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Abstract

We explore the use of heuristics in reasoning. More precisely,
we look at ways to extend the classical entailment relation to a
defeasible entailment relation. Lecture 5 looks at numerical ap-
proaches (especially probability), and Lecture 6 at non-numerical
approaches (nonmonotonic logic).

1 Introduction

The information an agent obtains about a system is usually limited. A
doctor in the emergency room of a hospital must treat a patient accord-
ing to the visible symptoms without knowing their history and without
awaiting the results of laboratory tests. Indeed, even if there were time
to wait for test results, it is possible that none of the tests would reveal
the cause of the symptoms. Under such circumstances, the agent will
simply have to do the best she can, which may mean going beyond her
limited de�nite information and using rules of thumb to form a conjec-
ture such as �This patient has had a stroke.�
When the agent has to use such a conjecture as a basis for action,

then the agent does not merely toy with it as an abstract speculation
but adopts it as a belief. Of course, the agent should remain aware that
the belief goes beyond her de�nite information and thus that there is an
element of uncertainty about it.
If by defeasible beliefs we understand beliefs that are formed on the

basis of information that contains an element of uncertainty � default
information � then there is an important question to be asked: Under
what circumstances would it be rational to base action on defeasible
beliefs? Short answer: when the risks are not too great.
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1.1 Emotions and default information
There is a tradition dating back to Ancient Greece according to which
people in everyday life are erratic, emotion-driven, and found wanting
when measured against the ideal of cold intellectual rationality. This
tradition had an e¤ect on psychology, which for decades paid more at-
tention to negative forms of behaviour than to sanity and happiness.
But from the 1950s onward, cognitive psychologists began to interact
increasingly with those in arti�cial intelligence who were attempting to
design arti�cial agents capable of coping in normal everyday situations,
e.g. tidying up a room. This interaction gave rise to the broader �eld
known as cognitive science, and one of the insights to emerge from it is
that our weaknesses and strengths are two sides of the same coin. An
agent is like a well-designed data structure � some operations may be
rendered less e¢ cient as the price paid to make other operations more
e¢ cient. Our ideas of rationality are changing as we improve our un-
derstanding of the design decisions that go into agents. For example,
emotions are not unfortunate aberrations that undermine rationality �
they are ways of organising responses from a modular brain, and help
us to make decisions. What is more, there is an interesting connection
between emotions and the adoption of defeasible beliefs.
The psychologist Alice Isen showed that people who are feeling mildly

happy make more use of default information (i.e. heuristics) than people
who are feeling unhappy. And their use of default information allowed
the happy people to reason more e¢ ciently, solving problems in far less
time1. While Isen�s experiments showed that both happy and unhappy
people when confronted with a problem-solving situation came to the
same eventual decision, the di¤erence was that the happy people got
there quickly by taking bold shortcuts while the unhappy people defen-
sively tried to minimise the risk of being wrong.
Why should our emotions have a connection with the way we reason?

It appears from the work of cognitive psychologists like Isen and Bar-
bara Fredrickson that positive and negative emotional states evolved in
order to mediate between the environment and the agent�s momentary
thought-action repertoire. When the agent is in a preferred environ-
ment, an exploratory attitude is appropriate, whereas a threatening or
unsafe environment is best met by a defensive, risk-minimising attitude.
Positive a¤ect is the internal re�ection of a preferred environment, neg-
ative a¤ect is the internal re�ection of an unsafe environment. Positive
a¤ect is accompanied by a broadened thought-action repertoire � the
mind is opened to a wider array of thoughts and actions, which facil-

1References are given at the end.
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itates exploration, learning, creativity. Negative a¤ect is accompanied
by a narrowing of the thought-action repertoire to result in what have
been called �speci�c action tendencies�: fear is linked with an urge to
�ee, anger with the urge to attack, disgust with the urge to expel, and
so on. Clearly, in a life-threatening situation, a narrowed thought-action
repertoire promotes quick and decisive action that carries direct and im-
mediate bene�t, because the speci�c action tendencies called forth by
negative emotions represent the sort of actions that worked best to save
the lives of our ancestors. A positive emotional state allows the mind
to entertain alternatives; a negative emotional state suppresses such dis-
tractions.
Consider a concrete example � the agent in the control room, mon-

itoring a control panel and trying to decide what the actual state is,
or at least whether it is a safe state. The control panel gives limited
information, so that there are several candidates for being the actual
state of the system. If the system (i.e. environment) appears to be safe,
the agent may freely use rules of thumb as basis for her beliefs about
the state of the system. But should there be some indication that the
environment is unsafe, say an alarm going o¤ or a red light blinking on,
then we would expect the agent to react by taking the speci�c action
of pulling the red lever in the corner, thereby shutting down the system
and summoning the supervisor from home.
As a second example, consider the doctor in the emergency room.

If the social environment is one characterised by sanity and trust, one
in which malpractice litigation is not instituted against doctors without
strong evidence of carelessness or incompetence, then the doctor will
feel free to apply all the rules of thumb she has acquired over the years
to decide creatively on her diagnosis and treatment. But if there is a
fashion for frivolous lawsuits and the doctor is afraid she may be sued
for anything that goes wrong, then it would be both natural and rational
for the doctor to play it safe by limiting herself to standard procedure,
even if the rules of thumb re�ecting her experience suggest that this
may not be the best thing for the patient. The point is that proceeding
defensively is best for the doctor, since her environment signals danger
and rules of thumb don�t absolutely guarantee success.
These observations not only help us to understand human behaviour

but inform our design of arti�cial agents. If we design a robot to explore
the surface of Mars, it would make sense to equip it with some analog
of a positive emotional state, in which it follows up anything that looks
interesting, is open to possibilities for new knowledge, and is willing to
make a plausible guess that the colour of that rock over there might
indicate the presence of a rare mineral, because the price of guessing
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wrong is not too heavy. Similarly, it would make sense to equip the
robot with some analog of a negative emotional state, so that when its
battery gets low, it will become �worried�and narrow its thought-action
repertoire to concentrate on getting back to one of the locations where
spare batteries have been stored, without being distracted by otherwise
intriguing features of the landscape.

1.2 Kinds of reasoning
In logic, the cautious, risk-minimising type of reasoning is represented
by classical entailment. Suppose that � � �. An agent who knows that
� is the case also knows that � is the case, because � is guaranteed to
hold under all circumstances that make � true. The conclusion � is fully
justi�ed by the knowledge �, even if the agent doesn�t really know � and
is just asking �what if?�. Classical logic is the study of � and algorithms
for simulating it in a sound and complete way. However, classical logic
is not the whole of logic. We are now going to move on to a newer part
of logic that tries to model common-sense �plausible�reasoning, in which
the agent uses default information (heuristics, rules of thumb, statistical
data) to form defeasible conclusions, conclusions that are partly justi�ed
but not wholly guaranteed by the agent�s knowledge.
The di¤erence between classical logic and the new logic lies in the

entailment relation. In classical logic we focus just on the hypothesis-
conclusion pairs that belong to �. In a logic that formalises defeasible
reasoning, we want to regard a larger variety of hypothesis-conclusion
pairs as being acceptable. How should we enlarge � to a defeasible
entailment relation js containing hypothesis-conclusion pairs in which
the hypothesis may support the conclusion partially rather than fully?
There are two main approaches: numerical and non-numerical.
Recall that � � � i¤M(�) � M(�). One can interpret the relation

M(�) �M(�) numerically by, say, counting the number of models of �
that failed to be models of �, and it then becomes possible to arrive at a
defeasible consequence relation by relaxing this constraint. For example,
ifM(�) � M(�), then 0 of ��s models fail to be models of �, and we
could imagine relaxing this constraint by allowing some proportion, say a
quarter of ��s models, to not satisfy �. The numerical approach involves
arithmetic and leads to probabilities or fuzzy sets.
In contrast, a non-numerical approach might instead relax the con-

straint M(�) � M(�) by working with a subset of M(�) or with a
superset of M(�). In other words, we might form a defeasible conse-
quence relation by requiring either that X � M(�), where X contains
only some of the models of �, or by requiring thatM(�) � Y , where Y
contains all the models inM(�) plus more. The non-numerical approach
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involves set theory rather than arithmetic, and leads to nonmonotonic
logic.
In this and the next lecture, we shall brie�y outline how probabilistic

logic and fuzzy logic work, point out the kind of problem that the numer-
ical approach may su¤er from, and describe the kind of nonmonotonic
logic based on preferential semantics. It will turn out that preferential
semantics de�nes a defeasible entailment relation js such that � js � i¤
X � M(�), where X is a particular subset of M(�) consisting of the
most preferred models.

2 Probabilistic logic

Default information may be statistical. Statistics is based on probability
theory. Let us look at a simple way to use probabilities in logic.
Probabilities arise from some experiment, i.e. from some activity

having an observable outcome. Probabilities are based on the idea of
proportion � given some collection of equally likely outcomes, the pro-
portion of those that are thus-and-so constitutes the probability of being
thus-and-so. Suppose a bucket contains 100 balls of which 70 are white
and 30 black. Consider the experiment of drawing a ball �at random�
from the bucket and noting its colour. The probability that the ball is
white should be 70 out of 100, or 0.7, since that is the proportion of
white balls. Similarly the probability of drawing a black ball is 30/100,
or 0.3. So probabilities are fractions ranging from 0 to 1, and the values
satisfy certain obvious constraints � for example, whatever the value
Pr(white) associated with drawing a white ball may be, the probability
of drawing a ball that is not white must be 1� Pr(white).

De�nition 1 (Probabilities) A probability space is a triple (S;B;Pr)
where S is a nonempty set called the sample space, B is a collection
of subsets of S that is a �eld of subsets of S, and Pr : B �! [0; 1] is a
function from B to the unit interval of real numbers [0; 1] such that Pr
is a probability measure on B.
Members of the sample space S are called outcomes, and the subsets

of S that are in B are called events.
B is a �eld of subsets of S i¤

� S 2 B

� whenever X 2 B, then also the complement X 2 B

� whenever X; Y 2 B, then also X [ Y 2 B

� whenever X; Y 2 B, then also X \ Y 2 B.

5



Pr is a probability measure on B i¤

� Pr(X) > 0 for all X 2 B

� Pr(S) = 1

� whenever X \ Y = ?, then Pr(X [ Y ) = Pr(X) + Pr(Y ).

