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abstract. We introduce various new supraclassical entailment relations
for defeasible reasoning and investigate some of their relationships. The
contrapositive of the usual nonmonotonic preferential entailment turns out
to be a monotonic supraclassical entailment. Analogously to these two, a
nonmonotonic and its contrapositive monotonic supraclassical entailment
can be defined by using modal operators relative to a reflexive accessibil-
ity relation instead of a preference order. Then again, by using the strict
variant of a preference order on worlds as accessibility relation, modal ver-
sions of the usual preferential entailment and its contrapositive are obtained.
Proof-theoretic aspects of modal preferential entailment is discussed briefly,
leading to a characterization of modular Gödel-Löb logics. The link estab-
lished between preferential and modal logics make existing modal proof and
satisfiability algorithms available for use in preferential logics.

Keywords: modal logic; preferential logic; nonmonotonic logic; supra-
classical entailment; defeasible reasoning.

1 Introduction

The heart of logic is entailment – a relation between information-bearers X
and Y , induced by a relation E between representations P (X) and Q(Y ) of
X and Y . E represents the idea that X lends credence (maybe even truth) to
Y . Classical entailment comes in at least two forms: syntactic and semantic.
In syntactic entailment X = P (X) and Y = Q(Y ) are sentences, while E
= `, formal deduction according to a set of syntactic rules, and we write
X ` Y . When sentence X semantically entails sentence Y , written X |= Y ,
P (X) = X = Mod(X), the set of models of X, Q(Y ) = Y = Mod(Y ), and
E = ⊆, set-theoretical inclusion. Classical entailment, in either of its two
forms, preserves truth: If X is true in an interpretation, then Y is also true
in that interpretation.

In supraclassical entailment we allow more pairs (X, Y ) into the entail-
ment relation than can be justified classically. This is done by suitable
choices, determined by meta-information beyond that carried by X and
Y , of P (X), Q(Y ) and E, and then stipulating “X entails Y ” to mean
P (X)EQ(Y ). Then the truth of X induces the plausibility, credibility, or
likelihood, but not always the truth, of Y . The entailment is therefore defea-
sible; it may have a counterexample, an (unexpected) interpretation under
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which X is true, but Y is false. One of the well-studied defeasible ways of
reasoning is known as nonmonotonic logic with semantics co-determined by
a preference order on worlds or interpretations – preferential logic, for short
[13, 9].

In Section 2 we introduce the contrapositive |∼∗ of the usual preferential
entailment |∼. It turns out to have merits dual to those of |∼, to be mono-
tonic, and to be apt for abduction. Analogously to the dual pair |∼ and |∼∗,
in Section 3 we discuss two modal defeasible entailments based on ¤ and
♦ with reflexive accessibility, again nonmonotonic and monotonic respec-
tively. Section 4 demonstrates (now differently from the modal approach
of Section 3) that |∼ and |∼∗ have exact modal equivalents. In Section 5
the modal defeasible entailment relations of Section 4 are positioned in a
broader context of modal logics, related to Gödel-Löb logics, and shown to
open up the well-developed decision procedures for modal and description
logics for use in preferential logics.

2 Preferential logics

In a preferential logic one assumes as given an order relation on a set of
possible worlds W, for example a total preorder (a connected, reflexive,
transitive, binary relation) or a partial order on the set of all worlds or
all interpretations of the language. In the analysis of rational preferential
reasoning, the partial order is assumed to be modular, i.e. for all u, v, w
in W, if u and v are incomparable and u is strictly below w, then v is also
strictly below w. We also assume that the order relation is transitive and
Noetherian (and hence smooth), i.e. there is no infinite strictly ascending
chain of worlds. In the presence of transitivity, the Noetherian property is
equivalent to the following condition: For every nonempty subset U of W
and u ∈U there is an element v ∈U, maximal in U, with v greater than or
equal to u.

Although this is not in general the case [9], we shall identify possible
worlds with interpretations of the language. The intuitive idea captured by
the preference order is then that interpretations higher up (greater) in the
order are more preferred, more normal, more likely to occur in the context
under consideration, than those lower down. For historical reasons the order
is often inverted, i.e. “lower down/smaller = better” (see, for example, [1]),
but we will not follow that convention in this paper.

In preferential logic with preference order≤ on W the classical entailment
relation X |= Y , i.e. X ⊆ Y, is expanded to a larger set of pairs (X, Y )
by shrinking X to a smaller set, the set P (X) of most preferred models of
X, fitting into more different sets Y. We define the defeasible entailment
relation |∼ by

X |∼ Y iff P (X) ⊆ Y,

where

P (X) := MaxMod(X)
:= {w ∈ X | ¬(∃w′ ∈ X)(w ≤ w′ ∧ w′ 6≤ w)}.
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MaxMod(X) is the set of maximal models of X – those models w of X
for which there is no model of X strictly higher up in the preference order
≤ than w, i.e. strictly preferred to w [13, p.76]. So, a counterexample
defeating X |∼ Y , a model of X which is not a model of Y , cannot be
among the most preferred models of X, and must be rather “abnormal” –
for the cognoscenti: like a world with Tweety unable to fly.

