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Abstract

We continue our exploration of the class of opaque proposi-
tional languages by discussing some positive and negative results
about expressiveness, and introduce the object-meta distinction.

1 Ine¤able information

In the previous lecture we met some properties of opaque propositional
languages, for example the property that classical entailment is transitive
(if � � � and � �  then � � ). Today we discuss more of these
�metatheoretical�properties, and explain the pre�x �meta�. This lecture
focuses on expressiveness, i.e. on the general question of whether an
agent�s knowledge representation language would allow her to put all
the information at her disposal into words.
To avoid complications, we assume during the rest of this lecture

that the ontology for every language LA is (S; V ) with S = WA and V
the identity function onWA, just as in the case of the Light-Fan System.
Thus we may speak of states and valuations interchangeably.
There is an important di¤erence between languages that are �nitely

generated and those with an in�nite set A of atoms. To appreciate the
di¤erence, we should �rst review the �nite case.
Suppose LA has a �nite set A = fp0; : : : ; pn�1g of n atoms. Then

LA has a �nite set WA of 2n di¤erent valuations (since each valuation
is obtained by deciding, for each of the n atoms in turn, whether it is
true or false). The information possessed by an agent can be represented
semantically by a subset of WA, corresponding to the states that have
been ruled out. There are a �nite number of subsets of WA, in fact
exactly 22

n
subsets (because each subset is obtained by deciding, for each

valuation in turn, whether it is in the subset or not). The information
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represented by a set of excluded states is expressed by a sentence if the
sentence has exactly those excluded states as its nonmodels. When A is
�nite, it is always possible to �nd such a sentence, and we shall prove
this before going on to consider the in�nite case.

De�nition 1 (Normal form) A sentence � is in disjunctive nor-
mal form if � is of the form 1 _ : : : _ m for some m, where each
disjunct i is itself a conjunction of the form �i1^ : : :^�ik for some k,
and where every conjunct �ij is either an atom or the negation of an
atom.
If the language has a �nite set A = fp0; p1; : : : ; pn�1g of atoms, then

a sentence � is a state description i¤ � = �0 ^ �1 ^ : : : ^ �n�1 where
each �i is either pi or :pi.
If A = fp0; : : : ; pn�1g then a sentence � is in strong disjunctive

normal form (SDNF) if � is in disjunctive normal form and every
disjunct is a state description (i.e. every atom in A appears exactly once
in every disjunct i).

The idea is simpler than the de�nition may sound. For example, if
A = fp0; p1; p2g then p0 ^ :p1 ^ p2 is a state description. A sentence in
SDNF is just a disjunction of one or more state descriptions (which is
why we may read SDNF as �state description normal form�if we wish).

Theorem 2 Every sentence � of LA is equivalent to a sentence in dis-
junctive normal form.
If A is �nite and � is satis�able, then � is equivalent to a sentence

in SDNF.
Proof. We build the normal form sentence by looking atM(�).
If M(�) = ? (the empty set), then no state satis�es �, and so we

choose as the equivalent sentence a contradiction, say p0 ^ :p0. Note
that the contradiction is in disjunctive normal form, although it happens
to consist of a single disjunct.
IfM(�) 6= ?, suppose the atoms occurring in � are among fp0; : : : ; pkg.

(After all, only a �nite number of atoms can go into the construction of
�.) If A itself is �nite, we may set fp0; : : : ; pkg = A.
We don�t care whether states inM(�) satisfy atoms outside fp0; : : : ; pkg.