Example 2 Let�s consider the experiment of �ipping a coin. What is
the associated probability space? Let us stipulate that the coin eventually
comes down, and ignore the case where the coin comes to rest on its
edge.
For our sample space we take S = fH;Tg, where H and T denote

the outcome of a �ip being a head or a tail respectively. Clearly S is a
sensible sample space, because the outcome of �ipping a coin has to be
one, and only one, of H and T .
Next, B must be a collection of subsets of S representing the events

we want to be able to talk about. Suppose we want to be able to talk about
the event that heads is the outcome, the event that tails is the outcome,
the event that either heads or tails is the outcome, and the event that
neither is the outcome. Then we should have the subsets fHg, fTg,
fH;Tg = S, and ? in B: (The event that neither heads nor tails comes
up, corresponding to the subset of outcomes ?, is impossible but we still
want to be able to talk about it, for example so that we can say it has
zero probability.) Now it is easy to check that B = f?; fHg; fTg; Sg is
a �eld of subsets of S.
Intuitively, the events fHg and fTg are special because we can regard

them as basic building blocks from which all the remaining events in B
are built up: S = fHg[fTg and ? = fHg\fTg. We call such building
blocks the �elementary�events. If the elementary events are chosen, as
in this case, to correspond exactly to the outcomes in S, then B will end
up being the collection of all subsets of S.
Finally, we can de�ne a probability measure on B by making the

assignments Pr(?) = 0, Pr(fHg) = 1
2
, Pr(fTg) = 1

2
, and Pr(S) = 1. It

is easy to check that Pr is a probability measure on B. We could in fact
have de�ned Pr by merely making the assignments Pr(fHg) = 1

2
and

Pr(fTg) = 1
2
. The probability Pr(S) = 1 now follows from the facts that

S = fHg[fTg and fHg\fTg = ?, so that Pr(S) = Pr(fHg)+Pr(fTg).
That Pr(?) = 0 follows from the fact that fHg [ ? = fHg so that
Pr(fHg [?) = Pr(fHg).
Note that this is not the only possible probability measure we could

de�ne on the given B. If we suspected that the coin was not fair but that,
say, the likelihood of heads was three times that of tails, then we could
de�ne a di¤erent measure by stipulating Pr(fHg) = 3

4
and Pr(fTg) = 1

4
.
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In the above example, the set B of events was taken to be the collec-
tion of all subsets of the sample space S = fH;Tg. While this is often
convenient, it is not obligatory. We may decide that the elementary
events should be something di¤erent from the sets that contain single
outcomes, like fHg. In the following example, B consists of all sets built
up by union, intersection, and complement from the elementary events
W and B, where both W and B are large subsets of the sample space
S.

Example 3 Consider a second experiment, that of drawing a ball from
an urn. Suppose we have a big bucket (traditionally called an urn in
probability theory) and that this bucket contains 70 white balls, numbered
from 1 to 70, and 30 black balls, numbered from 71 to 100. All the balls
are the same size and shape and texture and weight, so that if we close
our eyes there is no way we can tell the di¤erence between one ball and
another. Imagine that we mix the balls thoroughly, without looking at
them, and then stick in a hand and blindly (randomly) draw out a ball.
Then we look at the ball that was drawn.
For our sample space we take S = f1; 2; : : : ; 100g, since these are the

identi�cation numbers of the balls.
Assume that we are interested only in the colour of the ball we draw,

not in which ball it is. For B we take the subsets ?, B, W , and S. Here
? correponds to the event that the outcome was neither a black ball nor
a white ball (impossible, but we still want to be able to talk about it),
B = f71; : : : ; 100g corresponds to the event that a black ball was drawn,
W = f1; : : : ; 70g corresponds to the event a white ball was drawn, and
S is the event that we drew either a black ball or a white ball. Is it clear
that B is a �eld of sets? B = W , S = B [W , and ? = B \W .
A probability measure re�ecting the proportion of white balls in the

urn could specify that Pr(W ) = 7
10
, whence it would follow that Pr(B) =

3
10
because B[W = S while B\W = ? so that Pr(B)+Pr(W ) = Pr(S)

and we know that we must have Pr(S) = 1 so that Pr(B) = 1� Pr(W ).

Exercise 4 1. Consider the urn with 100 numbered balls, those num-
bered 1 to 70 being white and the remainder black. Suppose we draw
a ball at random and note the number of the ball, not merely the
colour. What would be an appropriate probability space for this
experiment? (Hint: The elementary events correspond closely to
outcomes.)

2. Describe the probability space for the experiment of rolling a 6-sided
die and looking to see which face is uppermost when it stops rolling.
What is the probability of the event that the number showing on the
uppermost face of the die is even?
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3. Consider any experiment. One of the events is ?. Prove that
Pr(?) = 0, always.

4. Suppose the Land Transport Safety Authority measures the tra¢ c
on an Auckland highway during the hour from 11:00 to 12:00 on
300 consecutive days. The number of cars, and the frequency with
which that number was observed, is given by the following table.

Number of cars Frequency
� 1000 30

1001� 3000 45
3001� 5000 135
5001� 7000 75
> 7000 15

Give the probability space that represents the data gathered by this
experiment.

2.1 Probabilities and sentences
How shall we connect the idea of a probability space with logic?
Consider the propositional language LA with A = fp; qg and S =

WA = f11; 10; 01; 00g. Let the Light-Fan System be the system of inter-
est. We want, in some sensible manner, to associate with every sentence
� a numerical value Pr(�). The key to doing this is to identify sentences
with their sets of models.
Let the sample space be S = WA = f11; 10; 01; 00g and let B be the

collection of all 16 subsets of S. The outcomes in S are valuations rep-
resenting the four possible states of the Light-Fan System and thus the
four possible answers to the question �What is the state of the system?�
that might be given by an agent with a god�s-eye view of the system
(i.e. an agent capable of acquiring complete information by observing
the system). An agent with more limited information about the system
would need to be able to give a wider variety of answers re�ecting the
extent to which she was able to narrow down the possibilities by ruling
out some of the states. The 16 events in B provide this variety, from the
answer f11; 10; 01; 00g, when the agent is unable to rule out any states,
to the opposite extreme ?, when the agent (mistakenly) rules out all the
states.
Before we go on to consider probability measures on B, note that we

can associate the events in B with particular object-language sentences:
every X 2 B corresponds with any sentence � such that M(�) = X,
and since LA is a �nitely generated language we have an algorithm for
�nding � and can even demand that � be in SDNF. By virtue of the
correspondence between events in B and sentences in LA, any probability
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measure Pr : B �! [0; 1] may be regarded as assigning probabilities to
sentences of LA.
To describe the probability space associated with LA we need not

only a sample space S and a set of events B but also a probability
measure Pr. How do we get a probability measure on sets of valuations?
It is enough to decide, somehow, what probabilities we want to as-

sign to the outcomes 11, 10, 01, and 00, because the set B of events
is the collection of all sets that can be built by union, intersection and
complement from the elementary events f11g, f10g, f01g, and f00g. We
might, for instance, have reason to believe that the outcomes are equally
likely � perhaps because we have observed the system for 113 years and
found that it spends an equal amount of time in each of the four states.
In this case we would give each outcome the probability 1

4
. (In terms

of sentences, we may think of the probabilities as being assigned to the
state descriptions p ^ q, p ^ :q, :p ^ q, and :p ^ :q.)
After probabilities have been assigned to the elementary events, every

event automatically gets its own probability and so every sentence of LA
gets its own probability. Since each elementary event consists of a single
outcome, to �nd the probability of a sentence �, go toM(�) and add
up the probabilities of the outcomes (states) in the set M(�). (Or if
you like, think of it instead as going to the SDNF of � and adding up
the probabilities of the state descriptions in it.)
So, for example, the contradiction p ^ :p has probability 0 because

M(p ^ :p) = ;. (Or if you prefer, the contradiction has no state de-
scriptions in its SDNF, and so the sum of the probabilities of the state
descriptions in its SDNF is 0.)
We call the probability measure constructed for the sentences of LA

in this way an initial probability measure for LA. The construction of
such an initial probability space can be generalised to any language LA
having any ontology (S; V ), with the reservation that when A becomes
in�nite we put into B only the sets X of states for which we can �nd
sentences � such thatM(�) = X. Thus for �nitely generated languages,
we usually take B to be the collection of all subsets of the sample space
S, but for in�nitely generated languages, we take B to consist only of
subsets that can be described in the object language, and leave out the
ine¤able subsets of S. Clearly it is much simpler to work with �nitely
generated languages.

Exercise 5 1. Consider the language with A = fp; qg. Suppose that,
as above, the four outcomes in WA = f11; 10; 01; 00g are equally
likely. Work out the initial probability for each of the following
sentences:
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� q _ :q
� p _ q
� p _ :q
� p! q

� p! :q
� p
� q
� p$ q

� :(p$ q)

� :p
� :q
� p ^ q
� p ^ :q
� :p ^ q
� :p ^ :q
� q ^ :q

2. Again consider the language with A = fp; qg. Assume we again
take B to be the collection of all sets that can be built by union,
intersection, and complement from the elementary events f11g,
f10g, f01g, and f00g.
Having observed the system for a long time, we know that 11 is the
state 1

3
of the time, 01 is the state 1

3
of the time, and 00 is the state

1
3
of the time, while state 10 never arises. For each of the sixteen

sentences above, give the initial probability.

3. Consider the 3 Card System. An honest dealer shu es a pack of
three cards coloured red, green and blue, and then deals the top card
to player 1, the next card to player 2, and the last card to player
3. By a state of the system we understand a deal. Suppose the
knowledge representation language had 9 atoms r1, r2, r3, g1, g2,
g3, b1, b2, b3 where r1 stands for �Player 1 has the red card�and so
on.

� Describe the six valuations that represent states (i.e. deals).
(You may write, say, rgb for the valuation making the atoms
r1, g2, and b3 true and all other atoms false.)
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� Assume we take the set S of deals as the sample space, and
take the set B of events to consist of all subsets of S. Write
down the probability of each outcome (i.e. of each elementary
event fsg where s is a deal).

� What is the probability that a deal gives player 2 the red card?

4. In exercise 3 above we encountered an interesting sort of system,
in which the obvious knowledge representation language has more
valuations than are needed for representing the physically realis-
able states of the system. This happens quite often in knowledge
representation. Let�s examine another example.

Consider the experiment of throwing a 6-sided die and looking to
see which face lies uppermost. As knowledge representation lan-
guage take LA where A = fp1; : : : ; p6g and think of pi as saying
�The number i is uppermost.�

� Describe the six valuations that represent outcomes of the ex-
periment (i.e. states of the system).

� Assuming that each outcome is equally likely, what is the prob-
ability that the number showing is even? What is the proba-
bility that it is > 3? What is the probability that it is � 2 or
� 5?

