve goals (such as the goal of
having the light on but the fan o¤). By way of example, let us consider
how to represent knowledge of the way in which the fan�s switch a¤ects
the fan�s functioning. We shall assume that switches are devices that
toggle, i.e. that reverse their e¤ect every time they are pressed. We need
a w¤ saying that pressing the fan�s switch in a situation in which the fan
is o¤ will result in the fan�s being on, and pressing the fan�s switch in
a situation in which the fan is on will result in the fan�s being o¤. The
w¤s almost write themselves, once we have decided that our intended
interpretation is one in which A2 denotes the action of pressing the fan�s
switch and F2 the fact that the fan is on. We use xS as a variable of sort
Situation.
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� 8xS(:Holds(F2; xS)! Holds(F2; Result(A2; xS))

� 8xS(Holds(F2; xS)! :Holds(F2; Result(A2; xS))

Sentences like these express some of the facts that hold after an action
has been taken, but do not identify the resulting situation unambigu-
ously. Even if we know in what situation or state a given action has been
taken, the sentences above are incomplete guides to the resulting situ-
ation because they do not express the common-sense idea that nothing
else changes. As humans we tend to take for granted that pressing the
switch on the light will a¤ect the light but have no e¤ect on the fan. It is
interesting to consider how we would inject this common-sense idea into
a robot. The obvious solution is to use additional sentences which spell
out in painful detail everything that does not change when an action
is performed. Such additional sentences are called frame axioms. The
problem with frame axioms is that if there are n actions and m facts one
will on average need nm frame axioms. This is not only clumsy but can
lead to ine¢ ciencies for agents who have to use some sort of reasoning
algorithm to do their planning. So one would be very interested in an
alternative to frame axioms, and the search for such an alternative in
the AI community during the late 1970s was one of the factors leading
to the invention of non-monotonic logic.
In order to become familiar with the situation calculus, you should

wrestle with the following extended exercise, which introduces a standard
illustrative AI system, the Blocks World. When doing this exercise, use
a situation calculus as described above, don�t regress to what you may
have seen in a 300-level AI textbook.

Exercise 11 Consider a system consisting of three wooden blocks on a
table. One of the blocks is painted red, another green, and the third blue.
The interesting thing about the blocks is whether one is on top of another.
More precisely, we are interested in whether a block is on another block
or is on the table, and in whether a block has another on top of it or is
clear. Thus one state of the Blocks World system is that in which each
of the three blocks is on the table and is clear (has no block on top of
it). Another state is that in which the red block is on the table, the green
block is on the red, and the blue block is on the green, forming a little
tower.
An agent can change the state of the Blocks World system in three

ways. A block may be moved from the top of one block to the top of
another. A block may be picked up from the table and stacked on top of
another block. And a block may be unstacked by taking it o¤ the top of
another block and placing it on the table.
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1. Draw diagrams to represent each of the thirteen possible states of
the Blocks World. (If it is impractical to use di¤erent colours for
the blocks, label them R, G, or B.)

2. Describe a situation calculus suitable for representing knowledge of
the Blocks World.

(Hint: You know what sorts the language must have in order to
be a situation calculus, and you may add sorts such as Block to
those. Now decide, for each sort, what you need besides variables.
For example, consider the sort Action. You want an action that
takes any block x from the top of block y to the top of block z. The
action, i.e. what happens, depends on x, y, and z. So don�t try to
represent this action by a constant. Instead use a function symbol
that takes three terms of sort Block as input and delivers a term of
sort Action.)

3. Give sentences to express the following:

� If one block is on another, then it is not the case that the
second block is clear.

� Preconditions for successful execution of actions:
� If a block is on the table and is clear, and if a second block
is clear, then the result of stacking the �rst block on the
second is a situation in which the �rst block is indeed on
the second.

� If a block is on another block but is itself clear, then the
result of unstacking it is a situation in which it (the �rst
block) is on the table.

� If a block is on another block but is itself clear, and if
the third block is clear, then the result of moving the �rst
block from the second to the third is a situation in which
the �rst block is indeed on the third block.

� Failure:
� If the precondition for successful execution of the the ac-
tion of stacking one block onto another is not satis�ed,
then the action of stacking does not change the situation
in any relevant way.

� If the precondition for successful unstacking is not sat-
is�ed, then the attempt to unstack does not change the
situation in any relevant way.
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� If the precondition for successful execution of the action
of moving a block from the top of one to the top of another
is not satis�ed, then the action of moving does not change
the situation in any relevant way.