What we care about is the �nite number of di¤erent ways (say m) in
which the valuations corresponding to states in M(�) can assign truth
values to the atoms in fp0; : : : ; pkg. In other words, we want to go from
the states in M(�) to their associated valuations in WA and see what
these valuations do to the atoms in fp0; : : : ; pkg.
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Let (x0; x1; : : : ; xk) be what one of these valuations does to the atoms.
In other words, pick some state that satis�es �, �nd the valuation as-
signed to that state by the labelling function V , and list the truth values
assigned to the atoms p0; : : : ; pk by this valuation.
Now we form a conjunction that imitates the way in which the val-

uation worked, namely the sentence 1 = �0 ^ : : : ^ �k where �i = pi if
xi = 1 and �i = :pi if xi = 0.
We repeat this for each way of allocating truth values to p0; : : : ; pk

that makes � true, thereby producing conjunctions 1; 2; : : : ; m.
Finally we claim that � � 1 _ : : : _ m. To see that this must be

the case, note that every state that satis�es � must also satisfy one of
the i. Conversely, every state that satis�es one of the i must have an
associated valuation allocating truth values to p0; : : : ; pk in one of the m
ways that satisfy �.

In the proof we said that we care only about the truth values allocated
by a valuation to the atoms actually occurring in �, and would ignore
the truth values allocated to all other atoms. In e¤ect we were claiming
that the truth value a sentence � gets (relative to a state) depends only
on the truth values the atoms in � get, relative to that state. This
follows from the lemma below.

Lemma 3 Let � be a sentence of LA and suppose s; s0 2 S are states
that agree on the atoms occurring in �. In other words, if B � A is
the set of atoms occurring in �, then we suppose that s satis�es p i¤ s0

satis�es p, for every p 2 B.
Then s satis�es � i¤ s0 satis�es �.
Proof. Given any sentence �, let B be the set of atoms occurring in

�.
We use induction on the number of steps in which a sentence can be

built up from the atoms in B, and show that for every such sentence, it
will be satis�ed either by both of s and s0 or by neither of them.
A sentence built up in 0 steps must itself be an atom in B, say p. By

assumption, s and s0 both satisfy p or neither satisfy p.
(Induction hypothesis) Assume that if � is a sentence built up from

the atoms in B in k or fewer steps, then either s and s0 will both satisfy
� or else neither will satisfy �.
Now consider any sentence � built up in k + 1 steps from atoms in

B. There are 5 possible cases.
� = :': State s will satisfy � i¤ s fails to satisfy '. Since ' is built

up in k steps or fewer, s fails to satisfy ' if and only if s0 fails to satisfy
' (by the induction hypothesis), which in turn is the case if and only if
s0 satis�es �.
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� = ' ^  : State s will satisfy � i¤ s satis�es ' and satis�es  .
Since ' and  are each built up in k steps or fewer, s satis�es them both
if and only if s0 satis�es ' and satis�es  (by the induction hypothesis),
which in turn is the case if and only if s0 satis�es �.

� = '_  : States s will satisfy � i¤ s satis�es at least one of ' and
 . Since ' and  are each built up in k steps or fewer, s satis�es at
least one of ' and  if and only if s0 satis�es at least one of ' and  
(by the induction hypothesis), which in turn is the case if and only if s0

satis�es �.
� = ' !  : State s will satisfy � i¤ s satis�es  or fails to satisfy

'. Since ' and  are each built up in k steps or fewer, s satis�es  or
fails to satisfy ' if and only if s0 satis�es  or fails to satisfy ' (by the
induction hypothesis), which in turn is the case if and only if s0 satis�es
�.

� = ' $  : State s will satisfy � i¤ s satis�es both ' and  or
satis�es neither of them. Since ' and  are each built up in k steps
or fewer, s satis�es both ' and  , or satis�es neither, if and only if s0

satis�es both ' and  or satis�es neither of them, which in turn is the
case if and only if s0 satis�es �.
Now since � is built up from the atoms in B by some �nite number

of steps, the result follows.

In passing we may remark that disjunctive normal form is not the
only normal form � we introduce conjunctive normal form in the exer-
cises.
Now let us pause to re�ect on the signi�cance of the theorem. It

actually tells us more than merely that we can rewrite any sentence in
disjunctive normal form. Instead of starting with the set M(�), we
could start with any set X � WA of valuations � say, the complement
of some set of excluded valuations. As long as we are able to restrict
consideration to some �nite set of atoms, we will be able to duplicate
the construction in the proof to arrive at a sentence in disjunctive nor-
mal form which is satis�ed by exactly the (states associated with the)
valuations in X. Since we no longer have a starting sentence � to serve
as focus, the only way to justify restricting attention to a �nite set of
atoms is to have a set A that is itself �nite. So we get:

Corollary 4 If A is �nite and if X is any set of excluded valuations with
complementary set X of included valuations, then there is a sentence
1 _ : : : _ m in SDNF such that s 2M(1 _ : : : _ m) i¤ V (s) 2 X.