5. Assume that A is �nite. Let � and � 2 LA. Prove that if � � �
then Pr(�) � Pr(�).

2.2 Conditional probabilities
Suppose we have built the initial probability measure for a language LA
having ontology (S; V ). Can we now replace the classical entailment
relation � by a useful defeasible entailment relation js? Indeed we can,
by means of conditional probabilities. For what does it mean, proba-
bilistically speaking, if � � �? To verify that � � �, we go to the subset
M(�) of S and check that all of the models in this subset satisfy �.
In other words, we check that the proportion of models in M(�) that
satisfy � is 100%, or 100=100, or 1. Loosely speaking, we check that if �
conditions our sample space by cutting it down toM(�), then the new
�conditional�probability of � is 1, although this idea is not yet precise,
because we have not said how changing the sample space changes the
probability measure. Assuming there is a sensible way to get the new
probability measure, it becomes obvious how to de�ne a defeasible en-
tailment relation js. Choose some number t less than 1, and de�ne that
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� js � if the new probability of � relative to the new smaller sample
spaceM(�) is at least t.
To begin with, we have an initial probability measure for LA, based

on the sample space S. If we cut the sample space down from S to
M(�), then the probability space needs to change.

De�nition 6 (Conditional probabilities) Suppose we have a proba-
bility space (S;B;Pr) and let some event E 2 B be given, where E 6= ?.
The conditional probability space relative to E is (E;B0;Pr0) where B0 =
fX \ E j X 2 Bg and where, for every Y 2 B0, Pr0(Y ) = Pr(Y )

Pr(E)
.

Thus the conditional probability space restricts the sample space to
an event E, and uses the old probability measure to de�ne the new by,
in e¤ect, looking at the relative proportion of Y -things inside E. If
the event E is the set of models M(�), then for every sentence � the
�conditioned�set of models we are going to look at will beM(�)\M(�),
in other words we look only at models of � that live inside the new space
M(�).
For example, consider the initial probability space for LA with A =

fp; qg, and suppose we want to take � = p and restrict consideration to
M(p) = f11; 10g. To build the new conditional probability space, we
take as events all the subsets of our new sample spaceM(p) = f11; 10g,
and on this set B0 of events we de�ne the probability measure Pr0 which
assigns to the two elementary events that correspond to outcomes in
M(p) the probabilities

� Pr0(f11g) = 1
4
=1
2
= 1

2
where I have used the fact that the original

probabilities were Pr(f11g) = 1
4
and Pr(f11; 10g) = 1

2

� Pr0(f10g) = 1
2
similarly.

There are only two other events in B0 and their probabilities may be
calculated either from the formula in the de�nition or from the prop-
erties of probability measures: Pr0(f11; 10g) = 1 and Pr0(?) = 0. In
general, we may choose either to calculate conditional probabilities by
using the formula or to exploit the additivity of probabilities to derive
the conditional probability from previously calculated conditional prob-
abilities.
To illustrate, the conditional probability of � relative to � may be

found either by calculating Pr(M(�) \M(�)) = c and Pr(M(�)) = d
and then c

d
, or else by adding up the conditional probabilities of the

outcomes inM(�) that satisfy �, if we already know these. Using either
method, the conditional probability of, say, p^:q relative to � = p is 1

2
,
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where you will recall thatM(p ^ :q) = f10g and we previously worked
out Pr0(f10g). Similarly, the conditional probability of :p relative to p is
now 0, because in the new sample spaceM(�) = f11; 10g, the sentence
:p has no models.

Notation 7 Suppose we have a probability space (S;B;Pr) and a con-
ditional probability space relative to some event E, namely (E;B0;Pr0).
When there is no danger of ambiguity, we may write Pr(Y j E) for
Pr0(Y ). This notation has the virtue of reminding us that the conditional
probability is relative to event E, but the danger of letting us forget that
we are working with a new probability measure, not the old.
In a useful extension of this notation, we may write for any event

X 2 B that the conditional probability of X relative to some event E is
Pr(X j E) = Pr(X\E)

Pr(E)
.

Once we have the idea of getting conditional probability measures
out of the initial probability measure, we are practically there. All that
remains to be done, in order to build a defeasible entailment relation
based on probabilities, is to choose a threshold value in the unit interval
[0; 1], say t = 1

2
. Now we may de�ne js by requiring that � js � i¤

Pr(� j �) > 1
2
. Thus for example p js p ^ :q, whereas p 2 p ^ :q,

showing that the defeasible consequence relation js is di¤erent from the
classical �. In fact, js is an enlargement of �, because whenever � � �,
then � js �. This is easy to show in a manner una¤ected by the choice
of initial probability and una¤ected by the choice of threshold: if � � �
then � is true at every model of � and so the conditional probability of
� relative to � is 1. (Well, almost una¤ected by the initial probability
� bear in mind that we can do this only for � such that Pr(�) > 0.)
Let�s formalise this.

De�nition 8 (Probabilistic defeasible entailment) Let t 2 [0; 1].
For any sentence � such that Pr(�) > 0, we say that � defeasibly entails
� (probabilistically), written � js �, i¤ Pr(� j �) > t.

Conditional probabilities are useful for more than de�ning defeasible
entailment relations. They are convenient for de�ning the product rule
and also the importance notion of independence.

Example 9 Consider an urn containing 70 white balls (numbered 1 to
70) and 30 black balls (numbered 71 to 100). Let the experiment consist
of drawing a ball at random, noting only its colour, replacing the ball
in the urn, stirring the balls thoroughly, and then randomly drawing a
ball for the second time and noting only its colour. Assume we want to
remember which colour we saw �rst and which second.
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Previously, the sample space for a single draw was S = f1; : : : ; 100g.
The new sample space is S 0 = S�S, the set of ordered pairs (i; j) where
i and j are the numbers of the �rst and second ball drawn, respectively.
But since we are interested only in colours, not the identity of the balls,
what should we take our set of events B to be?
Let�s take our elementary events to be

� fWWg, the event that the �rst ball is white and the second ball is
white

� fWBg, the event that the �rst ball is white and the second is black

� fBWg, the event that the �rst ball is black and the second white,
and

� fBBg, the event that both the �rst and the secopnd balls are black.

Actually, fWWg is just a convenient name for a particular subset of
S 0, namely all those pairs (i; j) such that i � 70 and j � 70. Similarly
fWBg is our name for the set of (i; j) such that i � 70 and 71 � j �
100, and so on.
The remaining events in B are built up from the elementary events

by forming unions, intersections, and complements. If we can work out
the probabilities of these elementary events, we will be able to calculate
the probabilities of all the other events. But it is not obvious what the
probabilities of the elementary events are. One way to work them out is
with the help of the product rule.

We know that for any event X 2 B, the conditional probability of X
relative to an event E is Pr(X j E) = Pr(X\E)

Pr(E)
. Multiply both sides by

Pr(E) to get:

De�nition 10 (Product Rule) Pr(X \ E) = Pr(E) � Pr(X j E).

Example 11 Going back to our urn, what do we know? Well, we know
that there are 70 white balls and 30 black balls at the start. Let E be
the event that the �rst ball is white, so that E = fWW;WBg. Clearly
Pr(E) = 0:7. Similarly, if F is the event that the �rst ball is black, then
F = fBB;BWg and Pr(F ) = 0:3.
These are not the only easy probabilities. Recall that balls are replaced

after the �rst draw, so that before the second draw the urn again contains
70 white and 30 black balls. Let X be the event that the second ball is
black, so that X = fWB;BBg. Clearly Pr(X) = 0:3. Let Y be the event
that the second ball is white, then Y = fWW;BWg and Pr(Y ) = 0:7.
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Now consider the elementary event fWBg. Note that fWBg = X \
E. By the product rule, if we know Pr(E) and Pr(X j E) then we
can simply multiply them together to get Pr(X \ E). We already have
Pr(E). It is just as easy to see that Pr(X j E) = 0:3. After all, the �rst
ball is replaced after being drawn and the urn restored to its full tally
of 70 white and 30 black balls before the second ball is drawn, so that
Pr(X j E) = Pr(X). Thus by the product rule Pr(X \ E) = 0:21 and
this is also the probability of the outcome WB.
In a similar fashion we �nd that

� Pr(fWWg) = 0:49, because fWWg = Y \ E and Pr(Y j E) =
Pr(Y )

� Pr(fBWg) = 0:21, because fBWg = Y \ F and Pr(Y j F ) =
Pr(Y )

� Pr(fBBg) = 0:09, because fBBg = X \ F and Pr(X j F ) =
Pr(X).

In the example of drawing two balls in succession from the urn, with
replacement of the �rst ball before the second is drawn, it is intuitively
clear that events such as

� E : �the �rst ball is white�

� X : �the second ball is black�

are independent of one another. After all, the e¤ect of the �rst draw
is wiped out by replacing the ball.
On the other hand, suppose we change the experiment so that we

draw two balls in succession without replacement. In other words, we
draw the �rst ball, note its colour, throw it away instead of returning it
to the urn, and then draw a second ball and note its colour. Now the
events E and X are no longer independent � the e¤ect of the �rst draw
is to change the proportion of black balls in the urn, making the chance
of drawing a black ball greater.

De�nition 12 (Independence) Let E and X be events. Then E and
X are independent i¤ Pr(X j E) = Pr(X) and Pr(E j X) = Pr(E).

Corollary 13 E and X are independent i¤ Pr(X\E) = Pr(E) �Pr(X).
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Example 14 Consider the urn with 70 white and 30 black balls. This
time our experiment consists of drawing a ball, noting its colour, and
then, without replacing the �rst ball, drawing a second ball and noting
its colour. What probability space is associated with this experiment?
As before, the sample space is S 0 = S � S and the events in B are

all the subsets of S 0 that can be built from fWWg, fWBg, fBWg, and
fBBg by union, intersection and complement. To fully specify the prob-
ability measure, we need to determine the probabilities of the elementary
events.
The probabilities of some events are easy to determine. Let E be the

event that the �rst ball is white, i.e. E = fWW;WBg. Since there are
70 white and 30 black balls when the �rst ball is drawn, Pr(E) = 0:7.
Let F be the event that the �rst ball is black, then F = fBB;BWg and
Pr(F ) = 0:3 because there are 30 black balls in the urn when the �rst
ball is drawn.
Let X be the event that the second ball is black, i.e. X = fWB;BBg.