For a fixed premise X, the set {Y | X |∼ Y } of consequences under |∼
has good properties: it is a filter in the Lindenbaum-Tarski algebra of the
language, i.e. is closed under classical conjunction ∧ and classical entailment
|=. (It is a principal filter if P (X) is the set of models of a single sentence,
as always happens for a finitely generated propositional language.) But,
for a fixed consequence Y , the set of its premises {X | X |∼ Y } under |∼
merits no acclamation: it is not an ideal, i.a. because |∼ is nonmonotonic;
X |∼ Y does not always ensure that X∧X ′ |∼ Y , so the set of premises of Y
under |∼ is not closed downward in the Lindenbaum-Tarski algebra. Could
there be some variant, say |∼∗, of |∼ for which the premises {X | X |∼∗ Y }
of a fixed Y do always form an ideal – maybe at the price of not always
having {Y | X |∼∗ Y } a filter? The answer is yes – taking |∼∗ to be the
contrapositive of |∼ performs the feat.

Classically, X |= Y and its contrapositive ¬Y |= ¬X are equivalent. This
is not true for |∼. Let us investigate the contrapositive of X |∼ Y (where
W is the set of all interpretations):

¬Y |∼ ¬X iff P (¬Y ) ⊆ W−X

iff X ⊆ W− P (¬Y )
iff X ⊆ Y ∪ [(W−Y)− P (¬Y )].

If we now define

Q(Y ) := Y ∪ [(W−Y)− P (¬Y )],

adding to Y those models of ¬Y which are not most preferred, then we can
naturally define |∼∗ by

X |∼∗ Y iff X ⊆ Q(Y ).

Note that whereas |∼ expands the relation X |= Y by shrinking X to P (X),
|∼∗ does this (differently) by dilating Y to Q(Y ). The intuition behind this
is that, should X (against expectations) have a model not in Y (i.e. a coun-
terexample to X |= Y ), then this model (counterexample) is “abnormal”,
being not amongst the most preferred models of ¬Y . The consequences
{Y | X |∼∗ Y } of a fixed X under |∼∗ do not constitute a filter in the
Lindenbaum-Tarski algebra, but now the premises {X | X |∼∗ Y } of a fixed
Y do form an ideal, and |∼∗ is monotonic. So, in this sense, |∼ and its
contrapositive |∼∗ seem to have equal claims to being among the useful and
acceptable defeasible expansions of |=, maybe apt in different contexts.
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According to C.S. Peirce, non-deductive reasoning is either inductive or
abductive [5]. His classification proceeds in terms of a model of scientific in-
quiry, leading to the characterization of abduction as hypothesis generation
and induction as hypothesis evaluation by testing against reality through se-
lected predictions. Peirce’s model, while it has the virtue of simplicity, does
not compel wide acceptance, and in particular the notion that induction is a
process of testing hypotheses departs markedly from the Carnapian notion
of inductive generalization from particular facts. Given that inductive gen-
eralizations (such as “All birds can fly”) are usually defeasible, i.e. admit
exceptions, it would seem that they should be formalized not via universal
quantification but via a defeasible entailment relation. We would suggest,
therefore, that the filter of consequences of X under |∼ is the appropriate
representation of the inductive generalization based on X. Reversing fig-
ure and ground, we suggest that the ideal of premises of Y under |∼∗ is a
mathematically precise formalization of the process of forming explanatory
hypotheses that Peirce viewed as a rather mysterious guessing game or act
of insight, namely abduction to an explanation of observation Y .

3 Defeasible reasoning using modal operators

In the previous section we explained how the classical entailment relation
|= can be expanded in two different ways to defeasible, but plausible, en-
tailments |∼ and |∼∗, using a given preference order and induced shrinking
and dilating operators P and Q on sets of models. In this section we inves-
tigate whether something similar can be done, but now letting P and Q be
(induced by) modal operators ¤ and ♦ as yielded by a given accessibility
relation on W, instead of a preference order. The accessibility relation R
will (only in this section) be assumed to be at least reflexive.

