
COSC462 Lecture 4
More Metatheory

Willem Labuschagne
University of Otago

Abstract

We look at some more nice properties of propositional lan-
guages and classical entailment, including compactness, and de-
scribe a very crude automated reasoning algorithm.

1 Model-theoretic properties

As in the previous lecture, we avoid complications by assuming that the
ontology for every language LA is (S; V) with S = WA and V the identity
function on WA.
The Ine¤ability Theorem showed us a way in which propositional lan-

guages LA with in�niteA are di¤erent from those with �niteA. However,
there are more similarities than di¤erences. For example, regardless of
the size of A, the set of models of a sentence � can be constructed from
the models of the atoms in � by set-theoretic operations like union,
intersection, and complementation.

Theorem 1 For all '; 2 LA it is the case that

� M(:') =M(')

� M(' ^) =M(') \M()

� M(' _) =M(') [M()

Proof. To see thatM(:') =M(') it su¢ ces to note that s satis�es
:' i¤ s fails to satisfy '.
To see thatM(' ^) =M(') \M(), it is su¢ cient to note that

s satis�es ' ^ i¤ s satis�es ' and s satis�es .
To see thatM(' _) =M(') [M(), note that s satis�es ' _

i¤ s satis�es ' or s satis�es .

1

There is another way in which all propositional languages behave
very similarly, regardless of whether A is �nite or in�nite. This is the
compactness property, which is a kind of �niteness property having to
do with satis�ability.

De�nition 2 (Satis�ability) A set � � LA of sentences is satis�able
if there is at least one state s 2 S that satis�es every
 2 �.

So a set of sentences � is satis�able if its set of models M(�) is
nonempty. (In the case of a single sentence
,
 is satis�able ifM(
) 6=
?). A contradiction like p0 ^ :p0 is an unsatis�able sentence, while a
set like � = fp0; p1; (p1 ! :p0)g is an example of an unsatis�able set of
sentences (as you are invited to verify).

Theorem 3 (Compactness) A set � of sentences is satis�able i¤ every
�nite subset of � is satis�able.
Proof. One direction of the proof is easy. If � is satis�able, then

there is a state s satisfying all the sentences in �, and so every �nite
subset of � is satis�ed by s.
The converse direction is more of a challenge. Suppose every �nite

subset of � is satis�able. We shall build a bigger set �, such that � � �,
and show that � is satis�able. The reason we build � instead of just
working with � is that � is going to be big enough to help us de�ne a
way to allocate truth values to all sentences, in other words we use � to
build a state (valuation) which turns out to satisfy the whole �.
First of all, let us imagine the sentences of LA written down in order

as �1; �2; : : : It�s not hard to dream up an algorithm to do this � we
might use a grammar for the language to generate longer and longer
strings, and write them down in the order in which they are generated.
Now let us de�ne a sequence of sets that gradually add sentences to �.

Let �0 = �, and for every n let �n+1 = �n[f�n+1g if every �nite subset
of �n [f�n+1g is satis�able, or let �n+1 = �n [f:�n+1g otherwise.
There are a couple of things to notice. The construction of the se-

quence is something we can imagine being carried out, but we may not
ourselves be able to do it in practice, because it not only goes on forever
but it may be very hard work to decide whether every �nite subset of
�n [f�n+1g is satis�able. Nevertheless, if we had unlimited time we
could use truth tables and do it. So it is possible in principle.
The second thing to notice is that every �i has the property, by virtue

of our construction, that all its �nite subsets are satis�able. The reason
is this. The initial set �0 has the property, since �0 = �. Suppose
�n has the property that all its �nite subsets are satis�able, but neither
�n [f�n+1g nor �n [f:�n+1g has the property. Then there must be

2

�nite subsets X and Y of �n such that X [f�n+1g and Y [f:�n+1g
are both unsatis�able. But what about X [Y ? Any valuation satisfying
X [Y must satisfy either �n+1 or :�n+1. So either we contradict the
unsatis�ability of X [f�n+1g and Y [f:�n+1g, or else the �nite subset
X [Y of �n is unsatis�able, which is also a contradiction, since we
assumed all �nite subsets of �n to be satis�able.
Let�s return to the construction. Take � to be the union of all the

