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Abstract

Finite ranked interpretations are generalised to possible worlds
interpretations and a modal operator � is introduced to the ob-
ject language. We brie�y examine how to interpret � in di¤erent
ways to get the logic of necessity, temporal logic, and epistemic
logic.

1 Preamble

Soon Hans will be talking to you about epistemic logic, and today�s
lecture is intended to build a bridge for you, from nonmonotonic logic to
epistemic logic. Basically, it�s not a long bridge. In nonmonotonic logic
we associated with the language LA a thing of the form (S;4; V ), which
we called by a fancy name � a �nite ranked interpretation. In epistemic
logic you will associate with your language a very similar thing of the
form (S;�; V ), called by a di¤erent fancy name � a Kripke model.
There are some things to look out for, if you are not to become

confused by changes of notation and terminology. In the remainder of
this section we give a brief summary of what to watch out for. The
second section gives a more extended account of how epistemic logic �ts
into modal logic, and what motivated the development of modal logic.
A (single-agent) Kripke model, at its most general, is a triple (S;R; V )

where R may be any binary relation on S. So the ranked interpretations
we used in lectures 6 and 7 are examples of Kripke models, with R a
total preorder usually named 4 or something similar. But in the case of
Kripke models for epistemic logic:

� we do not assume that S is �nite

� we often call the members of S possible worlds instead of states
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� the relation R will be an equivalence relation called something like
�, and

� the labelling function V is usually called a valuation and is often
described in a di¤erent way.

You should watch out for the following potentially confusing di¤er-
ences between what you�re used to and what is taken for granted in
epistemic logic.
Di¤erence 1: The labelling function V : S �! WA does a simple and

speci�c job � it associates with every s 2 S an assignment w 2 WA of
truth values to atoms (i.e. w : A �! f0; 1g). Basically, V sees to it that
we can take any s 2 S and any atom p and work out whether p is satis�ed
by s. Now, this job can be done in other ways. For example, instead of
using 0 and 1 as truth values, we might use false and true instead.
More radically, we could let V be a function that eats atoms and spits
out the states satisfying the atom, i.e. V : A �! }(S). For example, if
we consider the Light-Fan System with S = WA = f11; 10; 01; 00g and
A = fp; qg, then we could let V be de�ned as follows: V (p) = f11; 10g
and V (q) = f11; 01g. This tells us everything we need to know about
which states satisfy which atoms. And in epistemic logic most of the
literature uses this approach to V .
Di¤erence 2: When we have spoken of satisfaction (i.e. truth), we

have tended to say "s satis�es '" and let the context determine which
ontology (S; V ) or which ranked interpretation (S;4 V ) was relevant.
In epistemic logic, the fashion is to mention the relevant Kripke model
explicitly, and because it is very cumbersome to write "s satis�es ' rel-
ative to the Kripke model (S;�; V )", a concise notation for satisfaction
is typically used. Some symbol is chosen to abbreviate "satis�es", for
example we might choose the symbol . Some shorter name is chosen
for the Kripke model, for example we might decide that M = (S;�; V ).
And now we may write

"M; s  '"
as a short way to say

"s satis�es ' relative to the Kripke model M = (S;�; V )".
While several modern authors use the symbol , often the symbol

for entailment, j=, is used instead.
Di¤erence 3: Apart from Kripke models, epistemic logic also uses a

propositional language containing, in addition to the connectives you
know and love, some new connectives that you haven�t seen before.
These new connectives stand for modal operators. Speci�cally, there
is an operator K that stands for "Knows", or more comprehensibly "the
agent knows that", so that a sentence of the form K' is read "the agent
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knows that '". And there is another operator M (yes, the same sym-
bol as the often use for the Kripke model, grrr, spit) and M stands for
"Maybe", or more comprehensibly "the agent considers it possible that",
so sentences of the form M' are read "the agent considers it possible
that '".
Di¤erence 4: Satisfaction of sentences containing the new connectives

is a bit more complicated than for the connectives you�re accustomed to:

� M; s  K' if and only if M; s0  ' for all s0 such that s � s0

In other words, s satis�es K' in a Kripke model M = (S;R; V )
i¤ all the little s0 that are related to s by R satisfy the shorter
sentence '. For example, if the relation R were a total preorder
4, then s would satisfy K' i¤ all the s0 such that s 4 s0 satis�ed
'.