We note that ¤ shrinks model sets from X to P (X) = Mod(¤X):

Mod(¤X) = {w ∈ W | (∀w′)(wRw′ → w′ ∈ X)}
= {w | R[{w}] ⊆ X},

a subset of X, since R is reflexive and w ∈ R[{w}]. This is the subset
consisting of those elements of X which are R-related to no world outside X.
Just as in the previous section, where P (X) represented a logically stronger
statement than X, here ¤X (“necessarily, X”) is logically stronger (has
fewer models) than X. The consequences defeasibly and nonmonotonically
entailed by fixed premise X, {Y | ¤X |= Y }, form a principal filter in
the Lindenbaum-Tarski algebra. We note that if R is also transitive, then
¤X |= Y is equivalent to ¤X |= ¤Y .

One possible reading of ¤ is as an epistemic operator. On this reading,
the role of ¤ is similar to that of the epistemic operator K in description
logics, where it is used to formalize the semantics of procedural rules in
knowledge systems [4].
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The modal operator ♦ dilates model sets from Y to Q(Y ) = Mod(♦Y ):

Mod(♦Y ) = {w ∈ W | (∃w′)(wRw′ ∧ w′ ∈ Y)}
= R−1[Y],

a superset of Y, since R is reflexive. This is the set of all those worlds
which are R-related to some world in Y. Q(Y ) represents a logically weaker
statement ♦Y (“possibly, Y ”) than Y . The premises defeasibly, but mono-
tonically, entailing a fixed consequence Y , {X | X |= ♦Y }, form a principal
ideal in the Lindenbaum-Tarski algebra. Again, we note that if R is also
transitive, then X |= ♦Y is equivalent to ♦X |= ♦Y .

So, the shrinking and dilating operators P and Q on model sets, induced
by the modal operators ¤ and ♦ on propositions, behave similarly to the P
and Q of the previous section, there induced by a preference order. The two
corresponding modal defeasible entailment relations, nonmonotonic ¤X |=
Y and monotonic X |= ♦Y , are not equivalent – they are not classical
contrapositives, in spite of the duality ♦ = ¬¤¬!

4 Modal preferential entailment

Preferential entailment is induced in a very specific way by a preference re-
lation on W. In contrast, an accessibility relation for a modal logic can, in
general, be any binary relation R on W. This elicits the question whether
any preferential entailment relation |∼ can be construed as modal, by con-
structing an apt accessibility relation R from the preference order ≤ and
then formulating a modal sentence P (X) which, with semantics relative to
R, describes the preferred models (relative to ≤) of premise X:

Mod(P (X)) = MaxMod(X).

Unlike in the previous sections, where P (X) was defined semantically as a
set of interpretations, here we want a syntactic representation of X which
matches a given semantic construction. The answer is yes, we can do that,
even though we may not find a P (X) of the simple form ¤X.

Given a preference order ≤, which we assume to be at least a preorder
(reflexive transitive relation), take the accessibility relation R to be <, the
strict partial order (irreflexive transitive relation) corresponding to ≤:

(∀w)(∀w′)[w < w′ iff w ≤ w′ and w′ 6≤ w].

Then define
P (X) := X ∧¤¬X,

which is logically stronger than X. According to the semantics induced by
R, the sentence ¤¬X is true in world w if and only if X is false in all w′

such that w < w′. Hence P (X) is true in all the maximal models of X, and
false in all other worlds (non-models of X as well as non-maximal models
of X):

Mod(P (X)) = MaxMod(X); and X |∼ Y iff P (X) |= Y.
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By the way, one tends to think intuitively that ¤¬X contradicts X, but the
irreflexivity of < prevents this calamity.

For the contrapositive |∼∗ of |∼ we see that

X |∼∗ Y iff ¬Y |∼ ¬X

iff ¬Y ∧¤Y |= ¬X

iff X |= Q(Y ),

where
Q(Y ) := ¤Y → Y.

Q(Y ) is not in general a tautology, since < is irreflexive, but Q(Y ) is logically
weaker than Y .

We have then demonstrated that defeasible entailments X |∼ Y and
X |∼∗ Y based on preference are respectively nonmonotonic and monotonic,
and equivalent to entailments P (X) |= Y and X |= Q(Y ), with P (X) = X∧
¤¬X and Q(Y ) = Y ∨¬¤Y in the modal language with semantics induced
by that accessibility relation which is the strict variant of the preference
order. Remember that in the non-modal language for preferential logic in
Section 2 the filter {Y | X |∼ Y } need not be principal, since MaxMod(X)
need not be axiomatizable by a single sentence; similarly the ideal {X |
X |∼∗ Y } need not be principal. However, in the more expressive modal
language of this section the corresponding filter and ideal are principal,
generated respectively by the single modal sentences P (X) and Q(Y ).

5 Proof theory

Having characterized preferential entailment modally, we now turn to the
axiomatization of the accessibility relation < which was used to give an
appropriate semantics to the sentence P (X) = X ∧ ¤¬X. In its most
general form, < is a Noetherian strict partial order.