�n, in other words take � to be the set of all sentences which belong
to at least one of the �n. This set � has three interesting properties.
Obviously � � �, since � = �0. Also, for every sentence � 2 LA, either
� 2 � or else :� 2 �. And �nally, every �nite subset of � is satis�able.
Why? Well, because that �nite subset is, for some n, a �nite subset of
�n and we know that the �nite subsets of every �n are all satis�able.
Now consider the valuation v such that, for every p 2 A, v(p) = 1 i¤

p 2 �. We claim that for each sentence � 2 LA, the state v satis�es �
i¤ � 2 �.
The proof uses induction. The shortest sentences are the atoms, and

if � is an atom then by construction v satis�es � i¤ � 2 �. Assume that
this holds for all sentences shorter than k (the Induction Hypothesis). Let
� be of length k. There are various cases:
If � = :' then ' is shorter than k and so we may argue that if v sat-

is�es � then v does not satisfy ', so ' =2 � by the Induction Hypothesis,
and so � 2 �. Conversely, if � 2 � then ' =2 �, so by the Induction
Hypothesis v does not satisfy ', and so v satis�es �.
If � = ' ^ �, then both ' and � are shorter than k and so we

may argue that if v satis�es � then v satis�es both ' and �, so by the
Induction Hypothesis ' 2 � and � 2 �, and now we are left with two
possibilities: either ' ^ � 2 � or ' ^ � =2 �. We can eliminate the
latter, for if ' ^ � =2 � then :(' ^ �) 2 �, and now the �nite subset
f'; �;:('^�)g of � is unsatis�able. So '^� 2 �. Conversely, suppose
� 2 �. Now both ' 2 � and � 2 �, for if not we again get a �nite
subset of � that is unsatis�able. For example, if ' =2 �, then :' 2 �
and so f:'; ' ^ �g is an unsatis�able �nite subset of �. But we know
that the �nite subsets of � are all satis�able. And so v satis�es both '
and �, whence v satis�es �.
The cases � = ' _ �, � = ' ! �, and � = ' $ � are similar and

left for the exercises.
The induction now follows, so that for sentences of all lengths it is

the case that they are satis�ed by v i¤ they belong to �. But since v
satis�es all the sentences in �, v certainly satis�es all the sentences in
� � �. So � is satis�able.

The Compactness Theorem illustrates a technique that logicians of-

3

ten use to prove results about logic, namely the idea of a maximal sat-
is�able set �. Versions of the Compactness Theorem could be proved
for di¤erent kinds of logic, but since our concern is with applied logic
rather than logic as a part of mathematics, we shall not do so.
In order to fully appreciate the importance of the Compactness The-

orem we shall pause to examine some of its consequences. Recall that
� � � i¤M(�) � M(�):For example, f�; �g � � because every valua-
tion satisfying � as well as � is of course a valuation satisfying �.

Corollary 4 If � � � then there is some �nite subset �0 � � such that
�0 � �.
Proof. First we establish a connection between entailment and un-

satis�ability, namely that � � � i¤ � [f:�g is unsatis�able.
Suppose � � �. Then every valuation satisfying all the sentences in

� also satis�es �. So no valuation can satisfy all the sentences in � as
well as satisfying :�. So the set � [f:�g is unsatis�able.
Conversely, if � [f:�g is unsatis�able, then every valuation satis-

fying all the sentences of � must also satisfy �, so that � � �.
Now we use the connection between entailment and unsatis�ability.
Suppose � � �.
Then � [f:�g is unsatis�able.
So �0 [f:�g is unsatis�able for some �nite �0 � � (otherwise by

compactness � [f:�g would have to be satis�able).
So �0 � � for some �nite �0 � �.