� M; s M' if and only if M; s0  ' for some s0 such that s � s0.
In other words, s satis�es M' in a Kripke model M = (S;R; V )
i¤ at least one of the little s0 that are related to s by R satis�es
the shorter sentence '. For example, if the relation R were a total
preorder 4, then s would satisfy K' i¤ at least one of the s0 such
that s 4 s0 satis�ed '.

2 Necessity

The father of modal logic, CI Lewis, began in 1912 by exploring the
di¤erence between assertions such as the following:

� � = Either Matilda does not love me, or she does love me.

� � = Either Caesar died, or the moon is made of green cheese.

Assertion � happens to be locally true in �the real world�, because it
is an historical fact that there was such a person as Julius Caesar who
was stabbed to death on the Ides of March in the year 44 BC. But we
can imagine a �possible world�in which both Caesar died and The moon
is made of green cheese are false � for example, our world at the time
of Caesar�s invasion of Britain in 54 BC, or a �ctional world in which
Caesar rescued a fairy princess from a wicked witch and lived happily
ever after. Formalised, � gives a sentence of LA having the form p _ q,
and this sentence is false in states that make both p and q false.
Assertion �, in contrast, is not just locally true but holds in all

possible worlds, i.e. globally. Formalised, � gives a sentence of LA
having the form p _ :p, and this is a tautology. No state can make a
tautology false.
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The distinction between � and � poses a challenge for the logician
who wishes to represent this di¤erence inside the object language itself.
Syntactically, we would like to have some way to say, in the object
language, that � is, and � is not, supposed to hold globally, at all states
s 2 S. To do this, we may enrich the language LA by adding to it a
new �modal�operator �, which is a kind of connective. The intention is
that � will be read �It is necessarily the case that �. (There are other
readings that may be more interesting, but this was the original idea
behind modal logic.) However, this brings us face to face with a tricky
question: how are truth values to be allocated to sentences of the new
richer language?
The simplest way to look at it is the following. We start with an

ordinary propositional language LA for knowledge representation. We
associate with the language LA a set S of states or possible worlds.
Intuitively, one of the states in S is the actual state of the world, in
which Caesar existed and died. Other members of S correspond to
imagined states of the world. In some of the imagined worlds Caesar
never existed and in others he discovered a elixir of immortality and did
not die. Thus � is satis�ed in some states, notably in the actual state,
but not in others. Since � is not globally true over all the possible states
of the world, the modal sentence �� should be false. On the other hand,
we would expect the tautology � to be globally true over all states of the
world because of the way connectives interact with truth values. This
should be re�ected by our semantics making the modal sentence ��
true Of course, these ideas are very informal and we will need to check
whether it is possible to give a precise de�nition of satisfaction.
Let�s start by saying precisely what the language is that we get when

we add the modal operator.

De�nition 1 Suppose A is some nonempty set of atoms. The modal
language L�A is the set of all sentences �, where � is a sentence i¤ one
of the following is the case:

� � 2 A (i.e. � is an atom)

� � = :� for some previously constructed sentence �

� � = (� � ) with � 2 f^;_;!;$g and �;  previously constructed
sentences

� � = �� for some previously constructed sentence �.