The probability of X is not quite so easy to determine. The likelihood of
the second ball being black is a¤ected by whether we �rst drew a white
ball or a black ball. On the other hand, the conditional probabilities are
straightforward.
Suppose the �rst ball is white, i.e. the event E occurs. Now there

remain 69 white balls and 30 black balls in the urn, so that the probability
of the second ball being black is Pr(X j E) = 30

99
= 0:303 (roughly). Or

suppose the �rst ball was black, i.e. that F occurred. Then there would
remain 70 white balls and 29 black balls in the urn, so that the probability
of the second ball being black would be Pr(X j F ) = 29

100
= 0:290.

By the product rule, Pr(X \E) = Pr(E) �Pr(X j E) = 7
10
� 30
99
= 0:212

(roughly). But X\E = fWBg so we know that elementary event fWBg
has probability 0:212. Similarly Pr(X\F ) = Pr(F ) �Pr(X j F ) = 3

10
� 29
100

= 0:087. Since X \ F = fBBg, we know that fBBg has probability
0:087.
Since X = fWB;BBg and we know the probabilities of the individual

outcomes in X, we get that Pr(X) = Pr(fWBg)+Pr(fBBg) = 0:212+
0:087 = 0:299. We see that events X and E are not independent, since
Pr(X) 6= Pr(X j E), and similarly for X and F .

While independence is an important notion, it is relevant for us only
because it can help to build the probability space needed for a defeasible
entailment relation.

Exercise 15 1. Consider the language with A = fp; qg and ontology
S = WA. Suppose the four outcomes in S = f11; 10; 01; 00g are
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equally likely as in the �rst of the previous set of exercises. Keep
in mind the 16 sentences listed there.

� Take � = p _ q and threshold t = 1
2
. For each of the 16 sen-

tences, work out the conditional probability of each sentence
� and hence decide whether � js �.

� Take � = p and threshold t = 9
10
. For each of the 16 sen-

tences, work out the conditional probability of each sentence
� and hence decide whether � js �.

2. Again consider the language with A = fp; qg and S = WA. Suppose
that 11 is the actual state 1

3
of the time, 01 is it 1

3
of the time, and

00 is it 1
3
of the time, while state 10 never arises. By calculating

conditional probabilities and setting the threshold at 3
4
, determine

whether p js q and whether :p js :q.

3. Consider the 3 Card System in which each of three players get one
of three cards coloured red, green or blue. Suppose the knowledge
representation language had 9 atoms r1, r2, r3, g1, g2, g3, b1, b2,
b3 where r1 stands for �Player 1 has the red card�and so on.

The cards are dealt to players by a new method. The dealer rolls a
6-sided die, in which each side is equally likely to be uppermost. If
the uppermost face shows a 1, 2, 3, or 4, the dealer gives the red
card to player 1. If the uppermost face is 5, player 1 gets the green
card, and if it is 6 he gets the blue card. Next the dealer shu es
the remaining two cards and gives one to player 2 and the last to
player 3.

� Suppose we take deals as outcomes and take the set B of events
to be the collection of all subsets of the set S of outcomes.
Thus the elementary events are the subsets of form fsg where
s is a deal. Write down the probability of each elementary
event.

� What is the probability that a deal gives player 2 the red card?
� Suppose the deal has not given player 2 the red card. Player
2 knows this. Player 2 wonders whether player 1 has the red
card. Setting the threshold at 3

4
, and calculating conditional

probabilities, work out whether :r2 js r1.

4. Suppose we have a probability space (S;B;Pr) for LA. Prove that
there are no � and � such that Pr(� ^ �) > Pr(�), in other words
that Pr(� ^ �) is always � Pr(�).
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3 Fuzzy logic

A fuzzy set is a function from some set X into the unit interval [0; 1].
Thus every probability measure is a fuzzy set, but of course a fuzzy set
need not satisfy the constraints that characterise probability measures.
Functions into the unit interval are familiar, but it was Lot�Zadeh who
gave them a special name and suggested some interesting applications
in 1965. The original de�nition states: �A fuzzy set (class) A in X (a
universe of discourse) is characterised by a membership function fA(x)
which associates with each point inX a real number in the interval [0; 1],
with the value of fA(x) the �grade (degree) of membership�of x in A�.
Although this de�nition obscurely speaks of a metaphysical entity A as
well as the set-theoretic object fA, we may identify A with the function
fA, which is all there really is.
The basic idea is that many categories are not conveniently modelled

merely by ordinary �crisp�sets. For example, in the universeX of people,
one way to separate out a category of young people is to decide on a cut-
o¤ age, say 29, and to take the set of all people with ages not exceeding
29 to constitute the category of young people. However, this distorts
the gradual transition from being unquestionably young at age, say, 8
to being fairly young at age 18, youngish at 28, and not far from young
at age 30. Instead of a gradual movement from typical members of the
category to less typical members that cling to the edge of belonging, all
members of the crisp collection are equally valid members and there is
a sudden sharp transition from being a young 29 year old to being a
no-longer-young 30 year old. Using a fuzzy set is one way in which to
introduce gradual movement and avoid the sharp transition. This might
be achieved as follows.
Let the fuzzy set young have a membership function assigning to

the integers from 1 to 100 non-increasing values in the interval [0; 1],
say such that the integers (ages) up to 10 are assigned the value 1, the
integers from 11 to 20 are assigned the value 3

4
, those from 21 to 25 the

value 2
3
, those from 26 to 29 the value 1

2
, those from 30 to 35 the value

5
12
, those from 36 to 40 the value 1

3
, and those above 40 the value 0.

Admittedly these choices are somewhat arbitrary, but at least we have
achieved our goal � there is no longer a skin sharply dividing the inside
of the category from the outside.
Now fuzzy logic becomes possible. Consider a statement such as �Ali

is young�. We can express this by some atom, say p. Usually, a valuation
would assign to the atom a truth value that is either 1 or 0, which we
may interpret (crisply) as saying either that Ali fully belongs to the
category of young people or that Ali completely fails to belong to the
category of young people. In fuzzy logic we would take the truth value of
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p to be given by the grade of membership of Ali in the fuzzy set young.
If, for instance, Ali�s age is 27 and the fuzzy set young is de�ned as
above, then the truth value of p would be 1

2
. We thus arrive at a many-

valued logic having in�nitely many truth values from 0 (absolutely false)
to 1 (absolutely true). (Historical point: although we used fuzzy sets,
invented by Zadeh in 1965, to arrive at this in�nite-valued logic, the
logic itself was �rst studied by Lukasiewicz in the 1920s.)
Many-valued logics are respectable things. But there are many of

them. They di¤er �rstly in the set of truth values chosen. Having �xed
the set of truth values, say [0; 1], they may di¤er in the way that truth
values are percolated upward from the atoms. For example, we may be
happy to decree that if the truth value val(�) is already known then
val(:�) = 1� val(�), or that if val(�) and val() are both known then
val(� _ ) = max(val(�); val()) and val(� ^ ) = min(val(�); val()).
But there is no general agreement on how the truth values of conditional
sentences are to be calculated:

� val(� ! ) = min(1; 1 � val(�) + val()) is a proposal due to
Lukasiewicz and adopted by Zadeh. But notice that if val(�) = 1

2

and val() = 0, then val(� ! ) = 1
2
. This seems wildly counter-

intuitive.

� val(� ! ) = 1 i¤ val(�) 6 val(), else 0, is suggested by Lako¤
in an in�uential early paper. But notice that conditional sen-
tences now cannot have intermediate truth values. This seems
very strange.

� val(� ! ) = max(1 � val(�); val()) is suggested by Gaines.
This reduces to the usual de�nition if the only truth values are 0
and 1. But it means that val(� ! ) = 1 only if val(�) = 0 or
val() = 1. This con�icts with the intuition apparent in each of
the previous two de�nitions, namely that if val(�) 6 val() then
val(� ! ) should be 1. And it means that sentences of the form
� ! � need no longer be tautologies (just let val(�) = 1

2
).

� val(� ! ) = 1 if val(�) 6 val(), else val(), is an alternative
also suggested by Gaines. This idea has peculiarities of its own. A
small change in the truth value of � or  can produce a large change
in the truth value of � ! . For instance, if val(�) = 1

10
and

val() = 0 then val(� ! ) = 0, but if val(�) = val() = 0 then
suddenly val(� ! ) = 1. Another oddity is that it is impossible
to have val(�) 6 val(� ! ) < 1.
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� val(� ! ) = min(1; val()=val(�)) was suggested by Goguen. He
felt that the validity of a chain of nearly valid deductions should
decrease as the length of the chain increases.

Just as there is no general agreement on how to calculate the truth
values of conditional sentences, so there is no general agreement on how
to de�ne entailment. One obvious possibility is to use a threshold value,
just as we did in the probabilistic case. For instance, we might de�ne
that � js � i¤ val(� ! �) > t for some threshold t 2 [0; 1]. With this
approach, the defeasible entailment relation will depend strongly on the
treatment of conditional sentences.

4 Problems with numerical approaches

There are a couple of reasons why we might want some alternative to
probability or fuzzy sets. Numerical approaches such as these are �ne-
grained, and there are often patterns that are only visible at a more
coarse-grained level. For example, predicting the �nancial markets is a
very di¢ cult problem for which the �rst �successful�strategy (approxi-
mately 55% success rate) was discovered in 2003 by physicists at Oxford
(see New Scientist 10 April 2004 p34). The basic idea is that the history
of a dynamical system can be thought of as a sequence of states. At any
point of the sequence, predicting the future involves looking at the part
of the sequence that has already occurred, i.e. the past. The various
possible histories of even very complicated systems can often be sorted
into a limited number of categories in such a way that all the histories in
a given category give rise to the same short-range future. When several
histories are thrown into the same category, many details of the indi-
vidual histories become irrelevant, so that one is in e¤ect tackling the
problem at a coarse-grained level. The move up from the �ne-grained
level of detail to a coarser-grained level often involves changing from a
quantitative to a qualitative model.
Even when a quantitative model is desired, it may be hard to come

by. The major problem faced by every application of probability or fuzzy
logic is: Where do the numbers come from?
Sometimes we are in a well-de�ned situation and it is clear how to

get the numbers. At other times it is much less clear where the numbers
should come from. Suppose we have an urn containing 100 balls of which
70 are white and 30 are black. The population is clearly demarcated,
and we can make a de�nite judgment about relative frequency: 70 out
of 100 balls are white, so the probability that a randomly drawn ball is
white is 7