Thus, if A is �nite then any information (re�ected by a division of S
into two subsets) can be expressed by a sentence of the language. Thus
if A is �nite then the agent can always say what she thinks.
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The in�nite case is di¤erent � if A is in�nite, there exist subsets
C for which no sentence � can be found such thatM(�) = C, and an
agent may therefore have information that cannot be expressed in the
knowledge representation language.
You may wonder whether the problem is just that we are restricting

ourselves to a single sentence �, and would disappear if we allowed our-
selves a set of sentences, say �. After all, we have de�ned what we mean
by the set of models of a set � of sentences: M(�) = fv j v 2M() for
all  2 �g. Well, it turns out not to matter whether we stick to a single
sentence or allow ourselves the freedom of taking a set of sentences �
there is still some information in the in�nite case that cannot be ex-
pressed declaratively (i.e. that cannot be expressed in the knowledge
representation language). In the �eld of Arti�cial Intelligence, there is
a well-known distinction between procedural knowledge and declarative
knowledge, which is closely related to the distinction between iconic rep-
resentations and symbolic representations. One may know how to ride a
bicycle or hit a tennis shot, but be unable to explain to anyone how to do
it. �Knowing how�means that an agent has an iconic representation of
something (like a feeling in the body that when the bicycle�s handlebars
turn the body must lean inwards). Being unable to explain it means
being unable to transform the iconic representation into a symbolic rep-
resentation. In logic, we try to keep things simpler than in psychology,
so that the iconic representations are states (or sets of states) and the
symbolic representations are sentences (or sets of sentences).
This brings us to the �rst limitative theorem of logic, which I like to

call the Ine¤ability Theorem. It is possible to prove this by a general
cardinality argument, but we shall give a more direct and satisfying proof
that actually exhibits a set C which is �ine¤able�.

De�nition 5 (Ine¤ability) A subset C � S is called ine¤able if there
is no set � of sentences of LA such thatM(�) = C.

Theorem 6 (Ine¤ability Theorem) Let A = fp0; p1; : : :g. Then there
exists an ine¤able set C of states/valuations.
Proof. Pick any valuation w 2 WA. For example, you may take w

to be the valuation such that w(pi) = 1 for all pi 2 A.
Let C be all the remaining valuations, i.e. C = fwg.
We claim that there is no set � of sentences of LA such thatM(�) =

C, whereM(�) is the set of all valuations each of which satis�es all the
sentences in �. For if there were such a �, it would have to contain
at least one sentence which is satis�ed by every valuation in C but not
satis�ed by w.
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Take any sentence  2 LA. We show that if  is satis�ed by all the
valuations in C then  is satis�ed by w as well.
Suppose  is satis�ed by all the valuations in C.
Let fp0; : : : ; pkg be such that every atom in  is among p0; : : : ; pk.
Let v 2 C be the valuation such that v(pi) = w(pi) for all i � k and

v(pi) 6= w(pi) for all i > k.
Now v satis�es  i¤ w satis�es  (because the truth value a sentence

gets is determined by the truth values assigned to the atoms actually
occurring in that sentence, not the truth values assigned to other atoms
� recall the lemma above).
And so we are faced by two choices: either v does not satisfy ,

contradicting our choice of , or else w also satis�es .
Thus there is no sentence satis�ed only by the valuations in C.

The Ine¤ability Theorem was �rst proved in Brink C and Heidema
J (1989): A verisimilar ordering of propositional theories: The in�nite
case, Technical Report TR-ARP-1/89 (Technical Report Series of the
Automated Reasoning Project, Research School of Social Sciences) Can-
berra: Australian National University. A more general account of related
matters may be found in Peppas P, Foo N and Williams M-A (1992): On
the expressibility of propositions, Logique et Analyse 139-140:251-272.
You may care to re�ect on this theorem and its broader signi�cance.