Isn�t this remarkable? Use as many sentences as you like to build a
set �. Look at the set of models of �. Pick any sentence � which is true
in all those models. Then there is a �nite subset of �, which is really
just another way of saying that there is a single sentence � (since we
could take the conjunction of all the sentences in the �nite subset) such
that � � �.
On the other hand, maybe it�s not so remarkable. The set � expresses

some information (has some nonmodels). If � � � then this just means
� expresses some of the information in �. And � is a �nitely long
string. So we would expect to �nd some �nite part of � that expresses
all the information in � (and perhaps even more). So the corollary
to the Compactness Theorem is a vindication of our intuition about
information, not a surprise!
My treatment of the Compactness Theorem is loosely based on that

in Enderton H: A Mathematical Introduction to Logic (2nd edition), Har-
court/Academic Press 2001, which I would describe as one of the better
logic textbooks out there.

4

Exercise 5 1. For all sets X and Y , we de�ne the complement of Y
relative to X to be the set X � Y = fx 2 X j x =2 Y g. Thus for
exampleM(') = S �M(').

Describe how to construct M(' !) and M(' $) from S,
M('), andM(). You may use diagrams if you wish.

2. Finish the proof of the Compactness Theorem by completing the
remaining cases of the inductive argument to show that v 2M(�)
i¤ � 2 �.

3. To get a feel for the construction of � used in the Compactness
Theorem, try the following.

Consider the language LA with A = fp; qg, and let us restrict our
attention to the following 16 non-equivalent sentences, which we
give in order of decreasing number of models:

p _ :p
p _ q, q ! p, p! q, :p _ :q
p, q, p$ q, :(p$ q), :p, :q
p ^ q, p ^ :q, :p ^ q, :p ^ :q
p ^ :p.
Take � = fpg. Construct a maximal satis�able set � such that
� � �.
(Hint: It�s easiest if you are systematic. Write down, for each of
the 16 sentences, its set of models from f11; 10; 01; 00g. Go through
the 16 sentences in turn, building sets �0;�1; : : :. At every stage,
check for satis�ability by keeping track of the models of �n and
checking thatM(�n) \M(�n+1) 6= ?.)
Do you think it would be possible to build a di¤erent maximal satis-
�able set �0 such that fpg � �0 but � 6= �0? Justify your answer.

2 Reasoning algorithms

Suppose we have a set � of sentences. Call this our database. Now
consider the problem of writing a program that can be applied to our
database in order to generate sentences � such that � � �.
Such a program would be an automated reasoner. Since we are not

insanely ambitious, we won�t insist that the program be an intelligent
agent able to do everything a human can. All the program has to be able
to do is to transform strings in � into strings � entailed by �, without
understanding what the strings mean. In other words, we are satis�ed

5

with an algorithm that works syntactically, not semantically, because
it is easier to tell the algorithm what to do according to the shapes of
symbols than according to their meanings.
Later, we shall be taking a more in-depth look at automated reason-

ing. For the present, we just try to convey the general idea by looking
at a very crude approach. The transformations done to strings by auto-
mated reasoners are called inferences.
The most ancient and well-known inference rule is called Modus Po-

nens, which is Latin for �the method of bridging the gap�, and it works
like this: given copies of two strings � and � ! � as input, the auto-
mated reasoner bites o¤, and spits out, the string �. So we may visualise
an automated reasoner equipped with Modus Ponens being applied to
a database �. The reasoner would look inside � for a pair of strings of
the form � and � ! �, and as soon as it �nds such a pair the reasoner
would add � to the database. Then the reasoner does the same to the
new database. Thus the database grows step by step.
There is a second very natural inference rule, which we shall call

And. It works like this: given copies of two strings � and � as input,
the automated reasoner squashes them together and spits out the con-
junction � ^ �. When the reasoner is applied to a database �, it looks
for any two sentences � and � inside the database and adds � ^ � to
the database. In practice we would want to control the application of
this inference rule, because it can consume the reasoner and turn it into
a monomaniac that churns out conjunctions without stopping. We will
see later what sort of strategies one might use to control the application
of inference rules (in lectures 16-20).