10
. On the other hand, suppose there is no urn, and balls of

various colours are scattered about on the lawn. We know that we want
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to talk about the white balls, and we can see a cluster of 70 white balls
lying nearby, but around them are another 30 black balls, some red balls,
some yellow balls, and further away there are more black balls, as well as
balls of various other colours. Where do we draw a line of demarcation
to get the population? Should we draw a circle around only the 70 white
balls and 30 black balls nearest to us? Why should we not include some
red balls, or some of the black balls lying a bit further away? In this
example, we have no basis for judging relative frequency except some
subjective judgment about which balls are �relevant�.
Although the example of the balls is arti�cial, it points to a real

problem. In applications of probability (i.e. in statistics) a great deal
of e¤ort should go into experimental design, in order to ensure that the
numbers are meaningful. Often this aspect is neglected, because people
think it is enough to go through some mechanical process of generating
numbers and sticking these into formulas. As a result, most probabilities
you encounter, even in scienti�c papers, simply cannot be taken seriously.
There is another (subtle) problem related with the way probability

treats conjunctions. If E and X are independent events then Pr(E \
X) = Pr(E) � Pr(X), so that if if E = M(�) and X = M(�), then
Pr(� ^ �) = Pr(�) � Pr(�). Now this makes � ^ � much less likely than
either � or �, unless one of these has probability 1. The philosopher
John Pollock has a nice example to show that this is counter-intuitive:

For instance, consider an engineer who is designing a
bridge. She will combine a vast amount of information about
material strength, weather conditions, maximum load, costs
of various construction techniques, and so forth, to compute
what the size of a particular girder must be. These vari-
ous bits of information are, presumably, independent of one
another, so if the engineer combines 100 pieces of informa-
tion, each with a probability of 0.99, the conjunction of that
information has a probability of only (0.99)100, which is ap-
proximately 0.366. According to the probabilist, she would
be precluded from using all of this information simultane-
ously in an inference � but then it would be impossible to
build bridges.

We shall see another example of the clash between probability and
our intuitions about conjunctions in the next section.
Earlier we asked where the numbers come from. Perhaps because

of this di¢ culty, humans have evolved alternatives to arithmetic cal-
culation. In many circumstances our sense of likelihoods is qualitative
rather than quantitative. We base our lives on default rules such as �Cars
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typically stop at red lights�, but none of us calculate precise probabili-
ties based on an assignment of precise numerical values to the possible
outcomes. Clearly, humans use some alternative to probability, at least
some of the time. The question is, what?
It can�t be fuzzy logic. Although there are many equally attractive

(or equally odd!) ways in which to specify the behaviour of the connec-
tives in fuzzy logic, the main problem is that the truth value assigned
to an atom has to be a precise number, even when we are representing
a vague or inexact concept. After all, a fuzzy set is a function which
assigns to each input a speci�c real number. How to choose that spe-
ci�c real value is often unclear. The general response of proponents has
been to choose functions according to their graphical shape and to as-
sume a kind of robustness: �any function that looks more or less like
this will do�. What is lacking is, of course, a compelling proof that the
assumption of robustness is justi�ed. Despite the use of numbers and
arithmetical operations, everything still seems to be based, eventually,
on a subjective judgement which often is merely the qualitative judge-
ment �this is a more typical member of the category than that�. Perhaps
it would be easier to see what�s going on if we strip away the numerical
aspects and simply make the subjective judgements about typicality as
obvious as possible.

5 Typicality

A basic idea of fuzzy logic is that a category (such as the category of
young people) can be modeled mathematically by a fuzzy set, and then
the fuzzy set can be used to give truth values to atoms in a multi-
valued logic, which in turn may provide a basis for defeasible beliefs.
In this section, we summarise what cognitive psychology has to tell us
about categories. We shall see that the idea of a �typical member�of a
category is important. In the next section we shall explore a new way of
representing �typicality�or �normality�by means of order relations, and
these order relations will provide the kind of basis for defeasible beliefs
called nonmonotonic logic.
There are at least two reasons why humans evolved to understand

the world by classifying things into categories (and why it would make
sense to design arti�cial agents to do likewise).
One reason has to do with memory. As you know, retrieval by lin-

ear (sequential) search is very ine¢ cient. Lumping together things that
belong together allows more e¢ cient retrieval. The second reason for
categorisation is that it allows an agent to cope with situations never
before encountered but bearing a family resemblance to previous situa-
tions (reducing new problems to old, reasoning by analogy, recognising
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shapes, and so forth). Once bitten by a bull terrier, we show caution
when meeting future bull terriers or other animals that bear a family
resemblance to bull terriers.
How do people lump things together into categories? One in�uen-

tial view (sometimes called the Whor�an hypothesis) is that the world
around us is an unstructured continuum of stimuli which children are
taught to break into chunks in a manner that re�ects the culture they
grow up in and especially the language they learn to speak. If one
believes this, it is conceivable that the animal kingdom might be cat-
egorised in the manner attributed to an ancient Chinese encyclopedia
called the Celestial Emporium of Benevolent Knowledge:

On those remote pages it is written that animals are di-
vided into (a) those that belong to the Emperor, (b) em-
balmed ones, (c) those that are trained, (d) suckling pigs, (e)
mermaids, (f) fabulous ones, (g) stray dogs, (h) those that
are included in this classi�cation, (i) those that tremble as if
they were mad, (j) innumerable ones, (k) those drawn with a
very �ne camel�s hair brush, (l) others, (m) those that have
just broken a �ower vase, (n) those that resemble �ies from
a distance (Borges, Other Inquisitions, Washington Square
Press 1966).

But the interesting thing about this classi�cation system is that it ex-
ists in no real culture. The classi�cations used in everyday life are much
less arbitrary, as the psychologist Eleanor Rosch showed in a remarkable
series of experiments from which three insights emerged.
Firstly, categorisation exploits correlational structure:
�Creatures with feathers are more likely to have wings than creatures

with fur, and objects with the visual appearance of chairs are more likely
to have functional sit-on-ableness than objects with the appearance of
cats�as Rosch puts it. Categorisation is not the product of historical ac-
cident or culture or language, or at least not wholly. When experiments
are devised that allow us to peer beneath the super�cial di¤erences of
vocabulary, people of di¤erent cultures use roughly the same categories,
at least at a basic level. The reason is that categorisation depends on
the structure that exists in the world. The world does not consist of an
unstructured continuum of stimuli; the world contains �intrinsically sep-
arate things�. Objects have properties that persist (at least for a while),
and these properties do not occur randomly, with equal likelihood, inde-
pendently of the other properties of the object. Some combinations of
properties tend to occur together, others don�t. Since properties clump
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together in the world, it makes sense to re�ect this in our mental rep-
resentation of the world. So categories consist of objects that share a
family resemblance given by some clump of properties.
Secondly, categorisation has a preferred level of granularity:
Humans reason more e¢ ciently about the categories �chair�or �ta-

ble�than they reason about the more general (superordinate) category
�furniture�or the more speci�c (subordinate) categories �kitchen chair�
or �armchair�. For example, we are faster when deciding whether two
objects belong to the same category if the category is �chair� rather
than �furniture�or �kitchen chair�. Why is this? An agent�s architec-
ture determines that there is a particular level (or grainsize) at which
categorisation is most e¢ cient. Call this the basic level for that kind
of agent. (For humans, �chair�and �table�are examples of basic level
categories.) The basic level categories represent a compromise between
having lots of small categories or having a few big ones. On the one hand,
�it would appear to the organism�s advantage to have as many proper-
ties as possible predictable from knowing any one property (which, for
humans, includes the important property of the category name), a prin-
ciple which would lead to formation of large numbers of categories with
the �nest possible discriminations between categories�. On the other
hand, �one purpose of categorization is to reduce the in�nite di¤erences
among stimuli to behaviorally and cognitively usable proportions. It
is to the organism�s advantage not to di¤erentiate one stimulus from
others when that di¤erentiation is irrelevant for the purposes at hand.�
The basic level of categorisation is the level at which objects belonging
to the same category have the most properties in common while shar-
ing the fewest properties with objects from other categories. It is also
the most general level at which the same sequence of body and mus-
cular movements can be used when interacting with objects belonging
to the same category, and the most general level at which objects look
su¢ ciently alike for the average shape of objects in the category to be
readily recognized. We prefer to use basic categories because reasoning
with them is easier.
Thirdly, categorisation makes use of prototypes:
Categories are not sets of things that are all equivalent. Some mem-

bers of a category tend to be regarded as more typical than others.
(This is particularly true of basic categories, though also often true of
categories at other levels of granularity.) In the category of birds, for
instance, robins and sparrows are the most typical members with par-
rots and hawks less typical, ducks and chickens still less typical, and
ostriches and penguins very untypical. Interestingly, people �overwhelm-
ingly agree in their judgments of how good an example or clear a case
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members are of a category�. The more typical of a category an object
is judged to be, the more properties it has in common with other mem-
bers of the category and the fewer properties it shares with members
of contrasting categories. Flying is a property that many members of
the category of birds share, and typical birds can �y. Untypical birds
like ostriches and penguins share with members of other categories like
cows and chairs the attribute of being unable to �y. Not only are some
members of a category more typical than others, but we tend to use the
typical members (the prototypes of the category) as �cognitive reference
points�when reasoning. For example, a line at an angle of 85 degrees
to the horizontal is regarded as �almost vertical�, a vertical line is not
regarded as �almost 85 degrees�.
The asymmetry in the structure of categories, caused by the fact that

some members are more typical than others, profoundly in�uences the
way we think. It provides default rules that a¤ect both memory and
coping with new situations, and can sometimes lead us into error. Here
are two examples:

Example 16 Retrieval from memory may sometimes be inaccurate pre-
cisely because the most typical members of a category are generated au-
tomatically. A procedure developed by Deese and re�ned by Roediger &
McDermott works as follows. The subject is presented with the list of as-
sociated words �pin, eye, sewing, sharp, point, prick, thimble, haystack,
thorn, hurt, injection, syringe, cloth, knitting�and then with another list,
say �bed, awake, rest, tired, dream, snooze, blanket, doze, slumber, snore,
nap, peace, yawn, drowsy�and after the elapse of time subjects are asked
whether each of the following words had been read aloud as part of the
lists: �sewing, door, needle, sleep, candy, awake�. Most people correctly
remember that they had heard �sewing� and �awake�, and correctly re-
member that they had not heard �door�and �candy�, but MISTAKENLY
claim that they had indeed heard �needle�and �sleep�. Interestingly, PET
scans of brain activity during the process of recall show general similar-
ity during both accurate and false recollection, but nonetheless a slight
di¤erence � a part of the frontal lobe showed more activity during false
than during true recognition. In any case, it would seem that the falsely
remembered items were so typical of their categories that they fooled the
retrieval system.