Some say a picture is worth a thousand words. The theorem says that
some pictures can�t be put into words at all, at least not completely,
because there may be an in�nite number of facts about the picture that
one could be interested in. As the cognitive scientist Stevan Harnad puts
it (in a chapter called �Category induction and representation�in Har-
nad S (editor): Categorical Perception: The Groundwork of Cognition,
pp535-565, Cambridge University Press 1987):

Words obviously fall short when they leave out some crit-
ical feature that would be necessary to sort some future or
potential anomalous instance; but even if one supposes that
every critical feature anyone would ever care to mention has
been mentioned, a description will always remain essentially
incomplete in the following ways:
(a) A description cannot convey the qualitative nature of

the object being described (i.e. it cannot yield knowledge
by acquaintance), although it can converge on it as closely
as the describer�s descriptive resources and resourcefulness
allow. (Critical here will be the prior repertoire of direct
experiences and atomic labels on which the descriptions can
draw.)
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(b) There will always remain inherent features of the ob-
ject that will require further discourse to point out; an ex-
ample would be a scene that one had neglected to mention
was composed of a prime number of distinct colors.
(c) In the same vein, there would be all the known and

yet-to-be-discovered properties of the prime numbers that
one could speak of � all of them entailed by the properties
of the picture, all of them candidates (albeit far-fetched ones)
for further discourse �about�the picture.
(d) Finally, and most revealingly, there are the inex-

haustible shortcomings of words exempli�ed by all the it-
erative afterthoughts made possible by, say, negation: for
example, �the number of limbs is not two [. . . ]�The truth of
all these potential descriptions is inherent in the picture, yet
it is obvious that no exhaustive description would be pos-
sible. Hence all descriptions will only approximate a true,
complete �description�.

The point this quotation attempts to make is that in connection with
any iconic representation � any picture, say � there are potentially an
in�nite number of facts that might be of interest to an agent. This
provides for so many ideas the agent may potentially wish to express
that even a large knowledge representation language with in�nitely many
atoms, one for each fact of interest, can�t express them all.
On the other hand, let us carefully remind ourselves of the key as-

sumption made by the Ine¤ability Theorem � that A is in�nite. As
long as we are interested only in a speci�c �nite number of basic facts
about the system (which would lead us to build a knowledge representa-
tion language with a �nite number of atoms each expressing one of those
basic facts), we will indeed be able to express our ideas in LA. It is only
when we are unwilling to place such a �nite limit on the facts we regard
as being relevant that our information may outstrip the available knowl-
edge representation language, even if that language has been equipped
with in�nitely many atoms and the agent uses in�nite sets of sentences.

Exercise 7 1. Consider the Light-Fan System with S = f11; 10; 01; 00g
and A = fp; qg. For each of the following sets of states, give a sen-
tence in SDNF whose set of models coincides with it:

� f11g
� f11; 10g
� f11; 10; 01g
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� f11; 10; 01; 00g

2. Let us say that a sentence � is in conjunctive normal form if
� = 1 ^ : : : ^ m for some m, where each conjunct i is of the
form �0_ : : :_�k for some k, and where every �i is either an atom
or the negation of an atom.

Suppose A = fp0; p1; p2g. For each of the following, give two equiv-
alent sentences, one in disjunctive normal form and the other in
conjunctive normal form:

� p0

� p0 _ p1
� p1 ^ p2
� p0 $ p2

� ((:p0) _ p1)! p2

� (p0 ! p1)! p2

3. We know that the Ine¤ability Theorem does not hold for �nitely
generated languages. Take A = fp0; : : : ; png. Trace through the
proof of the Ine¤ability Theorem and �nd out where it breaks down.