The underlying nonmodal language of L�A is the set LA of all sen-
tences in which � does not occur.
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As an example, let us take the modal propositional language having
a set of two atoms, A = fp; qg.
The underlying nonmodal language LA is just the propositional

language built up from A = fp; qg by means of the usual connectives
^; _; !; and $. This familiar language has the set WA of valuations
v : A �! f0; 1g, written as 11, 10, 01, and 00.
The sentences of the modal language L�A include such additional

strings as �(p _ q), with the intended reading �It is necessarily the case
that p or q�, and �p _ �q, read �Necessarily p or necessarily q�. The
reader may �nd it interesting to pause and think about whether these
two modal sentences should be equivalent or not.

Remark 2 In sentences of the modal language, a useful pattern is formed
when negation and the box operator are combined in the sequence :�:.
Since we would read :�:p as �It is not the case that necessarily not p�,
and this appears to be saying �It is possibly the case that p�, we introduce
a new symbol � (the diamond operator) as an abbreviation for :�:.
Thus �� is an alternative way to write :�:�, and is read �Possibly ��.

How should truth values be allocated to sentences of L�A? Our experi-
ence with nonmonotonic logic and ranked interpretations o¤ers guidance.
Recall that a ranked interpretation associated three things with the

language: a set S of states, a function V connecting states to valuations
so that the process of allocating truth values could get o¤ the ground,
and a relation (total preorder 4) on S which allowed us to focus on
certain sets of states (the minimal models of sentences). We generalise
ranked interpretations to allow relations other than total preorders to
be used.

De�nition 3 A Kripke model of the modal propositional language L�A
is a tripleM = (S;R; V ) such that

� S is any nonempty set, the members of which are called states or
possible worlds

� R � S � S, called the accessibility relation

� V : S �! WA, called the labelling function or the valuation.

The pair (S;R) is called a frame.

Remark 4 Clearly there is a potential confusion whenever we use the
word �valuation�. We might mean one of the familiar little things in WA,
or we might mean V . Life is hard.
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The term �Kripke model�is used in honour of Saul Kripke, a famous
logician who, at the age of sixteen, published in 1959 a very good paper on
modal logic in which he used triples (S;R; V ). However, other logicians
had used the relevant ideas before that, starting with Rudolf Carnap in
1947, Alfred Tarski in 1951, the New Zealand logician and inventor of
temporal logic Arthur Prior in 1957, the Finnish logician Jaakko Hin-
tikka in 1957, and Stig Kanger in 1957. We should call them Carnap
models, or Carnap-Tarski-Prior-Hintikka-Kanger-Kripke models :-)

Example 5 Here is a Kripke model. Consider the Light-Fan System,
and take A = fp; qg so thatWA = f11; 10; 01; 00g. Let S = f11; 10; 01; 00g =
WA and R = S�S. Of course, V is just the identity function on S. We
shall see that this Kripke model allows us to read � as �it is necessarily
the case that�. For this we need a precise de�nition of satisfaction.

De�nition 6 IfM = (S;R; V ) is a Kripke model for the modal propo-
sitional language L�A then a sentence � is satis�ed at (or by) s 2 S in I
i¤ one of the following is the case:

� � 2 A and the valuation V (s) makes � true, i.e. (V (s))(�) = 1

� � = :� and s does not satisfy �

� � = � ^  and s satis�es both � and 

� � = � _  and s satis�es at least one of � and 

� � = � !  and s satis�es  or fails to satisfy �

� � = � $  and s satis�es both � and  or v satis�es neither

� � = �� and for every s0 such that (s; s0) 2 R, s0 satis�es �. (Thus
�� is satis�ed at s i¤ � is satis�ed at every s0 accessible from s
via the relation R.)