Example 17 Consider making predictions about an unfamiliar object if
you know only the category to which it belongs. For instance, a friend
tells you that he has a new pet called Tweety, and that Tweety is a bird.
It is sound common sense for you to assume that Tweety can �y. Of
course, you may subsequently learn that Tweety is in fact a penguin, in
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which case your prediction will have been mistaken. But at the time, it
was a plausible conjecture, because typical birds can �y.

Common-sense reasoning is full of �category-based induction�, where
we reason from the knowledge that x is a member of category X to the
conclusion that x has the properties that are typical of category X. Is
this probabilistic reasoning in disguise? It certainly is not explicit prob-
abilistic reasoning, since we don�t perform arithmetical calculations on
precise numerical values. But could it be unconscious probabilistic rea-
soning? The following example was invented by the psychologists Tver-
sky and Kahneman to contrast typicality-based reasoning with proba-
bilistic reasoning.

Example 18 A personality sketch of a �ctitious person is given: Bill
is 34 years old. He is intelligent, but unimaginative, compulsive, and
generally lifeless. In school, he was strong in mathematics but weak in
social studies and humanities.
Next, a list of statements is given, and subjects are asked to rank

them by their likelihood:

1. Bill is a physician who plays poker for a hobby.

2. Bill is an architect.

3. Bill is an accountant.

4. Bill plays jazz for a hobby.

5. Bill surfs for a hobby.

6. Bill is a reporter.

7. Bill is an accountant who plays jazz for a hobby.

8. Bill climbs mountains for a hobby.

When this test was administered to a group of 88 undergraduates
at the University of British Columbia in Canada, something interesting
was observed. The great majority ranked item 7 (Bill is an accountant
who plays jazz for a hobby) as more likely than item 4 (Bill plays jazz
for a hobby).
From a probabilistic perspective, this doesn�t make sense. Item 4 is

an atomic sentence q and item 7 is a conjunction of atomic sentences
p ^ q. The probability of the conjunction can never be greater than the
probability of one of its conjuncts, i.e. we must always have Pr(p^ q) �
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Pr(q). And so the reasoning of the experimental subjects would appear
to violate the constraints of probability theory (which is how Kahneman
and Tversky interpreted their results).
There is however a di¤erent way to look at the matter. The per-

sonality sketch was carefully constructed to make Bill seem a typical
accountant. Item 4 doesn�t mention Bill being an accountant, and so
people tend to read item 4 as equivalent to (Bill is not an accountant
and plays jazz for a hobby). Such a reading is reasonable, because we
expect communications to supply all (and only) relevant information �
we would be equally dissatis�ed if someone withheld relevant facts and
if they �ooded us with irrelevant information that obscures the point.
If the experimental subjects were applying their usual presuppositions
about what constitutes good manners in conversation, then item 7 is
certainly more likely than item 4 because the subjects were interpreting
item 4 not as an atom q but as a conjunction :p^q. Under this interpre-
tation, their reasoning was probabilistically correct. (This interpretation
was not investigated by Kahneman and Tversky.)
Finally, note that although Kahneman and Tversky suppose that a

probabilistic approach is the only correct one, it is by no means clear
what the sample space should be. Instead of having balls of two distinct
colours in an urn, we have balls of many di¤erent colours strewn on the
lawn. Does the sample space include the entire population of humans?
Only the males? Only the males in a certain age group? Only the
males in a certain geographical area? Only the males who have certain
personality traits? Over what period of history? There are no clear
boundaries marking the population of interest the way an urn separates
the balls of interest from the rest of the world. Some sort of subjective
choice would need to be made before a probability space could be set
up.
It would seem that the relationship between probabilistic and typi-

cality reasoning deserves further investigation. There is a distinct pos-
sibility that typicality reasoning is a quick and dirty approximation to
probabilistic reasoning, which humans have evolved to use because it is
faster than arithmetic and also because it can be applied in situations
where probabilistic reasoning cannot (because there is no clear way to
get the numbers that probability would require).
We now turn to a way to represent categories that is di¤erent from

fuzzy sets � a very general approach adequate not only for categories
but for all default rules. We show how logic can be adapted to make use
of these representations.
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6 Nonmonotonic logic

Suppose we have an agent who has been monitoring the Light-Fan Sys-
tem for a long time. The agent has noted that:

� The light is on most of the time. (Thus 11 and 10 are the most
normal states.)

� When the light is on, the fan spends about as much time being on
as o¤. (Thus 11 and 10 are equally normal.)

� When the light is o¤, then the fan is usually on and very seldom
o¤. (Thus 01 is more normal than 00, though less normal than 11
and 10.)

This heuristic information helps the agent to reason about the sys-
tem, for if observation reveals only that the light is o¤ (so that the fan
cannot be seen in the darkness), the agent may plausibly conclude that
the fan is on. (Of course, very occasionally this conclusion is mistaken,
and the agent obliged to revise her thinking.)
The agent�s reasoning could of course be based on probabilities. If

the agent had meticulously recorded, over the past ten years, exactly
how much time the system spent in each state, then the proportion of
time spent in state v could be regarded as the probability of state v.
Once probabilities have been assigned to the states (outcomes), then as
we saw before, every set of states (and hence every sentence) receives a
probability too.
But what if the agent�s heuristic information were qualitative rather

than statistical? Suppose the agent has not kept precise records, and
instead has merely acquired the �rm impression that 11 and 10 were
the most normal states, with 01 somewhat less normal and 00 quite
abnormal? Common-sense reasoning would still support the idea that
when the light is o¤, the system is typically in state 01, so that it is
reasonable to expect the fan to be on. The purpose of nonmonotonic
logic is to formalise this kind of common-sense reasoning in a way that
can cope with both quantitative and qualitative heuristics..
The nonmonotonic logic we shall describe evolved out of research in

arti�cial intelligence during the 1970s. John McCarthy invented an ap-
proach to common-sense reasoning called �circumscription�, which even-
tually led to a much more elegant approach �rst described by Shoham.
Shoham�s approach was then elaborated by Kraus, Lehmann, and Magi-
dor. The approach is called �preferential semantics�or �minimal model
semantics�. The idea is the following.
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Let us refer to the agent�s heuristic information as a default rule. Ex-
amples of default rules, expressed in our metalanguage, are �If something
is a bird, then normally it can �y�and �If the light is o¤, then normally
the fan is on�. Such default rules are not expressible by sentences in the
sort of propositional object language with which we have been working.
However, default rules can be represented semantically, by taking the
set of states of the system and ordering these from most normal to least
normal. Since the ordering indicates the states that are most normal,
the agent can test sentences to see whether they are true in the most
normal states.

6.1 Ranked interpretations
We start by examining order relations.

De�nition 19 (Orderings) A relation 4 on a set S is a preorder on
S i¤ 4 is re�exive on S and is transitive.
A preorder 4 on S is total if any two elements of S are comparable,

i.e. if for all x; y 2 S, either x 4 y or y 4 x.
We write x � y to indicate that x 4 y but not y 4 x.
For every X � S, an element y is minimal in X i¤ y 2 X and

there is no x 2 X such that x � y.

For example, let S = f1; 2; 3; 4g and - be the relation f(1; 1); (2; 2);
(3; 3); (4; 4); (1; 2); (1; 3); (2; 3)g. Then - is a preorder, but not a total
preorder since the elements 1 and 4 are incomparable, as are the elements
2 and 4.
On the other hand, if we let � be the relation f(1; 1); (2; 2); (3; 3);

(4; 4); (1; 2); (2; 1); (1; 3); (2; 3); (1; 4); (2; 4); (3; 4); (4; 3)g on S, then� is
a total preorder. IfX = f1; 2; 3g then both 1 and 2 are minimal elements
ofX. However, 3 is not minimal in S because there is an element, namely
1, such that 1 � 3 while it is not the case that 3 � 1. Minimality is
de�ned relative to subsets X. Even though 3 is not minimal in S, 3 is
minimal in, say, the subset X = f3; 4g.
Total preorders are important because (for �nite sets S) they tell us

how to arrange elements into levels. In the case of the total preorder �,
the bottom level is occupied by the elements 1 and 2, and this level lies
below a second, higher, level occupied by the elements 3 and 4. To see
this, read a pair (x; y) in � as asserting that x lies below or at the same
level as y. It follows that whenever both x � y and y � x, then x and y
occupy the same level, whereas when x � y but y � x then x lies on a
level strictly below that of y.
For small sets S, it is often convenient to depict a preorder4 visually,

and if the preorder is total then it is very easy to visualise. One may
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use a diagram I call a �ling-cabinet. We place the members of S into
drawers of a �ling cabinet, and we place x into a lower drawer than y to
indicate that x � y. In case we have x 4 y and y 4 x we put x and y in
the same drawer. Here is a diagram of �.

3 4
1 2

When we use a total preorder 4 to arrange states from most normal
to least normal, the convention is to put the most normal states at the
bottom and the most abnormal states at the top. Thus we would read
x 4 y as �x is at least as normal as y�or as �y is at least as abnormal as
x�.

De�nition 20 (Interpretations) Let LA be any propositional language.
By a �nite ranked interpretation of LA we understand a triple I =
(S;4; V ) such that the set S of states is �nite and nonempty, V : S �!
WA is a labelling function, and 4 is a total preorder on S.

The simplest sort of ranked interpretation of LA would of course
make S = WA and V the identity function given by V (s) = s for every
s 2 S. A �nite ranked interpretation is our way of representing a system
together with an agent�s default rule Here is an example.

Example 21 Consider the Light-Fan System. Suppose we have the de-
fault rule expressed in the metalanguage by �The light is on most of the
time; when the light is on, the fan spends about as much time being
on as o¤; and when the light is o¤ then the fan is usually kept on�.
Then we can express the system plus default rule semantically by taking
S = f11; 10; 01; 00g = WA, V to be the identity function on S, and 4 to
be the total preorder depicted below.

00
01
11 10

What if the system has an in�nite set of states? It is still possible to
represent default rules by total preorders on the set S of states, but care
must be taken to ensure that the ordering works properly. For instance,
one should ensure that there is no in�nite descending chain of states
s < s0 < : : : because then we would lack any concept of �lowest down�or
�minimal�. The technical precautions are spelled out in the references.
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For most purposes, a �nite set of states will su¢ ce, and then the formal
details are simpler.
Suppose we associate with the language LA some ranked interpreta-

tion I = (S;4; V ). What does it mean to say that a state s 2 S satis�es
(i.e. makes true) a sentence �? Exactly what we�ve always understood.
We use V to get to the valuation associated with s in order to decide
whether atoms are true, and then percolate truth values upward accord-
ing to the way connectives behave. The order relation 4 plays no role in
satisfaction, and is only used when we want to pick out the models of a
sentence that are minimal, i.e. as low down in the ordering as possible.