2.1 The fabric example
We now show that our simple reasoning algorithm can be useful. We
shall apply the algorithm to an example taken from Maier and Warren
(1988): Computing with Logic, Addison-Wesley, pp 8-16.
The database � consists of information that can be used to classify

di¤erent kinds of cloth.
In woven fabric, two sets of threads are interlaced at right angles.

Warp threads run the length of the piece of fabric. During the weaving
process, the warps are raised or lowered in di¤erent patterns and �ll
threads are passed back and forth between them. The three basic groups
of weaves are plain weaves, twill weaves, and satin weaves.
In a plain weave, the warp threads cross over and under successive �ll

threads, with adjacent warp threads going in alternate directions around
the �ll threads, so that the warp pattern repeats every two threads. (See
�gure 1.)

6

Figure 1: Plain weave with warps left to right

Figure 2: Twill weave with warps up and down

In a twill weave, a warp thread passes over several �ll threads called
�oats, and passes under one or possibly more �ll threads called sinks.
Adjacent warp threads are o¤set by one �ll thread so that the warp
pattern gives the twill fabric a diagonal texture. (See �gure 2.)
Satin weave is characterised by long �oats or sinks, usually involving

four or more �ll threads, which gives the satin fabric a lustrous look.
Adjacent warp threads in a satin fabric are o¤set by more than one �ll
thread, to avoid giving a diagonal texture.
The following sentences in � summarise the properties we can use to

classify a fabric into one of the basic categories of weaves. For readability,
we do not use atoms like p0 or p1 but strings that remind us of English.

7

� alternatingWarp ! plainWeave

� diagonalTexture ! twillWeave

� (hasFloats ^ warpOffset=1) ! twillWeave

� (hasFloats ^ warpOffset>1) ! satinWeave

Di¤erent fabrics with plain weaves can be distinguished by the colours
of the threads, the spacing of the threads, the texture, and the �bre (the
substance from which the threads are made). A balanced fabric has as
many warp threads per inch as �ll threads per inch. A sheer fabric has
�ne threads spaced far enough apart to let light through. Percale is
cotton fabric with a balanced weave and a smooth texture, organdy is
a sheer cotton fabric, and organza is a similar fabric of silk. All these
fabrics have threads of a single colour, so may be grouped together in a
larger category of solid plain weaves.

� (plainWeave ^ oneColour) ! solidPlain

� (solidPlain ^ cotton ^ balanced ^ smooth) ! percale

� (solidPlain ^ cotton ^ sheer) ! organdy

� (solidPlain ^ silk ^ sheer) ! organza

To get a pattern into a fabric one must have groups of warp or �ll
threads of di¤erent colours. Plaids have groups of di¤erent coloured
threads in both warp and �ll. Gingham is a cotton plaid in which the
di¤erent groups have the same width.

� (plainWeave ^ colourGroups) ! patternPlain

� (patternPlain ^ warpStripe ^ fillStripe) ! plaid

� (plaid ^ equalStripe) ! gingham

Basketweave is a variation on plain weave in which groups of two or
more warp threads function as a unit. One kind of basketweave is oxford
cloth, in which warp threads are grouped in twos while �ll threads are
single (called type 2/1). Also, in oxford cloth the �ll threads are thicker
than the warp threads. For monk�s cloth, the groups of warp threads
and �ll threads are the same size, and groups usually consist either of
two threads or four (giving types 2/2 and 4/4). In monk�s cloth the
warp and �ll threads have the same thickness. Hopsacking has a rough
texture and an open weave, i.e. adjacent threads do not touch.