4. Suppose the agent is a mathematician contemplating the set of nat-
ural numbers N = f0; 1; 2; 3; : : :g. And suppose she is interested in
whether a number is prime or not. As knowledge representation
language take LA where A = fp0; p1; p2; : : :g is the in�nite set of
atoms in which pi says �i is prime�. Of course, in the �actual
state� of the system, some of these atoms will be true and other
false. But for the moment focus on something else. Take S = WA,
the set of all valuations, and let V be the identity function on S.
Give an example of an idea the agent would be unable to express
in LA. Prove that the idea cannot be expressed in LA.

(Hint: Try �Not all the natural numbers are prime�.)

2 Metalanguage

We have described, in English augmented with some mathematical sym-
bols, the construction of propositional languages LA and we have inves-
tigated some properties of such languages. The formal language LA is
called the object-language while the language in which we talk about LA,
namely English + math, is called the metalanguage. The meta-object
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distinction is an important one, and we pause to re�ect on it. Why
should there be a distinction at all?
Think informally about the problem of deciding whether an English

sentence is true or false. Some English sentences don�t qualify to get
truth values (for example: questions or commands). The sentences that
do get a truth value are declarative, i.e. are sentences that describe the
way things are, like �The fan is on�. But it turns out that some declarative
sentences resist our attempts to decide whether they are true or false.
The classic example is: �This sentence is false�.
What is this sentence talking about? Itself, apparently. Is it giving

an accurate description of the way things are? Well, that�s not so easy
to decide. If the description is accurate, then the sentence itself must
be false, which is another way of saying that it is not accurate. On the
other hand, if the description is not accurate, then the sentence can�t be
true, so it must be false, which means it is indeed accurately describing
itself. Either way we have a contradiction. And the Liar Paradox is not
the only example of this phenomenon.
Is there some way to pick out the declarative sentences to which

truth values can be assigned without the above di¢ culties? Our �rst
thought is to single out those sentences that do not refer to themselves.
However, Alfred Tarski showed that this doesn�t do the trick. He devised
a version of the Liar Paradox in which sentences refer to one another but
no sentence refers to itself. Imagine a book. It needn�t be a very thick
book, as long as it has at least two pages. Imagine that page 1 has
written on it only the sentence: �The sentence on page 2 is true.� And
imagine that page 2 contains only the sentence �The sentence on page 1
is false.�
Is it clear that we have a version of the Liar Paradox? If the sentence

on page 1 is true, then what it says about the sentence on page 2 must
be accurate, and so the sentence on page 2 must indeed be true, and
so the claim made by the sentence on page 2 about the sentence on
page 1 must be accurate, and thus the sentence on page 1 must be false!
Similarly, if the sentence on page 1 is false, then it follows that it must
be true. This is precisely the sort of double contradiction characteristic
of the Liar Paradox.
Let us summarise the position. Not all English sentences can be

provided with truth values. There is no obvious way to pick out the
sentences of English which can. And any collection of English sentences
in which it is possible to talk about the truth and falsity of all the
sentences in the collection will inevitably permit versions of the Liar
Paradox. So how can we get a grip on the question of which English
sentences it makes sense to regard as either true or false?
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Tarski�s idea is that we should not be too ambitious. Forget about
characterising in one fell swoop the collection of all those declarative
sentences that can safely bear truth values. Start small instead, and
try to characterise some sets of declarative sentences that are safe (i.e.
won�t generate paradoxes). One way to get a safe fragment of English
is to build it up recursively. This is done more easily and cleanly if
we do it mathematically, i.e. formally. One de�nes a formal language
by saying what its alphabet is and then giving a grammar according to
which well-formed strings may be built. A propositional language like
LA is an example. We shall, in later lectures, look at more ambitious
fragments of English (or at least the formal languages that correspond
to them). Once we have a formal language like LA it can be used to
pick out safe fragments of English by associating with the atoms some
simple English sentences that we regard as unproblematic. For example,
we could think of p0 as standing for �The light is on�and p1 for �The
fan is on�and this picks out the fragment of English that consists of
sentences built from these two atoms by means of the usual connectives.
The formal language is simple enough for us to see that paradoxes won�t
arise in the corresponding fragment of English (as long as we�re not silly
enough to take p0 to be �This sentence is false�).
The formal language (and also, if we wish, the fragment of English