Exercise 22 1. Give �ling-cabinet diagrams depicting all the total
preorders on S = fa; b; cg. Do the same for S 0 = fa; b; c; dg.

2. Consider the Light-Fan System, and think of it as a metaphor for a
helicopter. The rotor (fan) provides lift and is augmented by a jet
(since the jet uses heat to produce expansion of air, we model it by
the light). Construct a �nite ranked interpretation of the language
with A = fp; qg in which the ordering portrays the following rules
of thumb. It is very unusual for the jet to be on while the rotor
is o¤. It is normally the case that the helicopter is on the ground
with everything switched o¤. It is less normal but not very unusual
for the helicopter to be �ying, in which case it is equally likely to
have just the rotor on as it is to have both rotor and jet on.

Consider the models of :p. What are the minimal elements of the
setM(:p)?

3. Suppose discovery of a cheap non-polluting source of fuel means
that the helicopter can spend most of its time in the air, and that
the rotor is needed only for taking o¤ and landing. (Thus the jet
alone is used in the air, while the jet and rotor together are used
for take-o¤s and landings. The rotor is never used alone.) As-
sume that the helicopter spends about as much time on the ground
undergoing maintenance as it does doing take-o¤s and landings.
Construct a new interpretation that �ts this scenario.

Consider the models of q. What are the minimal elements of the
setM(q)?

4. Consider the 3 Card System in which each of three players get one
of three cards coloured red, green or blue. Suppose the knowledge
representation language has 9 atoms r1, r2, r3, g1, g2, g3, b1, b2,
b3 where r1 stands for �Player 1 has the red card�and so on. The
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cards are dealt to players by a new method. The dealer rolls a 6-
sided die, in which each side is equally likely to be uppermost. If
the uppermost face shows a 1, 2, 3, or 4, the dealer gives the red
card to player 1. If the uppermost face is 5, player 1 gets the green
card, and if it is 6 he gets the blue card. Next the dealer shu es
the remaining two cards and gives one to player 2 and the last to
player 3.

Construct a �nite ranked interpretation to represent this system
together with the default rule which regards the most probable state
as the most normal and less probable states as less normal.

Consider the models of g2. What are the minimal elements of the
setM(g2)?

6.2 Rational entailment
Every �nite ranked interpretation I determines its own defeasible en-
tailment relation on LA.

De�nition 23 (js) Let I = (S;4; V ) be a �nite ranked interpretation
of the propositional language LA. For any sentence �, letMin(�) be the
set of minimal models of �. The defeasible entailment relation induced
by I is the relation js given by

� js � i¤ � is satis�ed at all the minimal models of �.
In other words, � js � i¤ Min(�) �M(�).

First, an example. Suppose the agent observing the Light-Fan Sys-
tem has the default rule represented by the total preorder below.

00
01
11 10

The obvious �nite ranked interpretation has S = f11; 10; 01; 00g =
WA, V the identity function, and 4 the total preorder representing the
default information. The defeasible entailment relation js induced by
the interpretation is such that, for instance, :p js q. To see this, look
at the models of :p, namely 01 and 00. The lower of the two is 01, so
Min(:p) = f01g. But q is satis�ed by 01. SoMin(:p) �M(q).
This is in stark contrast with classical entailment, for it is certainly

not the case that :p � q.
Let us compare the properties of js with those of the classical en-

tailment relation �. Recall that � � � i¤M(�) � M(�). Recall that
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semantic equivalence is given by � � � i¤M(�) =M(�). The following
basic properties of � are easy to verify: � is re�exive on LA (i.e. for
all �, � � �); � is transitive (i.e. if � � � and � �  then � � );
and � is monotonic (i.e. if � � � and if  is arbitrary, then � ^  � �.
Monotonicity is a kind of cautiousness property - it says that if � entails
� then � is so trustworthy it cannot be undermined by any additional
knowledge . But of course defeasible reasoning is deliberately more
bold than that, and can lead to conclusions that may need to be re-
tracted in the light of new information; thus we would expect defeasible
entailment not to be monotonic in general. And for this reason the use
of defeasible entailment relations is called nonmonotonic logic.

Theorem 24 The defeasible entailment relation js induced by a �nite
ranked interpretation I = (S;4; V ) has the following properties:

� js is well-behaved relative to semantic equivalence: if � � �0 and
� � �0 and � js � then �0 js �0

� js is supraclassical: if � � � then � js �

� js is re�exive: for every sentence �, � js �

� js is not necessarily transitive: it is possible to �nd a �nite ranked
interpretation whose induced js is such that for some sentences �,
�,  it is the case that � js � and � js  but not the case that
� js 

� js is not necessarily monotonic: it is possible to �nd a �nite ranked
interpretation whose induced js is such that for some sentences �,
�,  it is the case that � js � but not the case that � ^  js �

Proof. Suppose I is a �nite ranked interpretation.

� (Well-behavedness) Suppose � � �0 and � � �0 and � js �. Thus
Min(�) �M(�). ButM(�) =M(�0) and sinceM(�) =M(�0)
it follows thatMin(�) =Min(�0). Thus �0 js �0.

� (Supraclassicality) Suppose � � �. Thus M(�) � M(�). Since
Min(�) �M(�), it follows that � js �.

� (Re�exivity) Exercise for the reader.

� (Failure of transitivity) Consider the language with A = fp; qg and
let I be the �nite ranked interpretation with S = WA and V the
identity function and 4 any suitable ordering such that 10 4 11.
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Now p^ q js p because p is true in 11, which is the only (minimal)
model of p ^ q. And in turn p js p ^ :q because p ^ :q is true in
10, which is the minimal model of p. However, it is not the case
that p ^ q js p ^ :q because p ^ :q is not satis�ed by 11, which is
the minimal model of p ^ q.

� (Failure of monotonicity) Let I be as in the preceding, with 4 such
that 11 is alone in the bottom level. Now p js q but since the only
model of p ^ :q is 10, it is not the case that p ^ :q js q.

Theorem 25 The defeasible entailment relation induced by a �nite ranked
interpretation is cumulative, by which we mean that js has the follow-
ing properties:

� (Re�exivity)

� (Left Equivalence) If � js  and � � � then � js 

� (Right Weakening) If � js � and � �  then � js 

� (Cut) If � ^ � js  and � js � then � js 

� (Cautious Monotonicity) If � js � and � js  then � ^  js �

Proof. Re�exivity has been established already.
Left Equivalence follows because if  is true at the minimal models of

�, and � has exactly the same models as �, then  is true at the minimal
models of � as well.
Right Weakening follows because if Min(�) � M(�) and M(�) �

M() thenMin(�) �M().
To see that Cut follows, suppose  is true at all those states that

are models of both � and � and are minimal in this regard (i.e. as low
down in the ordering as possible). If � js �, then � is true at all the
minimal models of �. Now we claim thatMin(�) �Min(�^�). For if
s 2Min(�), then s is a model of �, so s is a model of �^� and the only
question is whether it is as low down as possible in the set M(� ^ �).
And indeed it must be, becauseM(�^�) �M(�) and nothing inM(�)
could be found that lives below s. ThusMin(�) �Min(�^ �). And so
� js .
For Cautious Monotonicity, we proceed as follows. Suppose � js �

and � js . We want to show that � ^  js �. Pick any s 2 M(� ^ )
which is minimal. Is s 2 M(�)? Well, if we could show that s 2
Min(�), then the required result would follow. But s must indeed be a
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minimal model of �, for suppose this were not the case. Then there is
some minimal model s0 of � below s, for otherwise there would have to
be an in�nite descending chain of models of �. Since � js ,  is true
at s0 and so s0 2 M(� ^ ). But this contradicts the choice of s as a
minimal element of this set, because s0 is below s.

A defeasible entailment relation cannot be expected to be monotonic
in the way classical logic is monotonic. That is, it cannot be expected
that for all  it will be the case that if � js � then � ^  js �. The
property of Cautious Monotonicity expresses the idea that learning a new
fact, the truth of which could earlier have been defeasibly concluded,
should not invalidate previous defeasible conclusions. Thus Cautious
Monotonicity singles out certain �safe�  for which monotonicity does
still hold.

Theorem 26 The defeasible entailment relation induced by a �nite ranked
interpretation is preferential, by which we mean that js has the follow-
ing properties:

� (Cumulativity)

� (And) If � js � and � js  then � js � ^ 

� (Or) If � js  and � js  then � _ � js 

Proof. Cumulativity has been established already.
The property And is easy to derive directly. But it is also interesting

to note that it follows from Cumulativity. For suppose that � js � and � j
s . By Cautious Monotonicity, �^� js . Now notice that, classically,
�^�^ � �^ and so by Supraclassicality we get �^�^ js �^. By
Cut we may now get �rst that �^ � js � ^  and by another application
of Cut that � js � ^ . (We could also prove And directly, using the
ordering.)
To see that the property Or holds, suppose that � js  and � js .

We want to show that Min(� _ �) � M(). Pick any state s that is
minimal inM(� _ �). SinceM(� _ �) =M(�) [M(�), s belongs to
M(�) or M(�). Suppose the former. There was no state in the larger
M(� _ �) which lived below s in the ordering, and so there certainly
cannot be any state in the smallerM(�) which lives below s. Thus s is
minimal in M(�). Since � js , it follows that s makes  true. The
argument is similar if s belongs to M(�) rather than to M(�). Thus
every minimal model of � _ � satis�es .
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Theorem 27 The defeasible entailment relation induced by a �nite ranked
interpretation is rational, by which we mean that js is preferential and
satis�es

� (Rational Monotonicity) If � js � then either �^ js � or � js :

Proof. It has been established that js is preferential.
To establish that Rational Monotonicity holds, suppose that � js �.

There are two possibilities: either � js : or this is not the case. Let us
assume it is not the case that � js : and try to show that � ^  js �.
Since : fails to be satis�ed by all the minimal models of �, there is

some minimal model of � (say t) which satis�es . Let s be a minimal
model of � ^ . Now notice that t is a model of � ^ . So t cannot
live strictly below s, for s is minimal inM(� ^ ). But this means that
s is a minimal model of �. Why? Well, s 2 M(�) and, since 4 is
a total preorder, it must be the case that s 4 t or t 4 s or both. We
have excluded above the possibility that t 4 s unless it is also the case
that s 4 t. Hence it must certainly be the case that s 4 t. And this
establishes that s 2Min(�), for if s0 2M(�) and s0 4 s without s 4 s0
in return, then s0 4 t and it cannot hold that t 4 s0, contradicting the
minimality of t in M(�). What this means is that we have taken an
arbitrary minimal model s of � ^  and shewn it to be a minimal model
of �. By the assumption that � js �, it now follows that � is satis�ed
by s. But then � ^  js �.