� Frame axioms: How might one express the knowledge that an
action a¤ects only the �relevant part�of the system? For ex-
ample, unstacking the red block from its position on top of
the green block should not cause the green block to mysteri-
ously appear stacked on top of the red. Give some examples
of frame axioms, but don�t try to give them all. Estimate how
many there would be.

4. Give an interpretation of the language that is a model of the sen-
tences above.

5 Modal foundations for �rst-order logic

In this brief section the aim is not to teach you new skills but to give
you new insight into old skills, and generally to give you a unifying
perspective on logic languages.
We have encountered three basic kinds of logic language � proposi-

tional languages, �rst-order languages, and modal languages. Ordinary
propositional logic is contained within �rst-order logic, because all you
have to do is remove the quanti�ers and variables, and the semantics
of transparent propositional logic involves just interpretations without
variable assignments. Similarly, propositional languages can be seen as
sublanguages LA of modal languages L

[n]
A in which we simply ignore the

sentences containing modal operators. The usual semantics of proposi-
tional logic may also be seen to be a special case of the possible worlds
semantics. Kripke models are triples of the form (S; fRiji � ng; V )
which consist of some set S of possible worlds, some bunch of binary ac-
cessibility relations on S, and a labelling function V connecting members
of S with valuations. To get the semantics of a propositional language
we simply ignore the accessibility relations (just as we ignore the modal
operators) to get an ontology (S; V ).
Now we shall show that �rst-order logic may also be regarded as

a special case of modal logic. (Thus all our logic languages are really
modal languages, possibly simpli�ed by ignoring some bits and pieces.)
Syntactically, we are going to regard quanti�ers as modal operators.
Semantically, we know what we mean by the ontology (S; V ) of a �rst-
order language, and we now want to say how this can be viewed as a
Kripke model (S; fRiji � ng; V ).
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Well, it turns out that we need in�nitely many accessibility relations,
but then everything is easy. Take any �rst-order language and pick any
interpretation D = (D; den) of the language. Consider the structure
(S; fRxjx 2 V arg; V ) where

� S is the set of all states (D; s) obtainable from variable assignments
s : V ar �! D

� for every variable x, the corresponding binary relation Rx consists
of all pairs (s; s0) such that s and s0 agree on all variables except
possibly x

� V is a function that assigns to every state (D; s) the valuation
determined by it in the obvious way.

This structure is a Kripke model which allows us to regard the quan-
ti�ers as modal operators and is equivalent to the original �rst-order
interpretation D in the sense that a variable assignment s will satisfy a
w¤ � in the interpretation D i¤ � is satis�ed at the possible world s in
the Kripke model (S; fRxjx 2 V arg; V ).
Consider the quanti�ers 8x and 9x. We know that a w¤ of the form

8x� is satis�ed by a variable assignment s in D i¤ � is satis�ed by every
assignment s0 such that (s; s0) 2 Rx and similarly 9x� is satis�ed by s
i¤ � is satis�ed by at least one s0 such that (s; s0) 2 Rx. Thus 8x is just
the modal operator [x] and 9x is hxi for each variable x.
What are the insights to which we are led by this view of �rst-order

logic?
In the �rst place, our experience with modal operators suggests to

us that certain sentences may be �universally�true, i.e. have every inter-
pretation as model. For example, sentences of the form 8x(� ! 
) !
(8x� ! 8x
) should be universally true because, in modal logic, the
schema K = �(� ! 
) ! (�� ! �
) is satis�ed at every world in
every Kripke model. This is easily rephrased for a multimodal language
as the schema [i](� ! 
)! ([i]� ! [i]
). But if every �rst-order inter-
pretation may be regarded as a Kripke model, then the instances of this
schema must perforce be satis�ed by every local model (D; s), for every
�rst-order interpretation D. And the instances are precisely the w¤s of
form 8x(� ! 
) ! (8x� ! 8x
). As a similar example, it is a fact of
modal logic that �� $ :�:� is satis�ed at every world of every Kripke
model, which suggests we should be able to show that 8x� $ :9x:� is
universally true. Thus we are led to a better understanding of what to
expect from �rst-order logic by our experience with modal logic.
There is a second and more subtle insight, one that eluded logicians

for almost the whole of the 20th century. First-order interpretations D =
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(D; den) can be regarded as Kripke models (S; fRxjx 2 V arg; V ). But
we can get more Kripke models by varying any of the three parameters
S, fRxjx 2 V arg; or V . In particular, we can vary S. In contrast, �rst-
order logic has traditionally assumed that S must be the set of all states
(D; s) where we use all possible s : V ar �! D. This is too restrictive.
Here is an example of the sort of application that invites us to use