Example 7 Necessity:
Take L�A to be the modal language with A = fp; qg, so that WA =

f11; 10; 01; 00g. The simplest Kripke model of L�A isM = (S;R; V ) with
S = WA, R = WA �WA, and V the identity function on WA. (Why is
this so simple? Because we are in e¤ect getting rid of the relation. If R
consists of all pairs, then it doesn�t constrain us at all.)
Intuitively we expect a sentence of the form �� to be satis�ed at s

if � is a tautology of the underlying nonmodal language LA. Let us test
this.
Consider the tautology p _ :p.
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Is �(p_:p) is satis�ed at the state s = 11? Well, what are the states
accessible from 11? The accessibility relation consists of all possible pairs
of states, and so every state is accessible from every state, and thus the
states 11, 10, 01, and 00 are accessible from 11. Now let us chop o¤ the
operator at the front of �(p _ :p). Is the shorter sentence p _ :p that
we get, satis�ed at all the states accessible from 11, namely 11; 10; 01;
and 00? Yes indeed, since p _ :p is a tautology.
In a similar fashion we can check that �(p _ :p) is satis�ed at the

remaining states of S too.
Is every sentence having the form �� satis�ed at s = 11? No. Take

� = q. Then we can �nd some state that fails to satisfy �, in this case
10. And now s = 11 cannot satisfy �q because 10 is accessible from 11
but does not satisfy q.
So suppose �� is satis�ed at s = 11. What can we say about �?

Well, � must be satis�ed at every state in S = WA, and so � has to be a
tautology. Doesn�t it? Well, we need to be a bit careful when we use the
word �tautology�. When we use the word �tautology�, we have in mind a
nonmodal sentence like p_:p or like p! p which, by virtue of the way
the usual propositional connectives behave, is satis�ed by every valuation
of the nonmodal language LA. We have seen that if � is a tautology�say
� = p_:p, then �(p_:p) is satis�ed by all states in S. Thus ��(p_:p)
is satis�ed at s = 11, and is of the form �� where � = �(p _ :p), but
normally �(p _ :p) would not be called a tautology, because it isn�t an
ordinary nonmodal sentence.
The moral of the story is that in modal logics there will always be

some notation introduced to allow us to say neatly and concisely that a
sentence (possibly containing modal operators inside it) is satis�ed at all
states � we can�t use the convenient phrase �is a tautology�except for
nonmodal sentences.

The example shows that the Kripke model M allows us to read �
as �it is necessarily the case that�, because

� by de�nition a sentence of the form �� is satis�ed at state s i¤ �
is satis�ed at each of the states accessible from s

� our choice of R = WA �WA for the accessibility relation means
that every state is accessible from s, no matter which s we look at

� and thus a sentence �� is satis�ed at a state s i¤ � is satis�ed at
every state in S.

Remark 8 Bearing in mind that every � is accompanied by a diamond
operator �, where � is an abbreviation for :�:, two obvious questions
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arise: what does it take to satisfy a sentence of the form ��, and what
is the intuitive meaning of �?
A moment�s thought should reveal that a state s satis�es �� i¤ there

is at least one state s0 such that (s; s0) 2 R and s0 satis�es �. (Why?
Because s satis�es :�:� i¤ it is not the case that, at every state s0
accessible from s, � is false.)
Intuitively, therefore, if we have a Kripke model that allows us to read

� as �it is necessarily the case that�, then � may be read as �it is possible
that�or, more long-windedly, as �there is a possible world in which�.

The theorem below shows that some non-tautological sentences are
�universally true�, i.e. are satis�ed by every state in every Kripke model..

Theorem 9 If � 2 L�A is of the form �(� ! )! (�� ! �) then s
satis�es � for every s 2 S in every Kripke model (S;R; V ) of L�A.
Proof. Choose any Kripke modelM = (S;R; V ) of L�A. Choose any

sentence � of the form �(� ! )! (�� ! �). Choose any s 2 S.
Assume that � fails to be satis�ed at s. Thus �(� ! ) is satis�ed

at s but (�� ! �) is not. Since (�� ! �) is not satis�ed at s, ��
is satis�ed at s but � is not. Since � is not satis�ed at s, there must
be some s0 such that (s; s0) 2 R but  is not satis�ed at s0.
However, recall that �(� ! ) is satis�ed at s. So � !  is satis�ed

at every world accessible from s, in particular at s0. Moreover, recall that
�� is satis�ed at s, so that � is satis�ed at all worlds accessible from s,
including s0. Since both � and � !  are satis�ed at s0, it follows that
 must be satis�ed at s0. But it is not.
Our initial assumption, to the e¤ect that � fails to be satis�ed at s,

has led to a contradiction, and so must be given up. Thus � is satis�ed
at the arbitrarily chosen s and therefore at every state s 2 S in I. And
I too was arbitrarily chosen.