Recall that Cautious Monotonicity demonstrated that some  were
safe increments of the information in �, in the sense that if � js � then
� ^  js �, basically because  was something that could have been
defeasibly inferred from � anyway. The property of Rational Monotonic-
ity strengthens Cautious Monotonicity by asserting that it is only if the
additional information  is a surprise, : having been expected, that
this new information can require us to withdraw previous conclusions.

Exercise 28 1. Consider again the Light-Fan System as a metaphor
for a helicopter. Recall the �nite ranked interpretation of the lan-
guage with A = fp; qg in which the ordering portrays the following
rules of thumb. It is very unusual for the jet to be on while the
rotor is o¤. It is normally the case that the helicopter is on the
ground with everything switched o¤. It is less normal but not very
unusual for the helicopter to be �ying, in which case it is equally
likely to have just the rotor on as it is to have both rotor and jet
on.
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Let js be the defeasible entailment relation induced by this inter-
pretation. Recall that p expresses that the light (jet) is on and q
that the fan (rotor) is on. Is it the case that

� p js p ^ q?
� q js p ^ q?
� p _ q js p?
� p _ q js q?
� p _ :p js p?
� p _ :p js :p?

2. Recall that discovery of a cheap non-polluting source of fuel changes
things so that that the helicopter can spend most of its time in the
air, and that the rotor is needed only for taking o¤ and landing. As-
sume that the helicopter spends about as much time on the ground
undergoing maintenance as it does doing take-o¤s or landings. If
js0 is the defeasible entailment relation induced by the new ranked
interpretation, verify whether

� p js0 p ^ q?
� q js0 p ^ q?
� p _ q js0 p?
� p _ q js0 q?
� p _ :p js0 p?
� p _ :p js0 :p?

3. Recall the 3 Card System in which each of three players get one
of three cards coloured red, green or blue. Suppose the knowledge
representation language has 9 atoms r1, r2, r3, g1, g2, g3, b1, b2,
b3 where r1 stands for �Player 1 has the red card�and so on. The
cards are dealt to players by a new method. The dealer rolls a 6-
sided die, in which each side is equally likely to be uppermost. If
the uppermost face shows a 1, 2, 3, or 4, the dealer gives the red
card to player 1. If the uppermost face is 5, player 1 gets the green
card, and if it is 6 he gets the blue card. Next the dealer shu es
the remaining two cards and gives one to player 2 and the last to
player 3.

Take the obvious �nite ranked interpretation which represents this
system together with the default rule which regards the most proba-
ble state as the most normal and less probable states as less normal.
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Let js be the defeasible entailment relation induced by this inter-
pretation. Verify whether

� g2 js r1?
� g2 _ g3 js r1?
� r1 js g2?
� r1 js g2 _ b2?

4. Construct a �nite ranked interpretation whose induced defeasible
entailment relation is just classical entailment �.

5. Show that classical entailment has the following properties:

� (Contraposition) If � � �, then :� � :�.
� (Conditional Monotonicity) If � ! � is a tautology and � �
, then � � .

� (EHD) If � � � !  then � ^ � � .
� (S) If � ^ � �  then � � � ! .

� (Merged or) If � �  and � � � then � _ � �  _ �.

Suppose js is the defeasible entailment relation induced by a �nite
ranked interpretation. Is it necessarily the case that

� if � js � then :� js :�?
� if �! � is a tautology and � js , then � js ?
� if � js � !  then � ^ � js ?
� if � ^ � js  then � js � ! ?

� if � js  and � js � then � _ � js  _ �?

Give reasons for your answers.

6. Show that if js is induced by a �nite ranked interpretation then js
has the property:

� (Disjunctive Rationality) if � _ � js  then � js  or � js .

7. Explain the di¤erence between cautious monotonicity and rational
monotonicity by describing a situation in which cautious monotonic-
ity would not entitle us to conclude that � ^  js � but rational
monotonicity would.
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7 Review of lectures 5 and 6

In these two lectures we saw that while classical entailment formalises
cautious reasoning, defeasible entailment relations are needed to for-
malise common-sense reasoning. In humans, emotions in�uence whether
cautious reasoning or defeasible reasoning involving heuristic informa-
tion is used:

� Isen AM and Means B: The in�uence of positive a¤ect on decision-
making strategy. Social Cognition 2:18-31 1983.

� Isen AM, Daubman KA, and Nowicki G: Positive a¤ect facilitates
creative problem-solving. Journal of Personality and Social Psy-
chology 52:1122-1131 1987.

� Fredrickson B: What good are positive emotions. Review of Gen-
eral Psychology 2:300-319 1998.

� Fredrickson B: The role of positive emotions in Positive Psychol-
ogy: The broaden-and-build theory of positive emotions. Ameri-
can Psychologist 56:218-226 2001.

Defeasible reasoning is characterised by the use of heuristic (inde�-
nite) information. We saw how probabilities can be employed to repre-
sent heuristic information, provided one has enough information about
the system to come up with a probability measure in the �rst place. My
own favourite references on probability are:

� Carnap, R: Logical Foundations of Probability, University of Chicago
Press 1950 (a classic).

� Hamming, RW: Art of Probability for Scientists and Engineers,
Addison-Wesley 1991.

� Howson, C and Urbach, P: Scienti�c Reasoning: The Bayesian
Approach (2nd ed), Open Court 1993.

We brie�y examined the use of fuzzy sets. References are:

� Zadeh, L: Fuzzy Sets. Information and Control 8:338-353 1965.

� Zadeh L: Fuzzy logic and approximate reasoning. Synthese 30:407-
428 1975.

� Lako¤ G: Hedges: A study in meaning criteria and the logic of
fuzzy concepts. Journal of Philosophical Logic 2:458-508 1965.
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� Gaines BR: Foundations of fuzzy reasoning. International Journal
of Man-Machine Studies 6:623-668 1976.

� Goguen JA: The logic of inexact concepts. Synthese 19:325-373
1968/69.

Where less information is available than would be needed to support
a numerical approach, total preorders can be used to represent default
rules in a qualitative rather than quantitative way. This representation of
default rules leads to the idea of representing a system by a ranked inter-
pretation. Logic whose semantics is provided by ranked interpretations
and their induced defeasible entailment relations is called nonmonotonic
logic, because the defeasible entailment relations cannot be counted on
to satisfy more than limited forms of monotonicity.
The approach to nonmonotonic logic that we sketched in this lec-

ture is called by various names, including �preferential model semantics�
or �minimal model semantics�. It should be noted that this is not the
only approach to nonmonotonic logic that has been developed. At the
time McCarthy was taking the �rst steps towards minimal model seman-
tics with circumscription, Ray Reiter was inventing an approach called
default logic and McDermott, Doyle, and Moore were exploring modal
approaches that evolved into auto-epistemic logic. However, preferential
semantics is in a sense the most general approach, because (as Shoham
showed) the alternative approaches can be reconstructed within minimal
model semantics. Key references on preferential semantics are:

� John McCarthy: Epistemological Problems of Arti�cial Intelli-
gence. Proceedings of the IJCAI 1977, reprinted in M Ginsberg
(ed), Readings in nonmonotonic reasoning. Morgan Kaufmann
1987 pp46-52. (Of historical interest.)

� Yoav Shoham: Reasoning about change. MIT Press 1988. (Very
readable.)

� Kraus S, Lehmann D, and Magidor M: Nonmonotonic Reasoning,
Preferential Models and Cumulative Logics. Arti�cial Intelligence
44:167-207 1990. (The most famous reference.)

� Lehmann D and Magidor M: What does a conditional knowledge
base entail? Arti�cial Intelligence 55:1-60 1992. (Talks about
modular partial orders, which do the same as total preorders.)

There is another reason why preferential semantics has a claim to
be the dominant approach to nonmonotonic logic. Defeasible reasoning
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is about forming conclusions which, while plausible, may under excep-
tional circumstances be mistaken. If an agent has formed a defeasible
conclusion and subsequently learns it to be mistaken, what then? Some-
how the agent must revise its beliefs. Research into belief change found
natural connections with preferential semantics, as we shall see in the
next lecture. This increases one�s con�dence that preferential semantics
is the right way to go.
Finally, this lecture brie�y sketched research on categorisation and

typicality that o¤ers insights into human defeasible reasoning. Relevant
references are, alphabetically by author:

� Deese: On the prediction of occurrence of particular verbal in-
trusions in immediate recall: Journal of Experimental Psychology
58:17-22 1959.

� Osherson, Smith, Wilkie, Lopez and Sha�r: Category-based in-
duction. Psychological Review 97:185-200 1990.

� Rips L: Inductive judgments about natural categories. Journal of
Verbal Learning and Verbal Behavior 14:665-681 1975.

� Roediger & McDermott: Creating false memories: Remembering
words not presented in lists. Journal of Experimental Psychology:
Learning, Memory, and Cognition 21:803-814 1995.

� Rosch E: Natural categories. Cognitive Psychology 4:328-350 1973.

� Rosch E: Cognitive reference points. Cognitive Psychology 7:532-
547 1975.

� Rosch E and Mervis C: Family resemblances: Studies in the inter-
nal structure of categories. Cognitive Psychology 7:573-605 1975.

� Rosch, Mervis, Gray, Johnson and Boyes-Braem: Basic objects in
natural categories. Cognitive Psychology 8:382-439 1976.

� Rosch E: Principles of categorization. In Collins A & Smith EE
(editors): Readings in Cognitive Science. Morgan Kaufmann 1988.
(Both Rosch�s paper and the broader collection of readings are
highly recommended.)

� Tversky A and Kahneman D: Extensional versus intuitive reason-
ing: The conjunction fallacy in probability judgment. Psychologi-
cal Review 90(4):293-314 1983.
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Glossary
� default rule � heuristic information, represented in preferential
semantics by an order relation on the set of states.

� interpretation � what some of us call the semantic stucture that
we associate with an object language LA in order to talk about sat-
isfaction and models; the preferential semantics of nonmonotonic
logic involves �nite ranked interpretations.

� ranked interpretation � an ontology (S; V ) together with an
order relation 4 on S which is a total preorder.

� total preorder � an important new kind of order relation, de-
�ned as a binary relation that is re�exive, transitive, and total;
total preorders arrange things into levels.
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