associated with it) is called an object-language, because it is the thing to
which our attention and study is directed. English, enriched by whatever
symbols we need, is the metalanguage in which we talk about the ob-
ject language, where the Greek �meta�means �with�. If we were talking
about French, but were speaking in English, then English (augmented
by including the names of French sentences) would be the metalanguage
and French the object language. For example, you might tell me �In
French one uses double negatives, as when one says �Je ne parle pas
français�.� The sentence as a whole belongs to the metalanguage, and
this metalanguage sentence mentions a sentence of the object-language
(quoted and written in Italics).
The distinction between object-language and metalanguage is a spe-

cial case of a more general distinction between the levels at which one
may operate. Think about rule-based behaviour, such as playing a game.
Consider the rule �The only rule is that there are no rules�. Can you see
that this is another form of the Liar Paradox? Are there any rules or
not? To avoid the paradox, we need only distinguish between the object-
level to which the rules apply and the metalevel at which the rules are
formulated (and changed). It immediately follows that rules don�t apply
to themselves. At the metalevel we may have zero, one, or more rules
governing behaviour at the object-level. The paradox �The only rule
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is that there are no rules�is resolved by interpreting it as being not a
rule but a declaration that there are no rules at the metalevel governing
object-level behaviour.
To illustrate the distinction between levels more concretely, consider

the painful subject of cricket. The object-level is the level at which
behaviour is expected to conform to the rules and where Brett Lee is
permitted to viciously hurl leather spheres at the heads of innocent bats-
men. The metalevel is the level to which we ascend after the game when
we draft a petition to the International Cricket Council to change things
so that everyone has to bowl underarm.
Here are more everyday examples of the distinction. Consider the

duties of a chairperson. The members of a committee are allowed to
become totally involved in debating an issue, whereas the chairperson
functions at the metalevel to ensure fair play and that the discussion
remains relevant. If a chairperson gets involved in the discussion without
relinquishing the chair to someone else, then something has gone wrong
� the object- and metalevels are being confused. A chairperson who fails
to maintain the distinction between levels invites con�ict. Conversely,
establishing a distinction between levels can resolve con�ict. Consider
for a moment the con�icts that arise between partners. There is often
the temptation to be trapped in an exchange of recriminations of the
form �You did so and so!� �But you did such and such!� A guidance
counselor would break the circle of blame and lift the discussion to a
metalevel from which the problem can be seen in perspective. This is
why people seek counselling and why counselling often works.
Finally, consider the paradox of democracy. Suppose a political party

is elected democratically, in free competition with other parties. And
suppose the party then proceeds to change the rules by outlawing other
parties and e¤ectively ruling out the key democratic concept, namely
that it should be possible to replace the government without the use of
violence. Does the meta-object distinction suggest a way around this
paradox? One approach is to have a constitution which restrains gov-
ernment. Of course, one has to make it impossible for the government to
change the constitution on their own. In the USA, Congress may suggest
changes to the constitution but these changes have to be rati�ed within
a speci�ed period by su¢ ciently many states, so that a broad consen-
sus outside Congress is necessary before changes are made. In e¤ect,
the constitution has been placed at the metalevel, where it constrains
object-level behaviour of the government.
Returning to logic, we (the logicians) stand at the metalevel using

the metalanguage. In this metalanguage we can describe agents and
their iconic representations of systems (i.e. semantic structures like val-
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uations). For use by the agent, an object-language may be constructed.
This object-language typically corresponds to some well-behaved frag-
ment of the metalanguage and is a set of strings generated recursively
from a set of atoms. An agent may or may not be able to say everything
it wants in the object-language, i.e. may or may not be able to express
all its iconic information about the system symbolically. Tarski showed
that some metalogical things can never be said in the object-language
� in order to avoid versions of the Liar Paradox, the object-language
must be constructed in such a way that it is impossible to speak, in the
object-language, about the truth or falsity of all object-language sen-
tences. Some agents (humans!) can speak both the object-language and
the metalanguage. Other agents (e.g. a software agent doing e-commerce
on the web) may be limited to manipulating the strings of the object-
language. An agent locked into the object-level would be able to say
a sentence like �p0 ! :p1�but would not be able to say metalanguage
sentences such as �p0 ! :p1 is satis�ed by valuation 100�or �p0 � :p1�.
The connectives ! and $ are available to agents at the object-level,
but only agents capable of functioning at least partly at the metalevel
would be able to use the symbols � and �. (Recall the exercises met
previously in which we contrasted � with $ and � with !.)
The moral of the story is that the metalanguage is always stronger

and more expressive than the object-language.