Gödel-Löb logic GL (an important provability logic) is obtained from the
minimal modal logic K by adding the transitivity and Löb axioms (see, for
example, [6]):

GL := K ⊕ ¤X → ¤¤X ⊕ ¤(¤X → X) → ¤X.

Segerberg [12] proved that GL is determined by the class of all Noethe-
rian strict partial orders. This makes GL the appropriate logic to reason
syntactically about modal preferential entailment.

Should the given preference order be a modular partial order or a total
preorder, we need to consider the axiomatization of modularity or connect-
edness. In fact, we only need to consider modularity, as any total preorder
can be converted to an associated modular partial order via its associated
strict partial order: Let preorders S and T be order-equivalent iff they have
the same associated strict partial orders. It is then not difficult to show
that, for any modular partial order S, there is a total preorder T such that
S and T are order-equivalent, and conversely, for every total preorder T
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there is a modular partial order S such that S and T are order-equivalent.
So one can move without loss of information from a total preorder to a
modular partial order via the modal representation of information in terms
of a strict accessibility relation.

Linearity, and trichotomy, cannot be axiomatized without resorting to a
tense logic (i.e. a bidirectional frame with corresponding modal operators),
and we conjecture that neither can modularity. But all is not lost. Just as
linearity can be weakened to prohibit branching to the right (see, for exam-
ple, [3, p.193]), one can weaken modularity to prohibit upward-branching
over more than one level: Let an order relation be weakly modular if

(∀w)(∀u)(∀v)[If w < v and w < u then v < u or u < v or ↑ v = ↑ u],

where ↑ v = {v′ | v < v′} is the strict upclosure of v. The axiomatization
of weak modularity is then as follows:

Lemma 1. Let (W, <) be a GL-frame (i.e. a Noetherian strict partial
order). (W, <) is weakly modular if and only if any sentence of the form

¤(¤X → Y ) ∨¤(¤Y → ¤X)

is valid in the frame.

Proof. Left to right: Suppose ¤(¤X → Y ) ∨ ¤(¤Y → ¤X) is false in
world w. Then

(i) ∃u such that w < u and ¤X → Y is false in u, i.e. ¤X is true in u
and Y is false in u, and

(ii) ∃v such that w < v and ¤Y → ¤X is false in v, i.e. ¤Y is true in v
and ¤X is false in v.

Suppose also that < is weakly modular. Then v < u or u < v or ↑ v =↑ u.
If v < u, then ¤Y is true in v, so Y is true in u, contradicting (i). If u < v,
then ¤X is true in u, so ¤X is true in v, contradicting (ii). If ↑ v =↑ u,
then ¤X is true in u, so ¤X is true in v, contradicting (ii). Therefore weak
modularity of the frame implies validity of ¤(¤X → Y ) ∨¤(¤Y → ¤X).

Conversely, suppose there exist worlds u, v, w such that w < v and w < u
and not(v < u or u < v or ↑ v =↑ u). Without loss of generality, we can
assume that ∃z such that v < z and u 6< z.

Let Y be any sentence true in ↑ v and false in u, and let X be any
sentence true in ↑ u and false in z. We see that ¤X is true in u, Y is false
in u, ¤Y is true in v and ¤X is false in v. Therefore ¤X → Y is false in u
and ¤Y → ¤X is false in v. So ¤(¤X → Y ) ∨¤(¤Y → ¤X) is not valid.
Therefore validity of the axiom implies weak modularity. ¥

Let Modular GL be the logic obtained from GL by adding the weak
modularity axiom. We therefore have the following result:

THEOREM 1. Modular GL is determined by the class of all Noetherian
weakly modular strict partial orders.
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Nonmonotonic logics, and preferential logics in particular, do not have a
well-developed theory of effective decision procedures at their disposal. Re-
search along these lines has mostly been centered around Gentzen-style in-
ference rules, recursively generating the set of valid entailment pairs [10, 8].
In contrast, there are many effective proof (and decision) procedures for
modal logics resulting from an increased awareness of the range and sig-
nificance of computational applications of modal logics, for example in ap-
plications of description logics [2]. Algorithms to determine modal satisfia-
bility include both specialized modal satisfiability algorithms, for example
tableau-based methods [7], and translation-based methods [11].

From the perspective of determining modal satisfiability, the first-order
semantic characterization of modularity is of greater interest than its (weak)
modal axiomatization – in modal tableaux the properties of the accessibility
relation are built into the proof rules, and in first-order translations the
accessibility relation is axiomatized in first-order logic.

Casting preferential reasoning as a modal satisfiability problem opens up
the well-developed decision procedures for modal and description logics for
use in preferential logics.
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