Remark 10 The schema �(� ! ) ! (�� ! �) is called K in
honour of Saul Kripke.

Depending on the kind of relation R that we choose, we get various
special kinds of modal logic. Let�s brie�y look at two examples: temporal
logic and epistemic logic.

Example 11 Temporal logic:
Stick to the language L�A with A = fp; qg, and keep thinking of the

Light-Fan System as the system of interest. But consider the frame
(S 0; R0) with S 0 = N, in other words S 0 = f0; 1; 2; : : :g, and let R0 be
the usual order relation < on the set of natural numbers. The idea is to
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think of the states in S 0 as time instants. This frame forms the basis of a
class of temporal Kripke models in which � means �in future�. In other
words, I claim that we can build a lot of di¤erent Kripke models from the
frame (S 0; R0) by choosing various labelling functions V 0 : S 0 ! WA, and
in each of these Kripke models it will make sense to read � as �hence-
forth�or �at all future times�. For example, we could take V 0 : S 0 ! WA

to be the function given by V 0(s) = 10 if s is an even number while
V 0(s) = 11 if s is odd. Intuitively V 0 says that the system starts at time
0 with the light on and the fan o¤ (because p ^ :q is satis�ed at state
0) and then the fan switches on and o¤ at each succeeding instant while
the light never goes o¤ (because s satis�es q whenever s is odd but satis-
�es :q whenever s is even, while state 0 satis�es �p). Clearly we could
de�ne other labelling functions each of which portrays a di¤erent history
for the system.
What does � mean? At some future time.

Example 12 Epistemic logic
Let�s make (S 00; R00) a really interesting frame. Let�s keep think-

ing of the Light-Fan System. Take S 00 = S, in other words S 00 =
f11; 10; 01; 00g, and let R00 = f(11; 11); (10; 10); (01; 01); (00; 00); (11; 10);
(10; 11); (00; 01); (01; 00)g. The relation R00 is an equivalence relation,
i.e. has the properties of being re�exive on S (since (s; s) 2 R00 for every
s 2 S), symmetric (because if (s; t) 2 R00 then (t; s) 2 R00) and transitive
(because if (s; t) 2 R00 and (t; u) 2 R00 then also (s; u) 2 R00). So we
could give R00 a name that suggests an equivalence relation, like �. Now
� is the relation such that 11 � 11, 10 � 10, 01 � 01, 00 � 00, 11 � 10,
10 � 11, 00 � 01, and 01 � 00. (Do you see that these �equations�just
tell us what ordered pairs belong to the relation �?)
Here is a diagram depicting the equivalence relation.
01 00
11 10
The equivalence relation � divides (partitions) the set S into two

equivalence classes, f11; 10g and f01; 00g. Intuitively, � represents the
point of view of an agent who cannot tell the di¤erence between the states
11 and 10, nor the di¤erence between the states 01 and 00. This might be
an agent looking at the Light-Fan system but placed so far from it that,
although she can see whether the light is on or o¤, she cannot detect
whether the fan is on or o¤. Thus the accessibility relation is doing
something extremely interesting here � it embodies the constraints on
the agent�s capacity to extract information from the system of interest.
In a sense the frame (S 00;�) is drawing a map not only of the Light-
Fan System but of a broader system that adds an agent to the Light-
Fan System. We still think of the states in S as states of the Light-
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Fan System. We shall see that, by virtue of �, this frame supports the
interpretation of � as �the agent knows that�.
Because we have chosen S 00 = WA, there is really only one labelling