8

� (plainWeave ^ groupedWarps) ! basketWeave

� (basketWeave ^ type2To1 ^ thickerFill) ! oxford

� (basketWeave ^ type2To2 ^ sameThickness) ! monksCloth

� (basketWeave ^ type4To4 ^ sameThickness) ! monksCloth

� (basketWeave ^ rough ^ open) ! hopSacking

Ribbed weave fabrics are a variation on plain weave with some threads
thicker than others. There are several ribbed fabrics in which the �ll
threads are thicker than the warp threads, and the varieties are distin-
guished by the size and shape of the ribs � faille has small �at ribs,
while grosgrain, bengaline, and ottoman have rounded ribs that are small,
medium, and heavy respectively.

� (plainWeave ^ someThicker) ! ribbedWeave

� (ribbedWeave ^ thickerFill) ! crossRibbed

� (crossRibbed ^ smallRib ^ flatRib) ! faille

� (crossRibbed ^ smallRib ^ roundRib) ! grosgrain

� (crossRibbed ^ mediumRib ^ roundRib) ! bengaline

� (crossRib ^ heavyRib ^ roundRib) ! ottoman

Napped fabrics are �nished by brushing with wire brushes to give a
very soft texture. Flannel is the most common napped fabric, and may
be either plain or twill weave in either cotton or wool.

� (plainWeave ^ cotton ^ napped) ! flannel

� (twillWeave ^ cotton ^ napped) ! flannel

� (plainWeave ^ wool ^ napped) ! flannel

� (twillWeave ^ wool ^ napped) ! flannel

In leno weave, a special attachment to the loom, called a doup,
crosses and uncrosses pairs of warp threads between �ll threads. Mar-
quisette is a fabric with an open leno weave.

� (plainWeave ^ crossedWarps) ! lenoWeave

� (lenoWeave ^ open) ! marquisette

9

Pile fabrics have an extra set of loosely woven threads that produce
loops on one or both sides of the fabric, and may be categorised as �ll
pile or warp pile depending on whether the extra threads are parallel
to the �ll threads or warp threads. Velvet has a warp pile with cut
loops, wehreas terry cloth is a �ll pile fabric with uncut loops on both
sides. Corduroy and velveteen are also �ll pile fabrics, but have the loops
cut like velvet. In corduroy the loops are aligned to give ridges, but in
velveteen the loops are staggered to give a solid e¤ect.

� (plainWeave ^ extraFill) ! fillPile

� (plainWeave ^ extraWarp) ! warpPile

� (warpPile ^ cut) ! velvet

� (fillPile ^ uncut ^ reversible) ! terry

� (fillPile ^ cut ^ alignedPile) ! corduroy

� (fillPile ^ cut ^ staggeredPile) ! velveteen

Twills vary according to the relative lengths of the �oats and sinks.
If the lengths are the same, the fabric is an even twill. If not, the fabric
is faced, with �lling-faced having longer sinks and warp-faced having
longer �oats. Drill and denim are warp-faced twills, but denim has
white �ll threads whereas drill has �ll threads of the same colour as the
warp threads. Serge is an even twill with a heavy rib.

� (twillWeave ^ float=sink) ! evenTwill

� (twillWeave ^ float<sink) ! fillingFaced

� (twillWeave ^ float>sink) ! warpFaced

� (warpFaced ^ colouredWarp ^ whiteFill) ! denim

� (warpFaced ^ oneColour) ! drill

� (evenTwill ^ heavyRib) ! serge

For satin weaves, we get satin if the �oats are in the warp and sateen
if they are in the �ll. Both have a smooth �nish. Moleskin is a napped
satin weave cotton fabric.

� (satinWeave ^ warpFloats ^ smooth) ! satin

� (satinWeave ^ fillFloats ^ smooth) ! sateen

10

� (satinWeave ^ cotton ^ napped) ! moleskin

Now imagine that the agent wants to �nd out what she is wearing,
and looks down at her clothes. She notices that there is a diagonal
pattern to the fabric, that the warp threads dominate on the visible side
of the fabric, and that the warp threads are blue while the �ll threads
are white. Thus she adds to her database the following atoms:

� diagonalTexture

� float>sink

� colouredWarp

� whiteFill

Next the agent moves from perception to reasoning. ApplyingModus
Ponens to the obvious atom and the sentence

diagonalTexture ! twillWeave
she infers

twillWeave.
Applying And she infers

twillWeave ^ float>sink
so that Modus Ponens and

(twillWeave ^ float>sink) ! warpFaced
deliver

warpFaced.
From the obvious atoms, And infers (in two steps)

warpFaced ^ colouredWarp ^ whiteFill
so that Modus Ponens can use

(warpFaced ^ colouredWarp ^ whiteFill) ! denim
to infer that she is wearing

denim:

2.2 Properties of reasoning algorithms
First let us give a name to a sequence of inferences from the database.

De�nition 6 A baby deduction of � from � is a �nite sequence of sen-
tences h�0; : : : ; �ni such that �n = � and for every k � n:

� �k 2 � or

� there exist i; j < k with �j = (�i ! �k)

� or there exist i; j < k with �k = (�i ^ �j).

11

To check that hp0; (p0 ! p1); p1i is a baby deduction of � = p1 from
the set � = fp0; p0 ! p1g is entirely mechanical. By inspection, p0 is in
the set �, as is (p0 ! p1). By virtue of the fact that the sequence has
earlier members �i = p0 and �j = (p0 ! p1), it now follows that �k = p1
is entitled to its place in the sequence also.
Similarly, the reasoning performed in the fabric example corresponds

to the deduction h�0; : : : ; �12i where
�0 = diagonalTexture
�1 = diagonalTexture ! twillWeave
�2 = twillWeave
�3 = float>sink
�4 = twillWeave ^ float>sink
�5 = (twillWeave ^ float>sink) ! warpFaced
�6 = warpFaced
�7 = colouredWarp
�8 = warpFaced ^ colouredWarp
�9 = whiteFill
�10 = warpFaced ^ colouredWarp ^ whiteFill
�11 = (warpFaced ^ colouredWarp ^ whiteFill) ! denim
�12 = denim.

De�nition 7 Write � ` � to say that there exists a baby deduction of
� from �.

One way to think of it is that our automated reasoner can output
the metalanguage string � ` � in order to tell us that it has added the
object-level string � to the database �.
How do we judge whether our automated reasoner is a good one?

There are various questions we could ask.
Is the automated reasoner sound? A sound reasoner would add �

to the database � only if � � �. So of course an unsound reasoner is
one that may occasionally add to the database � some sentence
 for
which it is not the case that � entails
. Since the aim of an automated
reasoner is to mimic the entailment relation �, we would be reluctant to
use an unsound reasoner, and would tend to do so only if the reasoner
had other properties that were overwhelmingly important for the context
of use.
Our crude baby reasoner is sound.

Theorem 8 (Soundness) If � ` � then � � �.
Proof. Suppose � ` �. Thus there exists a baby deduction h�0; : : : ; �ni

of � from �.

12

Now we use induction on the length of the deduction to show that
� � �.
A deduction of length 1 consists of the single sentence �, and it must

be the case that � 2 �, whence it follows that � � �.
Suppose the result holds for all baby deductions of length � k. Con-

sider any baby deduction of � from � having length k+1, say h�0; : : : ; �ki.
There are three possibilities for �k = �.
If � is a member of �, then � � �.
So consider the second case, in which � belongs by Modus Ponens,

i.e. there are i; j < k with �j = (�i ! �k).
The sequence up to �i is a deduction of �i and is shorter than k+1,

so by the induction hypothesis � � �i.
Similarly the sequence up to �j is a deduction of �j and is shorter

than k + 1, so by the induction hypothesis � � �i ! �k.
But if a model v of � satis�es �i and also satis�es �i ! �k, then v

has to satisfy �k.
Thus � � �k.
The third case, in which � belongs by And, is similar.

There is a second question we might ask about our automated rea-
soner.
Is the reasoner complete? A reasoner is complete if its deductions go

far enough. In other words, completeness is the property:
If � � � then � ` �.