Summary 8 We proved a simple limitative theorem about the lack of
expressiveness of an object-language LA that has an in�nite set of atoms.
We then discussed the object-meta distinction due to Alfred Tarski, and
touched informally on Tarski�s theorem about the inde�nability of truth
(no language can escape the Liar Paradox if it is so expressive that we
can talk in it about the truth or falsity of all its sentences). The desire
to avoid the Liar Paradox is one reason why agents use formal, recur-
sively constructed, object-languages for knowledge representation rather
than using a natural language such as English. These limitative results
are similar in spirit to the better-known (but frequently misunderstood)
incompleteness theorems of Gödel.

3 Glossary

� conjunct � in a conjunction � ^ �, each of the sentences � and
� is called a conjunct.

� disjunct � in a disjunction � _ �, each of the sentences � and �
is called a disjunct.
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� disjunctive normal form � a sentence which is the disjunction
of conjunctions, for example p _ (q ^ r), where the disjunct p is in
e¤ect a conjunction of a thing with itself, and the other disjunct
is the conjunction q ^ r.

� e¤able � what, if we were feeling mischievous, we might call
information that can be expressed by sentences of the knowledge
representation language, in contrast to �ine¤able�information.

� ine¤able � information, re�ected by a set X of excluded states
and its complementary subset X of included states, that cannot
be expressed in the knowledge representation language LA because
there is no sentence � such thatM(�) = X (and in fact no set �
of sentences such thatM(�) = X).

� logician � a peculiar creature often observed to be quietly mut-
tering to himself and chortling. Those with acute hearing will
discover that the creature is muttering something ridiculous like
"If I asked you a yes/no question, would your answer be no?" In
groups, logicians ask one another "Would you like tea or co¤ee?",
whereupon they reply in chorus "Yes!" and roll around cackling
with crazed glee.

� metalanguage � the language, typically English + mathemat-
ical symbols, in which the logician can speak of both the system
and the agent; often a very rich language, with not only the virtues
but also the defects of expressiveness (such as the capacity to ex-
press forms of the Liar Paradox) and thus a language to be used
carefully � this is why logicians may often develop pompous or
pedantic habits, and are to be found on rainy days hunched over
cups of co¤ee arguing about the correct placement of parentheses
or commas.

� object-language � the recursively de�ned fragment of the meta-
language in which an agent expresses symbolically some or all of
the information the agent has gained and initially represented icon-
ically; up to this point we have restricted consideration to opaque
propositional object-languages, but in due course we will look also
at transparent propositional languages and then at �rst-order lan-
guages.

� state description � a very handy kind of sentence that in e¤ect
lists all the facts characterising a state, and which exists only in
languages having �nite A.
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� SDNF (state description normal form) � a disjunction of
state descriptions, in e¤ect listing all the models of the sentence.

� Tarski, Alfred � a very clever logician born in Poland in 1901,
who invented the idea of model and gave the �rst de�nition of sat-
isfaction. Tarski was originally named Teitelbaum, but changed
his name and emigrated to the USA, where he taught at the Uni-
versity of California at Berkeley. His doctoral students had a hard
time � he liked to work throughout the night, and he smoked like
a chimney. But they learnt a lot and became in�uential logicians.
In the history of logic, there are perhaps six names that stand
out: Aristotle, who started it all; George Boole; Gottlob Frege;
Bertrand Russell; Kurt Gödel; and Alfred Tarski. Very possibly,
Tarski was the greatest and most in�uential of them all.
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