function V 00 that gives a sensible interpretation, namely the identity func-
tion V 00(s) = s.
Having chosen S 00, �, and V 00, we have a Kripke model such that,

for instance, s = 11 satis�es �p, because p is satis�ed at both 11 and
10, the states accessible from 11. Is this what we would expect? Yes �
intuitively �p should be true at state 11 because, when the system is in
state 11, the agent can see that the light is on (i.e. that p is the case). On
the other hand, state 11 fails to satisfy �q, since 10 is accessible from 11
but 10 does not satisfy q. This makes intuitive sense too, because when
the system is in state 11 then the agent can see that the light is on but
cannot see whether the fan is on, and so cannot know that q is the case.
The moral of the story is that we can use equivalence relations as ac-

cessibility relations if we want to represent the knowledge that an agent
is able to extract from a system. When the system is in a state s, the
agent knows � if � is true in all the states that, to the agent, are indis-
tinguishable from s, i.e. in all states that are �equivalent�to s. And thus
to say that the agent knows � relative to state s is the same as to say
that �� is satis�ed at s. And since they want to be reminded of �knows�,
epistemic logicians use the symbol K instead of �.
What does � mean? If �� is satis�ed at s, then when the system is

in the state s the agent considers � to be possible, because the agent does
not know :�. And since they want to be reminded that �maybe�� is the
case, epistemic logicians use the symbol M instead of �.

Exercise 13 1. Consider the Light-Fan-Heater System, which has
the three obvious components. Let L�A be the modal language hav-
ing A = fp; q; rg. The intention is that p should express the claim
that the light is on, q the claim that the fan is on, and r that the
heater is on. Recall that WA = f111; 110; : : : ; 001; 000g.
Suppose that the blueprint of the system reveals that it is not pos-
sible to have all three components on simultaneously, so that the
valuation 111 does not represent a �realisable�state of the system.
Assume that the remaining valuations in WA do represent realis-
able states of the system.

� Describe a Kripke model I = (S;R; V ) of L�A in which S is
the set of realisable states of the Light-Fan-Heater System.

� Is �(:p _ :q _ :r) satis�ed at every s 2 S?
� Is (�:p) _ (�:q) _ (�:r) satis�ed at every s 2 S?
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2. In the theorem of this section, we met a schema K, namely �(� !
) ! (�� ! �). Schema K has the remarkable property that
every sentence of this form is universally true (i.e. true at every
state in every Kripke model). Examine each of the following schemas
of L�A and determine whether all sentences of that form are uni-
versally true. If so, give an argument to support your conclusion.
If not, give a counterexample consisting of some speci�c sentence
of the correct form and some Kripke model having a state at which
the sentence fails to be satis�ed.

� �� $ :�:� � or with more parentheses, (��)$ (:�:�)
� �(� ! )! (�� ! �)
� �(� ^ )! (�� ^�)
� �(� _ )! (�� _�)
� (�� ^ �)! �(� ^ )

Glossary
� frame � a pair (S;R) consisting of a set S of states together with
a relation R � S � S.

� Kripke model � what we get when we combine a frame and an
ontology to get a triple (S;R; V ).

� modal operator � either a box operator � or a diamond opera-
tor �, where � is an abbreviation for :�:; in epistemic logic, it is
common for K to be used instead of � and M instead of �; think
of K as �knows�and M as �maybe�.

� possible world � a member of S, what we usually call a state.

� valuation � either a familiar function v : A �! f0; 1g sending
atoms to truth values or a labelling function V : S �! WA or
something equivalent to a labelling function, e.g. a function V :
A �! }(S) associating with each atom the set of states satisfying
the atom, or a function V : A�S �! f0; 1g associating with every
atom and state a truth value.
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