Our baby reasoner is not complete, sadly. Its inference rules can only
transform input strings provided one of them has the syntactic form �
and another has the form �! �, or else in order to produce a string of
the form �^�. Suppose we start with � = fpg. We know that � � ::p.
However, no baby deduction starting from this � can ever produce the
string ::p. Thus we have a counter-example to completeness.
Although we would generally like our automated reasoner to be com-

plete, we may accept an incomplete reasoner if it has some compensat-
ing advantage such as being very e¢ cient. For example, Prolog is based
on a reasoning algorithm called SLDNF-resolution which is incomplete
relative to the particular form of entailment used in that context, but
SLDNF-resolution has the advantage that in its limited context of use
it is e¢ cient. We�ll say more about this later.
We see that a sound and complete reasoning algorithm is one which

will output � ` � if, and only if, � � �. We can think of such a reasoner
as a question-answering device. We may ask it whether � � �, and if it
is indeed the case that � � � then our sound and complete reasoner will
con�rm this by outputting � ` � or words to that e¤ect.

13

This is, however, not all we might aspire to. Suppose we ask whether
� � � when it is in fact the case that � 2 �. Then our sound and
complete reasoner will not try to fool us by answering �yes� (i.e. by
outputting � ` �), which is good, but on the other hand our sound and
complete reasoner doesn�t have to tell us �no�either (i.e. doesn�t have
to output that � 0 �). Won�t we be able to tell that � 0 � by having
the reasoning program stop without giving us the con�rmation � ` �?
No, because quite possibly the reasoning algorithm won�t terminate at
all. And what�s more, we won�t know that it�s not going to terminate.
To illustrate this situation, consider the database � = fp0g [fp0 !

p1; p1 ! p2; : : :g. Take � = p113. Our crude reasoner will perform
a sequence of inferences until it has constructed a deduction sequence
terminating with p113, whereupon the reasoner will halt and output � `
�. But now suppose that we take �0 = fp0 ! p1; p1 ! p2; : : :g. The
reasoner will search through � forever, because it will never �nd a pair of
sentences in � that will allow it to make an MP inference. The problem
is that while the reasoner is chugging away, we won�t know whether it is
getting closer and closer to �nding what it needs or whether the search
is hopeless. So we would be very interested in upgrading our reasoner
to a decision procedure.
A decision procedure for a language LA is an algorithm that, given

any subset � and any sentence �; will terminate after a �nite number
of steps and answer either �yes�or �no�to our question �Does � � �?�.
Sometimes we are able to devise an automated reasoner that is a deci-
sion procedure, sometimes not. For example, if we knew that � will be
�nite, we could use a decision procedure that involves examining truth
tables. However, even if a decision procedure exists, it may not be use-
ful. A truth table for a set � and sentence � in which a total of n atoms
occur will need to have 2n rows, and so a truth table algorithm is expo-
nential, which is not e¢ cient enough for realistic applications. In fact,
the decision problem for propositional logic is an NP-complete problem
(which will mean something to those of you who did complexity theory
in COSC341). One way to see that the problem is NP-complete is to
recall that the most famous of all NP-complete problems is the Satis�-
ablity Problem: given a sentence �, is � satis�able? As we saw earlier
in this lecture, � � � i¤ � [f:�g is unsatis�able, and so the question
�Does � � �?� can be rephrased as the Satis�ability Problem.

3 Glossary

� compactness � a property that may be possessed by an object
language, and which represents a sort of �niteness; formally, a
compact language is one in which, for any set � of sentences, we can

14

check whether � is satis�able by examining just the �nite subsets
of �.

� completeness � the property possessed by a reasoning algorithm
which, for all subsets � of a language LA and all sentences � 2 LA,
will con�rm that � � � by halting with suitable output (e.g. � `
�). If it is not the case that � � �, the the reasoner may fail to
halt.

� decision procedure � a reasoning algorithm which is not only
sound and complete but is also guaranteed to terminate when � 2
�.

� soundness � the property possessed by a reasoning algorithm
which will halt with output � ` � only in cases where indeed
� � �.

15