only some variable assignments instead of all. If the states in S include
all the functions s : V ar �! D, then one can think of the change from
a variable assignment s to an accessible assignment s0, where (s; s0) 2
Rx, as a kind of independent update of the value of the variable x.
Independent, because the values of all the other variables remain as
they were recorded by s. But suppose one wishes to represent knowledge
that in natural language might be expressed by �He and she designed the
house they built on the hill.�Bearing in mind that �he�, �she�, and �they�
are variables, say represented by x, y, and z in a formal language, let
us consider the e¤ect of update. If we have an assignment s recording
that x has as its value Tom, y as its value Sally, and z as its value the
pair (Tom,Sally), and if we wish to move to a new assignment recording
a new value for x, say Dick, then the value of z must be updated at the
same time. In other words, update is no longer something that a¤ects
variables independently. To model this interdependence of variables,
we would allow S to consist of states that involve only some of the
functions s : V ar �! D rather than all of them. From the point of view
of possible worlds semantics, this is �ne. But until the possible worlds
view was adopted, no-one considered the option of de�ning a semantics
for �rst-order logic in which only some of the variable assignments may
be taken into account. If one looks at the metatheory of logic, one
discovers that some of the most famous results actually depend on the
hidden assumption that S contains states built from all assignments. So
the new insight has far-reaching implications for logic.
To conclude, the possible world semantics provides a unifying frame-

work for all the logic languages we have investigated so far, and makes
sense even if we do not choose to have modal operators.
Should you wish to look more deeply into the way a possible worlds

view provides a fruitful foundation for logic, read Johan van Benthem:
�Modal Foundations for Predicate Logic�, Logic Journal of the Interest
Group in Pure and Applied Logic (L.J. of the IGPL) 5(2):259-286 1997.

6 Afterthoughts

First-order languages o¤er a �exible tool for knowledge representation,
and in many ways resemble the familiar propositional languages � for
example, �rst-order languages satisfy a Compactness Theorem, although
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we have not proved it. Similarly, it is possible to de�ne reasoning al-
gorithms satisfying �rst-order counterparts of the Soundness and Com-
pleteness Theorems. Nevertheless, the increased power and expressive-
ness of �rst-order languages come at a price, and notions such as satis-
faction are more complicated.
In Arti�cial Intelligence some of the most popular �rst-order knowl-

edge representation languages are situation calculi. The use of such
languages revealed the Frame Problem, which may be thought of as fol-
lows: �Whenever something might change from one moment to another,
we have to �nd some way of stating that it doesn�t change whenever
anything changes. And this seems silly, since almost all changes in fact
change very little of the world. One feels that there should be a more
economical and principled way of succinctly saying what changes an ac-
tion makes, without having to explicitly list all the things it doesn�t
change as well; yet there doesn�t seem to be any other way to do it.�
The quote is from an article by Patrick Hayes: What the Frame

Problem is and isn�t. The article appears on pages 123-137 in the book
Pylyshyn ZW (editor): The Robot�s Dilemma � The Frame Problem in
Arti�cial Intelligence, Ablex Publishing Company 1987. Unfortunately
the book is not in our library, but if you�re interested, you can get it on
interlibrary loan.
The Frame Problem is one of the factors that led to the development

of nonmonotonic logic, i.e. logics that formalise defeasible reasoning.
Nonmonotonic logic allows the Frame Problem to be solved roughly as
follows. Instead of having lots of axioms each saying that this or that
doesn�t change when such and such happens, one can simply use a pref-
erence ordering on interpretations in which the more normal states are
those in which things stay the same unless the action was speci�cally
aimed at them. So it becomes a defeasible belief that turning the igni-
tion key of your car won�t break the living-room window. And of course
it should be only a defeasible belief, not an absolute axiom, because if
your rival in crime has attached a bomb to your car, turing the key would
under those exceptional circumstances cause your living-room window
to shatter.
Situation calculi may seem to talk about time, but they are not

temporal languages since the situation terms represent states, not time
instants. Thus a situation calculus doesn�t distinguish between a system
remaining in a state for one instant or for a billion years. On the other
hand, temporal logics don�t say what causes a change of state, whereas
the situation calculus explicitly talks about the actions that may cause
such changes. A situation calculus is thus a kind of dynamic logic.
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